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Abstract

Musical Instrument Identification with Feature Selection Using
Evolutionary Methods

Róiśın Loughran

Musical instruments may be identified using machine learning methods, but
it is not clear which aspects of the sound or features are best used in such
methods. Classification experiments using Principal Component Analysis
(PCA) and Multi-Layered Perceptrons (MLP) in this thesis find that the
addition of extra features may not necessarily be beneficial — optimisation of
the features is required. This optimisation is implemented using Evolutionary
Computation methods as they have yet to be extensively applied in musical
sound analysis.

A Genetic Algorithm (GA) with a new instrument-clustering fitness func-
tion based on PCA is applied to optimise a set of 95 features for classification
with an MLP. With this method, the number of features used to classify an
instrument is reduced from 95 to as low as 22 with a classification accuracy
reduction of less than 0.3%. This method is tested against another evolu-
tionary method that has not yet been applied to instrument identification —
Genetic Programming (GP). GP is used to evolve a classifier program that
can identify unseen samples with an accuracy of 94.3% using just 14 of the
95 original features. Though not as high as the MLP or the GA-MLP, it
is found that GP is more consistent with its choice of features, offering a
possible insight into timbre and the nature of sound recognition.

In both EC methods it is found that the first principal component of the
envelope of the centroid, a new measure of this feature, is the most important
among all 95 features. It is also seen that each classification method performs
significantly better when tested with a general set of samples, than with a one-
octave sample set common to each instrument. The classifiers are compared
to a set of human listening tests on particularly troublesome samples. It is
seen that although the GA and GP are accurate at identifying general unseen
samples, the human ear performs significantly better than both methods at
identifying these difficult samples.
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Chapter 1

Introduction

As humans, we possess an astute ability to recognise sounds aurally. Although

the human ear may hear a sound, this sound is perceived by the human brain

or mind. Sounds are presented to and collected by the ear, but it is the

brain that organises the aural inputs so that they may be categorised and

hence recognised by the conscious mind. Thus the recognition of a sound is

dependent on a number of processes:

• the presentation of aural stimuli

• the collection of these stimuli by the ear

• the transmission of this stimuli data to the brain

• the organisation of the transmitted data by the brain

• the conscious recognition of the organised data as a particular sound by

the mind

Though we may not realise it when identifying a sound source — such as a

particular musical instrument — our minds are carrying out the above pro-

cesses. Chapter 8 of this thesis demonstrates that the human mind is very

accurate in identifying familiar musical instruments. Even people with mini-

mal musical experience were found to be able to identify musical instruments

quite easily, even at the extremes of their pitch range. This thesis aims to

determine which aspects of a sound make it distinguishable as a particular

musical instrument. This problem is approached by examining the recogni-

tion of musical instrument sounds with machine learning methods.
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1.1 Motivation

The motivation for the work carried out in this thesis was based on the need to

develop a classifier for judging the quality of a synthesised sound. The idea for

a synthesiser produced from evolutionary methods was proposed in Loughran

et al. (2007). Such a model would require a method of evaluating the quality

of each synthesised sound. Human evaluations may be used with evolutionary

methods using Interactive GA (McDermott, 2008) but such evaluations may

be time-consuming and costly. Using an accurate automatic classifier would

eliminate the need for a human observer. From examining recent literature

on automatic instrument identification, it became apparent that although

many instrument classifiers have been developed, no one specific classifier has

emerged as better than all others. Thus the focus of this thesis turned to

developing a robust accurate musical instrument classifier — one that could

judge the ‘realness’ of a synthesised sound regardless of pitch or dynamic.

Creating such a classifier required a close examination of what it is that

makes a particular sound identifiable — what are the attributes, features or

aural qualities that inform our mind what instrument a note was played on?

It is hoped that such a study may offer some insight into musical quality or

timbre.

1.2 Problem Definition

This thesis questions what aural qualities distinguish a particular musical

instrument. The process of aural recognition may be described as above, but

it is not clear what aspects of the aural stimuli are most important for sound

recognition.

1.2.1 Timbre

Timbre is the distinctive aspect of a sound: it is the quality of a note that

distinguishes it from other notes of a similar pitch and loudness. Two notes of

the same pitch played on different instruments may sound distinctly different

from one another implying that recognition of an instrument is dependent on

its timbre. Therefore to correctly identify an instrument, we must find a way

to accurately measure its timbre. However, as discussed in Chapter 3, timbre

is not a simple quality to measure. Timbre is a multi-dimensional quality that

cannot be captured in one specific attribute or feature. Studies in timbre have

used multi-dimensional scaling (MDS) in an attempt to gain some insight
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into the different aspects of timbre (Grey, 1977; Wessel, 1979). These studies

reduce the dimensions of timbre and attempt to assign each dimension to a

specific measurable attribute. Obtaining the specific descriptors of enough

dimensions should allow us to accurately describe timbre, but there remains

disagreement as to what properties of timbre some of the dimensions represent

(Donnnadieu, 2007). Thus in order to accurately identify an instrument, we

must first decide which attributes or features to use in order to describe any

given timbre.

1.2.2 Instrument Classification

Studies using machine learning methods have been used to address the prob-

lem of musical instrument recognition since the mid-1990s. These studies have

created musical instrument classifiers using methods such as multi-layered

perceptrons (Nielson et al., 2007), support vector machines (Essid et al.,

2006), k-nearest neighbours (Livshin and Rodet, 2004) and self-organising

maps (Cosi et al., 1994) among others. They use a number of features calcu-

lated from a selection of sound samples to train and test these classifiers. A

detailed review of these studies is given in Chapter 4. It is clear from looking

at these studies that there is no consensus as to which is the best method of

classification to use. The studies quote various results from various classifiers.

More importantly, their experiments vary in terms of instruments examined

and features used. Some studies quote a large number of instruments but only

classified between instrument families, whereas others only attempted to clas-

sify between instruments of the same family. The number of samples used

to both train and test these classifiers also differed greatly between studies.

Some studies only tested common pitches between instruments, thus limiting

the scope of the classifier. Limiting the classifier in these ways may introduce

a bias into the classification system (Herrera et al., 2000).

Such limitations in pitch — or in dynamic or playing style — are not

indicative of real instrument sounds; real instruments can be played at a wide

range of pitch and dynamic, with vibrato or other effects. One of the aims

of this thesis is to create a more robust instrument classifier, one that could

identify an instrument sound regardless of the pitch or dynamic of the note

played. In doing so, we question how to define the accuracy of a developed

classifier — how much does the accuracy of the classifier depend on the range

of samples used to test it? Is the classifier better at classifying sounds within

a smaller pitch range covering one octave or a more general pitch range of

samples? How does it handle samples that are not within the ‘typical’ pitch
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range of a given instrument?

The majority of previous studies compared the classification results of two

or more classifiers, or compared the results of one classifier with those from

separate studies in the literature. However, this only verifies the results of

one artificial classifier against another. A true measure of accuracy would be

to compare an artificial classifier against the original classifier — the human

ear. When dealing with real instrument sounds we may ask: can we create a

classifier that is as accurate as the human ear?

1.2.3 Feature Selection

The number and type of features used in the studies discussed above also

vary widely. No consensus has been reached as to which set of features are

the most important for recognising a sound, resulting in further variation

in the accuracy of classification between studies. The selection of features

is arguably the most important step in creating an automatic instrument

classifier. Regardless of which type of classifier is used, it has no a priori

knowledge of the instruments it must recognise — it can only learn from the

features it is given. Thus it follows that if an appropriate set of features from

a sufficient set of samples is not used as training data, then no classifier can

be trained to its full potential. The question is: what is the best selection of

features for successfully training an instrument classifier?

1.3 Approach to the Problem

The problems addressed above are examined by creating and testing a series

of musical instrument classifiers. All of the experiments throughout this thesis

were implemented using Matlab (MATLAB7, 2006). These experiments were

conducted using a large range of samples from a small range of instruments:

over 2000 samples from 3 instruments in Chapter 5 and over 3000 samples

from 5 instruments in Chapter 6 and Chapter 7. These samples contained

many instances of each pitch across the whole range of each of the instruments

played at several dynamic levels. This allowed the testing of various different

pitch ranges — pitch ranges common to all instruments, ranges that were

more general covering the entire range of each instrument and ranges that

had high proportions of pitches at the extremes of the instruments. Testing

in this manner can give a more conclusive indication of how accurate and

robust the developed classifier is at identifying instrument sounds.
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To determine the accuracy of the final developed classifiers, they were

compared against a set of human subjects. Although most of the studies de-

scribed above and in Chapter 4 only compared results against other classifiers,

Martin (1999) compared the results of his developed classifiers against a set

of human experiments. A similar human-evaluation test is undertaken here.

In this thesis however, the classifiers are first evaluated on more typical sam-

ples before being pitted against human classifiers in experiments containing

a high proportion of samples in atypical pitch and dynamic ranges.

To determine the best set of features for instrument classification, a num-

ber of temporal and spectral features used in previous studies were imple-

mented in a series of classification experiments. Various combinations of

these features were used in classification experiments using principal compo-

nent analysis (PCA) and multi-layered perceptrons (MLP). The differences

in the results of these experiments indicated that certain features were more

valuable to the systems than others. As exhausting all combinations of the

available features to find the best set was impractical, a method of feature

selection was required.

Methods of optimising audio features have been proposed using hierarchi-

cal classifiers with inertia ratio (Peeters and Rodet, 2003) and binary genetic

algorithms for use with a k-nearest neighbour classifier (Fujinaga, 1998). This

issue of optimal feature selection was addressed in this thesis using Evolution-

ary Computational (EC) methods. EC methods such as Genetic Algorithms

(GA) have been shown to be a powerful tool for large scale feature selection

in comparison to other methods (Ferri et al., 1993; Siedlecki and Sklansky,

1993b). Despite this, from the review of previous classification experiments

in Chapter 4, it is clear that EC methods have not been applied extensively in

the domain of musical instrument recognition. Experiments were conducted

using GAs that further the work in Fujinaga (1998) by using floating point

genomes with an originally developed fitness function to determine the best

set of features to use with an MLP classifier. The fitness function developed

is based on the clustering of the data once it has been reduced using PCA.

Although the GA may offer some insight into which features are useful

for classifying instruments, the evolved result (the genome) cannot be used

as a classifier directly — it still required an MLP. Thus another evolutionary

method was considered that can evolve the full solution to the problem —

Genetic Programming (GP). Experiments were conducted to create a musical

instrument classifier using GP with a limited number of functions available

to it. Like GAs, GP combines the available features, placing emphasis on
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some and ignoring others. GP has an added benefit over GA for this purpose

however, in that it can evolve the entire solution to the problem without the

need for an external classifier such as the MLP.

Both the GA and the GP indicate which of the features examined are

best used for musical instrument classification. By analysing the results from

these experiments, it may be possible to find common features that occur

more frequently among the results. These common features would thus be

more ‘important’ for instrument identification. It may then be concluded

that these features are more important in the description of timbre. Thus

by conducting these experiments it is hoped to gain further insights into the

dimensions and nature of timbre.

1.4 Contributions

The experiments undertaken as part of this thesis contribute a number of

findings to the fields of timbre analysis, musical instrument recognition and

evolutionary computation. Details of these contributions are outlined below.

Centroid Envelope Various statistical measures of the centroid have been

included as features in many previous studies on instrument classification.

This thesis used a new measure of the centroid known here as the Centroid

Envelope. Described in Chapter 3, this envelope is a measure of the changes

in the centroid throughout the duration of a note. Its dimensionality was

reduced using PCA and incorporated into a number of experiments in Chap-

ters 5, 6 and 7. The first principal component of this centroid envelope was

found to be the most consistent feature to emerge as important among all the

features used throughout this thesis.

Range of Training Samples The training samples used for experiments in

Chapters 5, 6 and 7 of this thesis include notes from the entire pitch range

of each instrument at three dynamic levels played with and without vibrato,

where possible. These samples were taken from at least two different manu-

facturers of each instrument. This consists of more samples per instrument

than previous studies in the literature, which should result in the development

of a more robust classifier.

Selecting and Reducing Features with GA A floating-point GA was

used in Chapter 6 to determine how much of each feature should be used

for optimal instrument recognition. Despite the success of GAs in feature
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selection, very few studies have incorporated them in musical instrument

classifiers. In these experiments, the value of each gene within the evolved

genomes indicated the relative importance of each feature. Using a number

of cut-off values the features of lower valued importance were removed from

the data set. This resulted in a smaller data set requiring a reduced number

of computations with minimum reduction in classification accuracy.

New GA Fitness Function A new clustering fitness function was developed

for the GA in Chapter 6. This function multiplied the current genome by

the data set and then transformed the variance of this data using PCA. The

fitness of the genome was determined according to how well the lower principal

components of the data set separated and formed distinct instrument clusters.

GP Instrument Classifier From the review of classification techniques,

it may be seen that GP has as yet to be applied to the problem of musical

instrument identification. GP was used to evolve simple instrument classifiers

as described in Chapter 7. The results from these GP runs indicate that a

simple instrument classifier using just a selection of features and a small

number of mathematical and logical operators may be developed with quite

accurate results. The result from the most successfully evolved program is

comparable with those from much more complex classifiers.

Independent Listening Tests A series of independent listening tests were

conducted, as described in Chapter 8 to evaluate how recognisable the in-

strument samples used throughout this thesis were to candidates of varying

musical experience. Most of the samples were found to be easily recognised

with the most problematic samples being in the high pitch ranges of the

instrument. A number of trumpet samples at high pitches proved to be par-

ticularly problematic. On average, candidates with musical experience were

found to perform slightly better than those without.

Human versus Machine Evaluation The classifiers developed in Chapters

6 and 7 were tested in Chapter 8 using the same set of listening test samples

as the human candidates in this chapter. This provided a validation measure

for the classifiers other than comparison to those in the literature and offered

a unique comparison between the success of the automatic classifiers and the

human ear when tested with particularly difficult samples.
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Range of Testing Samples A number of different test sets were compiled to

test the effect of the choice of testing samples on the developed classifiers. The

smallest set consisted of a one-octave test set, common to each instrument,

with samples played at the same dynamic. Ten cross-validation sets that

consisted of one tenth of the entire set of samples from all make, range,

presence of vibrato and dynamic were created. The classifiers were tested

using both one octave and more general tests sets in experiments in Chapter 5,

6 and 7. In addition, the listening test set consisted of 219 samples selected to

have a high proportion of problematic samples. The developed classifiers were

tested with this set of samples in Chapter 8. The classification results varied

widely between the different test sets used to validate the classifier. Notably,

tests using the more general test set offered significantly better results than

tests with the more specified one-octave test set. This demonstrates the

importance of selecting a test set that offers a true indication of a classifier’s

accuracy.

1.5 Summary of the Thesis

An overview of a musical sound is given in Chapter 2. This chapter introduces

the instruments examined throughout this thesis. A discussion on how a

musical sound is produced, synthesised, heard and perceived is given in this

chapter. Chapter 3 discusses timbre and the way in which it is measured

by experiments in this thesis. Previous measures of describing and defining

timbre are discussed. This chapter also introduces and describes the timbral

features measured in an attempt to classify sounds in the work carried out

in this thesis. Chapter 4 describes previous work carried out in the fields

of research examined in this thesis. A detailed look at previous studies in

musical instrument recognition is given. This chapter also introduces the

field of Evolutionary Computation and describes areas in which it has been

applied to music and sound production.

The main experimental work of this thesis is described in Chapters 5

through 8. Chapter 5 describes experiments carried out in sound sample

identification using PCA and MLPs. A number of experiments are described

that classify between a piano, violin and flute using a selection of the fea-

tures described in Chapter 3. Chapter 6 uses a GA to select the best set

of features for musical instrument recognition. The fitness function devel-

oped for this GA is explained. The results of the genomes evolved and the

classifications by an MLP using these genomes are discussed. This work is
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furthered in Chapter 7 by implementing a GP to select the best features to

use. The advantage of using GP over a GA is that GP can evolve the entire

solution to the classification problem. The best evolved strings are tested and

discussed. Chapter 8 describes a series of listening tests carried out with a

group of human participants. The experiments in this chapter compare the

results of different groups of participants with varying musical experience on

a wide range of sample notes. The classifiers developed using the GA and GP

from the previous chapters are compared against the results of these listening

tests. Finally Chapter 9 discusses the conclusions made as a result of the

experiments undertaken throughout the thesis.
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Chapter 2

Musical Sound

This thesis examines the recognition of musical instrument sounds. To iden-

tify such sounds we must first understand what a musical sound or note

consists of and the aspects of particular sounds that make them recognis-

able. This chapter defines a musical sound; how it is produced, how it can

be synthesised and how it is perceived. The aural recognition of a sound is

dependent on processes from three distinct disciplines: physics, biology and

psychology. The combination of these three disciplines for sound perception

results in the field of psychoacoustics. Psychoacoustics is concerned with audi-

tory perception; sounds as experienced by the listener, regardless of how they

were produced. It draws on the physical nature of a sound in combination

with how the ear hears it to determine how the brain perceives it.

This chapter introduces the different ways in which sound may be pro-

duced in Section 2.1. A brief description of the instruments used in this

study and the way in which they produce sound is given. Some basic aspects

of how to describe such sounds temporally and spectrally are also given in

this section. An introduction to recent methods used to synthesise musical

instrument sounds is given in Section 2.2. A description of the anatomy of

the ear and how it functions is given in Section 2.3 along with a number of

psychological phenomena that may affect how a sound is perceived.

2.1 Sound Production

Physically a sound is produced by a waveform displacing molecules in any

medium, most typically air. This waveform arrives at the ear and is perceived

and translated by the brain into an identifiable sound. The current study

considers the perception of sounds created by acoustic musical instruments.

Musical instruments have three essential functions: to produce the sound, to
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manipulate the frequency content of the sound and to project the sound. Thus

every acoustic instrument may be defined in terms of a generator, resonator

and radiator (Johnston, 1994).

2.1.1 Instruments

The instruments included in the studies in this thesis are the piano, violin,

flute, trumpet and guitar. These instruments were chosen as they represent

different families of instruments and are among the most common instruments

played in western music. A detailed examination of any of these instruments

is beyond the scope of this study, but may be found in the relevant chapters

in Benade (1990). The following sections offer a brief introduction to each of

these instruments from a physical perspective. Fundamentally, pitched instru-

ments are based on creating a standing wave typically either on a stretched

string or within a column of air. Such standing waves have points of minimal

displacement (nodes) and points of maximum displacement (anti-nodes). For

a stretched string there is a node at each end where the string is attached

(and therefore cannot move). The string may oscillate in different modes of

vibration between these two nodes. The mode with the lowest frequency is

called the fundamental and those with higher frequencies are called overtones

(Johnston, 1994). The first three modes of vibration for a stretched string

are illustrated in Figure 2.1. Exciting a string at an anti-node will cause

maximum displacement of that mode of vibration of the string. The strength

and combination of these overtones control the characteristic sound of each

musical instrument.

The Piano

The internal mechanisms of a piano consist of a row of felt-tipped hammers

against an array of steel strings attached to a large sounding board. The

hitting of the hammer against the strings is the generator, the sound board

is the radiator, and the resonator is comprised of both the strings and the

sound board (Johnston, 1994). The hammers hit the strings when a note on

the keyboard is pressed. The mass and stiffness of each string dictates how

quickly the string vibrates which in turn determines the pitch of the note

played. The stiffness in the wire affects the overtones in the sound produced,

causing them to be slightly sharp. This sharpness leads to the numerical

frequency between two notes an octave apart on a piano being slightly larger

than that between those on other instruments. This is know as a stretched

11



 
Mode 1: 

Mode 2: 

Mode 3: 

Nodes 

Anti-Nodes 

Figure 2.1: First three modes of vibration on a stretched string

octave. In addition to this, each hammer hits more than one string. Generally

the strings are grouped in threes, each slightly de-tuned from each other. The

effect of multiple strings on the tone of a piano is threefold: it increases the

volume of a note, it increases the audibility time of a played note and it affects

the timbre of the note (Benade, 1990). The slight de-tuning of the strings has

been shown to create a pleasant sound that is preferred by listeners. A skilled

piano tuner will be able to ensure these pitch anomalies are accounted for,

giving the piano its distinctive sound. Such frequency discrepancies, however,

make the piano a particularly difficult instrument to synthesise realistically

(Fletcher et al., 1962; Keane, 2004). The piano has the widest pitch range of

all commonly played acoustic instruments, spanning up to eight octaves.

The Violin

The violin is the most commonly played instrument within the string family.

It consists of four metal strings (pitched to G3, D4, A4 and E5) separated
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from the hollow body via the bridge, that run along the fingerboard and are

tightened around the pegs. The top plate of the body is the main vibrat-

ing surface, made of a soft wood and containing the two distinctive f-holes.

The strings may be plucked or bowed, although only sustained bowed violin

strings are considered in this study. The bow consists of a flat bundle of hairs

stretched across the stick which is arched slightly towards the hairs. This de-

sign allows the player excellent control over the amount of pressure to exert

on the strings (Johnston, 1994). The resonance of the sound created by the

bow on the strings is controlled by the vibration of the top plate and the air

inside the body, which emerges through the f-holes. The pitch of the note

played is controlled by the musician by stopping a string at any point with

their finger.

The Flute

The flute is a member of the woodwind family. It differs from other woodwind

instruments in that it is played by blowing across the edge opening located at

one end of the instrument rather than blowing directly into the instrument.

The air blown across the mouthpiece sets up a standing wave within the

hollow tube of the body. The wave created by the edge opening produces a

side-to-side movement of air which is symmetric. This creates a note that

tends to have few overtones, giving the ‘pure’ tone characteristic to the flute.

The pitch of a note on the flute is controlled by a series of keys that open

and close holes along the body of the instrument. The opening of these holes

change the effective length of the encased standing wave, thus changing the

pitch of the note. The modern flute is approximately 60 cm long, with a

fundamental note of D4 (Johnston, 1994).

The Trumpet

The trumpet is a member of the family of brass instruments. In contrast

to the woodwind family, the pitch of a brass instrument is somewhat con-

trolled by the manner in which it is blown into. Original brass instruments

were pitched by the players vibrating their lips at the correct frequency (thus

playing the fundamental frequency of the cylinder of the instrument). Over-

tones of this fundamental could be pitched by vibrating their lips at higher

frequencies. This limited brass instruments to a very select number of pitches.

This problem was rectified in modern brass instruments though the inclusion

of valves. These valves open up extra sections of tubing within the instru-
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ment, changing the fundamental frequency and allowing a greater range of

pitches to be played (Johnston, 1994).

The Guitar

The guitar is a six-stringed fretted instrument, with a hollow sound box and a

long fingerboard. Guitars may be Classical (or Spanish), Acoustic or Electric,

but only Classical guitar samples are considered in this thesis. The Classical

guitar consists of nylon strings and has a wider neck than the Acoustic guitar.

It may be played with a plectrum or the fingers, depending on the sound

required. Although not always included as part of an orchestra, the guitar

is arguably the most widely played instrument in the Western world due to

its popularity in modern music (Johnston, 1994). The pitch of each note is

controlled by stopping the string between two adjacent frets. The frets serve

two purposes: they instruct the player where to press down making intonation

less problematic than on non-fretted instruments, and they provide a hard

surface for the string to vibrate against causing less absorption of the sound

than a soft finger would cause.

The tone of a note produced on any of these instruments is dependent

on both the quality of the instrument and the quality of the performer. A

note played by a novice performer would sound different to that played by a

virtuouso on the same instrument; likewise a performer may only be as good

as the instrument they play. Thus there is more to the quality of a tone of any

instrument than merely the physical specifications of how it was made. The

remainder of this section discusses ways in which a sound may be described

by its temporal and frequency content.

2.1.2 ADSR Model

The temporal envelope of any sound is a measure of the energy changes

throughout the duration of the sound. This envelope can be modelled as

having four sections: Attack, Decay, Sustain and Release (ADSR), (Sethares,

1998). These four sections are displayed on a trumpet note of pitch C5, as an

ADSR envelope in Figure 2.2. The illustrated note displays a classic ADSR

formation: the sound rises to a peak (the Attack), reduces slightly while re-

maining strong (Decay), maintains a relatively even level (Sustain) and then

reduces to zero as the note is stopped (Release). While some notes with a

strong attack and steady sustain may fit into such an envelope, the majority

of real sounds do not. This can be for a number of reasons. The note may be
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played quietly, thus reducing the attack as in Figure 2.3(a) which displays a

quiet violin note on pitch D5. The envelope may not fit notes played at pitch

extremes of the instrument such as the high-pitched A5 note played on a

trumpet as shown in Figure 2.3(b). Furthermore, the instrument in question

may not exhibit all sections, such as the lack of steady sustain in the piano

note in Figure 2.3(c). As this thesis examines instrument sounds at a wide

range of pitches and dynamics, this ADSR model will not fit a large number

of samples used. Hence it is not included in the features used in this study

(as described in the next chapter).

Figure 2.2: ADSR model of the temporal envelope of C5 played on a trumpet

(a) Soft Violin (b) High-pitched Trumpet (c) Piano

Figure 2.3: Temporal Envelopes that do not fit the typical ADSR shape

While all four sections of the model may not be evident in a given sound,

every instrument sound does consist of a steady state section and transients.

For instruments that are plucked or struck, the steady state may be diffi-

cult to define, but in general it refers to when the sound is spectrally stable.

Transients are changes within the note, most notably at the beginning (at-

tack) and at the end (release). It has been shown that both steady state and

transient attributes are aurally important in identifying a sound (Martin and

Kim, 1998).
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This ADSR envelope models the temporal changes in the energy of the

sound. The following sections discuss methods of measuring the frequency or

spectral content of a sound.

2.1.3 Frequency Content

The simplest of all waveforms is the sine wave. Although pure sine waves

rarely occur in nature as real sounds, Fourier’s Theorem states that any

complex periodic sound can be decomposed into a series of sine waves. Thus

any naturally occurring or artificially produced pitched sound can in theory be

completely described by the amplitude, frequency and phase of its constituent

sine waves or harmonics. The Fast Fourier Transform (FFT) (Cooley and

Tukey, 1965), an implementation of the Discrete Fourier Transform (DFT) is

most commonly used to determine the frequencies within a sound. Analysing

the strength and frequency of partials within a sound is known as spectral

decomposition.

Fourier methods have a drawback however in that there is a trade off

between frequency resolution and time resolution, depending on the size and

shape of the window used. An alternative to these Fourier methods is to use

Wavelets which decompose the sound using a variable window size (Teolis,

1998). Although a number of studies do employ Wavelets, the DFT is still the

most commonly used method. Fourier analysis is used in many of the feature

extraction methods described in the next chapter and hence is used in this

thesis rather than Wavelets. Fourier analysis allows the extraction of specific

frequency information from a sound such as the fundamental frequency as

described next.

2.1.4 Fundamental Frequency

As discussed above, a standing wave may vibrate at a number of vibrational

modes. The fundamental mode corresponds to the lowest or fundamental fre-

quency (F0) of the note produced. The overtones vibrate at integer multiples

of this frequency. These overtones or harmonics produce the rich timbre of

a complex harmonic sound. Thus F0 of a real pitched sound can be calcu-

lated from the ratio between the frequencies of the upper harmonics during

the sustained part of the sound. For real sounds, however, the relationship

between the harmonics is rarely this exact. Harmonics that deviate from a
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perfect integer multiple of the fundamental are referred to as upper partials1.

This imperfect relationship means that obtaining the fundamental frequency

for a real sound can be a difficult task. A method used for simple sounds is

to measure the zero-crossing rate (the number of times the signal goes from

positive to negative), but this is not particularly accurate for more complex

sounds.

Obtaining F0 in the time domain may be done through the process of

autocorrelation as originally proposed in Licklider (1951). This process com-

pares a sound with a delayed version of itself. A periodic signal repeats itself

every cycle. Thus the point at which maximum correlation is found indicates

the value of F0. Mathematically this can be stated as: given a signal f(t), the

continuous autocorrelation Rff (τ) is the continuous cross-correlation integral

of f(t) with itself at lag τ ,

Rff (τ) =

∫ ∞

−∞
f(t+ τ)f̄(t) dt (2.1)

where f̄ represents the complex conjugate of f (for real functions f̄ = f ).

Spectral methods of estimating F0 are often based on the cepstrum of the

sound (Oppenheim and Schafer, 1989). The real cepstrum may be considered

as a projection of the spectrum on a set of cosine functions. It is defined as

the inverse Fourier transform of the logarithm of the magnitude of the Fourier

transform,

cx[n] =
1

2π

∫ π

−π
log|X(ejω)|ejωn dω (2.2)

Both the autocorrelation and the cepstrum can be implemented using the

signal processing toolbox in Matlab (MATLAB7, 2006).

A number of algorithms have been developed based on a modification

of one of the above methods in an attempt to estimate the fundamental

frequency of a given real sound. A F0 estimator for quasi-harmonic sounds

is proposed in Maher and Beauchamp (1994). This method, known as the

‘Two-way Mismatch’ method estimates F0 by minimising the discrepancies

between measured partial frequencies and upper frequencies calculated from

trial values of F0. This method achieves encouraging results and is used in

a number of applications including Spectral Modelling Synthesis (see next

section). Another popular F0 estimator is the YIN algorithm (de Cheveigne

and Kawahara, 2002). This is based on the autocorrelation method, modified

1In the literature, the terms harmonics, overtones and partials are often interchange-
able; here we consider ‘harmonics’ to be always perfectly harmonic, whereas ‘partials’ may
be harmonic or not.
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to reduce errors. It is suitable for high-pitched voices and music and gives

error rates about three times lower than competing methods. An F0 estimator

based on the salience of a number of potential F0 values as a weighted sum

of the amplitudes of its harmonic partials was proposed in Klapuri (2006).

A combination of the autocorrelation and the cesptral frequency estimation

methods were used for a pitch representation algorithm in Peeters (2006).

A fundamental problem with all F0 estimation methods, however, is that

only periodic sounds have a fundamental frequency. For most if not all real

acoustic instruments, upper partials deviate from this ideal to some degree

making the sound only pseudo-periodic. As discussed above, instruments such

as the piano rely on stretching the relationship between upper partials and the

fundamental (particularly at the pitch extremities) for their rich distinctive

tonal quality (Fletcher et al., 1962). In addition to this, elements such as noise

and vibrato can interfere with any F0 estimation algorithm. These problems

may lead to inaccuracies in finding F0 for problematic sounds, such as the

low-pitched piano samples used within this study. A comprehensive review

of models to estimate F0 is offered in de Cheveigne (2005).

2.1.5 Resonance and Formants

As discussed at the beginning of this section, every instrument is comprised

of a generator, resonator and radiator. The resonator within an instrument

is vital to the sound quality produced by that instrument. Each instrument

filters the sound in a unique manner, certain frequencies are boosted whereas

others are attenuated, leading to a resonance curve. A specific resonance

curve can be approximated by a number of formant peaks, each centered

around a particular frequency. The amount of effect this formant has on the

frequencies it is boosting is dependent on its damping factor; the less damped

a system (instrument) is, the more the resonant frequencies will be boosted.

In addition to this, the range of frequencies affected by the formant peak is

given by its quality, Q, factor. In low Q systems a wide range of frequencies

are affected, giving a wide formant peak. Conversely, formant peaks with a

high Q factor are narrow, affecting only a few surrounding frequencies. The

resonance curve of a particular instrument affects the timbre of the instrument

by boosting the strength of specific frequencies played by the instrument. This

curve remains the same regardless of the fundamental frequency of the note.

Thus to maintain a similar timbre when a note is transposed, the individual

levels of the harmonics must be adjusted with respect to the resonance or

formant shape.
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2.2 Sound Synthesis

Although the current thesis concentrates on sound analysis rather than syn-

thesis, a brief discussion on the main methods of sound synthesis is given

in this section. Synthesis may be considered as the opposite process of the

analysis performed throughout this thesis, and hence understanding it may

be beneficial in designing an accurate classifier. A musical identifier devel-

oped on real instrument sounds may be used to classify a synthesised musi-

cal instrument sound or to evaluate the ‘realness’ of such artificial sounds.

Analysis-synthesis techniques reduce a given sound into its relevant compo-

nents so that it may be reconstructed by synthetic means. The two main types

of sound synthesis are spectral (or signal) modelling and physical modelling.

Spectral models are based on the spectral content of a sound as it reaches the

ear, regardless of how it was produced. Spectral modelling employs the same

representation in synthesising a sound as used here in analysing it; a note is

decomposed spectrally regardless of the physical parameters that may have

created it. Physical models on the other hand are based on the behaviour

of the physical sound source. These physical models are usually specific to

one type of instrument, as the physical parameters of each instrument vary.

As physical modelling is more computationally expensive than spectral mod-

elling, attention has been focussed on spectral modelling in the past. The

increase in computer speed has led to a new interest in physical modelling in

recent years.

2.2.1 Additive and Subtractive Synthesis

Additive synthesis is one of the simplest yet most powerful synthesis meth-

ods. Through Fourier analysis, the steady state of any sound can be analysed

into its harmonics. These harmonics can then be individually re-created and

added together to form an approximation of the original sound. Additive syn-

thesis is the basis for a specific type of spectral synthesis known as sinusoidal

modelling. In this method a signal is windowed and a spectral algorithm

is used to track the peaks of the signal from one frame to the next. The

calculated frequency, amplitude and phase of each partial in each frame can

then be calculated and used to resynthesise the partials, thus recreating the

original sound.

Subtractive synthesis uses a harmonically rich sound such as white noise

and filters it until only the desired components are left, imitating an acous-

tic instrument’s generator-resonator method of producing sound. A simple
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example of subtractive synthesis is the vocoder, which consists of a bank of

narrow band-pass filters excited by a broadband signal. Linear Predictive

Coding is similar to the vocoder, but replaces the bank of simple filters with

a more complex filter that typically approximates the frequency response of

some instrument (Garcia, 1996). Subtractive synthesis can be less computa-

tionally expensive than additive synthesis but it can also be less accurate in

its output.

2.2.2 SMS and TMS

While additive methods can produce accurate harmonic representations of

sounds, the sounds produced are not realistic as they contain no noise. Real

sounds have a noise element that give the sound ‘naturalness’, but this nat-

uralness is not easy to quantify. Spectral Modelling Synthesis (SMS) is a

technique developed by Julius Smith and Xavier Serra that synthesises tones

by modelling them as two parts: a relatively stable sinusoidal (the spectral

or deterministic) part and a noise (stochastic) part (Serra, 1990). The sinu-

soidal part is produced using sinusoidal modelling. This part is subtracted

from the original signal leaving a residual noisy signal. This noise signal can

be analysed and modelled using filtered white noise and finally added to the

sinusoidal part to give a complete synthesised model of the original waveform.

One problem with the SMS model is that it does not model transients

efficiently. As transients are short-lived signals, it is not efficient to model

them with sinusoids. On the other hand, modelling transients with filtered

noise causes them to lose some of their attack. Without realistic synthesis

of the transients, the synthesised signal tends to sound dull. This problem

is overcome in Verma (2000) by synthesising the transients on their own and

combining Transient Modelling Synthesis (TMS) with SMS. The synthesised

sinusoidal signal is calculated and again subtracted from the original signal,

leaving the residual noise plus transient signal. As transients are frequency-

rich impulsive sounds, this signal is transformed into the frequency domain

for analysis using the discrete cosine transform (DCT). Once this signal has

been analysed it can be synthesised and re-transformed back into the time

domain. This can then be subtracted from the residual (noise plus transients)

signal, allowing the noise signal to be synthesised as before.
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2.2.3 Further Synthesis Methods

While spectral modelling may be of relevance to this work due to the similar-

ities in sound wave representation, other approaches to sound synthesis have

been examined. Physical modelling uses mathematical approximations of the

physical excitation and resonant responses of systems such as musical instru-

ments. The aim of physical modelling is to implement the physically and

perceptually important properties of an instrument using signal processing

algorithms. While this may be more computationally expensive than spec-

tral modelling, it has the advantage that all of the parameters obtained in

the analysis stage are intrinsic to the instrument itself. A number of studies

have modelled string and wind instruments with physical methods involving

the use of wavetables and filters (Bank and Valimaki, 2003; Holm and Toivi-

ainen, 2004; Karjailnen et al., 2001; Karplus and Strong, 1983; Nackaerts

et al., 2003). Further synthesis methods such as granular synthesis (Roads,

1996) and FM synthesis (Chowning, 1973) have been used in the modelling

and synthesis of instrument sounds.

So far this chapter has concentrated on the physical aspects of sounds

— how a sound may be described spectrally and how it may be synthesised.

A sound as we hear it may be more than this however. Human perception

often results in a sound or event being greater than the sum of its parts. The

following section describes how a sound is perceived by the human ear.

2.3 Hearing Sound

Hearing is the process by which aural information is presented to our brain

via our ears. The function of an instrument identifier is to ‘mimic’ the ability

of the ear (and brain) to hear and identify a given sound. In developing such

an identifier using Artificial Intelligence techniques, it is worth looking at the

biological and perceptual ways in which the human ears and brain perform

the same task, as described in this section.

2.3.1 The Ear

The ear is a complex organ consisting of outer, middle and inner sections.

The outer ear consists of the external pinnae and the auditory canal. The

main acoustic purpose of the outer ear is for resonance and sound localisation.

The middle ear consists of three small bones situated between the tympanic

membrane (ear-drum) and the oval window of the cochlea. The function of
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the middle ear is to transmit sounds from the tympanic membrane to the

cochlea and to protect the ear from damage from loud sounds. The inner ear

consists of a coiled snail-shaped structure known as the cochlea, one end of

which is called the base, the other the apex. It is a fluid filled tube divided

into three sections by Reissner’s membrane and the basilar membrane. The

basilar membrane carries out a frequency analysis of any incoming sound.

The basilar membrane is narrowest at the base and steadily widens towards

the apex. It vibrates in response to an aural stimulus acting as a resonator

system in which a specific area is excited depending on the frequency of the

sound presented. Thus the frequency of a sound is detected by the place at

which this membrane vibrates. This is known as the place theory of pitch

detection. A more detailed description of the workings of the ear is given in

Mathews (1999).

The following sections on critical bands, pitch and consonance perception

are all based on which parts of the basilar membrane are excited by a given

sound.

2.3.2 Critical Bands

A pure sine tone does not just excite a single location on the basilar mem-

brane. There is a resonance bandwidth of approximately a minor third or

three semitones that is excited by a pure tone stimulus. If two tones very

similar in frequency are presented to the ear simultaneously, two overlap-

ping regions exhibit a response. When the difference between these tones

is extremely small, about 12.5 Hz or less, it leads to constructive and de-

structive interference between the two tones which causes the perception of

beats. If the tones are further apart but still overlapping on the basilar mem-

brane, there may be difficulty in discerning the frequency of the sounds. This

leads to perception of roughness of the tones. If the tones are separated

further, a point is reached whereby the roughness is diminished and two sep-

arate smooth tones are heard. The distance at which two tones are heard

separately is known as the ‘critical band’ (Howard and Angus, 1996). The

critical band is more formally defined in Scharf (1970) as ‘...that bandwidth at

which subjective responses rather abruptly change’. The critical band may be

used in developing a series of perceptually equal auditory filters. A filter of

such design with an ideal rectangular frequency response curve is known as

the equivalent rectangular bandwidth (ERB). Classical theory of the critical

bandwidth as a function of frequency states that it is approximately constant

below 500Hz and increases above that frequency roughly in proportion to the
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centre frequency (Zwicker and Terhardt, 1980). The bandwidths for such a

filter are calculated as (Glasberg and Moore, 1990):

ERB = 24.7(4.37fc + 1)Hz (2.3)

where fc is the filter centre frequency in Hz. Alternative models for the ERB

have been proposed in Moore and Glasberg (1983).

2.3.3 Pitch

Pitch is the subjective measure that is related to the frequency of the sound.

The basic interval of pitch detection is the octave. This is the only natu-

rally occurring interval corresponding to an exact doubling of the frequency.

Due to its simplicity, the octave is used in music from most cultures, but

it can be further segmented in many different ways. Western music uses the

‘Equal Tempered Scale’, splitting the octave into 12 equal steps or notes. The

frequency of each successive note is calculated by multiplying the previous

note by the twelfth root of two. Music can be transposed easily using this

method of tuning, as all pairs of adjacent tones have identical frequency ra-

tios (Howard and Angus, 1996). As discussed above, real tones consist of a

fundamental frequency and a number of harmonics. The fundamental often

corresponds to the pitch of the note, but it is not necessarily the strongest

partial in the sound. Even if the fundamental is not present it is possible to

hear the pitch as being that of the fundamental and not that of the lowest

frequency present. It is the relationship between the partials, rather than

one specific partial, that dictates the perceived pitch of a note. The case of

the missing fundamental is sometimes known as ‘virtual pitch’ (Howard and

Angus, 1996). It may be used in sound systems and instruments that do not

have the ability to produce the low fundamental frequencies of the pitches

played.

2.3.4 Consonance and Dissonance

As a complex tone is composed of a number of different harmonics, such a

sound causes a number of areas of excitation on the basilar membrane. Con-

sider two tones played simultaneously; if the partials of these tones are close

to each other (but not overlapping) they interfere with each other on the

basilar membrane. Thus the combined sound will be perceived as rough or

dissonant. If on the other hand the partials of the two sounds overlap each
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other, the sound will be perceived to be more pleasant or consonant. The

pitch relationship or interval between these two tones affects the consonance

perceived by combining them. The octave is the most natural sounding in-

terval with frequency ratio of 2:12. Because of this ratio the harmonics from

two tones an octave apart should all overlap each other. From examining

other intervals it is apparent that the next most consonant (or pleasant) in-

terval is the perfect fifth which has a ratio of 3:2 between the two pitches.

In general the ear tends to favour intervals that are based on simple integer

ratios (Sethares, 1998) owing to more overlap of their partials. Simultaneous

tones that have less simple ratios can cause more interference on the basilar

membrane resulting in the sound being perceived as more dissonant.

In addition to being frequency selective, the ear will only perceive sounds

that are presented at a certain loudness. The following sections describe

how sounds that are physically loud enough to be heard are not heard for

sub-conscious or conscious reasons.

2.3.5 Masking

In sound classification studies, such as those undertaken in this thesis, it is

worth noting that not all frequencies present in the sound will necessarily be

heard. The threshold of audibility is different for each frequency. The equal

threshold curve displays the sound pressure level at which each frequency

must be present for it to be audible. One such set of curves depicting sound

pressure levels for equal loudness are the Fletcher-Munson curves, (Fletcher

and Munson, 1933). These curves demonstrate that the human ear has a

loudness peak sensitivity at approximately 3kHz.

Masking is the phenomenon whereby one strong tone can diminish the

audibility of a simultaneous or neighbouring weaker tone. The presence of a

strong tone lifts the loudness contour up around it, creating a new curve as

depicted in Figure 2.4. From this diagram it is clear that the 1kHz sine tone

would be heard as it reaches above the threshold of audibility. The effect

of this tone adjusting the curve however, results in making adjacent tones,

that may have otherwise been clearly audible, inaudible. Thus the strong

1kHz tone masks any weaker tones that are close to it in frequency. Masking

curves are asymmetrical in shape, being more gradually sloped on the high

frequency side. Thus a masking tone is more prominent over tones that are

higher in frequency that itself. Masking has a practical use in audio compres-

2It has even been shown that animals can detect this interval.
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Figure 2.4: Effect of a 1kHz Masking tone on the threshold of audibility in quiet
(adapted from Haritaoglu (1997))

sion technologies such as MPEG standards (Watkinson, 2004). Redundant

sounds that are masked by adjacent stronger frequencies can be identified and

removed, thus reducing the amount of data that is to be stored. Masking has

also been used in the measurement of frequency bands such as verification of

the critical bandwidth (Greenwood, 1961a).

2.3.6 Hearing versus Listening

We hear sounds presented at our ears, regardless of whether we intended to

or not. Unlike our eyes, our ears are not easily closed and so if we wish

to block out sounds we must take measures, such as ear-plugs, to do so.

To hear something implies a passive response to an aural stimuli which is

neither intentional nor focussed. To listen to a sound implies a more active,

intentional concentration on a particular sound that may interest us. Sounds

from various sources in our surroundings combine together and are presented

as one complex wave, yet we are able to distinguish one sound from another.

The manner in which we organise the sounds that we hear in a coherent scene

is known as auditory scene analysis (Bregman, 1990). In a crowded place with

music and background noise, we are still able to hold a conversation with a
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person next to us. This phenomenon is known as the cocktail party effect

and demonstrates the brain’s ability to discern what aural information is

important and what is superfluous. Sounds are grouped together, in music

and in everyday scenes, according to similarities in aspects of the sound such

as pitch, timbre, loudness or location. This phenomenon is known as auditory

streaming (Van Noorden, 1975).

There are several different types of listening. The ear may be required

to discern the typical source of a sound. If sounds from particular sources

were always identical, then it would be a matter of memorising every sound

(Handel, 1989). Due to variation within each sound source and its interac-

tion within the environment, the source of a sound may not be ‘heard’ as the

same each time it is presented. Thus the ear must be able to contextually

recognise a sound source each time a complex sound is presented to it. This

type of listening is referred to as everyday listening. Everyday listening in-

volves the perception of sound-producing events, associating the sound heard

with an object or incident that may have caused it (Gaver, 1993). Musical

listening is the experience of the sounds themselves, the frequencies present,

the relationship between partials and the melodies created.

In the context of the experiments carried out in this thesis, it is important

to be aware of such differences in listening as opposed to hearing. Chapter 8

of this thesis describes listening tests undertaken by a number of participants.

In identifying instruments in these tests, everyday listening is required but in

a musical context. Although the participants are listening to musical notes, it

is the source of the note that they are asked to identify. The results of these

tests are directly compared to those from the developed automatic instrument

classifiers. Thus we compare the accuracy of the developed classifier against

a group of candidates actively listening to as opposed to passively hearing the

sounds presented to them.

2.4 Conclusion

From a signal processing perspective a sound is a time-varying waveform, but

in this thesis it is considered to be more than that. This chapter introduced

musical sounds; how they may be produced, synthesised and heard. The

aim of this study is to gain a deeper understanding of how we recognise the

sounds produced by specific instruments. Attributes of musical sounds were

described here as an introduction to concepts used in later experiments and

discussions.
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Section 2.1 described how notes are produced, in particular by the instru-

ments used in this study: the piano, violin, flute, trumpet and guitar. This

section introduced how a sound may be described temporally (such as by the

ADSR model) or spectrally (by frequency content and resonance). Such tem-

poral and spectral methods are the basis of a number of sound features and

descriptors used within this study. Section 2.2 briefly introduced methods by

which musical sounds have been artificially produced using sound synthesis.

Analysis-synthesis methods such as SMS were discussed as an opposite view

of the analysis procedure undertaken in this study. Although such methods

are not used further in this study, they were considered as they offer a per-

spective into the construction and analysis of a given sound. The human ear

and the way in which it decomposes a sound was introduced in Section 2.3.

We examined the place theory of pitch perception and the way in which it

affects our perception of complex sounds. Finally we noted the way in which

people consciously listen to as opposed to subconsciously hear sounds.

As humans we may be adept at recognising sounds occurring around us,

but such an ability is not easily explained, let alone reproduced artificially.

From a qualitative, descriptive perspective to a quantitative, physical per-

spective, a given sound may be inherently difficult to define. In trying to

discover what makes a sound unique or identifiable, we must first clarify the

aspects of sound that affect our understanding and perception of the sound

portrayed to us. The concepts discussed in this chapter such as pitch and

frequency, temporal envelopes, resonance and loudness curves may physically

describe a sound, but what identifies a sound perceptually has not yet been

fully considered. The following chapter attempts to define what is it that

makes a note recognisable by examining the concept of timbre.
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Chapter 3

Timbre and its Measurement

The previous chapter discussed properties used to describe and analyse musi-

cal instrument sounds. While such attributes may offer some explanation as

to what physically constitutes a sound, they do not necessarily explain how

we recognise the source of specific sounds. This thesis attempts to determine

the most important aspects of a sound to identify it as played on a spe-

cific instrument: what distinguishes A5 played loudly on a trumpet from A5

played equally loudly on a violin? We approach this problem by examining

the concept of timbre.

The purpose of this chapter is to introduce timbre and establish the way

in which it is described in this thesis. The concept and definition of timbre are

discussed in Section 3.1 along with methods that have attempted to describe

and quantify timbre. In particular a number of Multi-Dimensional Scaling

techniques are described that have been used in the past to attempt to give

meaning to the dimensions of timbre. Section 3.2 introduces the timbral

features and descriptors used in experiments throughout this thesis. Temporal

and spectral features that have been developed for this study are included

along with those obtained from specific toolboxes. Finally Section 3.3 gives

an overview of the chapter and proposes further directions in the work.

3.1 Defining Timbre

A sound can be completely described by four characteristics, namely its pitch,

volume, duration and timbre. Duration refers to the length of the sound and

can easily be measured in seconds. Volume refers to the perceived loudness

of a sound and can again easily be measured as the amplitude of the sound.

Pitch is related to the frequency of the sound. Although it can be more
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troublesome to measure than duration or loudness1, for pitched sounds it

can generally be measured, as described in the previous chapter, from the

relationship between the harmonic partials of the sound or the fundamental

frequency. Perceptually, pitch is quite easy to hear; it is that quality of a

sound that allows a listener to name the ‘note’ (C4, A5 etc.). Timbre, on the

other hand, is not so easily described or measured. It is often referred to as the

‘quality’ or ‘colour’ of a sound, but this is not particularly helpful in measuring

it2. Considering two notes both at pitch C4 of 2 seconds duration played at

equal loudness on a violin and a flute, it is reasonable to say that most people

would be able to decide which instrument each note was played on. Thus it

must follow that our aural recognition of musical instruments is dependent on

timbre. If we consider the sound as a waveform, then physically the duration

is a measure of the length of this waveform, volume a measure of its amplitude

and pitch a measure of its frequency — but what physical quality does timbre

rely on? Conceptually it could be considered as the variation or diversity of

the sound, although by process of elimination it refers to everything that

has not been described already. The most often quoted definition of timbre

describes it as such (ANSI, 1973):

Timbre is that attribute of auditory sensation in terms of

which a listener can judge two sounds similarly presented and

having the same loudness and pitch as being dissimilar.

This definition is flawed in that it describes what timbre is not, as opposed

to what it is, and yet a significantly improved definition has yet to be pro-

posed. This lack of clear definition leads to the difficulty in measuring timbre

— how can one measure what one cannot define? Nevertheless, obtaining

an objective way of defining or describing timbre is paramount in gaining a

deeper understanding of what timbre actually is. This in turn would lead to

more consistent methods of describing sounds and hence creating more effec-

tive automatic instrument classifiers. Handel (1995) gives a further discussion

and offers insights into the timbre of an event or object.

3.1.1 Describing Timbre

The lack of a clear definition of timbre makes it difficult to describe verbally.

With no objective measures available, a reliance on subjective descriptors is

1In that in certain cases it may be dependant on other features, or be somewhat
ambiguous perceptually, for example the Shephard Scales (Shephard, 1964)

2In fact if we consider an analogy with light ‘colour’ would represent frequency
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inevitable. A large number of verbal characteristics have emerged in the at-

tempt to describe the quality of a sound. A list of adjectives used to describe

timbre include: mellow, rich, covered, open, dull, bright, dark, strident, grat-

ing, harsh, shrill, sonorous, sombre, colourless and lacklustre (Howard and

Angus, 1996), although many more are likely to have been used. The mean-

ing of such descriptors in an aural sense may be unclear. Terms such as ‘open’

have no clear, specific meaning in relation to sound, which may cause ambi-

guities between candidate’s results in choosing such words. The meaning of

such verbal descriptors, especially when discussing timbre may differ some-

what between candidates, particularly if the candidate considers them to be

context-dependent. More specifically, language translations may cause signifi-

cant changes in the underlying or true meaning portrayed by such descriptors,

leading to difficulties in globally defining or describing timbre with such at-

tributes. Furthermore, a problem may arise where candidates could attribute

some physical meaning to their own understanding of a given sound. Decid-

ing that a particular note sounds ‘a bit like a trumpet’ for example, attaches

an inherent meaning for the candidate that may not be present for others.

For purely objective descriptions, it is imperative that candidates maintain

an impartial, context-free opinion of each sound, although such measures are

inevitably almost impossible to enforce.

A number of studies have been conducted using a scale between a de-

scriptor and its opposite such as soft-hard and then asking subjects to judge

the placement of the sound on this scale (Kendell and Carterette, 1993; von

Bismarck, 1974). In choosing the descriptors used, this method (known as

semantic differential (Osgood et al., 1957)) asks subjects to first decide on

a number of descriptors that would be useful in timbre description. Sub-

jects then listen to a tone and rate it along one of the decided scales. More

recently, a series of listening tests were conducted to determine the effec-

tiveness of communicating assessment judgements regarding timbre (Darke,

2005). They conducted tests on 22 subjects listening to 15 sounds. These

sounds were from different instruments but were corrected to be of the same

volume and approximately the same pitch. Subjects were asked on a scale

of 0-5 how much each of the following attributes fitted to the sound: bright,

harsh, clear, thin, hard, full, nasal, muted, reedy, brassy, metallic, wooden.

The subjects were split into two groups with one group hearing the sounds

played in inverse order to the second group. The results showed significant

variance in responses from different subjects. Thus the experiment concludes

that one subject, after hearing a sound once, will not necessarily rate each
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sound similarly to other subjects. Differences in the judgements made by

the two groups were also found, indicating that in such listening experiments

judgement of a current sound depends somewhat on that of sounds recently

heard. Many similarity tests ask the users to gauge the difference in sound ac-

cording to a certain descriptor. The results from Darke’s experiment indicate

there may be a lack of consistency as to how much each candidate consid-

ers a particular descriptor to be indicative of a given sound. Nevertheless,

tests based on similarity judgements have been the most common method of

quantifying timbre used in recent years.

Description experiments such as those described above are inherently sub-

jective. More objective tests examining the multi-dimensionality of timbre

were conducted to explore the idea of a ‘timbre space’. Such experiments are

described in the next section.

3.1.2 Multi-Dimensional Scaling and Creation of a

Timbre Space

From the number and variety of descriptors that can be used to describe

timbre, it is evident that any quantitative method of describing it must be

multi-dimensional. It is not clear from such descriptive studies however, the

number of dimensions that are necessary and sufficient for such a description.

As such, a statistical technique known as multidimensional scaling (MDS)

(Borg and Groenen, 2005), used in information visualisation, was applied to

the analysis of timbre. The application of this technique (first used in Plomp

(1970)), involves presenting a group of subjects with a number of pairs of

tones differing in timbre but alike in all other aspects. The subjects are asked

to consider how dissimilar each pair of tones are from one another and to rate

this difference on a scale. The results are stored in a matrix and subjected

to analysis with a multi-dimensional scaling algorithm. This can then be

mapped onto a geometric structure in Euclidean space in which each timbre

is represented by a point. Sounds that are similar in timbre are thus close to

each other in this space, whereas sounds that are perceived to be very different

are far away from each other (McAdams and Cunible, 1992). This method was

used in a number of studies during the 1970’s (Grey, 1977; Grey and Gordon,

1978; Wessel, 1979). These early experiments developed models on either

two or three dimensions. It was then attempted to verbally connect these

common dimensions to timbral attributes. Two dimensions were described

in Wessel (1979): one related to the spectral energy distribution and the
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other to the nature of the onset transients. Grey found that one dimension

related to the spectral energy distribution, one related to the presence of low-

amplitude, high frequency energy and the third represented the presence of

synchronicity in the transients of the higher harmonics and level of spectral

fluctuation (Grey, 1977). These results were supported in Grey and Gordon

(1978) by exchanging the shape of the spectral energy distributions between

the pairs of tones and noting a corresponding swap in the order on the spatial

axis. In general, it is accepted that the two most prominent axes to emerge

from such MDS studies on timbre relate to spectral energy distribution and

the nature of the onset transients. There remains disagreements however as to

what property or attribute of timbre the third (or indeed further) dimension

may be most representative of (Donnnadieu, 2007; Hajda et al., 1997).

The MDS techniques thus create an interpretable geometric representa-

tion of musically useful timbres, or ‘timbre space’ in which each timbre has a

distinct position. The experiments above looked at two and three dimensional

spaces. While there is the the obvious advantage of being able to visualise and

plot up to three dimensions, it is possible to consider many more dimensions

with Euclidean space, although most studies tend to keep the dimensional-

ity low. These timbre spaces can be used to interpolate between different

specific timbres of instrument to create novel hybrid instruments. Further

studies have used these timbre spaces to examine the perceived effect of al-

tering one property of a sound. MDS and vector models were used to test

subjects’ abilities to perceive timbral relations and to judge their similarity

in terms of magnitude and direction in McAdams and Cunible (1992). MDS

was used to study the effect of musical training on the perceptual structure

of musical timbre in McAdams et al. (1995). In this study, the model was

modified by dividing a large number of subjects with varying musical expe-

rience into a number of latent classes — latent meaning it was not known in

advance which class a subject belonged to. These latent classes were used

in an effort to determine meaningful dimensions common to the whole pop-

ulation as well as some that may be specific to certain classes. Experiments

were designed to use MDS to examine the perceptual relevance of timbral

attributes by varying these attributes on synthesised tones in Caclin et al.

(2005). Likewise, in Ilmoniemi et al. (2004), specific aspects of cello tones

were modified to note the effect on the perceived difference in timbre using a

timbre space. They conclude that changes in the centroid frequency (which

is related to brightness) gave the most notable difference. Instead of apply-

ing MDS to listener judgements, in Hourdin et al. (1997) it was applied to
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physical description of the sound to classify these physical features in order

of decreasing importance. They found the spectral sound energy to be the

most significant feature, agreeing with previous subjective experiments. Al-

though MDS has been used for numerous timbre studies, problems with the

method have been discussed, such as those in Terasawa et al. (2005). This

study proposes two problematic issues with MDS: that axes are not initially

labelled and that it does not help find a new sound that has a needed distance

between other sounds. They suggest an alternate inverse method of looking

at timbre by starting with dimensions, synthesising sounds and then noting

the perceived differences as measured by human subjects. In doing this they

attempt to develop a quantitative mapping between a physical description of

timbre and its human perception.

From the discussion above it is clear that MDS has played an important

role in the development of our understanding of timbre. Whereas initially

it was introduced as a method of investigating timbre, the use of MDS has

progressed to become a useful tool in confirming the relevance of specific

attributes. While it is accepted that the onset transients and spectral distri-

bution are important, other aspects of sound have emerged as possible useful

measurable descriptors of a sound.

This section described the way in which timbre has been described in

experiment in the past. The following section describes the measures by

which timbre is described throughout this thesis.

3.2 Timbre Features

Musical instrument classifiers have been developed that use certain auditory

features to describe timbre and hence identify a specific instrument. Details

of these studies are given in the following chapter. The number and range of

these features varies between each study. Both temporal and spectral features

are used in such experiments. This thesis aims to determine the optimum

choice of such features for automatic classification. In doing so, a number of

these features were calculated and used in experiments described later in this

thesis. This section offers an introduction to and description of the various

spectral and temporal features and details how they were calculated in these

experiments.
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3.2.1 Temporal Features

Sound varies in both time and frequency. The temporal features used here

describe the way in which aspects of the sound vary with time throughout a

given note.

Root Mean Square Temporal Envelope

The Temporal Envelope is a simple measure of the temporal ‘shape’ of a

sound (Kaminskyj and Materka, 1995; McKinney and Breebart, 2003). It is

a measure of the energy present throughout the duration of a note. In this

thesis, it was calculated from the root mean square (RMS) energy envelope

of each sound. The sound was separated into frames with a framesize of 512

samples and a timeshift (the distance between frames) of 256 samples. The

RMS energy within each frame was found and combined into an envelope

which was smoothed using a 3rd order low pass Butterworth filter. This

envelope was calculated over the length of each note to include temporal

information on how the energy within the sound changes over time. Thus

the envelope incorporates information regarding the attack and release time,

which have been shown to be of high importance to instrument classification

(Grey, 1977; McAdams et al., 1995). Typically the Temporal Envelope is

indicative of the instrument it is played on. A plot of the Temporal Envelope

for C4 played on a violin, piano and flute is shown in Figure 3.1

Temporal Residual Envelope

As described in the previous chapter, SMS creates a realistic sound by sepa-

rating the residual from the stable part of the sound (Serra, 1990). While the

Temporal Envelope displays the stable large fluctuation in energy throughout

the sound, smaller fluctuations in the envelope indicate the noise or residual

part of the sound. The Temporal Residual Envelope was found from the ab-

solute value of the difference between the original unfiltered RMS envelope

and the smoothed filtered RMS envelope. This envelope displays the smaller

amplitude fluctuations within the energy of the note. Such small variations

may be due to the noise from the instrument, player error, vibrato or beats

produced by the instrument. A plot of the Temporal Residual Envelope for

the piano, violin and flute is shown in Figure 3.2.
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(a) Piano (b) Violin

(c) Flute

Figure 3.1: Temporal Envelope of pitch C4 played on the three instruments

3.2.2 Spectral Features

While temporal features describe changes in the sound over time, spectral

features describe changes in the sound in relation to frequency. These features

describe aspects of the sound spectra, calculated from the Discrete Fourier

Transform (DFT) of each sound sample.

Spectral Envelope

The Spectral Envelope is a measure of the energy within successive frequency

frames of the spectrum. It was calculated by applying the DFT to each sam-

ple to obtain spectral information from the sound implemented using the fft

function (MATLAB7, 2006). To calculate the Spectral Envelope, the resul-

tant DFT was separated into (spectral) frames with a framesize of 64 and

a timeshift of 32. This resulted in 342 frames. The envelope was found by

calculating the RMS energy in each frame. The Spectral Envelope for C4

played on the piano, violin and flute is shown below in Figure 3.3. In this

study the Spectral Envelope is described by the average shape of this enve-

lope rather than the actual values present at each frequency; note that the

x-axis is marked in framenumbers and the amplitude range varies consider-
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(a) Piano (b) Violin

(c) Flute

Figure 3.2: Residual Evelope of pitch C4 played on the three instruments

ably between the instruments. Although this envelope does not specify the

frequencies of the partials present, it describes the relationship between the

partials for each instrument.

Centroid Envelope

Perceptually the Centroid has been linked to the perceived quality of

brightness (Jensen, 1999). Physically it is a measure of the power distri-

bution of a sound: how much energy is in the upper frequencies. If a sound

contains many strong high frequency partials the centroid will be at a high

value, producing a bright sound. While a number of previous experiments

examined the average centroid, the evolution of the centroid over the du-

ration of each note is considered to be more informative. The sound was

separated temporally into frames with a framesize of 4096 and a timeshift of

1024. Each frame was then decomposed into its frequency content using a

DFT. The centroid of each frame was then calculated from:

Centroid =

∑fs/2
f=1 f |Xf |∑fs/2
f=1 |Xf |

(3.1)
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(a) Piano (b) Violin

(c) Flute

Figure 3.3: Spectral Envelope of pitch C4 played on the three instruments

where |Xf | is the strength of the signal (in this frame) at frequency f.

A plot of changes within the Centroid as played on C4 on the violin, piano

and flute is shown in Figure 3.4. This envelope describes the changes of a

spectral quantity, the Centroid, in a temporal domain. Noticeable peaks in

the centroid may be observed at the start and end of the piano sound and at

the start of the violin sound. All three sounds are played at dynamic level

f making the transients in these instrument strong (produced by a strong

strike of the piano key or strong start of the violin bow). These peaks in

the centroid envelopes may be explained by the high pitched noisy content

of these transients, which is consistent with the high energy at the start of

the corresponding residual envelopes in Figure 3.2. Although the flute is also

played loudly, it is clear from listening to this particular sample that it does

not start with a particularly strong attack.

Inharmonicity

As discussed in the previous chapter, the ear favours intervals with simple

integer ratios. This is true also for the internal harmony within a note. For
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(a) Piano (b) Violin

(c) Flute

Figure 3.4: The Centroid Envelope on pitch C4 played on the three instruments

a note to be purely harmonious, all of its upper partials would be exact mul-

tiples of the fundamental frequency. In reality this is rarely the case. Many

instruments, such as the piano, rely on their upper partials being slightly

‘detuned’ to add warmth and character to their tone. Inharmonicity is a

measure of the deviation of upper partials from being perfect integer mul-

tiples of the fundamental frequency. As this quality is distinctive to each

instrument, Inharmonicity may be used as a quality to identify instruments.

An FFT is performed on the data to find the frequency values of the spectral

peaks. The Inharmonicity of partial k is calculated from (Beauchamp, 2007):

Ik =
fk
kf1

− 1 (3.2)

It is evident from this formula that a perfectly harmonic sound will have an

Inharmonicity of 0. Sounds which have mostly sharp upper partials (higher

than integer multiples) will have a positive value for Inharmonicity and those

that contain mostly flat partials (lower than integer multiples) will have a

negative value. Thus the Inharmonicity value for any given partial will be in

the range -0.5 to 0.5.
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One problem with this attribute is that it is dependent on knowing the

fundamental frequency of the note. As discussed in the previous chapter,

the fundamental frequency of a real instrument sound can be difficult to

find. This is particularly true for a timbre rich instrument such as the piano,

especially at pitch extremities. This is compensated for somewhat here by

considering the first three strong partials as the possible fundamental and

comparing the inharmonicity calculated from each possible fundamental. The

true fundamental will give a lower value than the other two possibilities, thus

the Inharmonicity is calculated as the lowest of the three values. Even with

this compensation, however, it must be noted that there may be inaccuracies

in the calculation of this feature, particularly for pitches in the extreme ranges

of the instruments.

Number of Spectral Peaks

Instruments with a rich timbre contain more partials than those with a more

pure tone. The previous chapter discussed how instruments such as the piano

produced complex tones with many partials from a number of slightly de-

tuned strings, whereas instruments such as the flute created more simple

sounds with fewer partials or overtones. Thus measuring the number of peaks

in a spectrum may estimate the number of partials present in a given sound.

We take this measurement as an indication of the amount of strong partials

within a sound regardless of their frequency value. For this thesis the Number

of Peaks is defined as the number of spectral peaks that are at least one-tenth

the strength of the strongest spectral peak (whether the strongest peak is the

fundamental or not). This was calculated by performing an FFT on the

sound, and examining the spectral peaks produced.

Spectral Irregularity

Spectral Irregularity (or Spectral Variance) is a measure of how much the

actual spectral envelope varies in comparison to a smoothed version of itself.

The calculation of the Spectral Irregularity (SIR) here is based on the log-

based formula originally proposed in Krimphoff et al. (1994). This is described

in Donnnadieu (2007) as the log of the standard deviation of component

amplitudes to a smoothed envelope comprised of a running mean of three

adjacent harmonics. Thus a smoothed envelope Âk was calculated at each

partial k by averaging it with its two surrounding partials:

Âk = (Ak−1 + Ak + Ak+1)/3 (3.3)
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Then the Spectral Irregularity was calculated from the log of the standard

deviation from each measured amplitude point to this smoothed envelope:

SIR = log(std(Âk − Ak)) k = 1 : no. of partials (3.4)

A high value SIR means that the amount by which the real envelope differs

from the averaged envelope varies widely across the partials, giving a jagged

spectrum.

Mel-frequency Cepstral Coefficients

The Mel-frequency Cepstral Coefficients (MFCCs) are a set of coefficients

that can represent the spectral quality within a sound according to a scale

based on human hearing. MFCCs have been widely used in speech recognition

for some time (O’Shaughnessy, 1987). MFCCs were more recently examined

and found to be useful in the area of music analysis (Logan, 2000). Obtaining

the MFCCs involves analysing and processing the sound according to a num-

ber of steps (Logan, 2000). The first step is to divide the signal into frames.

This is carried out by applying a windowing function (typically Hamming) to

the signal at fixed intervals. A cepstral feature vector is calculated for each

frame. The next step is to obtain the amplitude spectrum of each frame by

applying the DFT. Only the log of this amplitude spectrum is retained as the

phase is considered less important. The signal is then converted to the per-

ceptually derived mel-scale. The mel-scale, proposed in Stevens et al. (1937)

is a perceptual scale of pitches judged by listeners to be equal in distance to

one another. The mel-scale has been popular for speech recognition for many

years as it is considered to approximate critical-band spacing. A frequency f

is converted to mels m according to:

m = 1127.01048 ln(1 + f/700) (3.5)

The components of these mel-spectral vectors within each frame are highly

correlated. To reduce the number of parameters, these vectors are decor-

related using the Karhunen-Loeve (KL) transform or equivalently Principal

Component Analysis (see Chapter 5). Experiments in speech analysis have

shown that the KL transform can be approximated with the Discrete Cosine

Transform (DCT) (Logan, 2000; Merhav and Lee, 1993). Thus the final step

in calculating the MFCCs is to apply the DCT to the components of the mel-

scale vectors. After this algorithm has been applied the result is a matrix of

40



values for each sample sound that is the number of coefficients by the num-

ber of frames in size. This was implemented in MATLAB7 (2006) using the

melcepst function from the Voicebox Toolbox (Brookes, 2009). These calcu-

lated coefficients change from frame to frame. The changes in these values

can be plotted as an envelope across the sound. Such envelopes are distinctive

to the instrument as illustrated below. Figure 3.5 shows the changes in the

first MFCC for C5 on a piano, violin and flute.

 

(a) Piano

 

(b) Violin

 

(c) Flute

Figure 3.5: Changes in MFCC1 on pitch C5 played on the three instruments

Although the MFFCs have been widely used in speech and more recently

music analysis, there remains some debate as to their suitability and accuracy

in this type of analysis. After proposing the original model, Stevens discov-

ered a methodological flaw in that subjects’ results depended on whether

notes were played in ascending or descending order (Stevens and Volkmann,

1940). That the mel-scale only approximates (and arguably not accurately)

critical-band frequency spacing has been proposed a number of times over

several decades by Greenwood (Greenwood, 1961b, 1997). Such discussions

indicate that a more accurate perceptual scale is necessary for a set of spectral

coefficients such as the MFCCs to be truly accurate. Even though such argu-

ments have persisted since the introduction of the mel-scale, MFCCs remain

a prominent feature in speech (and more recently music) analysis.

3.2.3 MIRToolbox Features

The features described above were calculated using Matlab. A number of

toolboxes have been developed in recent years to calculate auditory features

from a given sound, such as MUSCLE (Information Society, 2009), IPEM

(Leman et al., 2005) and CLAM (Amatriain, 2007). A widely used Mat-

lab toolbox for calculating such features is the MIRToolbox (Lartillot and

41



Toiviainen, 2007). This toolbox is designed on a modular framework to offer

an overview of computational approaches in the area of music information

retrieval. In the experiments described in Chapters 5 and 6 the following

features were calculated using this toolbox.

Zero-crossing Rate

A sound wave oscillates between positive and negative values. A simple

measure of noisiness of a sound signal would be a measure of how often

it crosses the X-axis. The Zero-crossing Rate was here implemented with

the mirzerocross function as the number of sign-changes in the signal per

second.

Spectral Rolloff

Spectral Roll-off is a measure of energy distribution within a sound. Specifi-

cally it measures the frequency below which a certain percentage of the energy

in the sound is contained (Tzanetakis and Cook, 2002). It was calculated us-

ing the mirrolloff function as the frequency below which 85% of the sound

energy occurs.

Brightness

Although Brightness has been associated with the centroid, it is considered

here as a different measure of the high frequency content within a sound. It

was calculated using the mirbrightness function as the proportion (denoted

between 0 and 1) of the energy within the sound above 1500Hz.

Regularity

The spectral Regularity is calculated in contrast to the spectral Irregularity as

defined above. The MIRToolbox calculates Regularity using mirregularity

according to Jensen (1999) as the sum of the square of the difference in

amplitude between adjoining partials.

Onsets and Attack

As described above, the envelope of a sound describes the changes in energy

throughout the sound. The MIRToolbox offers a number of functions that

can be calculated from these energy changes. Onsets are successive energy

bursts within a sound. While they are generally used in determining the
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tempo of a piece of music, they may also be of interest for individual sounds

in determining the presence of temporal bursts of energy within a note. We

propose that such patterns of energy bursts may be indicative of a specific

instrument. For this feature, an energy envelope object was first calculated

with the mirenvelope function. The mironsets function used this envelope

object to calculate the Onsets. Both the Number of Onsets within a sound

and the Onset Distance (average distance between the onsets) were calculated

as features in this thesis.

The Attack Time is a measure of how long the signal takes to reach its

maximum energy after the note starts. It indicates the perceived sharpness

or abruptness of the beginning of a note. It is calculated in the MIRToolbox

using the function mirattacktime again from the energy envelope, giving

a value for each of the onsets of energy. The Attack Time, in seconds, of

the initial onset was included in the data. The slope of the attack is another

measure of how quickly the signal reaches its maximum value, thus indicating

the abruptness of the sound. As with the Attack Time, the Attack Slope is

calculated from the envelope value with the function mirattackslope.

Central Moments

It is clear that the spectral content of a sound is highly relevant to timbre.

Statistical values from the spectrum may be calculated to indicate how the

spectrum behaves across all frequency values. These measures, calculated in

relation to the centre or mean of the spectrum are known as the central mo-

ments (Dougherty, 1998). The MIRToolbox calculates a number of features

related to the central moments as discussed below (Lartillot, 2008).

The first moment represents the mean of the data. The mean of the spec-

trum is here calculated as the geometric centre or Centroid of the distribution

of the spectrum. Unlike the Centroid calculated above, the MIRToolbox cal-

culates the Centroid with the function mircentroid as a measure of central

tendency. The mean of N discrete values may be calculated as (Quinn, 2009):

x̄ =
1

N

N∑
j=1

xj (3.6)

The second central moment is the variance or spread of the spectrum,

43



which may be calculated as (Quinn, 2009):

δ(x) =

√√√√ 1

N

N∑
j=1

(xj − x̄)2 (3.7)

This is a measure of the standard deviation of the spectrum from its mean

value. The Spread of the spectrum is calculated as the standard deviation of

the sound by the function mirspread (Koch, 2000).

The third central moment, called the Skewness, is a measure of the sym-

metry of the distribution of the spectrum around the mean. The spectrum

may be positively skewed or negatively skewed. A positively skewed spectrum

has a long tail to the right of the spectrum, owing to a few values that are

much larger than the mean. Similarly, a negatively skewed distribution has a

long tail to the left of the spectrum. The Skewness is calculated from:

Skew(x) = µ3 =
1

N

N∑
j=1

(
xj − x̄
δ

)3 (3.8)

The function mirskewness returns a value for the coefficient of skewness.

This is calculated as the ratio of the skewness to the standard deviation

raised to the third power,

Coefficient of Skewness =
µ3

δ3
(3.9)

as this has more convenient units than the skewness (Koch, 2000).

Kurtosis is the fourth standardised moment of the spectrum is calculated

as (Quinn, 2009):

Kurt(x) =
1

N

N∑
j=1

(
xj − x̄
δ

)4 − 3 (3.10)

The subtraction of 3 in the equation is not always used, but is included to

make the normal distribution of the Kurtosis equal to zero. Kurtosis is a

measure of how short and wide or tall and thin a spectrum is. It is calculated

using the mirkurtosis function.

3.3 Conclusion

The aim of the work presented in this thesis is to examine the best way in

which to describe sounds in order to distinguish between musical instruments.

Accurately describing a sound is largely dependent on being able to measure

44



or describe the timbre of that sound. All other aspects of a sound (duration,

intensity, pitch, placement) are relatively simple to measure in comparison

to this aspect of timbre. Although the term timbre is regularly used in the

literature on sound, it remains an ill-defined concept that is inherently difficult

to measure.

This chapter focussed on the definition and measurement of timbre, as

used in the past and as proposed for this thesis. The lack of definition of

timbre in Section 3.1 was discussed together with the attempts to form an

accurate and consistent verbal description of timbre. It is evident from studies

undertaken that due to differences in candidate’s perception, understanding

and communication of what they hear, a consistent verbal description of tim-

bre may not be possible to obtain. More objective experiments were discussed

that examined the multi-demensionality of timbre using MDS. Such experi-

ments helped to gain some insight into the dimensions of timbre and proposed

perceptual meanings for the dimensions found.

Section 3.2 introduced a number of temporal and spectral measures that

have been used to describe timbre. These measures are used throughout this

thesis to quantify timbre for automatic instrument classification. A selection

of these features are used in instrument classification studies in Chapter 5

and in optimisation experiments in Chapter 6 and Chapter 7. The selection

of features listed here is not an exhaustive list of all features used in previous

audio recognition experiments. The following chapter discusses a number

of experiments that incorporated alternative features or different aspects or

variations on the features listed above. As with all classification experiments

of this kind, there is no guarantee that the selection of features used is ideal or

sufficient for accurate instrument recognition. We propose in the experiments

in this thesis, not to use as many features as possible, but to determine

which are the best timbral features or descriptors to use for identifying a

musical instrument. Determining which are the most effective features for

instrument classification may offer some insight into the nature of the timbre.

In identifying the most useful timbral descriptors, we hope to gain further

understanding of what makes a sound, in particular an acoustic instrument

sound, so distinctive to the human ear.
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Chapter 4

Sound Identification and EC

The experiments discussed in later chapters use a number of natural com-

puting techniques in describing and identifying musical instrument sounds.

Chapter 5 describes experiments on the automatic classification of musical

instruments, whereas Chapters 6 and 7 investigate timbre by optimising the

features used in such experiments with evolutionary methods. This chapter

describes relevant work that has been undertaken in the past in relation to

these experiments. Section 4.1 introduces the problem of automatic instru-

ment recognition. A selection of the most important studies on instrument

recognition, incorporating various combinations of features and classification

methods, are described. The features used in these previous experiments are

discussed and summarised.

There has been little justification for the inclusion of any specific features

in these previous experiments. Ideally there would be a method of selecting

which features would be most important or relevant for an automatic instru-

ment classifier. The process of choosing a set of optimal features from an

initial set of candidates is referred to as feature selection. Some relevant work

and reviews on this idea of feature selection are discussed in Section 4.2. It

was seen in the previous chapter that timbre is a multi-dimensional quality

that has proven to be difficult to quantify or even describe. It is proposed that

exploring the optimal selection of features for instrument classification will

indicate which features are necessary for accurate classification, thus provid-

ing an insight into the nature of timbre. Although there are many methods

for optimising features, the current thesis uses natural computing methods

inspired by genetic evolution. This field of Evolutionary Computation (EC)

is introduced in Section 4.3. Although not extensively used so far for sound

classification, EC methods have been applied to other areas of sound and mu-

sic production such as melody composition and sound synthesis as described
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in this section. Finally, a summary of the chapter is given in Section 4.5.

4.1 Automatic Instrument Classification

Previous chapters have examined human hearing and the perception of tim-

bre. It is this human ability to distinguish between timbres that allows us to

identify musical instruments. Thus creating an artificial method of identify-

ing instruments must be based on describing musical timbre. Systems such

as the MPEG-7 Standard (Chang et al., 2001) have been developed in recent

years for sound content description. While such a system is useful for search,

organisation and management of audio and multimedia data it is not ideal for

individual instrument recognition. Classifiers based on timbral features can

be used to automatically identify a specific instrument from a single note or

from a short solo passage. A number of such automatic instrument classifiers

have been created using Artificial Intelligence (AI) or Machine Learning (ML)

techniques developed from observing human traits such as neural processing

or natural evolution.

The recent interest in identifying musical instruments has concentrated

on two distinct objectives, namely:

• to identify musical instrument sounds from monophonic sources

• to identify musical instruments from polyphonic sources, when one in-

strument is playing within a group

Much research has been undertaken on the first task above. It may be seen

as a simpler task then analysing polyphonic music and as such techniques

and algorithms for solving this problem have been developed, possibly with

the view that they may be extended to undertake the second task. It is

becoming clearer, however (Herrera-Boyer et al., 2003), that the two may not

be as interchangeable as once thought. Segmentation of instruments from

a complex auditory stream is a problem that is far from being solved. And

although many studies have been undertaken on it, the first task of identifying

monophonic sounds still merits further study. This task in itself can further

be broken down into two categories:

• identification of solo passages containing numerous notes

• identification of isolated instrument sounds
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A musical passage contains many auditory cues not present in single notes.

Effects from a particular playing style or the transition between notes can

all contribute to the recognition of a particular instrument. The analysis of

single notes however, relies purely on the timbre of that specific note. The

classifier being developed here is intended to be able to determine the quality

of a synthesised sound, this sound being synthesised as a single note. Hence,

although previous classification studies on both categories are discussed, the

second scenario listed above of identifying isolated instrument sounds is the

main focus of investigation throughout this thesis.

Correct classification of an instrument is dependent on the following dis-

tinct processes:

• instrument selection

• feature selection

• mathematical representation of the features into a data set

• reduction of this data set

• classification method of the reduced data

Selecting the number — and indeed which instruments to classify is the first

step in designing a classifier. By selecting the instruments for the classifier to

choose between one defines the ultimate objective of the classifier. Feature

selection here refers to the high level attributes that are known to be indica-

tive of the sound from a psycho-acoustical perspective. Most of the studies

undertaken on this topic have included a large number of features, although

few gave reason for their selection.

The mathematical representation of this data refers to the way it is col-

lected or portrayed. For example when examining the amplitude envelope,

the root mean square of the energy across the sound is often calculated.

Other statistical measurements such as the mean or standard deviation are

also calculated to give measurements of various features. The reduction of

data is not always implemented. It is used in certain studies when the data

set is particularly large. Statistical reduction techniques such as principal

component analysis (PCA) or more recently state predictive models such as

hidden markov models (HMM) have been employed for this process. Finally

the merits of many different classification techniques such as artificial neural

networks, bayesian classifiers or binary decision trees have been compared

and contrasted in numerous studies.
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This section describes a number of experiments that deal with the pro-

cesses defined above in instrument classification. A number of empirical stud-

ies that give an overview of the experiments undertaken so far have emerged

over the last decade, (Herrera et al., 2000, 2006; Herrera-Boyer et al., 2003;

Simmermacher et al., 2006). As discussed in these studies (and as pointed out

below), the issue with many of these specific experiments undertaken is that

while they may compare differences in one of the steps defined above, they

do not consider the merits of each method when combined with a change in

another step. Most notably, many studies picked a data set calculated from

defined features from sounds and then focussed on comparing different classi-

fication techniques on this dataset. This is not surprising due to the interest

in developing and validating such new techniques.

4.1.1 Instrument Classification Studies

Interest in musical instrument classification as described above gained sub-

stantial momentum from the mid-90s onwards. A number of the early stud-

ies concentrated on a small collection of audio features for classifying instru-

ments. Kaminskyj and Materka (1995) looked at the root mean square (RMS)

envelope across a one octave range (C4-C5) of four instruments, namely the

piano, guitar, marimba and accordian. They then reduced this data us-

ing PCA and compared classification results using a multi-layered percep-

tron (MLP) and a nearest neighbour classifier (NNC). They obtained quite

accurate results with the NNC performing slightly better than the MLP.

Cemgil and Gurgen (1997) performed a similar experiment by calculating

harmonic envelopes derived from the short-time fourier transform (STFT) of

sampled sounds to classify these sounds as belonging to a specific timbral

family. They then compared the classification as performed by a MLP, a

time-delay neural network (TDNN) and a hybrid self-organising map radial

basis function network (SOM-RBF). Of these they found that the TDNN

model performed slightly better than the other two models at this specific

task. Cosi et al. (1994) modelled sample sounds essentially by using the joint

Synchrony/Mean-rate (S/MR) model of auditory speech processing developed

in Seneff (1990). They used this method to discern between 12 musical in-

struments using a self-organising map (SOM) to define a hypothetical timbre

space. Fragoulis et al. (1999) examined timbre recognition of five musical in-

struments using an ARTMAP network. This ARTMAP is a neural network

comprised of two unsupervised Adaptive Resonance Theory (ART) networks,

one of which (the Master) controls the mapping of the input to the other (the
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Slave) (Carpenter et al., 1991). They analysed the instruments according to

the slope of the attack, the degree of synchrony of the attack transients and

the amount of energy in the higher frequencies. The training and test size in

this experiment were small (60 and 12 respectively) although they did report

good results.

Wold et al. (1996) created a classifier at Muscle Fish for classifying a

large range of sounds. This system was developed for analysing everyday

sounds, speech sounds and sound effects, although some musical sounds were

included. They extracted features such as loudness, pitch, brightness, band-

width, and harmonicity and arranged vectors for sounds according to the

mean, variance and auto-correlation of these features. They reported good

classification results on sounds such as laughter, female speech and touch-

tones and suggested a number of applications for such a device. De Poli and

Prandoni (1997) explored the possibility of creating a timbre space that would

map acoustic similarity to the concept of distance. In doing this they looked

to automatic speech recognition and in particular Mel Frequency Cepstral

Coefficients (MFCCs) as a feature for instrument recognition. As noted in

previous chapters MFCCs had widely been applied in speech recognition, but

until this point had rarely been used in musical sound analysis. They ex-

plored the use of MFCCs in creating a timbre space and use PCA and SOMs

in judging their effectiveness. They found these coefficients to be well suited

to the representation of sounds and compared favourably with previous work

on developing a timbre space.

MFCCs were later employed in numerous experiments by Antti Eronen

and Anssi Klapuri. In Eronen and Klapuri (2000), a large number of features,

including MFCCs and temporal features, were used to identify musical instru-

ments. This work looked at a wider set of instruments (30 in total) than the

previous studies and aimed to create a classifier general enough to deal with

these different instruments by including more types of features. Along with

the cepstral coefficients they calculated numerous temporal measurements

derived from features of the sound. The rise-time, decay-time, crest factor

and strength and frequency of amplitude modulation were calculated from

the RMS energy envelope. The spectral centroid was calculated as both an

absolute and a normalised value. The onset and steady state intensities were

included along with a measure of the fundamental frequency. The mean and

standard deviations of a number of these measurements were incorporated

along with error and variation measures. These features were used to form a

tree hierarchy with a Gaussian or k-NN classifier at each node. They obtained
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favourable results in comparison to previous studies, thus demonstrating the

benefits of combining numerous different features in such instrument classifi-

cation tasks. Eronen (2001) furthered this work by introducing new cepstral

features based on either linear prediction or filterbank analysis (or warped

linear prediction). These were combined with the temporal and spectral fea-

tures described in the previous experiment. The usefulness of these features

were compared using a k-NN classifier. It was found that the MFCCs gave

the best instrument recognition accuracy of all the features on their own, but

that the best overall accuracy was determined by combining these features

describing the sounds brightness, modulations, excitation, synchronicity and

fundamental frequency. A further study (Eronen, 2003), attempted to clas-

sify instrument and drums sounds using just MFCCs. These coefficients were

reduced using independent component analysis (ICA) and classified with a

hidden markov model (HMM). They found applying an ICA-based transform

to the set of features to be beneficial to the systems performance.

In his doctoral thesis, Martin (1999) used a large set of features in develop-

ing an automatic instrument identifier. This feature set included: the spectral

centroid, average relative spectrum — overall and by partial number, high-

frequency rolloff rate and cutoff frequency, spectral irregularity and number

of ‘zeros’, relative energy in odd and even partials, pitch range, tremelo, cen-

troid modulation, individual harmonic amplitude modulation, relative onset

time by partial frequency and ‘rise likelihood’ by frequency and post-onset

time. He also considered, but did not implement features based on pitch

‘wobble’, pitch jitter, number of ‘blips’ in the attack, explicit onset skew, rise

rates, inharmonicity, note-to-note transitions, explicit identifications of reso-

nance and cognitive cues. These features were calculated and grouped to a

number of different classifiers to form a hierarchy. In a similar study Martin

and Kim (1998) extracted 31 features based on those listed above. These

were classified with both Fisher multiple discriminant analysis and a k-NN

with good success.

Fujinaga conducted a number of studies to try to determine the most

useful features to include in such instrument identification tasks (Fraser and

Fujinaga, 1999; Fujinaga, 1998; Fujinaga et al., 1998). In these experiments

a number of features were used in instrument identification using k-NN clas-

sifiers. Some of these features consisted of a number of musical moments

used to describe numeric quantities related to the spectral shape of the sound

(Dubnov et al., 1997). Those included were the mass or integral of the curve,

centroid, standard deviation, skewness, kurtosis, higher order central mo-
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ments, fundamental frequency and amplitudes of the harmonic partials. This

generated hundreds of features. Rather than using a dimensional reduction

technique, they used a genetic algorithm (GA) to determine which were the

most important features to use (see next section). Once the features were se-

lected, their optimum weights were selected by a similar method. The results

showed that the optimum subset of features to use for accurate instrument

identification were the fundamental, integral of the spectrum, centroid, stan-

dard deviation, skewness and the first two harmonics.

Brown (1999) used cepstral coefficients based on the constant Q trans-

form to analyse solo passages played on the oboe and saxophone. A k-means

algorithm was used to form clusters from the obtained features. Test samples

of individual notes were then assigned to a cluster according to a Bayes deci-

sion rule with very good results that were comparable to human judgement.

This work was extended in Brown et al. (2001) to include more features to

identify more instruments, namely the oboe, saxophone, clarinet and flute.

The features examined included the cepstral coefficients, constant-Q coeffi-

cients, spectral centroid, average spectral energy, autocorrelation coefficients

and a number of time moments. Marques and Moreno (1999) again created

a classifier for identifying instruments from solo pieces of music. The instru-

ments classified included the bagpipes, clarinet, flute, harpsichord, organ,

piano, trombone and violin. As in Brown (1999) they looked to speech anal-

ysis for feature representations and based their features on linear prediction

coefficients, FFT based cepstral coefficients and FFT based mel-cepstral co-

efficients. They classified instrument notes using Gaussian Mixture Models

(GMM) and Support Vector Machines (SVM). Their best result (30% error

rate) was achieved using 16 mel-cepstral features with a SVM.

Agostini et al. (2001) and Agostini et al. (2003) evaluated the performance

of various different classifiers in identifying instruments based on a number

of spectral characteristics. Using a dataset of 1007 tones from 27 instru-

ments they calculated the mean and standard deviation of the zero-crossing

rate, spectral centroid, band-width, percentage of harmonic energy in first 4

partials, inharmonicity and harmonic energy skewness. They classified these

using quadratic discriminant analysis (QDA), canonical discriminant analysis

(CDA), nearest neighbour and support vector machines (SVM). They found

that QDA performed the best with comparable results from the SVM with

poorer performance from the other two methods. They also reported that

they found that the strings to be the most mis-classified family of instru-

ments with the best results obtained with brass and woodwinds.
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Kitahara et al. (2003) created a classifier examining the pitch dependency

of timbre in musical instruments. They represented the tone features in the

feature space using an F0-dependent multivariate normal distribution with

two parameters: the F0-dependent mean function and F0-normalised covari-

ance. They implemented many of the spectral, temporal and modulation fea-

tures described in previous experiments. They also included some novel non-

harmonic component features to give a total of 129 different features. They

reduced their data set to 18 dimensions using PCA and linear discriminant

analysis (LDA) before using a Bayes decision rule to classify the instruments.

They found that using this F0-dependent multivariate normal distribution

improved results compared to those achieved through the usual multivariate

normal distribution. Non-suprisingly, this was most evident for instruments

with a wide range of pitch. Chetry and Sandler (2006) examined a linear pre-

dictive model for instrument identification. They included information about

the evolution of the signal over time by appending the delta (speed) and

delta-delta (acceleration) coefficients from the features from LPC analysis.

Nielson et al. (2007) examined two models for describing sounds. The first

assumed a constant spectrum envelope — calculated from the MFCCs, and

the second assumed constant relation among the amplitude of the harmon-

ics (harmonic representation). By comparing results from a MLP and kernel

orthonormalised partial least squares (KOPLS) followed by a single layered

perceptron, they determined the model based on the constant spectrum en-

velope to perform better than that based on the harmonic representation.

Although the current thesis examines instruments from single note sounds,

we consider briefly a small number of studies that use similar methods of in-

strument classification, but on solo passages of music. Livshin and Rodet

(2004) introduced an instrument classifier for solo music passages to discern

between a bassoon, clarinet, flute, guitar, piano, cello and violin. They used

features as calculated from the Cuidado project developed at IRCAM (Vinet

et al., 2002). They reduced these features with LDA before classifying with

a k-NN. They reduced their feature set using gradual descriptor elimination

(GDE) allowing them to perform solo recognition in real-time. They found

these results to be comparable with those of the complete feature set. Ihara

et al. (2007) used LPC along with line spectral frequencies (LSFs) to distin-

guish between solos from 8 instruments collected from commercial CDs. A

combination of PCA and LDA was applied to reduce the dimensionality of

the data after which SVM were used as a classifier. Their results compared

favourably with similar contemporary studies. Essid et al. (2006) and Essid
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et al. (2004) conducted studies in choosing features and processes for classi-

fying musical instruments from solo musical phrases. In these studies a large

number of features including previously used temporal, spectral, cepstral and

modulation features, along with new features based on octave band signal

intensities were initially examined for classifying the phrases. These features

were reduced using GAs and inertia ratio maximisation using feature space

projection. These reduced feature sets were then used in classifications incor-

porating a gaussian mixture model (GMM), pairwise coupling classification

and SVMs. Their results found their new features on octave band signal

intensities to be very useful as was using pairwise class feature selection. Fur-

thermore they found the SVM with a radial basis kernel function gave better

more accurate classification than the GMM.

4.1.2 Summary of Experiments

It is clear from the list of experiments described above that many different

methods and combination of methods have been exploited in the attempt to

create a robust musical instrument classifier. Nevertheless, no one method or

technique has emerged as the definite best choice for this task. It is proposed

in Herrera et al. (2000) that such studies may be inherently biased in some

way — such as in instrument selection or sample selection. The sound samples

used above include the MUMS (Opolko and Wapnick, 1987), RWC samples

(Goto, 2004), University of Iowa samples (Fritts, 1997), SHARC (Sandell,

1994) along with many recordings made specifically for the experiment at

hand. The number of instruments classified has ranged from 2 to over 30

(with a wide range of instances of each) and the number of features extracted

has ranged from 1 to hundreds. Combining these differences in ranges with

the various data reduction and classification techniques result in a huge va-

riety of experimental set-ups — all with the same goal of classifying musical

instruments. A summary of the main points of each of the studies above,

including the number of instruments/classes used, the number of samples

used for training, the method(s) of classification and the main success rates

is shown in Table 4.1.

This table displays the variety in set-up across the range of studies. De-

spite these differences, each individual experiment reports encouraging re-

sults. Thus selecting the best combination to proceed with is somewhat

difficult. The final accuracy of any classifier is clearly dependent on the fea-

tures chosen, the number and type of instruments included and the number

of training samples for each instrument. There may be some discrepancies in
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Table 4.1: Summary of Previous Studies

Study Instruments Samples Classifier Accuracy (%)
Kaminskyj and Materka (1995) 4 240 PCA & MLP 97.7

PCA & kNN 98.1
Cemgil and Gurgen (1997) 10 480 MLP 97.5

TDNN 100
SOM-RBF 94.17

Cosi et al. (1994) 12 12 SOM
Fragoulis et al. (1999) 5 60 ARTMAP 83
De Poli and Prandoni (1997) 40 40 PCA & SOM
Eronen and Klapuri (2000) 30 1498 k-NN 80.6
Eronen (2001) 29 5286 k-NN 77
Eronen (2003) 27 5895 HMM 68
Martin and Kim (1998) 14 1023 k-NN 67.5

Fisher 71.6
Martin (1999) 27 1500+ Hierarchy 75.9
Fujinaga (1998) 23 1338 GA & k-NN 50
Fujinaga et al. (1998) 23 1338 GA & k-NN 46
Fraser and Fujinaga (1999) 23 1338 GA & k-NN 64
Brown (1999) 2 1 min. k-means 84.1
Brown et al. (2001) 4 1 min. k-means 79.84
Marques and Moreno (1999) 8 1024 GMM 63

SVM 70
Agostini et al. (2003) 27 1007 QDA 92.2

SVM 88.7
k-NN 90.4
CDA 90

Kitahara et al. (2003) 19 6247 Bayes 79.73
Chetry and Sandler (2006) 6 SVM 86.3
Nielson et al. (2007) 17 MLP 74.7

KOPLS 75.9
Livshin and Rodet (2004) 7 108 k-NN 88.13
Ihara et al. (2007) 8 3592 PCA & LDA 91
Essid et al. (2006) 10 15 mins. SVM 87
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the way in which the accuracy of some experiments in Table 4.1 are reported;

a number of the results quoted are according to correct identification within

instrument family, rather than as a specific instrument.

As discussed in the previous chapter, this thesis examines just five in-

struments, one from each instrument family, but uses over 3000 individual

samples to ensure all possible instances of these instruments are considered.

The main focus of this thesis is concentrated on the initial steps of the pro-

cess — specifically on feature selection. Without optimum feature selection

it is unlikely that accurate classification could ever be achieved, regardless of

the classifier used. Hence the following section gives an overview of all the

features used in the experiments described above.

4.1.3 Summary of Features

The experiments listed categorise features in a variety of ways. Some merely

refer to features individually, others classify them as temporal and spectral,

whereas others categorise them as a variety of types of features including

temporal, spectral, cepstral, energy, modulation, harmonic or perceptual.

Attempting to discern all the different features used can be difficult as the

definition of a given feature may differ between experiments. For example,

the attribute of the centroid is widely quoted as being used in many studies

above, however the manner in which it is used is by no means consistant. The

mean, maximum and standard deviation of the normalised and un-normalised

spectral centroid have been used in Eronen and Klapuri (2000). Martin and

Kim (1998) quote the average spectral centroid, spectral centroid delta ratio1,

the variance of spectral centroid, spectral centroid variance delta ratio and

the spectral centroid modulation, modulation strength or modulation heuris-

tic strength2, in both normalised and un-normalised forms. Yet many other

studies for example Agostini et al. (2003) just include the ‘spectral centroid’.

Furthermore certain attributes or features may be named differently among

different experiments, for example the duration of the attack is referred to

as rise time (Eronen and Klapuri, 2000) or onset duration (Martin and Kim,

1998). The details of the calculation of such features are rarely included in

the write-ups and so methods of numerical measurements most likely vary

between experiments.

1the delta ratio was here defined as the ratio of the feature during the transition from
onset to steady state to the feature value after the transition period

2the heuristic strength was here defined as the peak height of the feature divided by
the average value surrounding the peak
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Bearing these complications in mind a list of the feature measurements

used throughout these experiments has been compiled. They have been

loosely divided into two categories — temporal features and spectral fea-

tures, though these are not objective or physical classifications. It is not

always immediately obvious as to which category a feature should belong —

many are technically frequency-dependent aspects of a sound examined in a

temporal manner. Where such ambiguities arise the most appropriate classi-

fication was chosen. A summary of the features used is shown below in Table

4.2.

Table 4.2: Summary of Temporal and Spectral Features used in Previous Instru-
ment Identification Experiments. EOF refers to Error of Fit, SS refers to Steady
State and int refers to Intensity

Temporal Features Spectral Features
RMS energy envelope Centroid (all measurements)

Attack time Pitch (or fund freq)
Slope of att Pitch range

Slope of line fitted to RMS after att Std dev of fund freq
Degree of synchrony of att transients Average pitch

Slope of att. harmonic skew Average pitch delta ratio
Intercept of att. harmonic skew Pitch Variance

Relative attack time by partial freq Pitch Variance delta ratio
Rise likelihood by freq, post att time Odd/Even harmonic ratio

Crest factor Relative energy in odd/even partials
Decay time Average relative spectrum

Autocorrelation coefficients Avrg relative spectrum by partial no.
Strength of amplitude modulation Integral of spectrum

Frequency of AM Std dev of spectrum
Heuristic strength of AM Skewness

Variations of intensity at each band Kurtosis
EOF between each SS int and mean SS int Bandwidth
EOF between each att int and mean att int Inharmonicity

Vibrato frequency % Energy in first partials
Vibrato amplitude Zero-crossing rate

Vibrato heuristic strength Spectral irregularity
Tremelo frequency High freq roll-off rate and cut-off freq
Tremelo amplitude Spectral spread

Tremelo heuristic strength Relative power of fund component
Moments of the time wave Harmonic energy

Gradient of line approximating power env Noise part energy
Avrg differential of power env during att Sharpness

Spectral Width
Spectral Asymmetry

Spectral Flatness
MFCCs

Avrg cepstral coeff during att
Avrg cepstral coeff after att

Linear prediction cepstral coeff
Delta cepstral coeff
Constant Q coeff
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4.1.4 Discussion

The list of features summarised in Table 4.2 is not necessarily exhaustive. A

number of studies, such as Kitahara et al. (2003) do not explicitly list all of

the features included. As mentioned above it can be difficult in some cases

to determine exactly what is being calculated for many of the features given.

Very few studies justified their choice of features, making it difficult to say

which of these features are necessary or most suitable for timbre description.

Conversely, there is no evidence to say that even with including all of the

above, one may be able to completely describe a timbre. Including too many

features in classification problems ultimately leads to problems caused by the

Curse of Dimensionality (Bellman, 2003). This refers to over-complication

of the system by adding too many variables or dimensions, some of which

may not be necessary. In other words, simply adding more features and hop-

ing for the best could actually be exacerbating the problem of classification,

rather than alleviating it. Although using standard dimensional reduction

techniques such as PCA may help reduce dimensionality, these techniques

ultimately alter the variance within the selection of features, often in an un-

intuitive way. A more decisive manner in which to select which features to

use in a classifier is needed.

4.2 Automatic Feature Selection

There have been a number of studies on the most effective manner to optimise

feature selection for classification tasks. In 1977 Cover and Campenhout

determined that for a feature set of size n, to determine the best m features

to use, all possible subset feature combinations of size m must be considered

(Cover and Van Campenhout, 1977). From a practical perspective however,

an exhaustive trial of each subset of features is rarely feasible. In reality the

best subset of features ideally can produce suboptimal but efficient and robust

methods of classification (Siedlecki and Sklansky, 1993b). Thus a number

of studies have focussed on optimising the most appropriate set of features

for their problem. A recent review of such methods (Guyon and Elisseff,

2003) examined variable and feature selection for large scale classifiers or

predictors. They defined three distinct objectives to feature selection: to

improve the prediction performance, to provide faster and more cost effective

predictors and to provide a better understanding of the underlying processes

within the data. The work in this thesis considers each of these objectives.

Ideally, it is hoped that by determining and selecting only the most important
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timbral features the prediction performance and the cost effectiveness of a

musical instrument classifier may be improved. In addition to this, it is

hoped that determining and understanding the relative importance of the

individual features may offer an insight into the nature of timbre and the

important aspects in defining and describing timbre.

A review of the selection of features and examples in machine learning

was given in Blum and Langley (1997). They discussed the merits of various

embedded, filter and wrapper approaches to feature selection. Of particular

note is their discussion on the relevance of particular features. The meaning

of ‘relevance’ has not been consistent in machine learning as it often depends

on the goal of any given algorithm. A variety of definitions of relevance were

proposed in regard to what a set of features may be relevant to, such as

the target, distribution or complexity. The current thesis is an attempt to

find features that are relevant to timbre, or more specifically to discerning

between timbres of individual instruments. Some of the features used in the

experiments in the previous section may be of musical interest, but their

relevance for the task at hand has not been determined.

The various functions of feature selection algorithms were described in

Dash and Liu (1997). The purpose of feature selection as defined by a num-

ber of authors were discussed. They split the purpose of selection into four

distinct concepts: an idealised approach to find the minimal subset that is

necessary and sufficient to the target, a classical approach to select a sub-

set to optimise a criterion function, an approach to improve prediction or

decrease size without decreasing prediction accuracy, and a subset selection

that maintains the original distribution of the features. The approach chosen

is dependent on the manner in which the fitness of each selection is calculated.

The reviews above discussed feature and variable reduction methods using

many types of algorithms applied to a number of studies in different fields.

It is clear from these studies that the means of selection is dependent on the

type of data used and the reason for reducing the given data or feature set.

Regardless of the methods used, reducing the amount of features inputted

to any system will undoubtedly alter the accuracy of any classifier to some

extent. The impact of an error introduced by feature selection was examined

in Sima et al. (2005) for three Gaussian models. This study determined that

the while error estimation may work quite well with large sample sets, it did

not work as well for small sample sets whereby feature selection could cause

significantly worse classification accuracy than the optimal feature set. The

sample size of the data in this thesis is quite extensive, containing many in-
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stances of each instrument at a wide range of pitches and dynamics. Thus

we need to include all features that are necessary to identify any note played

under these conditions, rather than just ‘typical’ notes played at comfort-

able pitch and dynamic ranges. From the range of features discussed in the

previous section, it is not evident which of these features would be most rel-

evant for instrument classification with these conditions. We employ Genetic

Algorithms (see experiments in Chapter 6) and Genetic Programming (see

experiments in Chapter 7) to determine the most important auditory fea-

tures to use for automatic instrument recognition. These algorithms are part

of a specific field of natural computing known as Evolutionary Computation

(EC).

A number of studies have found Genetic Algorithms to be a powerful

tool for large-scale feature selection in comparison to contemporary methods

(Ferri et al., 1993; Siedlecki and Sklansky, 1993a; Tseng and Yang, 1997). EC

methods may evolve the optimum selection of features by combining different

features and determining how good a particular selection is according to a

user-defined fitness function. The advantage of EC methods is that they work

on a population of solutions, and so many different combinations of features

may be tried at once. The following section introduces the field of EC, and

describes a number of ways in which it has been applied in the field of audio

analysis and synthesis.

4.3 Evolutionary Computation

The field of Evolutionary Computation (EC) or Evolutionary Learning (EL)

incorporates a number of algorithms that imitate the process of natural se-

lection as found in nature. Evolution according to Darwin (1859) is based

on the principal of survival of the fittest; that within any population of or-

ganisms, those that perform best are likely to succeed to the next generation

and weaker specimens are more likely to die out. This principal can be ap-

plied in a computational manner for problem solving. The main difference

between these evolutionary algorithms and other search algorithms is that

evolutionary algorithms are initialised with a population of solutions to the

given problem. The fitness of each of these solutions is defined by how well

they solve the given problem. The population is then ‘evolved’ over many

generations by allowing those solutions with high fitness to be passed to suc-

cessive generations while removing solutions with low fitness values.
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4.3.1 Search Space

Algorithms such as these that search for a solution have necessitated the idea

of a search space. In these applications a search space refers to a collection

of possible solutions to the given problem whereby the distance between the

solutions is measurable in some manner. Consider a specific solution S1 the

success of which is known. As this solution has a specific measurable location

within the search space it may now be moved to a neighbouring solution

S2. If this solution is more successful at solving the problem than S1 it may

continue in this direction, if not it may move in a different direction. Hence it

may traverse the search space looking for the best solution (Mitchell, 1996).

The success of S1 and S2 at solving the problem above is measured as

their fitness. Thus each solution in the search space has a corresponding

fitness value. This in turn leads to a fitness landscape. This fitness landscape

is imperative to the success of the algorithm. A typical fitness landscape

consists of a number of peaks and troughs representing solutions of high and

low fitness. These peaks represent local maxima (or minima) in the fitness.

These maxima may represent ‘good’ solutions to the problem but there will

only be one global maximum in the fitness landscape corresponding to the

best solution available (Goldberg, 1989).

4.3.2 Optimisation

As the algorithm traverses the search space, it looks for the optimal solution

to the problem. As described above, there are most likely a number of sub-

optimal solutions at the local maxima or minima. Whether the algorithm is

looking for a maximum or a minimum is dependent on the fitness function (if

the problem being solved is to be minimised or maximised). The application

of evolutionary algorithms in this thesis involves minimising the fitness func-

tion. Hence from this point minimisation is considered to be optimal. One

traditional method of traversing a search space is described by the analogy of

a hill climber (Goldberg, 1989). In this analogy a person standing at a point

in the search space examines the slope at each direction away from them and

follows the path of steepest descent, thus heading towards a minimum. While

the hill walker will find a minimum in this manner, he has no idea when sit-

ting in the bottom of the trough if it is the deepest trough in the whole space

or if he has merely found a local minimum. Ideally he would need to note how

deep that trough is and then ‘jump’ to another point in the space and start

again, each time noting how low each trough is. The number of ‘walks’ he
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needs to do is dependent on how complex the fitness landscape is; if the land-

scape has a large number of troughs he will need to perform a large number

of walks to ensure he reaches the global minimum. Evolutionary algorithms

work on a population of solutions rather than a single solution. Hence in this

analogy we can start with a team of hill walkers starting at different random

points on the search space. Those that appear to have found a trough can

keep walking downwards (by keeping this solution in the next generation) and

those that have not can be moved to a different point (changing this solution

for the next generation).

In this thesis, the optimising property of EC algorithms are used to find

the best selection of timbre features to use in automatic instrument clas-

sification. Two specific algorithms, Genetic Algorithms (GA) and Genetic

Programming (GP) are described in more detail and employed for this pur-

pose in later chapters. Artificial intelligence techniques have been applied to

musical problems such as instrument recognition as detailed above, but also

to problems in other musical areas such as pitch perception, tonal analysis,

chord classification, sound synthesis, algorithmic composition, music cogni-

tion, musical schema and artificial listening (Balaban et al., 1992; Leman,

1996; Todd and Loy, 1991). Although EC methods have not been applied as

much as other AI techniques, in recent years they have gained popularity in

a number of musical applications. The remainder of this chapter reviews the

use and success of EC methods in music and sound analysis and production.

4.4 Applications of EC in Sound and Music

Production

Although EC has not been applied yet extensively in the area of sound anal-

ysis, a number of recent studies have started to use evolutionary methods to

examine sounds. The following sections described the use of EC methods in

sound analysis, music composition, sound synthesis and a number of other

musical applications.

4.4.1 EC Methods in Speech and Sound Analysis

A number of studies have used evolutionary methods for speech recognition

and analysis. Conrads et al. (1998) examined whether genetic programming

could find programs that could discriminate certain spoken vowels and con-

sonants. They conclude that a simple approach is successful even at speaker-
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independent discrimination. More recently, GP was applied in Day and Nandi

(2007) in the creation of an automatic speech recognition system. This system

incorporated spectral, cepstral, perceptual and temporal features to create a

program that may recognise a speaker with encouraging results. GP was also

applied for speech quality estimation in Raja et al. (2008). This employed a

GP using symbolic regression to evaluate speech samples subjected to distor-

tion. This study found that GP compared favourably to existing approaches.

GAs were used to reduce the computational costs for hearing aids in Cuadra

et al. (2008). In this study, GAs were used to reduce a set of features in

distinguishing between speech and non-speech finding that it could reduce

the features set from 76 to 21 values with ‘adequate’ results. GAs are used

in Rho et al. (2007) to develop a content-based music retrieval system. Using

this system a user may look for a particular song using a number of different

querying techniques and then give feedback according to whether or not the

given sound is considered relevant to what they were searching for. They ob-

served an improvement in querying results from incorporating a GA in such

a system.

It is evident that although EC may have been applied for speech analysis

and recognition, it has as yet to be applied for musical instrument recognition.

They have, however, been applied extensively to other areas of music such as

composition and synthesis. Such studies are discussed in the following sections

as the details of the use of EC in other areas of sound and music production

may be informative in applying it to sound analysis and identification.

4.4.2 EC Methods in Music Composition

Evolutionary methods have been applied to musical compositions in a number

of studies over the past two decades. One of the first such applications was

in evolving the musical transitions between two musical statements, know as

thematic bridging. This problem was investigated in Horner and Goldberg

(1991) with GAs using two fitness measures based on the similarities between

the two segments being bridged. A review of evolutionary methods as applied

to composing musical sequences is undertaken in Burton and Vladimirova

(1999). For this task they define three main areas that must be considered

for an efficient algorithm to be applied to this task. These areas are:

• Search Domain

• Input Representation
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• Fitness Evaluation

The range of pitches, rhythms, melodies and harmonies available to a com-

poser is essentially endless. The search domain limits the range of notes

available to the algorithm by imposing constraints regarding the notes it may

choose. These are dependent on the type of composition undertaken but may,

for example, be related to rhythm, key or pitch range. The input represen-

tation must define how the music is represented by the algorithm, and hence

how the music may evolve between successive generations. The fitness eval-

uation defines how successful any given composition is and thus whether it

survives to the next generation or not. They propose that fitness evaluation

methods for a GA may be further subdivided as: deterministic, formalistic,

user-defined or neural. They discuss a number of studies that use such GA

fitness methods along with those that employ GP for music composition find-

ing that although successful sequences had been composed, these methods

suffered from a ‘fitness bottleneck’ as each melody has to be individually

evaluated. In addition to this, musical taste and the subjectivity of musical

composition may prevent evolved compositions from appealing to all listen-

ers. In general they found that GP techniques outperformed GA techniques

for musical composition.

A number of studies to compose specific styles or aspects of music have

incorporated evolutionary techniques. An algorithm known as GENJAM

(Biles, 1994) used a GA to evolve jazz solos. It built solos from pre-generated

MIDI sequences that were judged by a user to determine the fitness mea-

sure. GENJAM has been developed into a real-time performance system

that can interact with a human mentor and a human performer (Biles, 2001).

A composition tool named GeNotator was presented in Thywissen (1999)

that used a modified GA to manipulate a musical composition using a hier-

archical and generative grammar. VoxPopuli is an interactive compositional

tool developed that used evolutionary methods in real-time algorithmic mu-

sic composition using notes and chords (Moroni et al., 2000). Other studies

have used evolutionary techniques in generating rhythms (Horowitz, 1994)

and harmonies (Horner and Ayres, 1995) rather than melodies. Melody and

rhythm were both evolved to create a simple melody in Goksu et al. (2005).

This method used a GA to evolve melody and rhythm which were evaluated

separately using two MLPs. These evolved melodies and rhythms were then

mixed to produce verses and whole songs. Wiggins et al. (1999) discussed the

use of GAs in generating four part harmonies for user-defined melodies and in

generating instrument solos. Although they found that their method worked
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‘up to an extent’, they concluded that composing using a GA ultimately

lacked the subtleties and nuances of a human composer.

Miranda (2004) examined three distinct approaches to using evolutionary

methods in music. The engineering approach refers to the use of GA and

GP techniques in the field of sounds synthesis. The creative approach refers

to the manner in which evolutionary techniques have been used in musical

compositions. They discussed one further approach in applying evolutionary

methods to music: the musicological approach. This approach refers to the

search for the origins of music by means of computer simulations. In partic-

ular they discussed a model proposed in Todd and Werner (2000) which took

its inspiration from the mating songs of birds. This model co-evolved male

composers that composed songs along with female critics who decided, based

on the songs composed, who to choose as a mate to produce the next gener-

ation. The critics judged the fitness of each song by encoding a Markov-like

chain to rate the transitions from one note to the next. Each critic picked only

one song, thus all critics may have only one mate but a composer may have

many (or no) mates. This model demonstrated that co-evolving such male

composers with female critics can lead to the evolution of pleasant tunes while

maintaining diversity among the melodies throughout many generations.

The common weakness in all of the above studies lies in the calculation of

the fitness of the individuals. Arguably, a user-defined fitness evaluation will

give the most natural set of results, but it causes the most severe bottlenecks

and only small populations over limited generations may be reasonably con-

sidered. Deterministic fitness calculations perform a mathematical function

such as a pattern-matching scheme to evaluate a phrase or melody. While

more individuals may be evaluated this way, such methods leave little room

for artistic variation, which is often desirable in a musical composition. For-

malistic fitness functions determine the fitness of an individual according to a

set of pre-defined rules. Although rules are necessary in music, not being able

to bend or break such rules would again lead to somewhat dull compositions.

Employing a neural network as a fitness function allows more variety within

compositions as these networks may be trained to produces a more general

decision than rule-based methods. These generalisations may cause their own

problems, however, in that a network may not be strict enough to deem an

outlier note or chord as being unacceptable for the melody, thus ruining the

compositions (Todd and Werner, 2000). These may not be such problematic

issues in the sound analysis proposed in this thesis however, as the evaluation

of a quality of a sound tone is more objective than that of a musical composi-
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tion. Thus EC techniques should be as suitable if not more suitable to sound

identification as it is for the music composition studies described above.

4.4.3 EC Methods and Sound Synthesis

The application of evolutionary methods in the area of sound synthesis has

become more popular in the past decade. As discussed in Section 2.2 sound

synthesis may be considered the inverse process to sound analysis, making the

application of EC to sound synthesis of particular relevance to the work in this

thesis. A synthesiser known as Chaosynth was developed in Miranda (1995,

2000). This program used Cellular Automata (Wolfram, 2005) to control the

parameters of a synthesiser based on granular synthesis. An interactive GA

was used in Johnston (1999) to examine the timbral qualities of synthesised

sounds. The sounds were implemented in CSound using granular synthesis

and the Karplus-Strong plucked sound algorithms. The parameters of these

algorithms were evolved with the resultant tones evaluated by a human ob-

server. They proposed that such a method may lead a user towards the

production of genuinely novel sounds. A synthesiser known a ESSynth that

integrates a mathematical approximation of a sound to a GA was proposed in

Manzoli et al. (2001). GP was used in Garcia (2001) to automate the design

of a Sound Synthesis Technique (SST) to generate sounds similar to those of

acoustic instruments along with novel sounds. The SST was decomposed into

a functional form and internal parameters and represented with expression

trees. The resultant sound from the generated SST was compared to a target

using a selection of parameters, resulting in an error (or fitness) value. A

model called Genophone was developed in Mandelis (2001) that used a GA

to control a dataglove that interfaced with a computer and synthesiser for

sound synthesis and performance. GAs were used to optimise the parame-

ters of a plucked string synthesis model in Riionheimo and Valimaki (2003).

The fitness of each individual in this case was calculated from the perceptual

distance between the synthesised sound and the desired sound.

EC was applied to control sound synthesis in a number of experiments

described in McDermott (2008). Interactive EC was used for sound synthesis

with a Graphical User Interface (GUI) developed to allow real-time user-

controlled interpolation within the population. This addressed the problem

of the user-bottleneck as it can speed up the audition and evaluation of the

population. Synthesis experiments using such GUIs were compared to other

interactive EC and non-EC synthesisers with comparable results.

Evolutionary computation has been used on a number of occasions to
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evolve the parameters for Frequency Modulation (FM) synthesisers. FM syn-

thesis is highly efficient for synthesising rich timbres although the results are

not easily controlled. Originally proposed in Chowning (1973), FM when ap-

plied to synthesis of musical instruments generally relied on trial and error.

One of the earliest studies to apply evolutionary techniques to such a synthe-

siser was Horner et al. (1993a). In this study, a tone was synthesised with FM

and then compared to a target tone using short-time spectral analysis. The

calculated fitness of this tone was used with a GA to evolve the parameters of

the FM synthesiser, thus developing a method for efficient determination of

FM parameters. A number of studies (Horner, 1996; Lim and Tan, 1999) have

used evolutionary methods to optimise the features for double modulator FM

models (Schottstaedt, 1977). Horner also applied a GA to nested modulator

and feedback FM matching (Horner, 1998). A more detailed discussion of the

merits of these evolved FM synthesis techniques is given in Horner (2003). A

variety of fitness functions used to control a GA evolving the parameters of a

FM synthesiser were compared in McDermott et al. (2005). This study com-

pared synthesised sounds to target sounds using fitness functions based on a

uniform metric, a pointwise metric, and DFT metric, a perceptual metric and

a composite metric. They concluded that the composite metric (comprising

of the summed weights of several simpler measures) performed the best as a

fitness function for this task.

As with FM synthesis above, evolutionary methods have been applied

to optimise the use of wavetable synthesis. This type of synthesis involves

storing one period of a waveform in an oscillator table and scaling the output

of this table as necessary. The waveform is created using a sum of simple

harmonic sine waves thus creating a static spectrum. Spectral interpolation

may be achieved with wavetables by splitting the spectrum into a number

of basis spectra and crossfading the wavetables of these spectra. A GA was

used in Horner and Beauchamp (1996) to select the number of basis spectra

to use for spectral interpolation using wavetables. GAs have also been used

to match wavetable models by selecting spectral snapshots of the original

tone as the basis spectra (Horner et al., 1993b). These snapshots can then

be compared to the synthesised tone. A simpler yet equally effective version

of this was proposed in Horner (2001) whereby a best match was found for a

subset of the spectral snapshots rather than each snapshot of the original tone.

Various forms of genetically evolved wavetable and FM synthesis methods are

discussed and compared in Horner (2003). They conclude that the best choice

of synthesis is dependent on the complexity and memory constraints of the
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given situation.

4.4.4 Further EC Applications

Although most of the evolutionary applications within the field of music have

been applied to either composition or synthesis as noted above, there have

been a number studies on various other music related issues. Three case stud-

ies that used evolutionary computing to examine the evolution of musicality,

including musical tastes and the emergence of grammars were discussed in

Miranda et al. (2003). The co-evolved mating calls described in Todd and

Werner (2000) were discussed as a demonstration of how Darwinian systems

with survival strategies can evolve coherent sets of melodies within a pop-

ulation. A further study by Miranda (Miranda, 2002) proposed a mimetic

model to force candidates to form social bonds by ‘remembering’ a number of

melodies, thus showing that a community may evolve a shared repertoire of

musical melodies. Finally, Miranda et al. (2003) designed a model to study

the emergence of musical grammars. They found that developing more gen-

eral musical grammar rules could result in a more stable musical culture.

In Takala et al. (1993) GAs were used in the composition of sound signals

synchronised to animated motion. Sound compositions were represented us-

ing ‘Timbre Trees’ which were then evaluated so the resultant sound may be

rated by a user. Parameters that define the instance of the sound along with

environmental effects and morphing were included in the model.

Section 4.1.1 above discussed machine learning methods for developing

musical instrument classifiers. Studies by Essid and Fujinaga incorporated

binary GAs in selecting features to use in such classifiers (Essid et al., 2004,

2006; Fraser and Fujinaga, 1999; Fujinaga, 1998; Fujinaga et al., 1998). An

alternative method of optimising features for classifying musical instruments

was proposed in Peeters (2003); Peeters and Rodet (2003). Rather than using

evolutionary methods, these studies used an algorithm based on inertia ratio

maximisation, finding that good feature selection may increase the recognition

rate of a classifier. From examining the previous literature on musical sound

recognition and evolutionary computation, the current thesis will further the

work already undertaken:

• to create a more robust musical instrument identifier that may be

trained and tested using a large number of sound samples

• to remove any pitch, recording or dynamic bias in the classifier by in-

cluding samples from the entire pitch range of each instrument played
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on a number of different makes of each instrument at various dynamic

levels

• to concentrate on the features used by the classifier rather than the

classifier itself as no classifier, regardless of how powerful it is, can

accurately classify a sound on which it does not have enough information

• to apply a floating point GA, with a purpose-defined fitness function to

decide which and how much of each feature to use with a classifier for

musical sound recognition

• to apply a GP to attempt to develop a simpler musical sound classifier

than those described in this chapter

• to compare the results of the features chosen by the GA and the GP

to determine if any emerging features can offer any insight into the

understanding, description or definition of timbre

4.5 Conclusion

This chapter discussed numerous studies from areas within which the current

thesis is based. We have seen in Section 4.1 that although numerous stud-

ies have been carried out over the past two decades on musical instrument

classification from single note samples, there are significant differences in the

ways in which these studies were carried out. A wide variety in the number of

instruments, number of samples, feature selection and classification methods

incorporated in these experiments has led to some ambiguity in their results.

For the majority of studies, the number of samples quoted would not cover

multiple instances for each instrument studied. Hence it is unlikely that these

classifiers could be generalised to recognise the instrument played or recorded

under different conditions. This thesis concentrates on identifying five instru-

ments, but includes over 3000 individual samples played on these instruments.

This ensures that any classifier developed will be capable of identifying an

instrument regardless of pitch or dynamic.

It was seen that from the wide range of features used, the choice of features

included was rarely explained in individual studies. Simply incorporating

more features into a classifier may not increase its accuracy or performance.

Thus we look to optimise the choice of features through the process of feature

selection as explained in Section 4.2. We propose to implement this feature
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selection in later chapters using Evolutionary Computation. A brief introduc-

tion to the field of EC was given in Section 4.3 along with a discussion on how

it has been applied within the area of music and sound synthesis. Further

details on evolutionary algorithms and how they are used in this thesis are

given in later chapters. The following chapter details some experiments on

creating automatic instrument identifiers similar to those described in Section

4.1.
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Chapter 5

Data Reduction and

Classification

The previous chapters discussed the difficulties in defining and describing

the timbre of musical instruments. Chapter 3 discussed some previous at-

tempts at describing timbre whereas Chapter 4 described numerous methods

that have been applied to the problem of instrument identification. These

involved many different classification techniques applied to a wide variety of

calculated timbral attributes. In a number of these experiments, the number

of attributes used led to very large sets of data. In order to classify such large

data-sets it is useful to be able to reduce the data in some way before applying

the chosen classification technique. The reduction technique chosen for this

thesis is Principal Component Analysis (PCA). The classification technique

employed for a large part of this thesis is Multi-layered Perceptrons (MLP).

This chapter describes both PCA and MLP and discusses results obtained

from applying these techniques to classification experiments involving real

instrument sample sounds.

This chapter is laid out as follows: Section 5.1 discusses the need for a re-

duction in data, introducing PCA and its implementation within this project.

Section 5.2 discusses the development of Artificial Neural Networks, in partic-

ular MLPs. Section 5.3 discusses some experiments undertaken using these

methods as part of this work, as presented in Loughran et al. (2008a,b,c).

Finally Section 5.4 presents conclusions that may be drawn from these exper-

iments and the implications they may have for further work.
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5.1 Data Reduction

Many timbral features employed in instrument classification experiments are

described by multiple data points. Sound is inherently a time-varying process.

A number of the features used in this and previous studies are examined as

they change over time. For example, one of the most commonly used features

is the Root Mean Square (RMS) envelope, which measures the change in

amplitude throughout the sound. Depending on the window size and hop

size used in calculating this envelope (the amount of data used in taking this

measurement and the distance between each measurement), this envelope

could have several hundred points of data for each sample. Much of this

data is redundant however. The information relevant for the features is in

the overall shape of the envelope, not in the individual points. Hence, in

using such features it is better to be able to reduce this data down to a more

manageable number of data points without losing any of the vital information

contained in the whole envelope. The method used for such data reductions

in this study is PCA.

5.1.1 Principal Component Analysis

PCA, first introduced in Hotelling (1933), is a standard technique commonly

used in statistical pattern recognition and signal processing in performing

dimension reduction. Also known as the Karhunen-Loève transformation, it

transforms the data orthonormally so that the variance of the data remains

constant, but is concentrated in the lower dimensions. Data from higher

dimensions can then be discarded without losing much detail of the original

data.

In Rojas (1996), the calculation of the principal components based on

linear associators is described as an iterative process. The first principal

component of a set of n dimensional vectors (x1, x2, ..., xm) is given by vector

c that maximises the expression

1

m

m∑
i=1

‖ c.xi ‖2 (5.1)

Figure 5.1 shows an example data distribution centered at the origin, where

the diagonal runs in the direction of maximum variance of the data. If we

consider the orthogonal projection of each point onto this diagonal we can

represent each point as a single number as opposed to the x1 and x2 coordi-

nates. To statistically analyse this data, the coordinate axis is rotated by 45
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degrees to maximise the content of the new x coordinate. The new direction

of the x1 coordinate is the direction of the first principal component. The

second principal component is calculated by subtracting the projection onto

the first principal component of each vector xi from the original vector xi.

Each successive component is then calculated recursively. The result is a set

of orthogonal components with decreasing variance.

 

x1 

x2 

Figure 5.1: Distribution of input data around diagonal running in direction of
maximum variance, adapted from Rojas (1996)

PCA algorithm

The PCA algorithm is explained in full in Haykin (1999). A brief synopsis of

this algorithm is given below. Suppose we have an m-dimensional matrix X

that we wish to reduce to l < m dimensions. Assume X to be zero mean and

let q denote a unit vector of length m onto which X will be projected giving

P:

P = XT q = qTX (5.2)

As the mean value of P is zero, its variance is the same as its mean-square

value, giving

σ2 = qTCq (5.3)
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where the m-by-m correlation matrix C is

C = E[XXT ]q (5.4)

As the variance of the projection P is a function of q we may define ψ(q) as

a variance probe

ψ(q) = qTCq (5.5)

By using eigenstructure analysis to locate the local maxima and minima along

ψ(q) we find that any changes in q must be orthogonal to q and therefore

only changes in direction are allowed. Thus for a local maximum or minimum

Cq = λq (5.6)

where λ are the eigenvalues of the correlation matrix C and the associated

unit vectors q are known as the eigenvectors of C. Thus we find that

CQ = QΛ (5.7)

where

Q = [q1, q2, ...qj, ...qm]

Λ = diag[λ1, λ2, ...λj, ...λm]
(5.8)

As Q satisfies the conditions of orthornormality and the inverse of Q is the

same as its transpose we may re-write 5.7 as the orthogonal similarity trans-

formation

QTCQ = Λ (5.9)

Now C may be expressed in terms of its eigenvalues and eigenvectors as

C = Σλiqiq
T
i (5.10)

Thus Equations 5.9 and 5.10 give two equivalent representations of the eigen-

decomposition of the correlation matrix C. These equations demonstrate that

eigendecomposition and principal component analysis are effectively the same

process viewed in different ways, as the variance probes and the eigenvalues

are equal. Thus the eigenvectors of the correlation matrix C of the original

zero mean data vector X define the unit vectors qj representing the principal

directions along which the variance probes ψ(qj) have their minimum and

maximum values. In addition to this the associated eigenvalues define the
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minimum and maximum values of these variance probes.

5.1.2 Implementation of PCA

The Statistics Toolbox in Matlab (MATLAB7, 2006) contains a function

princomp to calculate the principal components of a set of given data. This

function returns

• coefs - the eigenvalues of the correlation matrix

• scores - the values of the original data mapped onto the new coordinate

system defined by the principal components

• variance - the variance explained by each principal component

• t2 - Hotellings T 2, a statistical measure of the multivariate distance of

each observation from the centre of the data (Jolliffe, 2002)

Thus the principal components of a set of data are easily computed in Matlab

in experiments such as those described in Section 5.3.

5.2 Artificial Neural Networks

Once the data has been reduced, this reduced dataset may be used to iden-

tify a musical instrument. Such tasks can be undertaken by a number of

classification algorithms. In this chapter a classification structure known as

an Artificial Neural Network (ANN) was used. This network is formed from

interconnecting artificial neurons, designed to mimic the first order charac-

teristics of the biological neuron. The computational ability of these neurons

was initially proposed in McCullock and Pitts (1943). The collaboration of

a neuroanatomist (McCulloch) and a mathematician (Pitts) resulted in this

pioneering work that described how a network of such simple units and con-

nections could theoretically compute any computable function.

There are many different types of ANNs but they all share a common trait

in that they are modelled on the functioning processes of the human brain.

The fundamental operation of an artificial neuron is that a vector X is applied

to a network corresponding to the way in which a signal is inputted to the

synapses of a biological neuron. This input vector is then multiplied by an

associated weight matrix, W, before being summed to give the NET output.

This NET is then passed through an activation function, which produces

the output signal of the neuron. The activation function may differ between
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networks; the simplest of them, a hard limiter, delivers a ‘1’ if the output is

above a threshold value, and a ‘0’ or ‘-1’ if it is below that value (Wasserman,

1989).

For a network to be able to classify a given pattern sample it must first

learn how to respond to similar patterns through network training. Typically

a large data set (the training set) is used to train the network so that it is

modified to perform in a certain way. Training involves updating the weights

and biases of each neuron to help the network classify the training samples as

required. This trained network can then be used to classify another set of data

(the test set) according to the manner in which it was trained. Trained ANNs

have been shown to be a particularly powerful tool in data classification. The

training of ANNs can be split into three broad categories (Duda et al., 2001):

• Supervised Training — a teacher (or target vector) provides a category

or cost for each pattern in the training set. The correct classification

of each training sample must be known beforehand so that the train-

ing process may reduce the sum of these costs. MLPs (Haykin, 1999)

and Support Vector Machines (Cristianini and Shawe-Taylor, 2000) are

examples of supervised networks.

• Unsupervised Training — no targets are associated with the training

set. These networks operate by classifying data into clusters or groups

according to how close they are within a given feature space. Depend-

ing on the algorithm used, the number or size of the clusters may be

defined. k-Nearest Neighbours (Dasarathy, 1990) and Self-Organizing

Maps (Kohonen, 2001) are examples of unsupervised networks.

• Reinforcement Training — partial information about the correctness of

the network’s response is available. In the extreme case the result is

whether the response is right or wrong with no quantifiable measure of

how much is mistaken by. This training is sometimes known as ‘learning

with a critic’ (Duda et al., 2001).

The manner in which the weights are updated is dependent on the given

network learning rule. There are a number of different learning rules available,

some of which are discussed later in the chapter. A summary of a wider

selection of these rules is presented in Zurada (1995). This chapter uses

MLPs as a classification tool. As the name suggests, MLPs are formed from

layers of interconnecting layers of artificial neurons known as perceptrons. The

following sections discuss perceptrons and MLPs.
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5.2.1 The Perceptron

Perceptrons were one of the first types of ANN, developed in the 1950’s by

Frank Rosenblatt (Rosenblatt, 1958) as the first model with supervised train-

ing. Perceptrons are the simplest form of an ANN used for classification,

consisting of a single neuron connected by weights to a set of inputs. Despite

their simplicity, the theory of perceptrons is the foundation for many other

forms of ANN. The operation of a perceptron is as described above where a

linear combination of the inputs to the node is combined with an external

bias and then subjected to a hard-limiter. The illustration in Figure 5.2 de-

notes the inputs to neuron j as x1, x2, ...xm and the corresponding weights as

w1, w2, ...wm with the bias denoted by b. From this it can be seen that the

input to the activation function, or the induced local field of neuron j is

v =
m∑
i=1

wixi + b (5.11)

The perceptron decides which of two classes ε1 and ε2 each data element
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Figure 5.2: Signal flow through a Perceptron, adapted from Haykin (1999)

x1, x2, ...xn belongs to according to the value given by the limiter function.

Training the network involves updating the weights and bias at each iteration

so that the network correctly classifies all of the training data. Adapting

the weights is performed according to the error correction-rule known as the

perceptron convergence algorithm (Haykin, 1999). This algorithm defines

the error-correction learning rule which updates the weight vector at each
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iteration according to

w(n+ 1) = w(n) + ν[d(n)− y(n)]x(n) (5.12)

where ν is the learning-rate parameter — a constant in the range 0 < ν ≤ 1,

and d(n) is the quantized desired response defined by

d(n) =

+1 if x(n) belongs to class ε1

−1 if x(n) belongs to class ε2

The choice of ν is clearly important to the training of the network. When

choosing ν one must bear in mind that it needs to be large enough to provide

fast adaptation of the network, but small enough to provide stable weight

estimates.

Although the perceptron is a powerful yet simple tool, it is only useful for

classifications involving data sets that are linearly separable. Patterns that are

linearly separable can be separated by a hyperplane as illustrated in Figure

5.3. This problem of dealing with linearly inseparable data sets meant that a

single layered perceptron would never be able to represent such problems as

the Exclusive-OR Boolean function as shown in Minsky and Papert (1969).

This apparent limitation of the perceptron led to a decline in the interest in

the field of ANNs for almost two decades (Wasserman, 1989). To solve this

problem the idea of using multiple layers of interconnecting perceptrons was

introduced.

 

(a)

 

(b)

Figure 5.3: Two sets that are (a) linearly separable and (b) linearly inseparable

78



5.2.2 Multi-layered Perceptron

Multi-layered Perceptrons (MLPs) consist of a number of layers of intercon-

nected perceptrons. There must be at least three layers of perceptrons —

an input layer, an output layer and one or more hidden layers. In general,

this type of network is trained using the backpropagation algorithm which

is based on the error-correction learning rule described in the previous sec-

tion. Backpropagation involves two passes of information through the layers

of the network — a forward pass and a backward pass. In the forward pass

the input vector is applied and propagated through the layers, leading to the

term feed-forward network. In the backward pass the error function is cal-

culated as the error between the expected output and the achieved output.

This error is then propagated back through the layers of the network and the

synaptic weights of each neuron are adjusted accordingly. A diagram of an

interconnected network is illustrated in Figure 5.4.
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Figure 5.4: Illustration of an MLP with inputs 1-to-m, one hidden layer and three
output nodes

To function successfully, an MLP must have the following characteristics

(Haykin, 1999):

• The network must contain at least one hidden layer of neurons.
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• Each neuron in the hidden layers must have a non-linear activation

function associated with it.

• The network must exhibit a high degree of connectivity.

The presence of highly connected hidden layers of neurons with non-linear

activation functions is what enables an MLP to deal with the non-linear data

sets that single perceptrons cannot represent. If the activation function is

not non-linear, the two connecting layers could be reduced to a single layer

of perceptrons. The backpropagation algorithm may be described as a more

general form of the least-mean-square (LMS) algorithm, which when applied

to single error networks can estimate the new weight vector at iteration (n+1)

as

w(n+ 1) = w(n) + νx(n)e(n) (5.13)

where e(n) is the error signal at time n (Haykin, 1999). Many other training

models may be seen as modifications of this backpropagation model (Duda

et al., 2001). Backpropagation is a powerful yet simple training model because

of its intuitive graphical representation as discussed below.

The Backpropagation Algorithm

The backpropagation algorithm works by calculating an error signal at the

output of a network and propagating that error back through the network,

layer by layer, adjusting the weights of each neuron accordingly. A detailed

description of the workings of the backpropagation algorithm is given in

Haykin (1999). This description is summarised here.

The error signal at the output of neuron j (where j is an output node)

after n presentations is defined by

ej(n) = dj(n)− yj(n) (5.14)

The instantaneous value of the total error is calculated by summing the in-

stantaneous errors of all neurons in the output layer C

ε(n) =
1

2

∑
j∈C

e2j(n) (5.15)

The average error energy over all neurons εav represents a cost function of the

performance of the network. The instantaneous error energy at the output of

the network is independent of all synaptic weights and bias levels within the

network. The objective of the learning process is to adjust the weights and
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bias values to minimise this cost function. This is achieved by updating the

network weights on a pattern-by-pattern basis until one epoch (presentation

of the entire training set) has been completed.
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Figure 5.5: Signal flow through neuron j within the MLP, adapted from Haykin
(1999)

Consider an individual neuron j being fed signals from a layer ofm neurons

as shown in Figure 5.5. The induced signal or local field being presented to

the activation function of j is therefore

vj(n) =
m∑
i=0

wji(n)yi(n) (5.16)

It can be shown that the change in weight ∆wji is given by

∆wji = νδj(n)yi(n) (5.17)

where ν is the learning-rate of the algorithm and the local gradient δj(n) is

defined by

δj(n) = ej(n)ϕ
′

j(vj(n)) (5.18)

Equation 5.18 above shows that the local gradient, which indicates the

necessary changes in the weight at neuron j is dependent on the error signal

and the derivative of the activation function for that neuron. Thus the error

signal for the neuron must be found to calculate the necessary change in its

synaptic weight. There are two types of neurons, output neurons and hidden
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neurons. In the case of the output neuron, the error signal is easy to obtain

as the desired output of this neuron is known (as backpropagation involves

supervised learning). Thus for an output neuron the error signal ej(n) can

be calculated from Equation 5.14 and hence the local gradient δj(n) can be

calculated from Equation 5.18. If neuron j is in one of the hidden layers,

its error signal may not be directly calculated, but it still has a bearing on

the error signal produced at the output of the network. Backpropagating the

error through the network determines the change in synaptic weight of the

hidden neuron j according to the error signal of all the neurons it is directly

connected to.
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Figure 5.6: Signal flow through hidden node j to output node k, adapted from
Haykin (1999)

Consider the hidden node j depicted in Figure 5.6. The local gradient for

j is now

δj(n) = − ∂ε(n)

∂yj(n)
(n)ϕ

′

j(vj(n)) (5.19)

From examining the instantaneous energy and differentiating, it can be shown

(Haykin, 1999) that the local gradient at j is given by

δj(n) = ϕ
′

j(vj(n))
∑
k

δk(n)wkj(n) (5.20)
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and again the necessary change in weight ∆wji is given by the delta rule

∆wji(n) = νδj(n)yi(n)

Improvements to the Backpropagation Algorithm

Although the multiple layers and high level of connectivity of MLPs is what

gives them their powerful processing abilities, this is also the cause of one of

their biggest flaws, that being the difficulty in designing an optimum MLP. As

the network is trained iteratively in two directions, it is difficult to determine

how many neurons, or even how many layers of neurons are necessary and

sufficient for the network to learn a specific task. As such, MLPs offer a

‘black box’ solution to a given problem and their design is often based on

trial and error. The operation of the backpropagation algorithm as described

above is dependent on a number of factors which the user has control over and

must decide upon before learning commences. These factors include choice of

activation function, learning-rate parameter, modes of training and stopping

criterion (Haykin, 1999).

The activation function controls the local gradient at each neuron and

hence has an effect on the operation of each layer of neurons in updating

the synaptic weights. As it is the derivative of the activation function that

is required, it is necessary for the function chosen to be continuous. Any

non-linear continuous function may be used as an activation function. Two

of the most commonly used functions are the Logistic Function:

ϕj(vj(n)) =
1

1 + e−avj(n)
a > 0 and ∞ < vj(n) < −∞ (5.21)

and the Hyperbolic Tangent Function:

ϕj(vj(n)) = a tanh bvj(n), (a, b) > 0 (5.22)

Both of these functions are forms of sigmoidal nonlinearity functions.

The backpropagation algorithm searches the weight space for the direc-

tion of the decrease in error (gradient descent). The choice of learning-rate

parameter ν controls how rapid this descent is. The smaller the value of ν the

less change there will be in the weights at each iteration and so learning may

be quite slow. Alternatively, if ν is too high the changes in synaptic weights

may be too drastic and training of the network could oscillate and become

unstable. A balance between these extremes may be reached by generalising
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the delta rule to include a feedback component to maintain stability:

∆wji(n) = α∆wji(n− 1) + νδj(n)yi(n) (5.23)

where the momentum constant, α, controls the amount of feedback. This

constant may vary from 0, where the new weight is purely dependent on the

gradient to 1 where it is equally dependent on the gradient and the previous

weight. The use of momentum may help prevent the network from becoming

stuck in a local minimum.

As a network is being trained, it is typically presented with many examples

of data from a large data set. Each complete presentation of the data is known

as an epoch. There are two modes of training, sequential training and batch

training. Sequential training involves updating the weights of each node as

each data training example is applied. In batch training, however, the weights

of the neurons within the network are not updated until one full epoch has

been applied, whereby the gradients calculated at each training example are

summed to determine the new weights and biases. Although the batch mode

of training may appear to (and often does) require less computation, it is

worth noting that for online operations or when a large training data set is

largely redundant, sequential training can often be more efficient.

There is no absolute method of deciding when the network has finished

learning. In practice, the algorithm may be stopped once a specified number

of epochs has been presented to the network or a specified amount of time (in

seconds) has passed. Alternatively the network could be stopped when the

improvement in the error or the gradient of the descent has reached a specified

limit or when the error is no longer decreasing. These criteria imply that the

network has converged and will improve no more, although it is possible that

this is due to the network finding a local minimum rather than the optimum

solution. The following section outlines the practical choices such as these

that have to be considered when implementing an MLP.

5.2.3 Implementation of MLPs

MLPs were implemented in Matlab (MATLAB7, 2006) by creating a network

object using the function newff from the Neural Network Toolbox. The num-

ber of layers of hidden neurons and the amount of neurons contained in each

layer were specified using this function. At initialisation, the maximum and

minimum permissible values for each element of training data were specified.

The choice of activation function was between the Log-Sigmoid, Tan-Sigmoid
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or Linear transfer function for each layer of neurons. The Linear transfer

function may be useful at the output layer if the output is to be outside

the region of [-1, 1]. Once the network was designed, choices regarding the

method of training and presence of momentum were made. Matlab offers a

number of methods of implementing faster training such as a variable learn-

ing rate, resilient backpropagation or conjugate gradient algorithms. Once

the network, activation and training function were decided on, the stopping

criteria were specified as described in the previous section. Details of the

choices of these specifications are given in the descriptions of the experiments

in the following section. The trained network was then simulated with the

test data to determine how successful it is at classifying new data.

5.3 Classification Experiments

The method of reducing data using PCA and then classifying this reduced

data with an MLP as described in this chapter was used in a number of early

experiments in musical instrument identification. These experiments were

undertaken on the grounds of the success noted in similar work as described

in the previous chapters. Although such previous studies appear to produce

good results, it is inherent in this type of study that the experiments may

be biased in some way, as discussed in Herrera-Boyer et al. (2003). This bias

may be in the choice or number of instruments used. Some of the studies

classify all the instruments in the orchestra, whereas others classify a smaller

group of instruments, some of which are in the same instrument family. A

bias may also arise in the range of pitches examined. A number of these

studies examined the same range of notes across all instruments, while the

natural playable range of each instrument studied may be much larger. The

data reduction and classification methods chosen may also affect the outcome

of the instrument classification. Finally the features chosen in the analysis

of the instrument sounds as well as the sample sounds themselves will have

a large bearing on the outcome. As discussed in Herrera-Boyer et al. (2003),

these types of choices or ‘biases’ can lead to inconsistent or misleading results.

Although a number of previous studies incorporated a large number of

instruments, it is not evident if enough samples were taken from each instru-

ment to classify them accurately. From the number of samples quoted in

some of these experiments it is unlikely that the instruments were sampled

at different dynamic levels, or that different models of each instrument were

sampled. In the experiments described here, the choice of instruments was
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limited to the piano, violin and flute. This was to ensure an exhaustive cover-

age of each instrument. Samples were taken from the RWC Music Database

(Music Instrument Sound) (Goto, 2004) of the selected instruments. Three

models of piano, Yamaha, Bosendorfer and Steinway were each sampled at

dynamic levels f, mf and p across their range (RWC, 2001a). Violins manu-

factured by J.F. Pressenda, Carcassi and Fiumebianca were sampled at these

three dynamic levels with vibrato and at level mf without vibrato across their

range (RWC, 2001b). Flutes manufactured by Louis Lot and Sankyo were

sampled at the three dynamic levels both with and without vibrato (RWC,

2001c). In total, this produced a training set of 2004 samples across the en-

tire pitch range of the three instruments. In contrast, many of the previous

studies discussed in the previous chapter used approximately 1000 samples

ranging across 15 to 30 instruments.

The samples that constitute the test dataset in these experiments were

taken from the MUMS (Opolko and Wapnick, 1987) database. This smaller

dataset consisted of samples of the three instruments played at the one dy-

namic level. In total, this dataset consisted of 45 violin samples, 37 flute

samples and 88 piano samples. A separate dataset was chosen as a test set to

realistically examine the generality of the trained classifier. Ideally, a classi-

fier such as the neural network described here, when trained properly, should

be general enough to be able to recognise a sample regardless of the source

of the sound. Using separate datasets recorded under different conditions en-

sured that it was the tonal quality of the instrument being categorised, and

that superfluous qualities such as those arising from recording conditions or

playing style should not have an effect on the results.

5.3.1 Pitch Range

The first experiment undertaken examined the classification of the instrument

samples described above by extracting a small selection of features. Specif-

ically, this experiment compared results obtained from training and testing

across different pitch ranges of the instruments. The natural pitch range

of each instrument was first examined. These ranges differ in size for each

instrument but consist of all playable pitches from each of the instruments.

Next a single octave, C5 to C6, present in all three instruments was used to

distinguish between the instruments. The classification accuracy over these

two pitch ranges were then compared. The results shown here were presented

in Loughran et al. (2008a). The features first examined in this study in-

cluded the Temporal Envelope, Residual Envelope, Spectral Envelope and
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the Centroid Envelope, as described in Chapter 3.

Results from PCA Data Reduction

As each of the features described above are time-varying envelopes, they

all have multiple data points; for example the Temporal Envelope of C4F

(pitch C4 played at volume f ) on a Yamaha piano consists of 603 data val-

ues, whereas the Temporal Envelope of C7M played on the same instrument

has 724 data values. An Excel file was created for each feature storing all

2004 instrument sample values for that particular feature. The temporal fea-

ture calculations described above involved splitting the sound into temporal

frames. As the sounds were of various lengths (each note was held for a dif-

ferent amount of time), the number of frames in each sound varied. To store

these envelopes together a maximum length was found for each feature with

the corresponding feature envelopes padded with zeros as appropriate. Thus

the size of these sets of features ranged from 2004 x 300 values for the Spec-

tral Envelope to 2004 x 1400 for the Centroid Envelope. Each feature was

reduced using the PCA algorithm as described earlier in this chapter. For

example the 2004 x 1350 Temporal Envelope data matrix could be reduced

to determine its eigenvalues λi according to Equation 5.10:

C = Σλiqiq
T
i

where C is the correlation matrix of the data. This matrix is of dimensions

1350 x 1350 representing the resultant principal components ordered accord-

ing to the percentage of explained variance from highest to lowest. The

determined eigenvalues in turn were used to calculate the projections of the

original data mapped onto the new co-ordinate system. This is equivalent to

the scores output of the princomp function in Matlab. Up to three instances

(dimensions) of this data may be plotted within this new co-ordinate system.

Thus it is possible to observe how efficiently the first three principal compo-

nents of each feature separate the original dataset into individual instrument

groups. The observed separation of this data can give an indication as to how

well the MLP will be able to categorise the samples.

PCA Plots Across Range of Instruments A 3-dimensional plot of the

first three principal components from the Temporal Envelope data of the

entire training set of data is shown in Figure 5.7. This plot is encouraging as

the three instruments can clearly be seen to segregate from each other. The
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piano samples have segregated themselves into a distinct group. This is not

surprising as the strong attack in the envelope of the piano is very distinct

from the other two more sustained instruments. The violin and flute samples

also segregate, but there is some overlap between the two. Hence another

feature is needed to distinguish these instruments distinctly.

 

Figure 5.7: Plot of the first 3 principal components of the Temporal Envelope data
across the physical range of each instrument

A plot of the projection of the Residual Envelope by the first three com-

ponents is shown in Figure 5.8. Although there appears to be some clustering

between the instruments, the boundaries between the instrument groups are

less clear than those formed by the Temporal Envelope as the data is more

tightly clustered. This plot shows a large overlap between the Violin and

Piano groups and some overlap with the Flute samples. This lack of defini-

tion between the instrument groups implies that this feature would not be

useful as an input to an MLP to train it to distinguish between these instru-

ments. As such the Residual Envelope was not used any further within this

experiment.

A similar plot of the projection obtained from the first three components of

the Spectral Envelope is shown in Figure 5.9. Again this shows a lot of overlap

between the instrument groups. The separation between the instruments does

not appear to be sufficient to aid the MLP in its classification. Hence the

Spectral Envelope was also not considered further in this experiment.

Figure 5.10 displays the plot obtained from three principal components of

the Centroid Envelope data. This plot shows distinct segregation between the

instrument groups. Although there is a slight overlap between the Piano and
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Figure 5.8: Plot of the first 3 principal components of the Residual Envelope data
across the physical range of each instrument

Figure 5.9: Plot of the first 3 principal components of the Spectral Envelope data
across the physical range of each instrument
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Violin and the Flute and Violin, for the most part each instrument clusters

within a specific region. This distinct separation between the instruments

encourages the use of the Centroid Envelope data for classification between

the instruments. Thus the remainder of this experiment considered data from

the Temporal Envelope and Centroid Envelope only.

 

Figure 5.10: Plot of the first 3 principal components of the Evolution of the
Centroid data across the physical range of each instrument

PCA Plots Across One Octave A 3-dimensional plot of the first three

principal components from the Temporal Envelope across the range C5 to C6

can be seen in Figure 5.11. This plot displays the principal components of

both the training and the test data on the same plot. The piano once again is

the most easily segregated instrument, although the flute and violin do also

show good separation. A plot of the principal components extracted from the

training and test samples across one octave for the Centroid Envelope data

is shown in Figure 5.12. Again this shows quite good separation between the

instruments. In particular, the flute samples are distinctly segregated from

the rest of the samples. Although the plots are more sparse due to the smaller

number of samples used, the data in these plots separates in a similar manner

to that of the corresponding larger datasets for these features. In particular,

the test data included in these plots appears to cluster with the corresponding

training instrument groups. This clustering indicates that data from these

features would be useful as input to the MLP.
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Figure 5.11: Plot of the first 3 principal components of the Temporal Envelope
data across one octave of each instrument

 

Figure 5.12: Plot of the first 3 principal components of the Centroid Envelope
data across one octave of each instrument

91



MLP Classification Results

Once the data has been reduced and the scores from the principal values

extracted, these values were used to train a MLP. The MLP used for this

experiment was implemented with the newff function in MATLAB7 (2006)

as described above. As described in Section 5.2.2 the network was trained to

classify a sound by being presented with training samples and updating the

synaptic weights of each neuron wj according to the delta learning rule:

∆wji(n) = α∆wji(n− 1) + νδj(n)yi(n) (5.24)

where α is the momentum constant and ν is the learning rate. The network

in this experiment was trained by presenting it with three to five principal

components of the Temporal Envelope and Centroid Envelope data from the

2004 training samples (in the case of the full range of samples) and updating

the weights according to Equation 5.24 with ν set to 0.95 and α set to 0.1. It

was batch trained with a Quasi-Newton, BFGS (Broyden, Fletcher, Goldfarb

and Shanno) algorithm. This algorithm updates an approximate Hessian

matrix of the performance of the current weights at each iteration of the

algorithm (Dennis and Schnabel, 1996). It was implemented in MATLAB7

(2006) using the trainbfg function. The stopping conditions for training

were set to a goal of 0.001 and 1000 epochs, that is this network will continue

to train using the data set until it achieves an error of 0.0001 or below, or

until it has tried to train the network to that goal 1000 times and fails. With

this set up it was found that a network with 57 neurons in the first layer

and two hidden layers containing 22 and 8 neurons respectively would be

sufficient to train the larger data set. As these classification experiments

discern between three instruments, there are three output neurons in each of

these experiments. This number of neurons and layers were found through

trial and error. A smaller network would most likely train the one-octave set,

but for ease of comparison the same network was used for both sets.

Classification Over One Octave The classification results over one oc-

tave of each instrument are shown in Table 5.1. These results display the

percentage of times the network trained on the 2004 training samples cor-

rectly identified a new test sample. The experiment was initially run using

the scores data from the first 3 principal components, as plotted on the pre-

vious PCA plots in Figures 5.11 and 5.12. Although the PCA plots may only

display data from three principal components, inputs to the MLP are not
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limited in this way. Hence the experiment was repeated to include the scores

data from the 4th and 5th principal components. It is evident from Table 5.1

that choosing four principal components from the Temporal Envelope data

produced the most accurate results. Conversely, varying the number of prin-

cipal components for the Centroid Envelope data did not have a significant

effect, as the results were consistently high. These results may appear incon-

sistent, in that increasing the amount of principal components can increase

accuracy in one instance yet not in another. The manner in which PCA re-

duces data is quite unintuitive however. It is not known what physical aspect

each component relates to, if it does relate to one. It is possible that higher

components extracted from the Temporal Envelope data may correlate to

some playing style or alternative aspect of the note not necessarily reliant on

the instrument’s timbre. This lack of intuitiveness is a drawback of PCA.

The reductional ability of this algorithm with minimal loss of data, however,

compensates for this drawback. The consistently high results in the Centroid

data may be due to the small data set tested. The next section gives the

classification results of the more generalised dataset.

Table 5.1: Classification Results for samples ranged across one octave

No. PCs Temporal Envelope (%) Centroid Envelope (%)
3 69.23 92
4 76.92 92
5 74.36 92

Table 5.2: Classification Results for samples ranged across the natural pitch range
of each instrument

No. PCs Temporal Envelope (%) Centroid Envelope (%)
3 82.94 67.06
4 81.76 78.82
5 73.53 74.14

Classification Over Range of Instrument A network of the same struc-

ture was trained with all 2004 RWC samples across the range of the three

instruments and then tested with the entire range of MUMS samples. The

results are shown in Table 5.2. It is evident from this table that the classifi-

cation accuracy from the Centroid Envelope data has diminished from that
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achieved across the smaller range of pitches. The accuracy from the Cen-

troid Envelope increased from 67.06% to 78.82% by increasing the number

of principal coefficients included from three to four, but it did not achieve

the 92.31% accuracy obtained using the smaller dataset. This reduction in

accuracy is not surprising considering the increase in the search space was

from one octave to over eight octaves in the case of the piano. In contrast

to this, the results obtained from the Temporal Envelope data were more

accurate for the full dataset than for the smaller one-octave dataset. For this

larger dataset the accuracy of the classification decreased as more principal

components were included. The highest accuracy achieved for the Temporal

Envelope was 82.94% from three principal components on the full dataset, as

opposed to 76.92% from four components on the smaller dataset.

Conclusions

From the PCA plots obtained in this experiment it can be concluded that

of the features examined, the Temporal Envelope and the Centroid Envelope

produced the most accurate instrument separation. This agrees with previ-

ous literature that has found these features to be very important perceptually

(Jensen, 1999). The Residual Envelope and Spectral Envelope did not facil-

itate instrument clustering when analysed using PCA. Further experiments

such as those explained in the following sections investigate more features in

this manner. The results here have shown that the most accurate classifi-

cation was obtained using the Centroid Envelope data across the one-octave

range. Increasing the range decreased the accuracy in classification but still

gave encouraging results for pursuing classification across the physical range

of instruments. The accuracy of the classifier was not automatically decreased

by increasing the pitch range examined. In the case of the Temporal Envelope

data the accuracy of the classifier was higher across the range of the instru-

ment than when limited to the one-octave range. A number of preceding

studies in this area have purposely constricted the range of notes examined

so that only a common pitch range is studied across the instruments. These

results show that widening the search space to a more realistic range may

increase classification accuracy as a more varied range of notes are presented

to the classifier, thus making it easier for it to recognise new samples. Hence,

in further experiments, classification is performed across the actual physical

range of each instrument.
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5.3.2 Mel-frequency Cepstral Coefficients

The experiment in the previous section examined a limited number of fea-

tures for classifying musical sounds. This section uses the same methods of

classification in exploring the use of another feature in musical instrument

identification — that of Mel-frequency Coefficients (MFCCs). Until recently

the field of audio research has largely been dominated by speech analysis

rather than its musical counterpart. This is most likely due to the practical

uses of speech analysis in modern technology such as voice recognition or

security systems. It is not surprising then that many researchers in musical

analysis would look to the features and methods employed in speech analysis

when examining musical tones. MFCCs have been used extensively in speech

analysis over the past few decades (O’Shaughnessy, 1987) and have more re-

cently received attention in music analysis (Eronen, 2001). This experiment

attempts to distinguish between musical instruments using only MFCCs and

looks at how many of these coefficients are necessary and useful for accu-

rate instrument identification. A number of studies have looked to MFCCs in

sound identification. De Poli and Prandoni (1997) used MFCCs in their study

of timbre space. Brown (1999) distinguished between oboes and saxophone

sounds by calculating cepstral coefficients and applying a k-means algorithm

to form clusters. Eronen and Klapuri (2000) included MFCCs as one of their

features in examining a wide range of orchestral instruments.

As discussed in Chapter 3, Logan (2000) examined some of the finer points

of the MFCC in music analysis as opposed to speech analysis and determined

that it is useful in this domain. The MFCCs were calculated as described

previously in Chapter 3. As with the features in the previous experiment

described above, the MFCCs are here calculated across the range of each

note.

Results

PCA was used on the time-varying envelope of each mel-coefficient to re-

duce the amount of data necessary to represent each coefficient. The results

compared were from changes in

• the number of MFCCs used

• the number of principal components used to represent each MFCC

Each experiment was conducted across the entire pitch range of each instru-

ment. The MLP used for this experiment was again created in Matlab with
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three layers of neurons containing 50 neurons in the first layer, 18 in the sec-

ond and 15 neurons in the third layer again with three output neurons. As in

the previous experiment it was trained with a momentum constant of 0.1 and

a learning rate of 0.95. It was batch trained using the trainbfg function,

with a goal of 0.001 to a maximum epochs of 400.

Results From the First Three Principal Components As before,

it was possible to visualise the separation obtained from each of the mel-

coefficients by plotting the scores from the first three principal components of

each individual mel-coefficient. One such plot for the second mel-coefficient

can be seen in Figure 5.13 in which clustering of each instrument can be

observed. Similar plots can be created for the other MFCCs. Initially classi-

fication was performed on the first three principal components calculated on

each coefficient. A preliminary experiment was run to determine the range of

MFCCs to examine. This involved training and simulating the network once

on the first three principal components from 2-12 MFCCs to get an indication

of how well it might perform. The results of this are displayed in Figure 5.14.

These results indicate that for high recognition accuracy, at least 6 MFCCs

should be used.

 
Figure 5.13: Plot of the first 3 principal components of MFCC2 for the 3 instru-
ments

To obtain a more reliable result the network was trained and tested 10

times using the first 6 to 16 MFCCs. The average of these test results can be

seen in Figure 5.15. These results indicate that once more than 10 MFCCs
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Figure 5.14: Preliminary results over 1 run for classification accuracy for network
trained on 2 to 12 MFCCs

were used, the recognition results were consistently high. Using 15 MFCCs

gave the highest recognition rate of 94.59%. It is worth noting however that

using 12 MFCCs gave almost as high an accuracy of 94.35%. This may be of

interest as the more MFCCs used in such a system, the more computationally

expensive the calculations become.

Results From More Principal Components As in the previous exper-

iment, more principal components for each mel-coefficient were included in

the experiment to see if this would increase the accuracy of the classifier.

Test results for a network trained on the first three, four and five principal

components of the first 11 to 16 MFCCs are shown in the bar chart in Figure

5.16. These results clearly indicate that for each number of MFCCs used, in-

cluding four principal components increased the accuracy of the classification.

Including the fifth, on the other hand, reduced the accuracy of the result. As

discussed in relation to the Temporal Envelope in the previous experiment,

this may be due in part to the unintuitive way in which PCA reduces the

data, possibly incorporating frequency or dynamic aspects that are not spe-

cific to each instrument. From this bar chart it can be seen that using the

first 4 principal components from 15 MFCCs resulted in the most accurate

classification of 95.88%. This is an encouraging result as this classifier is

based only on MFCCs.
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Figure 5.15: Classification results, averaged over 10 runs, for network trained on
6 to 16 MFCCs

 

Figure 5.16: Comparison of results for different number of principal components
of 11 to 16 MFCCs

98



Conclusions

This experiment demonstrated that MFCCs are a powerful tool in musical

instrument identification. Using only this feature an accuracy rate of 95.88%

was achieved in identifying novel sounds across the natural range of any of

the three instruments, Piano, Violin and Flute. From the results it can be

concluded that for high recognition accuracy at least 10 MFCCs should be

used. For each number of MFCCs included, it was observed that taking

4 principal components gave the best classification accuracy and that the

highest result was obtained from using 15 MFCCs. Thus we can conclude

that future classification experiments of this type involving MFCCS should

ideally use 15 MFCCs. This optimum number of MFCCs can be combined

with more spectral and temporal features to create a more robust classifier.

The results from this experiment were presented in Loughran et al. (2008c).

5.3.3 Feature Combination

This experiment combines the features used in the previous two experiments

along with a selection of other features used in previous studies on instru-

ment identification. The features incorporated here were the Temporal En-

velope and Centroid Envelope as described in Section 5.3.1 and the MFCCs

as described in Section 5.3.2 above. These were combined with the spectral

features of Inharmonicity, Spectral Irregularity and Number of Peaks. These

features were calculated as described earlier in Chapter 3. All features were

normalised before being inputted to the MLP.

Results

Data reduction was again performed on the Temporal Envelope, Centroid

Envelope and MFCC data using PCA as described in the previous experi-

ments. As determined in the previous experiments, the first four principal

components of each feature were used. This reduced data was then combined

with the other calculated features and presented to a MLP for training. The

network used for identifying all of these features updated its weights with

a learning rate (ν) of 0.1 and a momentum constant (α) of 0.95. It was

batch trained with the Resilient Backpropagation Algorithm trainrp. This

algorithm is a variation on the Backpropagation Algorithm that modifies the

update-weight values for each weight according to the error function (Ried-

miller and Braun, 1993). It was trained to a goal of 0.001 up to a maximum

number of epochs of 1000. With this set up it was found that a network with
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three layers containing 57, 28 and 15 neurons respectively would be sufficient

to train the dataset.

Table 5.3 displays the results from the combinations of the four principal

components from the Temporal Envelope, Centroid Envelope and the first 15

MFCCs. Again this table indicates the percentage of accurate classifications

of test data from a network trained on these features. Each column of this

table represents an experimental set-up — each ‘X’ indicates that this fea-

ture was used in this particular run of the experiment. These results indicate

that as individual features, the MFCCs resulted in the most accurate classi-

fication, but also that more accurate results could be obtained by combining

features. The highest result of 99.41% accuracy was obtained from using all

three features. The rest of the features were combined with this best result

to determine if it could be improved further. The classification results for

these features are shown in Table 5.4. It can be seen from these results that

rather than increasing the accuracy of the classifier, including these features

actually decreased performance. Regardless of which combination of these

features was used with the three initial features, the accuracy was somewhat

reduced. This is surprising, as these features have been used in numerous

previous studies. Features such as Inharmonicity however are dependent on

an accurate fundamental frequency estimation, which as described in Chap-

ter 2 may prove to be problematic for extreme pitched samples such as those

included in this experiment.

Table 5.3: Classification results from training on the Temporal Envelope, Centroid
Envelope and MFCC

Feature
Envelope X X X X
Centroid X X X X
MFCC X X X X
% Correct: 84.71 78.82 94.71 91.76 95.88 95.29 99.41

An important point to note regarding these features is that they do not all

provide the MLP with equal amounts of data for classification — some fea-

tures are more computationally expensive than others. Inharmonicity, Spec-

tral Irregularity and Number of Peaks all have only one data value each

whereas the Temporal Envelope and the Centroid each have four values for

every sound sample. The MFCCs on the other hand have four principal com-

ponent values for each of the 15 coefficients. This gives 60 data values for

each sound sample for this feature alone. Because of this, the experiment was
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Table 5.4: Classification results from training on the Temporal Envelope, Cen-
troid Envelope and MFCC combined with Inharmonicity, Spectral Irregularity and
Number of Peaks

Feature
Envelope X X X X X X X
Centroid X X X X X X X
MFCC X X X X X X X
Inharmonicity X X X X
Spec. Ir X X X X
No. Peaks X X X X
% Correct: 97.06 98.82 97.06 95.29 97.65 93.53 94.12

run again without the computational expense of the MFCCs, to determine

how accurate the classifier could be without them. The results are shown in

Table 5.5. It is clear from these results that the MFCCs are very important in

instrument identification. None of the combinations come close to the accu-

racy of those achieved with the MFCCs present. A comparison of the results

achieved from the various feature combinations both with and without the

MFCCs present is illustrated in the bar chart in Figure 5.17.

Table 5.5: Classification results from training on just the Temporal Envelope and
the Evolution of the Centroid combined with Inharmonicity, Spectral Irregularity
and Number of Peaks

Feature
Envelope X X X X X X X
Centroid X X X X X X X
Inharmonicity X X X X
Spec. Ir X X X X
No. Peaks X X X X
% Correct: 82.35 75.88 73.53 88.24 85.29 90 82.35

Classification of Specific Instruments The above classification results

are averaged across the three instrument sets. This section details the clas-

sification accuracy for the individual instruments. The training and test sets

were run on all features as above. The classification results of the individ-

ual instrument are illustrated in the bar chart in Figure 5.18. This indicates

that regardless of which feature was used, the violin is consistently the least

accurately classified instrument. This lack of clarity in discerning the violin

would indicate that the tone or timbre of the violin is somewhat ‘in between’
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 (a) Bar Chart

 
X-label  Features Included 

1 Env, Cent 

2 Env, Cent, Ih 

3 Env, Cent, SIR 

4 Env, Cent, #P 

5 Env, Cent, Ih, SIR 

6 Env, Cent, Ih, #P 

7 Env, Cent, SIR, #P 

8 Env, Cent, Ih, SIR, #P 

(b) Feature Set-up

Figure 5.17: Comparison of classification accuracy of feature combinations with
and without MFCCs

the timbre of the other two instruments. This conclusion is reflected from the

PCA plots of the Temporal and Centroid envelopes in Figure 5.7 and Figure

5.10. In both of these plots, the red violin samples overlap the areas of the

piano and flute samples more than the violin and flute overlap each other.

The results show that the piano is the most accurately classified instrument.

It can be seen from Figure 5.18 that the piano is recognised with 100% accu-

racy in every feature combination apart from those that do not include the

MFCCs. The flute is the next most accurate with it again achieving a 100%

correct recognition rate for several of the feature combinations. Classification

of the violin, however, rarely exceeds a recognition accuracy of 95%. This

result encourages the inclusion of more instruments in further experiments to

determine which other instruments are difficult to classify.

Conclusions

The results from this experiment indicate that of all the features examined

here, the MFCCs are the most important for accurate musical instrument

identification. On the other hand the Inharmonicity, Spectral Irregularity

and Number of Peaks were not found to be of significant benefit in a clas-

sifier such as this. Finally it was determined that of the three instruments

examined, the piano was the easiest to classify, followed by the flute with the

violin being the most difficult to classify. The results from this experiment

were presented in Loughran et al. (2008b). Many features other than those

looked at here have been included in numerous studies undertaken in the de-

velopment of an automatic instrument identifier. As can be seen from this
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 (a) Bar Chart

 X-label  Features Included 

1 Env, Cent 

2 Cent, MFCC 

3 Env, MFCC 

4 Env, Cent, MFCC 

5 Env, Cent, MFCC, Ih 

6 Env, Cent, MFCC, Ih, SIR 

7 Env, Cent, MFCC, Ih, #P 

8 Env, Cent, MFCC, Ih, SIR, #P 

9 Env, Cent, MFCC, #P 

10 Env, Cent, MFCC, SIR, #P 

(b) Feature Set-up

Figure 5.18: Comparison of individual instrument classification using all features

experiment, all of these features may not be necessary for such classification

tasks. Incorporating more and more features into a system without justifying

their inclusion is not necessarily guaranteed to provide an improvement in

any classification results. As can be seen from the literature, the list of fea-

tures that may be included is quite extensive, which means that the number

of different possible combinations of features which one may use is extremely

large. It would be impractical to attempt to implement each such combina-

tion. It would instead be beneficial to develop a system to find an optimum

or best selection of features to include in such tasks. Much of the further

work in this thesis is intended towards finding such a system.

5.4 Conclusions

This chapter described a data reduction technique (PCA) and a classifica-

tion technique (MLP), both of which have been used extensively in musical

instrument recognition experiments. The calculations of the PCA algorithm

were examined and details were given as to how it is implemented in this

thesis. Artificial Neural Networks were examined as a type of classifier. After

discussing one of the simpler types of ANN, the perceptron, we looked at an

MLP, a more complex network, capable of representing and hence learning

more complicated datasets. A summary of the Backpropagation algorithm

was presented, which was used to train the MLP. Finally three experiments

described in Loughran et al. (2008a,b,c) undertaken with these methods were

discussed. These experiments described training an MLP with a variety of
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features reduced using PCA. Overall, it was found that the MFCCs were the

most effective feature to use for such classification experiments. The Tempo-

ral Envelope and Centroid Envelope were also found to be useful. However

not all features incorporated into these experiments proved beneficial to the

performance of the system.

The classification results reported in this chapter were very high — over

99% in some cases. This is higher than the accuracy of previous similar

instrument classification studies as reported in Chapter 4. The main differ-

ence between this study and those from the literature is in the large number

of samples used over just three instruments. It was proposed at the end of

Chapter 4 that to train a robust, accurate classifier, many samples at different

pitches and playing styles were required. The high accuracy achieved in this

chapter demonstrates this point. In particular it was shown that broadening

the range of pitches examined by the classifier may increase classification ac-

curacy. The main limitation of these experiments, however, was in the choice

of instruments. Limiting the number of instruments this severely limits the

potential of the classifier. Further experiments expand the potential of the

classifier by introducing a further two instruments. It is expected that the

accuracy of subsequent classifications would thus drop — as the timbre of

further instruments would be ‘in between’ those of the current instruments,

much as the timbre of the violin was found to be in between that of the piano

and flute.

The main objective in this thesis is to analyse and understand timbre

in an effort to create a robust musical instrument identifier. The methods

used in this chapter have been shown to have the necessary reductional and

classification power to be used in such a development. Where such a system

falters however, is in that it has no method of selecting the features best

incorporated within itself. Any amount of features may be used as inputs

to a MLP; more and more features may be added, but are they of use?

The experiment reported above and in Loughran et al. (2008b) has shown

that adding extra features does not necessarily help and can be detrimental

to the performance of the system. In addition to this, the inclusion of an

increasingly large amount of data to a classifier such as this will ultimately

necessitate a more complex network incorporating more neurons and hence

more computations leading to longer learning times. While longer learning

times may be acceptable for a marked improvement in performance of the

network, they are far from ideal considering no improvement is guaranteed to

be achieved. This chapter only examined a small number of features, but as

104



described in Chapter 4 many more features have been included in previous

studies. Implementing the experiments in this chapter with all combinations

of features is impractical as it would be too time consuming and may not

lead to more accurate results. As such, we look to methods of improving

the selection of features chosen as input to such a network. A prominent

area within data mining used for optimisation of parameters is the field of

Evolutionary Learning. The following chapters looks at two methods from

this field, namely Genetic Algorithms and Genetic Programming, and their

application in optimising features for a system such as this one.
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Chapter 6

Genetic Algorithm Experiments

6.1 Introduction

In the previous chapter, MLPs were used to classify musical samples based on

a number of different timbral features. These MLP classifications are similar

to previous attempts at classifying musical samples such as those described

in Chapter 4. These previous studies varied widely in their choice and in

the number of features used in such classification systems. However, it was

also seen from experiments in Chapter 5 that increasing the amount of data

available to such systems does not necessarily improve their classification ac-

curacy. Increasing the amount of data provided to any classification system

increases the number of computations such systems must make, making clas-

sification increasingly complicated. Although increasing numbers of features

have been included in classification studies, no basis has been given for in-

cluding this large number of features to distinguish a musical instrument. We

have discussed in Chapter 2 and Chapter 3 how the recognition of a musical

instrument is largely based on its timbre. Studies in describing timbre have

used multi-dimensional scaling techniques to reduce the number of dimensions

or descriptors for timbre and to assign physical or psychological attributes to

these dimensions. This attempt to maintain a low number of descriptors in

empirical work is in direct contrast to the increase in features used in machine

learning classification techniques. It is proposed in this chapter to bridge the

gap between these two areas by searching for the optimum selection of timbral

features before incorporating them into a classifier. This approach has three

distinct aims:

• to create an improved musical instrument identifier

• to reduce the complexity of a musical instrument identifier by reducing
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the amount of data used by it

• to gain a deeper understanding of timbre by determining which timbral

features are most important in musical instrument identification

In this chapter, the optimum feature selection is made using a Genetic

Algorithm (GA). Section 6.2 introduces the data used in experiments in this

chapter and decribes the way in which this data is organised. GAs are a spe-

cific type of Evolutionary Computation technique, introduced in Chapter 4.

A more detailed introduction to the workings of a GA and how it is incorpo-

rated into the experiments here is given in Section 6.3. Section 6.4 describes

the fitness function used by the GA in these experiments. The fitness func-

tion is an integral part of the system, which dictates how the GA performs.

This section details the meaning of good fitness and the development of the

function using a scaled-down version of the problem. Three fitness functions

are derived, each of which is applied to the full set of data in Section 6.5. The

results are discussed in terms of the genomes evolved by the GA and the use

of these genomes in classification experiments using an MLP. One of these

fitness functions is then used on a scaled up set of experiments in Section 6.7.

Finally, Section 6.8 offers some conclusions on the results obtained.

6.2 Data

As in experiments in the previous chapter, the samples used here were taken

from the RWC Music Database (Musical Instrument Sound) (Goto, 2004) and

the MUMS database (Opolko and Wapnick, 1987). However, unlike the previ-

ous experiments that classified three instruments, these experiments classify

five instruments: the piano, violin, flute, trumpet and guitar. The piano,

violin and flute samples included were as described in Chapter 51. The RWC

samples included two models of trumpets, Vincent Bach and Schilke, sampled

at dynamic level f, mf and p both with and without vibrato. This database

also included three models of classical guiter, Stafford, Kohno Masaru and

Imai Yuichi sampled at the same three dynamic levels. The MUMS database

provided a further set of trumpet samples. This gave 616 piano samples,

813 violin samples, 481 flute samples, 394 trumpet samples and 702 guitar

samples. Thus the complete data set consists of 3006 sample values.

1with the exception that the Bosendorfer piano samples were excluded as, on close
aural inspection, a large proportion of the high pitched samples were found to be of low
quality.
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Each of the features described in Chapter 3 was calculated on each of these

3006 samples to create the data set used in these experiments. These features

are listed below in Table 6.1. A full list of the feature values in the order that

they are used in the evolutionary experiments in this and the following chapter

is given in Appendix B. Although a number of these features result in one

data point per feature, all features based on time-varying envelopes contain

multiple data points. As before in the experiments described in Chapter 5

the data from these features was reduced using PCA. The experiments in

Chapter 5 found, in general, that the first four principal component values

were the most useful in musical instrument classification. Hence the first four

principal components for the Temporal, Residual and Spectral Envelopes,

Centroid Envelope and the envelopes of each of the first 16 MFCCs were

calculated and included as data points. This resulted in a total of 95 data

points to describe all features for each of the 3006 instrument samples.

Table 6.1: List of temporal and spectral features included in the experiments in
this chapter

Temporal Spectral
Temporal Envelope Spectral Envelope
Residual Envelope Number Spectral Peaks
Attack Time Irregularity
Attack Slope MFCCs (1-16)
Centroid Envelope Inharmonicity
Zero-Cross Rate Centroid
Number Onsets Spread
Onset Distance Skew

Kurtosis
Regularity
Rolloff
Brightness

6.2.1 Cross-Validation Sets

This 3006 by 95 data-set is quite large in size. Evolutionary algorithms can be

computationally expensive when evolving a solution based on a large amount

of data. To reduce the computation time and to provide a method of vali-

dating the results, the data was split into 10 sub-sets. The original set was

ordered as per instruments (piano followed by violin etc.). To ensure an even

distribution of the instruments among the 10 sets, every set was iteratively

filled with data from the tenth consecutive sample until all sets contained the
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data for 300 samples2. The remaining six samples were added to Set1. In

parallel to this, a target set for each validation set was created so that the

order (instrument) of samples within each set is known. In these target sets,

1 represents a piano, 2 a violin, 3 a flute, 4 a trumpet and 5 a guitar. The

GA evolves a solution, or genome, for each of these data sets. These genomes

may then be compared to test the validity of the results.

6.3 Genetic Algorithm

GAs, like all evolutionary techniques, are based on the principal of natural

selection. Such techniques are modelled on the process of biological evolution,

whereby a solution is modified and ideally improved over many generations

from a population of solutions. GAs ‘evolve’ an optimum solution for a given

problem by searching a population of possible solutions. The initial popula-

tion contains a number of randomly created solutions to the problem under

investigation. In binary GAs these solutions consist of binary strings whereas

in floating-point GAs (as used here) each solution consists of a vector or

string of floating-point values. A measure of how successful each individual is

at solving the given problem is measured as its fitness according to a fitness

function. Successive generations are produced from this initial population

using a combination of three operators (Goldberg, 1989):

• Selection or Reproduction — individual strings succeed into the

following generation according to their fitness. Thus individuals with

better fitness are more likely to contribute to one or more offspring in

the next generation.

• Crossover or Recombination — two (parent) strings are combined

to produce two new (children) strings in the next generation, both of

which contain traits of the parent solutions.

• Mutation — one or more aspects of an individual is changed to create

a new individual in the next generation.

There are a number of methods used for the selection process. One of the orig-

inal methods is roulette-wheel or proportional selection. Using this method,

the population is represented by a roulette wheel where each individual occu-

pies a space on the wheel proportional to its fitness. With multiple spins of

the wheel, the probability of an individual being selected is given by the ratio

2sample in this sense refers to an individual instrument sample or note
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of its fitness to the fitness of the rest of the population. Tournament selec-

tion is another method of selection in which a set of k individuals are selected

from the population and the fittest individual among this set is considered

for selection. The selection pressure may be controlled with an appropriate

selection of k. In Rank selection the population is ordered in terms of their

fitness and individuals are selected according to their rank on this list rather

than their absolute fitness (Affenzeller et al., 2009).

The combination of selection with both crossover and mutation are es-

sential for any GA. Crossover combines the best elements from individuals

to create potentially superior children and mutation adds new elements into

the population, preventing the population from converging prematurely. The

combination of these operators ensures that the best elements of individuals

survive from one generation to the next, while maintaining diversity within

the population. To ensure that the best individuals are not destroyed using

these operators however, in each generation the individuals with the best fit-

ness are passed directly to the next generation through the process of elitism.

The behaviour of the GA over a number of generations is controlled by the

user by setting parameters at the beginning of each evolutionary run. Such

parameters may dictate the size of the population, number of generations or

probability of each operator. The selection of these parameters is discussed

later in this chapter.

6.3.1 Optimisation of Features Using GA

GAs have been shown to be powerful when used for large-scale feature selec-

tion (Kudo and Sklansky, 2000; Siedlecki and Sklansky, 1993a). A GA is used

here to optimise the selection of features used in a neural network classifier.

Each individual or genome is a string containing 95 floating point numbers.

Each element of the genome, or gene, represents one of the 95 features in-

cluded in this experiment. This genome is multiplied by the 95 feature data

values of each musical sample in a genotype to phenotype matching. Thus

the genome acts as a weighting vector dictating how much of each feature

is included in the data. This ranges from 0 which means this feature is not

included, to 1 whereby the maximum amount of the feature is included in

the data. The fitness of each genome is then calculated according to the clus-

tering of this multiplied feature data set — as described in the next section.

The GA experiments in this chapter were implemented using the Genetic

Algorithm and Direct Search Toolbox in Matlab (MATLAB7, 2006).
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6.4 Fitness Function

The GA selects an individual based on its fitness, thus the fitness function de-

fines how the GA will behave. In this case we wish to choose the best genome

to optimise a set of features for training an MLP. All of the fitness functions

developed in this chapter use minimising fitness functions: the smaller fitness

values correspond to more successful genomes. It was seen in Chapter 5 that

data which separates distinctly is more easily classified by an MLP. Thus we

measure how well each set of multiplied data or phenotype forms distinct

clusters according to instrument, as a measure of how successful each genome

is as a solution: the more distinctly the data clusters, the better the fitness

of the corresponding genome.

To measure the clustering of the data, it is first reduced in dimension using

PCA. It was already discussed that using PCA can reduce the dimensionality

of a data set by concentrating the variance of the data in the lower dimensions.

This process has been implemented on a number of the features used in this

experiment such as the Temporal Envelope and the Centroid Envelope, as

explained in the previous chapter. It is implemented here to measure the

clustering of the data in a lower number of dimensions. PCA is applied to

this multiplied dataset and the obtained scores are noted. The fitness of the

given genome is calculated in relation to the clustering of the data from these

scores: the more distinct and separated the clusters are, the lower (better)

the fitness will be. For distinct clustering or separation of the data, we require

that the data forms individual clusters whereby each element of the cluster is

of the same instrument type, and also that these clusters are well separated

from each other. The fitness function returns a single numerical value as a

measure of how well the genome solves this problem. Thus a fitness function

must be designed that results in a numerical value that is indicative of this

clustering. A measure of how well the data clusters is calculated along with a

measure of how far apart each cluster is from each other instrument cluster.

The fitness is calculated from the relationship between these two measures.

To determine the optimum relationship between clustering and separation,

the size of the problem was reduced, as in Goldberg’s ‘little problems’ (Gold-

berg, 2002). The number of samples and number of features were reduced to

observe the relationship between these measures.
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6.4.1 ‘Toy’ Feature Selection

To develop the details of the fitness function used with the GA, a smaller

data set was created on which small-scale experiments could be conducted.

This ‘Toy Set’ consisted of one octave of notes, C4 to C5 played on each

of the instruments, resulting in 65 data samples. For these experiments the

features calculated on these samples were limited to the following 11 features:

Zero-Crossing Rate, Rolloff, Brightness, Number of Onsets, Onset Distance,

Attack Time, Attack Slope and the four principal components from the Tem-

poral Envelope. These features were arbitrarily chosen for this set of exper-

iments. Thus the following experiments on developing the fitness function

were conducted on a data set of size 65 by 11, rather than the original 3006

by 95 data set. These experiments were run on this data-set with a popula-

tion of 100 for 200 generations. This set-up ensured that each GA run took

less than 10 minutes, allowing ample time for adjustments to be made to the

fitness function. As a comparison Figure 6.1 displays the original Toy data

set clustered with all features equally present. Clearly this data was already

clustering well, unsurprising as the data was limited in scope. The objec-

tive of these experiments was to analyse the behaviour of the fitness funtion,

rather than find the optimum genome at this point.

Figure 6.1: Principal Component Clustering for Original Toy data
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This fitness function was developed and examined according to two dis-

tinctions:

• The way in which the clustering and separation measures are calculated,

and

• The relationship between the clustering and the separation.

As we are considering multi-dimensional distances, the Euclidean distance is

one obvious measure for such distances. The following sections consider this

measure along with another Dimensional measure of calculating the fitness

of each genome. For ease of illustration, the clustering of the scores of the

data in this Toy Problem is limited to three dimensions.

6.4.2 Calculation of Fitness: Method 1, Euclidean

This Euclidean Fitness is a measure of the relationship between the average

Euclidean distance of each sample to the mean of the cluster to the Euclidean

distance from the mean of the cluster to the mean of all the other clusters.

The scores calculated are grouped into clusters according to a target vec-

tor indicating which instrument they correspond to. Thus the piano, violin,

flute, trumpet and guitar clusters were formed from the first three values of

the scores calculated for these instruments. The mean of each cluster was

calculated. The clustering value for each instrument can then be calculated

from its spread measure and separation measure. The spread measure (∆)

was calculated as the sum of the 3-dimensional Euclidean distance from each

instrument point to the mean of the cluster, divided by the number of instru-

ment samples. Thus for the piano cluster:

∆p =
∑i=p

i=1

√
(Ci(x)−Mp(x))2 + (Ci(y)−Mp(y))2 + (Ci(z)−Mp(z))2

p
(6.1)

where C is the piano cluster, Ci(x) is the x-component of the ith piano sample,

Mp is the piano mean and p is the number of piano samples.

The separation measure (Γ) is similarly calculated as the sum of the Eu-

clidean distances from the mean of a cluster to the mean of each other instru-

ment cluster, divided by the number of other clusters. Thus the separation
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for the piano cluster is calculated as:

PV Dist =
√

(Mp(x)−Mv(x))2 + (Mp(y)−Mv(y))2 + (Mp(z)−Mv(z))2

PFDist =
√

(Mp(x)−Mf (x))2 + (Mp(y)−Mf (y))2 + (Mp(z)−Mf (z))2

PTDist =
√

(Mp(x)−Mt(x))2 + (Mp(y)−Mt(y))2 + (Mp(z)−Mt(z))2

PGDist =
√

(Mp(x)−Mg(x))2 + (Mp(y)−Mg(y))2 + (Mp(z)−Mg(z))2

Γp =
PV Dist+ PFDist+ PTDist+ PGDist

4

where Mp is the mean of the piano cluster, Mv is the mean of the violin

cluster, Mf is the mean of the flute cluster, Mt is the mean of the trumpet

cluster and Mg is the mean of the guitar cluster. The Euclidean distance from

the mean of the piano cluster to each other cluster is calculated and averaged

over 4. Similar measures of ∆ and Γ were calculated for the other instrument

clusters.

For good separation of the instrument clusters we require the spread mea-

sure of each cluster to be small and the separation between each cluster to

be high. Figure 6.2 illustrates this point in two dimensions. In this figure the

circles represent the average spread of each colour cluster. Unless the data

is well clustered, there will be some amount of overlap between the different

colours. Thus for distinct clustering of the blue samples, for example, ∆blue

must be small in relation to both Γbluetored and Γbluetogreen. The function of

the GA is to evolve a genome that optimises this clustering relationship when

multiplied by the feature data. In each experiment an optimum genome is

evolved according to a numeric measure between ∆ and Γ for each instrument.

The merits of the current fitness function may then be analysed by observing

the measurement details and plots of the clusters obtained by multiplying the

evolved genome by the data.

Relationship between ∆ and Γ

Initially, the fitness was calculated from the relationship of the average instru-

ment spread to the average separation between instruments. Thus a common

∆ and Γ were calculated over all instruments and compared. However, this

approach did not yield good results. Such a fitness function tended to merely

optimise one or two instruments at the expense of the others, yielding a ‘good’

numerical result which actually did not produce good clustering. This ten-
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Γblue to red   

∆blue   

∆red 

Γblue to green   

∆green 

Figure 6.2: Illustration of clustering of 3 colour groups in 2 dimensions

dency implied that local minima with very low fitness were causing the GA to

converge on a sub-optimum result. It was found, instead, that comparing the

spread with the separation for each instrument (∆i and Γi for all instruments

i) produced better results. Thus the fitness function was based on the fitness

of each individual cluster.

For each instrument the relationship between the spread measure and the

separation measure was examined. As an initial experiment, the genome was

optimised by minimising

fitnessi = |∆i − Γi| (6.2)

for each instrument i. The plot of the clusters achieved are shown in Figure

6.3. Although this plot does show some clustering, there is much overlap

between the various clusters.

For good clustering all samples should to be close to their own mean while

at the same time the means of each instrument cluster group should be well

separated. Thus ideally Γ should be large in relation to ∆. This relationship

is enforced by multiplying ∆ by a clustering coefficient, δ. This forces the

value of Γ to be several times (as specified by δ) the magnitude of ∆ i.e. the

distance between the clusters is forced to be δ times the average distance of
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Figure 6.3: Principal Component Clustering for Fitness function based on fit =
|∆i − Γi|

each sample to the mean of the instrument cluster. ∆ is thus decreased in

relation to Γ by minimising the fitness according to:

fitnessi = |δ∆i − Γi| (6.3)

This means that in the ideal situation (fitness = 0), the separation would be

δ times the spread. Clusters obtained from genomes evolved with δ equal to

5 and 10 are displayed in Figure 6.4. These plots indicate that using δ equal

to five offers an improvement in clustering compared to Equation 6.2 which

may be improved further by setting δ equal to 10.

Absolute vs. Offset

The absolute value used in the calculation of fitness prevents negative fitness

values from occurring. This does not take into account, however, that a

negative value may actually indicate a very good fitness. For example if

Genome A resulted in ∆A = 1 and ΓA = 8. Then according to the fitness

equation:

fitnessA = |10∆A − ΓA|

= |10− 8|

= 2
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(a) δ=5 (b) δ=10

Figure 6.4: Clustering of instrument groups with varying δ

If on the other hand Genome B resulted in ∆B = 0.5 and ΓB = 8. Then the

fitness equation gives:

fitnessB = |10∆B − ΓB|

= |5− 8|

= 3

Hence Genome A is given the lower (better) fitness even though Genome B

results in tighter clustering with the same separation. This may be rectified

by replacing the absolute measure with the addition of a constant offset.

In practice, a negative value appeared very unlikely to occur as it would

require very tight clustering — particularly in later experiments which contain

many more samples per cluster3. Nevertheless, an addition of a positive

offset value would ensure that should a negative result occur, it would keep

its ‘good’ fitness. The data used in these experiments are all normalised

— all values lie between 0 and 1. In taking a Euclidean measure in three

dimensions, the furthest two samples may be from each other in this space is√
3. Hence the square root of the number of dimensions examined was chosen

as an offset. As we are dealing with the sum of the distances between five

clusters, it is mathematically possible — although practically very unlikely,

for a negative value still to occur. The offset was maintained at the square

root of the number of dimensions examined, and not a multiple of this, to

prevent unnecessarily high fitness values. Plots of the clusters obtained from

3It may be noted here that the GA Toolbox can manage negative fitness values as it
minimises to negative infinity. It is for ease of analysis that we attempt to keep the values
obtained positive
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using this offset instead of the absolute measure for δ equal to 5 and 10 are

shown in Figure 6.5. It is evident from these plots that the use of an offset

value improves clustering.

(a) δ=5 (b) δ=10

Figure 6.5: Clustering of instrument groups with varying δ with offset value

From Figure 6.5 it would appear the exact choice of δ does not appear

to have a very significant effect on the clustering. To examine these clusters

further, we look at the numerical results obtained from each evolved genome.

Table 6.2 displays the values of the fitness ∆ and Γ for each of the instrument

clusters obtained from the genome evolved with δ equal to 1. Similar results

for the clusters obtained from the evolved genomes with δ equal to 5 and

10 are shown in Table 6.3 and Table 6.4. Within these results, the most

important data is the relationship between ∆ and Γ for each instrument.

Although the fitness increases with an increase in δ, this is directly due to

the multiplication of δ by the positive value ∆. As already stated, good

clustering ideally requires ∆ to be small and Γ to be large. We can see from

these tables that although the numbers vary between instruments, in general

∆ reduces somewhat with an increase in δ. This is accompanied however with

a slight decrease in Γ. Thus the clustering is getting tighter but the distance

between the clusters is also getting smaller. This is due to the fitness equation

currently used:

fitness = δ∆− Γ + offset (6.4)

In these calculations, Γ tends to be significantly higher than ∆ i.e. the sep-

aration was initially higher than the spread as displayed in Figure 6.1 of the

initial data. As the offset is a constant (
√

3 or approximately 1.77) the sim-

plest way to minimise Equation 6.4 would be to maximise Γ. Although this

works on this set of data, this equation must be applicable to more general

data sets. Hence the equation must be modified to ensure that both ∆ and
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Γ play a significant role in the fitness calculation. This is ensured with the

inclusion of thes clustering coefficient as described above — this clustering

coefficient is multiplied by ∆ to ensure that it is taken into account along with

the larger value of Γ. Thus it is important to multiply ∆ by the clustering

constant to ensure it is considered in the fitness calculation. The decrease

in both ∆ and Γ in Table 6.4 indicate that with δ equal to 10, the spread

∆ is now playing a role in the calculation of fitness. An increase of δ up to

1000 was implemented but was not found to improve the results significantly.

Thus the fitness across all 5 instruments according to the Euclidean distances

of the spread and separation of the clusters was calculated according to:

Fitness =
5∑
i=1

(10∆i − Γi +
√

3) (6.5)

Table 6.2: Fitness, ∆ and Γ results from genome evolved from: fitness = ∆ - Γ
+ offset

Piano Violin Flute Trumpet Guitar
Fitness 1.3187 0.9953 1.0245 0.9394 1.1347

∆ 0.0699 0.1488 0.1619 0.0987 0.1079
Γ 0.4833 0.8856 0.8695 0.8913 0.7053

Table 6.3: Fitness, ∆ and Γ results from genome evolved from: fitness = 5∆ - Γ
+ offset

Piano Violin Flute Trumpet Guitar
Fitness 1.5547 1.5660 1.6314 1.3835 1.5490

∆ 0.0594 0.1412 0.1509 0.1026 0.1016
Γ 0.4741 0.8720 0.8552 0.8615 0.6908

Table 6.4: Fitness, ∆ and Γ results from genome evolved from: fitness = 10∆ -
Γ + offset

Piano Violin Flute Trumpet Guitar
Fitness 1.8014 2.2722 2.1854 2.0032 1.9844

∆ 0.0524 0.1327 0.1259 0.1019 0.089
Γ 0.4551 0.7869 0.8052 0.7476 0.6372
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6.4.3 Calculation of Fitness: Method 2, Dimensional

As a comparison to the Euclidean measures discussed above, an alternative

Dimensional measure was developed for calculating the spread ∆ and separa-

tion Γ for each instrument cluster. These measures were taken from the spread

and separation distances projected onto one dimension and then summed over

all dimensions. Thus the spread measure ∆ was calculated for the piano as:

∆p =
∑p

i=1[
√

(Ci(x)−Mp(x))2 +
√

(Ci(y)−Mp(y))2 +
√

(Ci(z)−Mp(z))2]
p

(6.6)

where p is the number of piano samples, C is the piano cluster, Ci(x) is the

x-component of the ith piano sample and Mp is the mean of the piano cluster.

The separation measure Γ is similarly calculated from the projectional

dimensional distances between the means of each cluster. Thus for the piano

cluster, Γ is calculated as:

Γp =
3∑
d=1

√
(Md

p −Md
v )2 + (Md

p −Md
f )2 + (Md

p −Md
t )2 + (Md

p −Md
g )2

4
(6.7)

where again Mp is the mean of the piano cluster, Mv is the mean of the violin

cluster, Mf is the mean of the flute cluster, Mt is the mean of the trumpet

cluster and Mg is the mean of the guitar cluster and d is the dimension (x, y

and z).

The relationship between ∆ and Γ was investigated in a similar manner

as with the Euclidean distances. A plot of the clusters obtained from using δ

again equal to 1, 5 and 10 are shown in Figure 6.6. The corresponding results

are displayed in Table 6.5, Table 6.6 and Table 6.7. Again it can be seen

that the increase in the value of δ from 1 to 10 causes the ∆ value for each

instrument to become more significant in the calculation of the fitness. This

in turn causes a slight decrease in the value of ∆ along with a slight decrease

in the value of Γ (as with the Euclidean fitness). Again the value of δ was

chosen to be 10. Thus the relationship between ∆ and Γ for the Dimensional

distance is calculated the same as that of the Euclidean distances:

Fitnessdim =
5∑
i=1

(10∆i − Γi +
√

3) (6.8)
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Table 6.5: Fitness, ∆ and Γ results from genome evolved from Dimensional Fit-
ness: fitness = ∆ - Γ + offset

Piano Violin Flute Trumpet Guitar
Fitness 1.1382 1.0877 1.0796 1.0293 1.1423

∆ 0.0337 0.0696 0.0837 0.0522 0.0548
Γ 0.6276 0.7140 0.7361 0.7549 0.6446

Table 6.6: Fitness, ∆ and Γ results from genome evolved from Dimensional Fit-
ness: fitness = 5∆ - Γ + offset

Piano Violin Flute Trumpet Guitar
Fitness 1.2754 1.3672 1.4131 1.2364 1.3538

∆ 0.0339 0.0694 0.0833 0.0518 0.0530
Γ 0.6260 0.7116 0.7353 0.7545 0.6434

Table 6.7: Fitness, ∆ and Γ results from genome evolved from Dimensional Fit-
ness: fitness = 10∆ - Γ + offset

Piano Violin Flute Trumpet Guitar
Fitness 1.4265 1.7037 1.8185 1.5186 1.6139

∆ 0.0316 0.0679 0.0816 0.0532 0.0521
Γ 0.6213 0.7072 0.7293 0.7454 0.6388
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(a) δ=1 (b) δ=5

(c) δ=10

Figure 6.6: Clustering of instrument groups with varying δ with offset value

6.4.4 Calculation of Fitness: Method 3, Euclidean-

Dimensional

As a further measure of fitness, a combination of the above two measures were

considered as a Euclidean-Dimensional fitness function. Using this method

the spread measure, ∆, is calculated from the Euclidean measures of the clus-

ter as in Equation 6.1. In contrast to this the separation measure, Γ, is calcu-

lated from the projectional dimensional distances between the means of each

cluster, according to the Dimensional separation in Equation 6.7. Although

the concept behind the measuring of these two values is different, they each

result in a numerical distance that can be easily compared. The Euclidean-

Dimensional fitness is then calculated as the relationship between between

this Euclidean spread and Dimensional separation according to Equation 6.5

derived earlier.

The above experiments were conducted to determine the details of the fit-

ness function to use for evolving the desired feature weight-vector or genome.

Limiting the scope of the data and the dimensions observed allowed an ex-
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amination of the workings of the genome evolution on a little problem. Now

that the ideal relationship between the spread and separation of the clusters

has been decided on, the problem may be scaled up to include the full set of

features on the full data set. The following section implements the GA on

the full data set using the Euclidean, Dimensional and Euclidean-Dimensional

methods derived in this section.

6.5 Full Dataset

The full set of features described in detail in Chapter 3 and listed above

in Section 6.2 are used in the remainder of these experiments. The fitness

function derived above is dependent on reducing the data using PCA. It has

already been noted that PCA concentrates the variance of the data into the

lower dimensions. This dimensional reduction reduces the number of calcu-

lations that must be performed by the fitness function for every individual in

every generation. In the case of the Toy data set above, it was found that

over 99% of the variance of the data was included in the first three principal

components. On the larger data-set from each cross-validation set, of size 300

by 95, the first three dimensions only cover a small percentage of the variance

of the data. Hence, to cover a representative range of the data, the number of

dimensions examined must be increased. Approximately 60% of the variance

of the data was found to be contained in the first eight dimensions of the data.

As this represents a considerable reduction in computation while maintaining

the majority of the variance, the following experiments were conducted using

the first eight principal components of the reduced data. Thus the fitness

function now computes the spread and separation distances on eight rather

than three dimensions.

6.5.1 Selecting the GA Parameters

As discussed at the beginning of this chapter, the GA evolves individuals from

generation to generation by processing them using the operators reproduction,

crossover and mutation. The operators create the children that make up the

next generation from the individuals in the current generation. In Matlab,

the number of children created using crossover and mutation is controlled by

the Crossover Fraction (or Crossover Probability) parameter. This Crossover

Probability controls the number of children, apart from elite children which

are passed directly into the next generation, that are created using crossover,
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the remainder of the population being created using mutation. The following

sections examine the changes in fitness obtained from varying the operator

parameters.

Crossover Probability

The default value for the Crossover Probability in Matlab is 0.8. To determine

if this is the best value to use, the changes in the fitness were observed by

varying the Crossover Probability from 0.7 to 0.95 in steps of 0.05. Each of

these experiments was run for 100 generations on a population of size 50 with

each of the 10 data-sets. The average and best fitness achieved throughout

each of the 10 runs were noted and averaged over each set. The changes

in average and best fitness over all generations for each of the values of the

Crossover Probability are displayed in Figure 6.7. The best fitness achieved

from each of the values of the Crossover Probability were similarly noted and

averaged over each set. A boxplot of the results of this best fitness for each

value of the Crossover Probability is shown in Figure 6.8. These boxplots

show the median for each value (red line) surrounded by a box notating the

interquartile range. The whiskers of the plot define the upper limit and lower

limit. Values outside of these limits are considered outliers (Martinez and

Martinez, 2002).

The fitness plots in Figure 6.7 are all relatively similar: regardless of the

choice of the Crossover Probability, the average and best fitness decrease and

converge over many generations. Figure 6.8 indicates that once the Crossover

Probability is kept below 0.9 the fitness remains low, with an optimal value

obtained at a Crossover Probability value of 0.75. Figure 6.7(b) shows that

this value gives a steady decrease in both the best and average fitness over

many generations. Hence the value of the Crossover Probability for the re-

mainder of these experiments was chosen to be 0.75.

Mutation Shrink

With the Crossover Probability set to 0.75, the amount of mutation is au-

tomatically set to 0.25 (after elite children). Mutation is implemented in

Matlab by adding a random number from a Gaussian distribution to each of

the parent vectors. Ideally, the GA should converge to a good solution over a

number of generation, hence it would require more mutation at the beginning

of a run to prevent premature convergence, but less towards the end of a

run to prevent ‘jumping’ away from highly evolved solutions. The amount
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of mutation applied to an individual may be decreased at each generation in

Matlab using the Shrink parameter. The amount of mutation is decreased

so that it is (1 - Shrink) times its initial value at the first generation. The

default value of Shrink is 1, leading to no mutation at the end of the run.

Again to determine the use of Shrink in our data we observed the changes

in fitness with the value of Shrink set from 0 to 1 in steps of 0.25. The ex-

periment was again run for 100 generations on a population of 50 with the

Crossover Probability set to 0.75. The changes in the average and best fitness

are shown in Figure 6.9 with the corresponding best fitness results displayed

in Figure 6.10.
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(a) Crossover Fraction=0.7 (b) Crossover Fraction=0.75

(c) Crossover Fraction=0.8 (d) Crossover Fraction=0.85

(e) Crossover Fraction=0.9 (f) Crossover Fraction=0.95

Figure 6.7: Average vs. Best fit over 100 generations for varying values of

Crossover Fraction
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Figure 6.8: Best fit obtained using different values of Crossover Fraction, averaged

over 10 sets

As before with the Crossover Probability, there is not a significant differ-

ence in the relationship between the best and average fitness over the number

of generations with a change in Shrink. The best fitness is obtained from

having Shrink equal to 0.25. It is worth noting that even when the value

of Shrink is equal to 1 (ie no mutation at the end of the run) the average

and best fitness do not completely converge. This implies that this data is

not easily converged so some mutation should be kept in the algorithm up

until the last generation, and that the population size and the number of

generations may need to be increased in future runs.

The results of these experiments have led to the implementation of the

remainder of the experiments on a population of 500 over 500 generations

with an Elite Count of 50, a Crossover Probability of 0.75 and a Shrink value

of 0.25. Although it was seen that a change in the Crossover Probability or

Shrink value did not have a significant effect on the results, these particu-

lar values did perform marginally better. The selection function was set to

Stochastic Uniform — the default setting in the Genetic Algorithm and Di-

rect Search Toolbox in Matlab. This method allocates a parent by moving in

equal steps along a line formed by the all potential parents. Each potential

parent occupies a length of this line proportional to its scaled fitness value.

The following sections detail the results of experiments using these parame-

ters on the complete (3006 samples with 95 features) data set with the fitness

functions derived earlier in the chapter.
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(a) Shrink=0 (b) Shrink=0.25

(c) Shrink=0.5 (d) Shrink=0.75

(e) Shrink=1

Figure 6.9: Average vs. Best fit over 100 generations for varying values of Shrink
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Figure 6.10: Best fit obtained using different values of Shrink, averaged over 10

sets

6.6 Fitness Methods

This section describes experiments with the various fitness functions devel-

oped earlier applied using eight dimensions. These experiments are carried

out using the entire data set split into 10 cross validation sets as described

in Section 6.2.1. A GA is computationally expensive to run — implementing

one full run on the full data set for an appropriate number of generations

is unfeasible. Instead the GA was implemented to evolve one genome for

each of the 10 sets, which could then be compared against each other. Using

the parameters described later in this section, each genome took approxi-

mately six hours to evolve in Matlab. These genomes were then multiplied

by the original data and used to train a Multi-Layered Perceptron (MLP).

The trained MLP was then tested using the smaller 65 note set described in

Section 6.4.1. The results in this section are given in terms of the genomes

evolved by the GA for each set and the classification accuracy of the MLP

when these genomes are used to modify the training and testing data.

As a benchmark for the following classification results, an MLP was

trained and tested with the original unaltered data to determine the accuracy

of the classifier. The network used here was trained using the backpropagation

algorithm with three layers of hidden neurons. As with previous experiments

in Chapter 5 it was implemented in Matlab. It was set up with a learning

rate of 0.1 and a momentum constant of 0.95. It was batch trained with a
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goal of 0.0001 to a maximum epochs of 500. The network was set up with 57

neurons in the first layer, with three hidden layers containing 28, 20 and 15

neurons respectively. The classification result of the unaltered data is given in

Table 6.8. It is evident from this table that the network does not recognise all

instruments equally well; the accuracy of recognition of the piano and violin

is much higher than that of the trumpet and guitar. This classification result

is compared to those obtained by training a network of the same structure

with data modified by the evolved genomes.

Table 6.8: Classification results from full unaltered data

Total Piano Violin Flute Trumpet Guitar
68.31% 90.77% 92.31% 56.15% 55.38% 46.92%

6.6.1 Euclidean Fitness

For a fitness based on the Euclidean method, the spread and separation were

measured as per Equations 6.1 and 6.2 above, except that they were now

calculated across eight dimensions instead of three. The fitness was then

calculated according to Equation 6.5 with an offset of
√

8 instead of
√

3

as there were eight dimensions. The GA was run on each of the 10 cross-

validation sets and a best genome (that with the lowest fitness value) was

noted for each set. Again, each gene in this genome represents the amount

(0 to 1) of the corresponding feature that will be included in the weighted

dataset for classification by the MLP. The GA was run on a population of

500 individuals, 50 of which were elite and passed on to the next generation.

As per the experiments in the preceding section the crossover fraction was

set to 0.75 and the shrink value was set to 0.25. The fitness limit was set to

zero and each experiment was run for 500 generations.

Genome Results

The GA resulted in an individual best genome for the 10 validation sets.

Ideally, each of these would be similar to one another — representing a con-

sistent choice of each of the individual timbral features. To determine how

consistent these results actually were, the diversity between these 10 genomes

was examined. The average of the genomes is shown in Figure 6.11, with the

standard deviation displayed in Figure 6.12.

130



Figure 6.11: Average of the 10 best genomes

Figure 6.12: Standard Deviation of the 10 best genomes

While the diversity in the averages of the genomes indicates that certain

features were included to a greater extent than others, the high standard

deviations indicate that these average results are not consistent across the 10

validation sets. For 61 of the 95 features, the standard deviation is above 0.3

indicating that the genome value for most of the features varies considerably

across the 10 sets. This does not indicate however if certain features were

consistently picked or dismissed in relation to other features. To investigate

this, we consider the features most frequently emphasised over the 10 runs.

Each genome was sorted into ascending and descending order. The first

10 genes of the descending genome correspond to the 10 features most em-

phasised for that validation set. Likewise, the first 10 genes of the ascending

genome correspond to the 10 features least emphasised or ignored for that

validation set. In some sets there were more than 10 values at zero; in these

instances all zero-value genes were considered. The common genes observed

in multiple genomes as the 10 strongest and weakest values were noted. Table
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6.9 displays the feature number and feature whose corresponding gene was

in the 10 strongest for four or more instances out of the possible 10 evolved

genomes. Table 6.10 displays a similar result for the weakest common genes

among the genomes. These tables show that the first principal component

of the the Centroid Envelope was the most often selected feature. Similarly,

the fourth principal component of a number of the higher MFCCs were of-

ten chosen. In contrast to this the first principal component of the Spectral

Envelope was the least chosen feature. These results are compared to those

obtained from the other fitness methods further on in the chapter.

Table 6.9: Strongest Features as chosen by the Euclidean fitness GA

Instances (/10) Feature No. Feature
8 20 Cent1
7 91 MFCC15-4
5 79 MFCC12-4
5 83 MFCC13-4
5 95 MFCC16-4
4 11 MIRSkew
4 63 MFCC8-4

Table 6.10: Weakest Features as chosen by the Euclidean fitness GA

Instances (/10) Feature No. Feature
7 28 Spec1
6 35 MFCC1-4
5 8 Onset Dist
5 14 No. Peaks
5 31 Spec4
4 18 Env3
4 26 Res3
4 27 Res4
4 40 MFCC3-1
4 46 MFCC4-3

Classification Results

The classification results are given in terms of the test accuracy of an MLP

trained on a given set of data. In each case the training set was comprised of

all 3006 samples and the test set consisted of the smaller 65 sample set. The

accuracy of the trained network was measured as the percentage of times the

network correctly identified the test samples. The GA evolved 10 different

132



genomes — one for each validation set —- which was multiplied by the data

prior to being input to the network. Every genome contains 95 genes, each

of which corresponds to a specific feature value. Each genome was multiplied

by the training data and the test data. The MLP was trained and tested 10

times using data calculated from each genome and the average of these 10 runs

was noted. The results of these training and testing runs are shown in Table

6.11. These results show that the multiplication by the evolved Euclidean

genome is beneficial to the system, with the average accuracy increasing from

68.1% to 70.74%, although the average identification accuracy still varies

widely between the instruments. The average classification accuracy also

varies widely between the different genomes: in this case Genome 2 performed

the worst at 63.23% whereas Genome 5 performed best at 80.15%. As we

have seen in the previous section, each evolved genome is different and hence

emphasises different features. This, combined with the ‘black box’ nature of

training MLPs, may explain the inconsistencies within the results.

Table 6.11: Average classification results for each Euclidean genome multiplied
by the full dataset

Genome Total Piano Violin Flute Trumpet Guitar
1 73.74% 97.69% 98.46% 59.23% 55.38% 54.62%
2 63.23% 94.62% 94.62% 76.15% 22.31% 28.46%
3 64.62% 95.38% 94.62% 53.08% 60.77% 19.23%
4 73.38% 93.08% 93.85% 76.15% 55.38% 48.46%
5 80.15% 96.92% 99.23% 85.38% 65.38% 53.85%
6 67.38% 99.23% 95.38% 49.23% 64.62% 28.46%
7 65.85% 92.31% 96.15% 57.69% 51.54% 31.54%
8 71.69% 93.08% 99.23% 71.54% 56.15% 38.46%
9 71.08% 90.77% 97.69% 66.15% 43.85% 56.92%
10 76.92% 90.77% 91.54% 80% 61.54% 60.77%

Avr 70.74% 94.39% 96.08% 67.46% 53.69% 42.08%

The aim of evolving these genomes was not only an attempt to increase the

accuracy of the MLP, but also to determine if certain features were superfluous

to such a system and could be removed from the data set while maintaining

the same level of identification accuracy. In determining this, the experiment

was repeated with reduced sets of data according to a cut-off threshold value

in the genomes. The network was trained and tested only using feature values

whose corresponding gene had a value of 0.3 or higher. This was repeated

for values higher than 0.7, 0.85 and 0.95. A summary of the average results

obtained across all 10 genomes is shown in Table 6.12. These results indicate

that the accuracy of the classifier reduces as the number of features included
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is reduced. The increase in the genomes cut-off value resulted in a much

smaller data set being used to train and test the MLP. Table 6.13 shows the

number of genes within each genome that are above each cut-off value. This

indicates that any cut-off significantly reduces the amount of data used with

the network. The reduction of classification accuracy for the cut-off equal to

0.3 is understandable considering the number of features used was reduced to

as low as 40 — in the case of Genome 9. Further reductions in the number of

features used (by increasing the cut-off value) led to a corresponding decrease

in classification accuracy. Thus we may say that in this case, the network is

not improved with a reduction in features. In the remainder of this section

we examine further classification results for the alternative fitness functions

developed earlier.

Table 6.12: Classification results from Euclid weighting all data with correspond-
ing gene values greater than 0.3, 0.7, 0.85 and 0.95

Gene Total Piano Violin Flute Trumpet Guitar
>0.3 59.85% 80.23% 91.69% 51% 43.15% 33.15%
>0.7 50.4% 70.62% 75.54% 44.77% 37.54% 23.54%
>0.85 46.48% 61.08% 79.46% 37.31% 29.54% 25%
>0.95 42.8% 46.62% 69.69% 37.92% 34.62% 25.15%

Table 6.13: Number of genes within each Euclidean genome that are above 0.3,
0.7, 0.85 and 0.95

Gene 1 2 3 4 5 6 7 8 9 10
>0.3 50 45 48 56 51 49 61 55 40 52
>0.7 22 28 30 33 36 29 39 30 25 28
>0.85 19 22 25 25 30 23 32 23 19 23
>0.95 10 16 18 15 21 15 20 13 12 18

6.6.2 Dimensional Fitness

The Dimensional fitness was calculated as in Section 6.4.3, from the relation-

ship between the dimensional spread and separation of the clusters formed by

the PCA. The Dimensional spread and separation were calculated according

the Equations 6.6 and 6.7 respectively. As above with the Euclidean fitness,

the Dimensional fitness was then calculated according to Equation 6.5 with

an offset of
√

8 instead of
√

3. The GA was again run on all 10 cross validation

sets with the same parameters used for the Euclidean fitness above.
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Genome Results

An examination of the average and standard deviation of the 10 evolved

genomes yielded plots similar to those for the Euclidean fitness in Figures

6.11 and 6.12 indicating that again the evolved genomes are different from

one another. The strongest features most often chosen by the genomes are

shown in Table 6.14. From this it is evident that the fourth principal compo-

nent of the twelfth MFCC is the most often chosen strong feature and again,

as with the Euclidean fitness, the fourth principal components of the high

MFCCs were strong in general. Similarly, the first component of the Cen-

troid Envelope (the strongest feature chosen by the Euclidean fitness) again

featured highly with this Dimensional fitness. The weakest features chosen

by all the genomes is shown in Table 6.15. Several of the lower MFCC values

are among the lowest chosen features, as are two of the Spectral Envelope

values — similar to the previous Euclidean result.

Table 6.14: Strongest Features as chosen by the Dimensional fitness GA

Instances (/10) Feature No. Feature
8 79 MFCC12-4
7 43 MFCC3-4
5 20 Cent1
4 24 Res1
4 75 MFCC11-4
4 83 MFCC13-4
4 91 MFCC15-4

Table 6.15: Weakest Features as chosen by the dimensional fitness GA

Instances (/10) Feature No. Feature
6 34 MFCC1-3
5 7 No. Onsets
5 28 Spec1
5 30 Spec3
5 36 MFCC2-1
5 44 MFCC4-1
4 6 First Att Slope
4 40 MFCC3-1
4 51 MFCC5-4
4 73 MFCC11-2
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Classification Results

The classification results for the MLP trained and tested by data multiplied

by the genomes evolved using the Dimensional fitness function are shown in

Table 6.16. These results display a slight reduction in classification accu-

racy in comparison to the Euclidean fitness, although the results are similar.

The classification of the data multiplied by the amended genomes (reduced

according to the cut-off values) is shown in Table 6.17. Again this shows a

reduction in accuracy as more features are removed according to the cut-off

threshold.

Table 6.16: Classification results from multiplying data by evolved Dimensional
genomes

Genome Total Piano Violin Flute Trumpet Guitar
1 67.69% 93.85% 96.15% 33.08% 53.08% 62.31%
2 67.23% 81.54% 92.31% 46.15% 58.46% 57.69%
3 72.46% 82.31% 92.31% 60% 66.15% 61.54%
4 74.92% 98.46% 95.38% 67.69% 60% 53.08%
5 71.69% 96.15% 95.38% 40.77% 61.54% 64.62%
6 68.46% 93.85% 99.23% 72.31% 66.92% 10%
7 51.85% 71.54% 96.92% 54.62% 23.85% 12.31%
8 78.46% 93.08% 98.46% 88.46% 70% 42.31%
9 62.92% 94.62% 93.08% 60.77% 53.08% 13.08%
10 59.23% 88.46% 90% 23.85% 65.38% 28.46%

Avr 67.49% 89.39% 94.92% 54.77% 57.85% 40.54%

Table 6.17: Classification results from Dimensional weighting all data with cor-
responding gene values greater than cut-off thresholds of 0.3, 0.7, 0.85 and 0.95

Gt Total Piano Violin Flute Trumpet Guitar
>0.3 58.89% 82.85% 85.08% 57.62% 36.85% 32.08%
>0.7 55.62% 72.23% 75.92% 49.92% 48.54% 31.46%
>0.85 52.4% 67.69% 73.46% 50% 44.31% 26.54%
>0.95 43.23% 52.85% 60.31% 44.08% 41.15% 17.77%

6.6.3 Euclidean-Dimensional Fitness

Finally these experiments were repeated using the combination Euclidean-

Dimensional fitness measure. As described earlier, this method uses the

spread value calculated according to the Euclidean fitness as in Equation 6.1

and the separation value according to the Distance fitness measure in Equa-

tion 6.7. The Euclidean-Dimensional fitness was then calculated according
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to Equation 6.5 as before. The GA was again run to evolve 10 genomes, one

from each of the cross validation sets with the same parameters used above.

Genome Results

As with the previous fitness methods, the genomes were found to be different

from one another. The strongest and weakest features chosen across all the

genomes are shown in Table 6.18 and Table 6.19. The Centroid Envelope and

the fourth principal components of the higher valued MFCCs feature strongly

again in agreement with the genomes from the previous fitness methods. The

Spectral Envelope and certain low value MFCCs are included in the weaker

features, although this is not as prominent as it was with the other fitness

methods, with the Number of Spectral Peaks emerging as the weakest feature

overall.

Table 6.18: Strongest Features as chosen by the Euclidean-Dimensional fitness
GA

Instances (/10) Feature No. Feature
8 20 Cent1
8 83 MFCC13-4
6 21 Cent2
6 95 MFCC16-4
5 75 MFCC11-4
5 91 MFCC15-4
4 13 Inharmonicity
4 18 Env3
4 43 MFCC3-4

Table 6.19: Weakest Features as chosen by the Euclidean-Dimensional fitness GA

Instances (/10) Feature No. Feature

6 14 No. Peaks

5 32 MFCC1-1

4 3 Brightness

4 6 First Att Slope

4 27 Res4

4 28 Spec1

4 29 Spec2

4 48 MFCC5-1
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Classification Results

The classification results for an MLP trained and tested with data multiplied

by the genomes evolved using the Euclid-Dimensional fitness function are

shown in Table 6.20. These results are comparable to that of the Euclidean

fitness measure: they show a slight improvement on the classification of the

original data, but there is still a large variation between the instruments.

The classification results obtained when the data set was reduced according

to the cut-off threshold on the genomes is given in Table 6.21. Although

the reduction in data does again lead to a decrease in classification accuracy,

this fitness method does appear to be somewhat more resilient to this data

reduction than the other fitness methods. The classification accuracy remains

up above 60% until the cut-off threshold is increased above 0.7. As noted in

Table 6.22, this cut-off value can correspond to less than 30 features being

input to the system — a significant decrease from the original 95.

Table 6.20: Classification results from Euclid-Dimensional weighting all data with

corresponding gene values

Genome Total Piano Violin Flute Trumpet Guitar

1 70.77% 95.38% 98.46% 72.31% 40.77% 46.92%

2 75.54% 97.69% 99.23% 61.54% 50% 69.23%

3 70.77% 88.46% 99.23% 63.85% 46.92% 55.38%

4 66.15% 95.38% 93.08% 60.77% 39.23% 42.31%

5 65.08% 93.08% 97.69% 59.23% 65.38% 10%

6 69.85% 87.69% 99.23% 79.23% 41.54% 41.54%

7 75.69% 85.38% 91.54% 63.08% 68.46% 70%

8 68.92% 89.23% 99.23% 46.92% 58.46% 50.77%

9 61.54% 93.85% 97.69% 44.62% 61.54% 10%

10 71.38% 93.08% 100% 84.62% 45.38% 33.85%

Avr 69.57% 91.92% 97.54% 63.62% 51.77% 43%
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Table 6.21: Classification results from Euclidean-Dimensional weighting all data

with corresponding gene values greater than thresholds

Genome Total Piano Violin Flute Trumpet Guitar

>0.3 63.82% 84.92% 96.46% 56.31% 48.69% 32.69%

>0.7 61.43% 73.77% 90.62% 41.77% 59.69% 41.31%

>0.85 54.45% 63% 85.38% 45.62% 50.85% 27.39%

>0.95 43.93% 50% 71.15% 38.77% 40.31% 19.39%

Table 6.22: Number of Dimensional-Euclidean genes within each genome that are

above 0.3, 0.7, 0.85 and 0.95

Gene 1 2 3 4 5 6 7 8 9 10

>0.3 52 48 54 48 54 61 59 51 56 56

>0.7 31 33 35 28 32 31 23 30 32 36

>0.85 25 28 27 22 25 21 16 24 23 23

>0.95 12 15 12 15 18 11 9 21 13 14

6.6.4 Combining Classification Results

The above training and testing runs were simulated with each individual

genome and the average of the results were given. In this section the experi-

ment was run again, but in this case classification of a sample was calculated

according to the majority of classifications by the genomes. Each genome

gives a classification of a particular sample. These classification were com-

bined in a type of voting system, whereby the instrument picked by the

majority of the genomes was considered to be the correct classification. The

results are shown in Table 6.23. Clearly this shows a marked decrease in the

accuracy of recognition of the instruments, particularly for the trumpet and

guitar. The violin, on the other hand, was correctly classified 100% of the

time. On closer inspection of the results it was found that the trumpet was

most often mistaken for a violin and the guitar was misclassified as a piano or

violin. As these two instrument choices dominated the results, combining the

classifications in this manner caused the individual correct choices of trumpet

and guitar to be ignored. Hence, combining the results in this manner was

not found to be useful.
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Table 6.23: Classification results from combining the classification results of each

genome

Total Piano Violin Flute Trumpet Guitar

57.08% 94.62% 100% 66.15% 8.46% 16.15%

6.6.5 Discussion of 8-Dimensional results

The results obtained in this section on 8-dimensional fitness methods offer a

number of insights into the methods and the features used in this experiment.

From the classification accuracy of each of the fitness methods, it is clear that

there is not a significant difference between them. Overall, when the full data

set is multiplied by the evolved genomes, those evolved using the Euclidean

and Euclidean-Dimensional fitness methods perform slightly better than the

Dimensional method. It was proposed at the beginning of these experiments

that a number of the data features were superfluous to the study, and as

such the system may perform better if these ‘weaker’ features were removed.

We have seen from the results above that this is not necessarily so, as the

accuracy of the MLP tended to decrease with the removal of the less important

features. As noted above however, the Euclidean-Dimensional fitness method

performed better than the other methods when features were removed. On

average, across all the instruments, the accuracy of the classifier remained as

high as 61.43% when the cut-off was reduced to 0.7. At this cut-off value, the

number of features used ranged between 23 and 36, a significant reduction on

the original 95. Using this method, similar results to this were presented in

(Loughran et al., 2009). This Euclidean-Dimensional method was chosen as

the fitness measure for further GA experiments.

As noted above, in each of the three methods, the 10 evolved genomes were

different from one another. Unfortunately this implies that each genome has

found a local minimum in the search space rather than the global minimum.

It is in the nature of GAs to find an acceptable solution to the given problem

and it may not necessarily be able to find the global solution i.e. one specific

weighting for all 95 features that consistently gives the best classification

results. Each of the 10 evolved genomes has its own strong and weak points.

We must point out here, that the results above are all averaged over a number

of runs. The sets of classification results are averaged over 10 MLP training

and testing runs. Further to this, the classification results given using the cut-

off threshold were averaged over each of the 10 genomes. The genomes did
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not perform equally well however — certain genomes performed quite strongly

even when the amount of data used was significantly reduced. For example,

using the Euclidean-Dimensional methods with a cut-off of 0.95, genome 10

produces an average accuracy rate of 73.54% across all instruments, even

though this cut-off value results in just 14 feature values being used. In

comparison to this, genome 7 with the same method and cut-off value only

produces an average classification accuracy of 22%.

These average accuracy values do not indicate the differences in classi-

fication accuracy between the instruments. It can be seen from the results

above that the piano and violin are much more successfully recognised than

the flute, trumpet and guitar. The guitar in particular appears to be very

difficult for the MLP to classify correctly. This difficulty in classifying a spe-

cific instrument was found to be exaggerated by combining the results from

the individual genomes in Section 6.6.4.

The three methods above were examined not just for their success at clas-

sifying samples, but also in the strongest and weakest features chosen by the

GA for each method. Even though as noted above, each of the genomes

were different, there were still some common features that appeared regularly

as particularly ‘strong’ or ‘weak’. Although there were some changes in the

strongest features chosen, it must be noted that the Centroid Envelope — in

particular its first principal component, and the fourth principal component

of several of the higher MFCCs were among the strongest picked features

for each of the three measures. This agrees with previous work, both in the

current thesis (as in Chapter 5) and work done by other researchers who have

found the centroid to be one of the most important features in music recogni-

tion. It is of particular interest that it is values from the Centroid Envelope

rather than the static Centroid that have emerged as the more prominent

feature. The Centroid is recognised to be important, but these results indi-

cate that it may be the changes in the Centroid throughout the duration of

a note that is more useful. The strong presence of the higher MFCCs is also

an interesting finding. MFCCs have been regularly used in speech analysis,

whereby the standard number to use is 12 (O’Shaughnessy, 1987). Experi-

ments in Chapter 5 found that using up to 16 MFCCs was of benefit to a

system such as this for instrument recognition. The strong placement of the

higher MFCCs here reinforces that finding. It is unclear, however, why the

fourth principal component of these are most often chosen. As stated before,

PCA transforms the data, so it is not clear as to what physical or spectral at-

tribute (if any) the resulting principal components represent. Although there
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are a few repetitions among the weakest features — the Spectral Envelope

for example, in general these are not as pronounced as the strongest features.

It is clear however that those features that are strongest according to one

method do not appear among the weakest by another method and vice-versa.

This consistency among the different (albeit similar) fitness function calcula-

tion methods in the choosing of specific features is encouraging for this type

of experiment: even though the genomes may be different, they share com-

mon strengths that may offer some insight into the problem they address —

in this case the problem of timbre description.

All of the fitness functions implemented here only used 8 dimensions from

the PCA of the data in forming and analysing the clusters. This only ac-

counts for approximately 60% of the variance of the original data. With such

a significant amount of the variance of the data unaccounted for, it is unlikely

that a global best solution may be found. If, however, the number of dimen-

sions were increased to 40, the variance explained by the PCA would comprise

98% of the original data. The following section examines the implementation

of the Euclidean-Dimensional fitness method calculated from 40 dimensional

clusters.

6.7 40 Dimension Experiments

The above experiments were repeated on a larger scale by including 40 dimen-

sions in the fitness function, using only the Euclidean-Dimensional method

of calculation. The GA was again run on a population of 500 with an elite

count of 50. The crossover value was set to 0.75 and the shrink value was set

to 0.25. These experiments were run for 1000 generations. With these pa-

rameters, the GA took approximately 12 hours to evolve each genome. The

MLP used in the classification experiments had the same architecture and

parameters as those described above.

6.7.1 Genomes Evolved

By increasing the computational dimensions to 40 it was hoped to evolve

genomes that were more consistent than those evolved over 8 dimensions. A

plot of the average genome values and standard deviations of the genome

values is shown in Figure 6.13 and Figure 6.14. These plots indicate that

the newly evolved genomes are not significantly more consistent than those

evolved before. In particular, the plot of the standard deviation is high for
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most values, with almost all features having a value greater than 0.2. This

high standard deviation indicates that increasing the search dimensions to 40

does not result in the same features being chosen consistently by each genome.

The average of these genomes in Figure 6.13 appears to have fewer distinct

high values in comparison to the average of the 8-dimensional genomes dis-

played in Figure 6.11. Likewise the standard deviation of the 40-dimensional

genomes appears to be more consistently high than that of the 8-dimensional

genomes in Figure 6.12. This implies that the 40-dimensional genomes are

actually more diverse than those evolved using the 8-dimensional fitness func-

tion. This means that running the GA for more generations (1000 as opposed

to 500) and using more dimensions in the fitness function over-fits the data

and did not ensure a more consistent genome was evolved.

Figure 6.13: Average of the 10 Genomes evolved using 40 dimensional fitness

Figure 6.14: Standard Deviation of the 10 Genomes evolved using 40 dimensional
fitness
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Most Common Features

To determine the most commonly chosen features, we again look at those that

are most often one of the strongest 10 features in each evolved genome. The

strongest 10 and weakest 10 features are shown in Table 6.24 and Table 6.25.

The number of instances of these features is again indicative of less consistent

genomes: whereas in the 8-dimensional results, the most common features

were present in 6, 7 or 8 of the genomes, here the most common features

only appear 4 times. Furthermore, only three features were chosen as one of

the 10 strongest four or more times, and only one feature was among the 10

weakest four or more times. The strongest features selected do, however, agree

with the results from the earlier experiments. The first and second principal

components of the Centroid Envelope and the fourth component of a high

MFCC were the strongest features selected; the same features were included in

the strongest 8-dimensional genomes. The weakest features selected however

was the first principal component of the Temporal Envelope which was not

among the weakest features chosen by the 8-dimensional genomes

Table 6.24: Strongest Features as chosen by the 40 Dimensional Euclidean-
Dimensional fitness GA

Instances (/10) Feature No. Feature
4 20 Cent1
4 21 Cent2
4 87 MFCC14-4
3 10 MIRSpread
3 13 Inharmonicity
3 44 MFCC4-11
3 64 MFCC9-1
3 66 MFCC9-3
3 67 MFCC9-4
3 86 MFCC14-3
3 93 MFCC16-2
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Table 6.25: Weakest Features as chosen by the 40 Dimensional Euclidean-

Dimensional fitness GA

Instances (/10) Feature No. Feature

4 16 Env1

3 22 Cent3

3 30 Spec3

3 39 MFCC2-4

3 40 MFCC3-1

3 45 MFCC4-2

3 47 MFCC4-4

3 50 MFCC5-3

3 53 MFCC6-2

3 59 MFCC7-4

3 78 MFCC12-3

3 83 MFCC13-4

3 92 MFCC16-1

The above measure of which are the ‘strongest’ chosen features is some-

what ambiguous. There may be more than 10 strong features within any

one genome — certain genomes have more strong genes than others. As an

illustration, Figure 6.15 displays Genome 10. Evidently, there are more than

10 strong values within this one genome. Many of these values are above 0.9

and thus play a strong role within this genome. Hence it may be more infor-

mative to look at the strongest range of values within the genomes and note

which occur most frequently. Table 6.26 displays the most common strong

features, whereby a strong feature is defined as one with a corresponding gene

greater than 0.95. Table 6.27 display a similar result for the weakest features

with value less than 0.1. By comparing the results in these tables to those

of the strongest and weakest features in Tables 6.24 and 6.25, it is clear that

there is a strong similarity between them. The same features have emerged

using both criteria as either strong or weak, but there is some change in the

order of which are deemed the strongest or weakest. For example, in the

second approach which considers all features above 0.95 to be strong, the

third component of MFCC14 is the strongest feature, appearing five times.

There are only three instances of this being the strongest feature in Table

6.24 whereby only the strongest 10 features in each genomes were considered

‘strong’. Likewise Table 6.27 below displays that the second component of

MFCC6 is considered weak in 9 of the 10 genomes when weak means less
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than 0.1, but it only appears as one of the weakest features in Table 6.25 3

times. Further to this, of the 8 weakest features chosen using the less than

0.1 criterion, only 4 of these were considered weak using the weakest 10 crite-

rion. Thus, although certain features are common regardless of the selection

criterion used, what defines certain particularly strong or weak features may

be dependent on the way in which the genomes are examined.

Figure 6.15: Genome 10, evolved using 40-dimensional fitness function

Table 6.26: Strongest (> 0.95) Features as chosen by the 40 Dimensional
Euclidean-Dimensional fitness GA

Instances (/10) Feature No. Feature
5 86 MFCC14-3
4 13 Inharmonicity
4 20 Cent1
4 21 Cent2
4 87 MFCC14-4
3 10 MIRSpread
3 24 Res1
3 44 MFCC4-1
3 60 MFCC8-1
3 64 MFCC9-1
3 66 MFCC9-3
3 76 MFCC12-1
3 93 MFCC16-2

146



Table 6.27: Weakest (< 0.1) Features as chosen by the 40 Dimensional Euclidean-

Dimensional fitness GA

Instances (/10) Feature No. Feature

9 53 MFCC6-2

8 30 Spec3

6 3 Brightness

6 16 Env1

6 17 Env2

6 31 Spec4

6 17 MFCC5-3

6 31 MFCC13-2

6.7.2 Analysis of Genomes per Set

The lack of consistency among the strong features within the genomes may

indicate that over-fitting has occurred; as the GA has been run for a longer

number of generations, it may have evolved genomes that are specific to the

given cross validation data set and not general to the full set. Throughout

this chapter four genomes have been evolved for each validation set: one with

each of the three 8-dimensional fitness methods and a further one with the

40-dimensional methods. If the genomes are being evolved according to the

specific set (i.e. being over-fit to an individual set rather than representing

the more general full data-set), there should be similarities between the four

evolved genomes for each set. This is tested by examining the strongest

10 features of each of the four evolved genomes for one specific set — Set

5. The results of this are shown in Table 6.28. It is evident from this set

that although there are a few common features — Cent1, Inharmonicity and

MFCC13-4 appear in three of the genomes — there is not one single feature

that is present in all four of the genomes. If over-fitting to Set 5 had occurred,

we would expect to see a much similar set of features emerging for each of

the methods used to evolve a genome for this set. The strongest 10 features

for each of the four fitness methods listed in Table 6.28 show that this is not

the case. Similar results were found for the other genomes, indicating that

the genomes are not over-fitted to their specific validation sets.

Although no strong common features were found among the genomes, the

genomes were again tested as an aid to classification with the MLP.
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Table 6.28: Strongest 10 features in the genomes evolved using each of the fitness
methods on Set 5

Euclidean Dimensional Euclidean-Dim 40 Dim Euclid-Dim
First Att Time Res1 Kurtosis Brightness

Skew MFCC12-1 Inharmonicity Inharmonicity
Kurtosis MFCC12-4 Cent1 MFCC9-3

Inharmonicity MFCC13-4 MFCC11-4 MFCC12-1
Cent1 MFCC16-2 MFCC12-3 MFCC15-1

MFCC2-3 MFCC16-3 MFCC14-2 Spread
MFCC10-2 Cent1 MFCC15-4 MFCC11-2
MFCC12-4 MFCC5-1 MFCC13-4 MFCC14-1
MFCC13-3 MFCC12-3 MFCC1-2 MFCC15-2
MFCC13-4 First Att Slope MFCC2-4 Cent2

6.7.3 Classification One Octave Test Set

The MLP was trained on the full 3006 samples and tested on the smaller

set of 65 samples as before. The classification results of the training and

test data multiplied by each of the genomes is shown in Table 6.29. This

shows the average results of 10 training and testing runs for each genome.

The overall accuracy does not show a marked improvement on the accuracy

obtained from the genomes evolved using the 8-dimensional fitness method.

Again it can be noted from this table that the classification accuracy between

the instruments varied greatly: the piano and violin were again recognised

much more often than the guitar. The average classification results across

all genomes, when the number of features used was decreased according to

the gene threshold cut-off value, is shown in Table 6.30. Again this shows a

marked decrease in the accuracy of the system as the number of features used

is decreased.

The one-octave data set used here and in earlier experiments, is very

limited in its representation of the samples database. A common pitch range

of C4-C5 played at dynamic level f is all that is included. In contrast, the

training samples include samples covering the entire natural pitch range of

each instrument — up to eight octaves in the case of the piano. In addition to

this, the training samples are played at three dynamic levels, both with and

without vibrato. The dynamic of a note can have a very strong effect on the

perception of that note. It was noted in Chapter 3, that the strong attack of

a struck instrument is very pronounced in the Temporal Envelope, but that

this attack may be less pronounced if the same note is played more softly.

This could lead to ambiguities between struck and plucked instruments, such
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Table 6.29: Classification results from 40-dimensional fitness method, tested on
the one-octave sample set, weighting all data with corresponding gene values

Genome Total Piano Violin Flute Trumpet Guitar
1 63.69% 90.77% 93.08% 42.31% 57.69% 34.62%
2 62.62% 100% 92.31% 70.77% 30.77% 19.23%
3 74% 90.77% 90% 78.46% 56.92% 53.85%
4 57.38% 90.77% 90.77% 66.15% 34.62% 4.62%
5 79.85% 83.03% 98.46% 86.92% 64.62% 66.15%
6 74.46 % 84.62% 97.69% 85.38% 40.77% 63.85%
7 68.92% 100% 88.46% 83.85% 43.08% 29.23%
8 71.23% 98.46% 100% 73.08% 45.38% 39.23%
9 66.31 % 98.46% 94.62% 81.54% 35.38% 21.54%
10 77.08% 93.08% 93.85% 63.08% 71.54% 63.85%

Avr 69.55% 93% 93.92% 73.15% 48.08% 39.62%

Table 6.30: Classification results from 40-dimensional fitness method, weighting
all data with corresponding gene values greater than thresholds

Genome Total Piano Violin Flute Trumpet Guitar
>0.3 55.11% 75.31% 81.46% 56.31% 37.15% 25.31%
>0.7 50.02% 61.31% 73.85% 55.46% 32.77% 26.69%
>0.85 44.34% 58% 65.92% 52.38% 27.23% 18.16%
>0.95 44.18% 53.92% 61.54% 56.08% 25.69% 23.7%
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as in the piano and guitar above. For example, if the training data contained

many loud piano samples and soft guitar samples, it may end up associating

the strong attack of a loud guitar test sample with a piano. This may lead to

the network being capable of recognising piano sounds while not being able

to determine guitar samples, such as for example the results of Genome 4 in

Table 6.29. A bias in the testing samples, such as this, may cause inaccurate

or misleading test results. To prevent this, the network was trained and

tested again using nine of the cross-validation sets to train the network and

the remaining set to test it. This resulted in 2706 training samples and 300

test samples 4.

6.7.4 Cross-Validation Test Sets

Using one of the cross-validation sets as a test set increases the number of

samples being used to test the network, from 65 to 300, resulting in more

reliable analysis of the test samples. In addition to this, each cross-validation

test set contains a better representation of the entire samples database than

the single octave set. As the sets are iteratively filled with every tenth con-

secutive sample, each set contains an even distribution of samples in regard

to pitch and dynamic. The MLP was trained using the data from Sets 1-9

and tested with Set 10. The classification accuracy of the MLP trained and

tested on this data unaltered by the genomes is given in Table 6.31. These

results are averaged over 10 training and testing runs. It is evident from these

results that there is a sharp increase in the accuracy of the network when us-

ing this data as opposed to the one octave test data. The instruments are all

equally well recognised — each at almost 100% accuracy. This is surprising

given the low accuracy of recognition using the one octave set. To confirm

this result, the network was trained again with the data from Sets 2-10 and

trained with the data from Set 1, again unaltered by the genomes. The re-

sults of the average of 10 training and testing runs using this data is given

in Table 6.32. Although slightly lower than those results found using test

Set 10, these results are still significantly higher than those obtained using

the one octave test set. The drop in accuracy of recognition of the trumpet

samples may be explained if we are reminded that there are extra trumpet

samples in Set 1 — the extra 6 samples added into this set were high pitched

trumpet samples. These results indicate that the choice of test samples is

evidently very important in testing the accuracy of such classifiers.

4unless Set 1 is the test set in which case there were 2700 training samples and 306
test samples
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Table 6.31: Classification accuracy of network trained on Sets 1-9 and tested on
Set 10 with original data unaltered by the genomes

Total Piano Violin Flute Trumpet Guitar
99.63% 100% 98.76% 100% 100% 99.85%

Table 6.32: Classification accuracy of network trained on Sets 2-10 and tested on
Set 1 with original data unaltered by the genomes

Total Piano Violin Flute Trumpet Guitar
95.59% 97.7% 98.65% 93.95% 86.88% 96.62%

The data was then modified using the evolved genomes, to determine

if features can be removed while maintaining the accuracy of the classifier.

As the results in Table 6.31 were so accurate, the MLP was again trained

using Sets 1-9 and tested using Set 10, but this time with the data modified

by the genomes. As before, the data was reduced according to a number

of different cut-off values for the individual genes within the genome. The

results in Table 6.33 display the accuracy of the network when trained on the

full modified data, features with non-zero corresponding genes, and features

with corresponding gene values that are > 0.3, > 0.7, > 0.85, > 0.95, > 0.99.

In this case we could not expect the classification accuracy of the MLP to be

improved by modifying the data by the genomes, but it is interesting to note

that the accuracy is not decreased as noticeably as before with the removal

of features using Set 10 as the test set. The average classification accuracy

across all five instruments is maintained above 99% until the cut-off is raised

to 0.85. To illustrate the reduction in data when the cut-off thresholds are

used, Table 6.34 displays the number of genes within each genome that are

above each cut-off value. These show that a cut-off value of 0.7 may mean

that as few as 22 instead of the original 95 features would be used. This is

a large decrease in data for a very small corresponding average decrease in

classification accuracy. This high level of accuracy with a similar decrease in

recognition with increase in cut-off was also seen in experiments using Set 1

and Set 5 as the (unseen) test set.
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Table 6.33: Classification results testing with Set 10, weighting all data with
corresponding gene values greater than thresholds

Genome Total Piano Violin Flute Trumpet Guitar
All 99.63% 100% 98.76% 99.83% 100% 99.93%
>0 99.63% 99.97% 97.75% 99.9% 100% 99.97%
>0.3 99.57% 99.9% 98.72% 99.61% 100% 100%
>0.7 99.34% 99.79% 98.47% 99.06% 99.69% 99.93%
>0.85 98.96% 99.22% 98.2% 98.53% 99.26% 99.76%
>0.95 96.69% 96.39% 96.87% 96.43% 96.97% 96.77%
>0.99 89.79% 90.43% 92.12% 83.84% 88.49% 91.42%

Table 6.34: Number of 40-dimensional genes within each genome that are above

the cut-off thresholds of 0, 0.3, 0.7, 0.85, 0.95 and 0.99

Genome 1 2 3 4 5 6 7 8 9 10

>0 93 85 93 86 89 92 85 89 90 92

>0.3 38 35 41 40 39 54 34 42 43 44

>0.7 25 22 29 25 22 30 23 22 24 30

>0.85 20 13 20 17 18 22 20 16 18 24

>0.95 11 9 8 14 12 15 10 11 9 19

>0.99 4 6 7 8 5 7 7 7 7 6

As before, these results were all averaged over the 10 genomes, each of

which was run 10 times. For a closer inspection of one of these results, Ta-

ble 6.35 displays the average results of each of the 10 evolved genomes with

the cut-off threshold value equal to 0.95. It is clear from this table that the

classification accuracy varies more between the genomes than between the

instruments. Genome 3 results in the lowest overall classification, whereas

Genome 9 results in the best classification of all 10 genomes. From Table

6.34 it may be seen that Genome 3 is the smallest genome at this value of

cut-off, with the data from only eight features used to train and test the net-

work. Although this implies that fewer features result in lower classification

accuracy, it may also be noted that Genome 9 contains data from only nine

features and yet this gives the best classification at this cut-off threshold. The

eight features used by Genome 3 consist of:

• No Onsets, Res4, MFCC4-1, MFCC9-2, MFCC10-4, MFCC11-3, MFCC14-

4 and MFCC16-2

whereas the nine features used by Genome 9 consist of:
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• ZeroCross, Rolloff, MIRSkew, Cent2, MFCC1-2, MFCC4-1, MFCC5-1,

MFCC11-1 and MFCC12-1

Clearly, there is no overlap between these features: each selection contains

a mixture of temporal, spectral and MFCC features. This illustrates that

the GA does not select the same set of features or even a common subset of

features each time. This agrees with the genome results above, where it was

found that many common strong features were not found among the genomes.

Table 6.35: Classification results tested with Set 10 with the cut-off threshold set
to 0.95

Genome Total Piano Violin Flute Trumpet Guitar
1 97.57% 99.18% 96.30% 96.73% 97.96% 98.14%
2 94.80% 97.87% 96.91% 92.24% 85.64% 96.57%
3 87.43% 82.95% 93.95% 88.57% 97.18% 77.57%
4 98.97% 98.85% 97.65% 99.39% 100% 99.71%
5 98.63% 98.69% 97.41% 98.78% 98.46% 100%
6 97.93% 98.89% 96.30% 98.78% 99.74% 99.14%
7 97.30% 95.57% 97.78% 97.55% 97.18% 98.14%
8 95.90% 94.26% 95.80% 95.31% 94.36% 98.71%
9 99.23% 99.84% 98.15% 98.98% 100% 99.71%
10 99.13% 99.84% 98.40% 97.96% 99.49% 100%

Avr 96.69% 96.39% 96.87% 96.43% 96.97% 96.77%

Although a high number of common features were not strong among all

the genomes, a number of them were found to occur more often than others

as depicted in Table 6.26. This table lists 13 features, each of which had a

corresponding gene value greater than 0.95 in three or more of the genomes.

Thus this may be considered as the ‘optimal’ selection by the GA. To investi-

gate this, the MLP was again trained with 9 sets and tested with Set 10, this

time with just the data from the features listed in Table 6.26. The average

results are shown in Table 6.36. Although these results are high, they do

show a reduction in average accuracy compared to the results obtained using

more features. The recognition results for the guitar and piano however were

particularly high, but a lower recognition rate for the flute and to a lesser ex-

tent the violin and trumpet meant that the average result was quite low. The

average recognition rate did not vary much between the different genomes,

ranging from 98.03% for Genome 1 to 99.23% for Genome 10. Hence, choos-

ing the most common strong features within the genomes alone is not enough

to maintain the accuracy of the full data set.
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Table 6.36: Classification results tested with Set 10 with data from the top 13
common features

Total Piano Violin Flute Trumpet Guitar
98.80% 99.12% 98.63% 97.18% 98.97% 99.76%

6.7.5 Discussion of 40 Dimensional Results

It was hoped that increasing the number of dimensions used to calculate the

fitness from 8 to 40 would create more stable genomes. It was already noted

that the first 40 principal components of the original data contain 98% of

the variance of the data, thus these 40 dimensions may be used to accurately

represent the data. Based on this it was anticipated that using a fitness

function that incorporated these 40 dimensions would yield more consistent

genomes. It is evident from a comparison of the 40 dimensional genomes to

the 8 dimensional genomes, that this was not the case. The 40 dimensional

evolved genomes appear to be more diverse than those evolved using only

8 dimensions, with fewer strong common features emerging among the 10

genomes. With the Euclidean-Dimensional fitness method over 8 dimensions,

nine strong features were found among four or more of the genomes with

the two strongest features occurring in eight genomes. By comparison, using

the same top ten method, only 3 of the features were found among the 40

dimensional genomes 4 or more times. This is not necessarily detrimental to

the system however. Each genome was evolved using a different sample set.

The 40 dimensional genomes were evolved using more data over twice the

number of generations than the 8 dimensional genomes. Thus it is possible

that the 40 dimensional genomes are merely more highly evolved: that they

have been given the opportunity to traverse the search space and evolve a

solution that is specific to the current sample set. Such an idea would indicate

that there may be no one particular set of features that is commonly best used

for classifying any group of samples or instruments — that each classification

problem may be unique.

It was seen that in using the one-octave test set, the use of the genomes

evolved over 40 dimensions does not significantly improve the classification

results with the MLP. Most notably though, it was found that increasing

the test set to include a larger group of samples more representative of the

whole data set produced much more accurate results. This emphasises the

importance of using an appropriate set of test samples when conducting such

classification experiments. Using one of the cross-validation sets as a test set
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resulted in equally high classification results across all five instruments. The

accuracy of classification varied somewhat between genomes — particularly

as the weaker features were removed.

Limitations of the Method

In the above method, each gene represents the amount of the corresponding

feature to be used in the training and testing of the MLP. As discussed earlier,

this is represented by a vector of 95 values between 0 and 1 that is multiplied

by the data. We determined the ‘strongest’ or most important features in the

experiments above by looking at which had the highest corresponding gene.

However, each feature data point already has a value between 0 and 1. Thus

the resultant multiplied data is dependent on how strong the original data

point was and the strength of the weighting gene. Thus if a feature with a

very small original value was emphasised with a strong corresponding gene

value, it may still only be as significant in the resultant weighted set as a

strong original value that was multiplied by a medium strength gene. This

may explain why the classification results drop when only the very strong

gene values are included — such as when the cut-off threshold was set >

0.85.

Another issue that may arise is in the fundamental workings of the GA.

It was seen that each evolved genome is different. Although we hypothesise

above that this may be due to the different samples used — that each genome

may be unique to the samples it is evolved from — it is also possible that

the GA is simply unable to find a global best solution. As already discussed,

GAs are very good at finding a good solution to a problem, but they may not

necessarily find the best possible solution. Thus the diversity in the evolved

genomes — and hence the lack of clear choice on which are the best features

to use in musical instrument classification problems may be due to one of two

factors:

• An exact ideal set of features to use for accurate instrument classifica-

tion exists, but this GA was unable to determine this set, or

• No such ideal set of features exist — each classification problem is

unique and dependent on the samples and instruments involved in the

experiment.
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6.8 Conclusion

This chapter examined the use of GAs in determining the best set of timbral

features to use for musical instrument identification. Section 6.1 introduced

the aims of the chapter. Section 6.2 described the data used in this chapter

and detailed the way in which it is organised. Section 6.3 introduced the

basic concept of a GA and the method in which it was implemented in the

experiments in the chapter. Section 6.4 described the development of the

fitness function used in these experiments. In particular this section reduced

the given problem into a ‘little problem’ to develop the methods used. This

little problem was then scaled up to include the full data set with the fitness

calculated across 8 dimensions in Section 6.5. These experiments were further

scaled up to 40 dimensions and tested using a more general test set of samples

in Section 6.7.

This chapter started with three distinct aims. First, to use a GA to create

an improved musical instrument identifier. It was shown in Section 6.5 that

using an evolved genome to modify the input data to an MLP can improve

the recognition accuracy of the MLP while using the one octave test set.

These experiments were then repeated using a fitness function based on 40

dimensions of the data. It was shown that using these genomes improved the

classification accuracy over the unmodified data, although it did not result in a

significant improvement on the results obtained using 8 dimensions. When the

trained MLP was tested with one of the cross-validation sets, the recognition

accuracy was significantly higher than that obtained with the one-octave set,

with the accuracy close to 100%. This was not improved with the introduction

of the evolved genomes, but using the genomes maintained this high level of

accuracy. These results emphasised the importance of the selection of samples

in testing a classifier such as this one.

The second aim was to reduce the complexity of an instrument identifier

without decreasing the level of classification accuracy. It was hoped that the

genome could be used to eliminate certain superfluous timbral features that

might be unnecessary for the system. This was investigated by removing fea-

tures whose corresponding genes were below a certain cut-off threshold. It was

found in both the 8 dimensional and 40 dimensional experiments using the

one octave test set, that reducing the number of features incorporated into

the system reduced the classification accuracy. This reduction in accuracy

became more significant the more features were removed. When the larger

cross-validation test set was used however, the reduction in classification ac-
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curacy was not as significant. It was seen that the classification accuracy was

maintained above 99% even when up to 73 of the 95 original features were

removed. Thus it may be concluded that a reduction in features may make a

bad systems worse, but will not cause significant problems to a system trained

and tested on a well balanced set of samples.

The final aim was to use the evolved genomes to determine which timbral

features are most important for instrument classification. It was seen above

however, that regardless of the method used, the genomes evolved were very

diverse with few common features emerging between them. One notable

exception to this is that at least one principal component of the Centroid

Envelope featured very strongly in each method used. The Centroid has fea-

tured very strongly in previous literature and in experiments described earlier

in this thesis. Most notably here however, is that it is always the Centroid

Envelope and not the static Centroid (calculated from the MIRToolbox) that

was chosen. This means that it is the changes within the centroid across the

duration of the sound that was found to be most important for instrument

classification. Along with the Centroid Envelope, the fourth principal com-

ponent of a number of the higher MFCCs were chosen, supporting results

given in Chapter 5 that found the higher MFCCs to be very important in

instrument recognition. The weakest features found by the system were not

as strong or consistent as the strongest found although some that featured

included the Spectral and Residual Envelopes and values from some of the

lower MFCCs. Most interestingly it was found that increasing the number of

dimensions that the genomes were calculated over, and increasing the number

of generations as in Section 6.7 apparently made the genomes more diverse.

This result may support the argument that there is no one ideal set of fea-

tures to classify any group of instrument sample — that each experiment is

unique and would therefore require a unique solution.

Although the evolutionary method described in this chapter has raised

some interesting questions, it remains a computationally expensive model.

The fitness function of the GA is dependent on PCA and the testing of each

genome requires the training and testing of a MLP. The following chapter

looks at a different evolutionary algorithm that can evolve a solution to a

problem such as this, without the need for these extra processes — Genetic

Programming.
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Chapter 7

Genetic Programming

The previous chapter used GAs to optimise features for instrument identifi-

cation using an MLP. This method addressed the issue of over-burdening a

classifier with too much information by limiting the number of features used

as inputs to the classifier. Although the use of the GA offered insight into the

best timbral features to use, the method is cumbersome and computationally

expensive using both PCA and linear algebraic calculations to determine the

fitness of each individual. In addition to this an MLP was still needed to make

use of this evolved genome in classifying a sound, as the genome evolved by

the GA cannot represent a solution in this classification problem domain. An

evolved genome may represent the relative weight of each feature to use, but

it does not indicate how these features are best implemented as a classifier.

This chapter proposes to evolve not only which features to include but also

the method by which these features should be combined to classify musical

instruments.

Chapter 4 discussed many classification methods that have been imple-

mented to identify musical instruments. These studies all used machine learn-

ing techniques to classify sounds. Although some studies compared the merits

of a selection of techniques, few justified the use of specific classifiers. The

previous chapter simplified the number of features to use in a classification

study by evolving a representation of the set of features with a GA. This

chapter furthers this idea by evolving the features used and the classifica-

tion method. A new program for classifying musical instruments, based on

the features used before, may be evolved using Genetic Programming (GP).

Unlike GAs, GP evolves a program that can represent the solution to in-

strument classification without the need for a further external classification

method such as the MLP. GP is described in more detail in Section 7.1. The

implementation of GP on the data used in this thesis is described in Section
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7.2. Section 7.3 describes the results obtained from these GP experiments.

In both this and the previous chapter, a number of features emerged as more

important than others. Section 7.4 discusses the variations between samples

for these particular features. The visualisation of the program trees evolved

and the issue of bloat is discussed in Section 7.5. Finally Section 7.6 offers a

discussion on the results and some conclusions for the chapter.

7.1 Genetic Programming

The term Genetic Programming was coined by Koza, whose seminal 1992

book (Koza, 1992b) remains the definitive introduction to the topic. As with

GAs, GP works on a population of solutions rather than a single solution.

The main difference between GA and GP is in the representation of the so-

lution. Although GAs were developed first, a GA may actually be seen as a

specific type of GP where the solution is limited to a single fixed-length vector

(Langdon and Poli, 2002). GP, on the other hand, evolves solutions that con-

sist of executable programs. These programs are represented by structures,

the most commonly used being the tree structure. Other commonly used

structures are linear structure and graph structure. The GP implemented in

this thesis operates on a tree structure. A program tree consists of several

branches, each of which contain internal nodes and ends with a leaf. The

number and type of branches in a program form the architecture of the pro-

gram (Langdon et al., 2008). These tree structures may easily be written out

as strings. A simple example of a tree representing the string (+a(∗b2)) or

a+ 2b is shown in Figure 7.1.

7.1.1 GP Design

As with GAs, a number of parameters must be set at the beginning of a

GP run. These parameters will dictate how the GP behaves over successive

generations.

Terminals and Functions

The terminals and functions are the ‘pieces’ available in creating the pro-

grams. Each leaf on the tree consists of a terminal of the program. A terminal

node returns a numeric value and does not require any inputs — that is it

has an arity of 0. The set of possible terminals for any given problem consists

of the variables of the problem along with any user defined constants.
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Figure 7.1: A basic program tree displaying a node, branch and terminals

Internal nodes within the tree are comprised of operators or functions.

The range of functions that may be used by a GP is varied and includes

operators of types such as boolean functions, arithmetic functions, condi-

tional statements as well as more complicated functions such as variable as-

signment functions, subroutines or automatically defined functions (ADFs)

(Koza, 1994). The choice of functions is dependent on what the evolved pro-

gram is required to do. Although many functions may be used, it is advised

to start with a set of simple program functions as GP has shown to be very

creative at taking simple functions and combining them for its own needs

(Banzhaf et al., 1998). The set of allowed functions and terminals for any

given run form the primitive set of the GP. This primitive set must satisfy

the conditions of closure and sufficiency. Closure requires that each of the

functions in the set must be able to accept, as its input arguments, the out-

put returned by any of the functions or the values from any of the terminals.

Sufficiency requires that the primitive set is capable of expressing a solution

to the problem (Koza, 1992b).
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Initialisation

A GP run starts by creating the initial population of solutions. Each tree

is randomly created from the defined terminals and functions. There are a

number of different ways of generating this initial population. Two of the

simplest and earliest methods used are the full and grow methods. Both

of these methods create trees up to a specified maximum depth. In the full

method, functions are selected as nodes along each branch until the maximum

tree depth is reached, at which point terminals are chosen as leaves. Thus

the full method creates full, symmetrical trees of a specific size and shape.

The grow method on the other hand allows either a terminal or function to

be chosen at each node up until the maximum tree length is reached. Thus

trees created with the grow method may be of varying size and shape. As

neither of these methods would create a particularly varied or diverse initial

population, a combination of the two methods known as ramped half-and-half

was proposed. In this method half of the population is created using the grow

methods and half using the full method. In addition to this, the population

is divided up so that equal numbers of individuals have tree depths up to the

specified maximum depth (Koza, 1992b). Thus the population will consist of

symmetrical and asymmetrical trees of varying lengths.

Operators

The operators of GP are similar to those used for GA, namely crossover,

mutation and selection. Selection is based on the fitness level of each indi-

vidual: individuals with good fitness are more likely to be used in the next

generation. As with GA a number of selection techniques are available such

as roulette and tournament. The most common type of crossover used in GP

is subtree crossover. In subtree crossover a random point is selected on two

parent trees A and B. The children are created by replacing the subtree at the

crossover point on tree A with the subtree at the crossover point of tree B and

vice-versa. Other types of GP crossover include one-point crossover, size-fair

crossover and uniform crossover (Langdon et al., 2008). As with GAs, mu-

tation in GP operates on one individual. Subtree mutation randomly selects

a point in the tree and replaces it with another randomly generated subtree.

Point mutation, on the other hand, replaces a single random node with a

different terminal or function of the same arity.
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Fitness Function

The probability of an individual being selected for the next generation is

dependent on the fitness of that individual. The function used in this chapter

is a minimising fitness function — the lower an individual’s fitness, the higher

it’s probability of selection will be. The way in which fitness is measured is

dependent on the fitness function. The fitness function must be defined or

developed by the user before the beginning of a GP run. The fitness function

specifies the goals of the search process. The details of each fitness function

are specific to the type of program being evolved by the GP run. Each

individual program is evaluated and assigned a fitness in accordance with

how well it performs compared to the optimum program being evolved.

7.1.2 Advantages of Using GP for Instrument Classifi-

cation

Since its conception in 1992, GP has been used for many applications from

game theory (Koza, 1992a) to finance (Brabazon and O’Neill, 2009). However,

it was seen in Chapter 4 that GP was not included as one of the many different

machine learning techniques used previously for instrument recognition. GP

is implemented here for this purpose as it has potentially many advantages

over other machine learning techniques:

• As with GAs, certain features may be emphasised or excluded from the

solution, without specification from the user. These chosen features

may be seen by the user — offering an insight into timbre.

• Unlike GAs, GP can evolve the entire classification solution.

• Unlike ANNs which offer a black-box solution to the problem, the pro-

gram evolved by the GP is accessible to the user.

• A GP only uses functions defined or specified by the user for a specific

problem.

• The size of the program may be controlled by the user, thus avoiding

overly large programs or bloat.

7.2 Implementation of GP

GP as described in this thesis was implemented using the GPLAB Toolbox

for Matlab (Silva, 2004). This toolbox includes most of the traditional fea-
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tures used with GP and has the benefit of having a highly modular structure

— making it easily modified and specified for any given purpose. As it is gen-

eralist yet extendable, it is suitable for all levels of users. It offers the user as

much or as little control over the parameters and primitives as desired. This

section details the parameters used for the GP implemented and described in

this thesis.

7.2.1 Functions and Terminals

The data used in these experiments is the same data used in the GA experi-

ments in the previous chapter. Hence 95 timbral features were used from 3006

audio samples split into 10 sets. Each of the 95 features may be an input to

the system, contributing 95 variable terminals to the system. In addition to

this a number of constants were also implemented as terminals. The number

and values of these constants were individual to specific runs and are detailed

in the discussion of these runs later in the chapter.

GPLAB offers a large number of possible arithmetic and logical functions

to the user. Many of these functions, particularly the mathematical functions

such as trigonometric functions may be overly complicated for the purpose

of this classifier. The algorithm is designing a program to determine the

best combination of the available features to use in recognising a musical

instrument. The ideal relationship between the features is unlikely to rely

on complicated mathematical functions. A number of different runs included

different functions, as detailed later in the chapter, but in general these were

limited to simple logical and mathematical functions.

While it may be easy to satisfy the closure condition in these experiments,

it is not so certain that the condition of sufficiency is satisfied. Sufficiency

states that it must be possible for the primitive set to express a solution to

the problem, but this is the point under investigation in this chapter. The

question raised in this chapter is: is it possible to create an instrument classi-

fier using just a combination of the features and a small set of functions? We

know from the classification success of the GA experiments in the previous

chapter that this set of features is sufficient for training and testing an MLP.

What needs to be be confirmed here is if the same features may be com-

bined with just a few simple functions to accurately classify the data. The

confirmation of sufficiency must therefore wait until the results are obtained.
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7.2.2 Initialisation

GPLAB allows the user to set the values of all the parameters of the GP at the

beginning of a run. There are three possible methods for tree initialisation

— full, grow and ramped half-and-half, as described above. The trees in

these experiments were initialised using the ramped half-and-half method as

it results in the most diverse initial population. The initial maximum depth

of the tree was set to 6. The trees developed using GPLAB may be subjected

to a number of size constraints throughout the run to avoid the development

of overly large programs or bloat. The maximum permissible size of a tree is

set using the parameter realmaxlevel. In addition to this a smaller dynamic

maximum level may be specified using inicdynlevel. If an operator results

in a tree whose size is greater than inicdynlevel but less than realmaxlevel its

fitness is measured. If this individual’s fitness is lower than that of the current

best individual, the maximum dynamic level is increased and the individual

is passed to the next generation. If the individual is found to be not as good

as the current best individual it is rejected. This technique of dynamic fitness

has been shown to be efficient in preventing bloat (Silva and Almeida, 2003).

In these experiments realmaxlevel was set to 15 and inicdynlevel was set to

6.

To ensure the best individuals survive to successive generations, GPLAB

may select certain individuals for the next generation according to the

elitism parameter. The elitist method implemented in these experiments

is keepbest. Using this method, the best individual from both parents and

children is kept for the new population, the remaining places in the population

being filled by children only.

Once the elite children have been passed to the new generation, the re-

mainder of the new population is created using a combination of the operators

selection, crossover and mutation. GPLAB offers four sampling (or selection)

methods for selecting parent individuals: roulette, sus, tournament and

lexictour. Roulette and sus are both methods based on a roulette wheel

whereby each individual ‘owns’ a proportion of the roulette wheel, the dif-

ference being that in sus the pointers are equally spaced. Tournament and

lexictour choose parents by randomly drawing a number of individuals from

the population and selecting the best from this group. In lexictour, if two

individuals are equally fit, the shorter individual will be favoured for the

next generation. The sampling method implemented in these experiments is

lexictour.

Any number of operators may be created by the user and used with
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GPLAB. The standard operators of mutation and crossover are provided by

the toolbox and implemented in these experiments. GPLAB offers an imple-

mentation of an automatic adaptation procedure for the operator probabilities

based on the method introduced in Davis (1989). This method adjusts the

probability of an operator according to the fitness of the individuals that are

created by it; operators that create fit individuals will have their probabilities

increased and those that create poor individuals will have their probability

decreased. These operator probabilities were set to be variable from the first

generation through to the end of the run. The initial values of the crossover

and mutation probability values were both set to the default GPLAB values

of 0.5.

The GP will run until the specified maximum number of generations has

been reached or one of the stop conditions is satisfied. The stop condition

may be used to stop the run when a specified percentage of the population is

within a specified tolerance of the ideal fitness value. In these experiments,

the default value of stopping when 100% of the population is at the exact

fitness value is implemented.

7.2.3 Fitness Function

GPLAB offers three distinct fitness functions: one suitable for symbolic re-

gression and parity problems and two suitable for artificial ant problems. Due

to the modular framework of the toolbox however, it is relatively simple to

create a new fitness function specific to the given problem and implement it

with GPLAB. This user-defined fitness function may calculate a ‘good’ fitness

according to the problem under investigation. The fitness functions imple-

mented in this chapter are similar to those used for regression problems in that

they calculate the difference between the expected output value, or target, and

the values returned by the current individual. The result was calculated as a

numerical output which could then be assigned to a pre-defined instrument

class, according to the various experiments described later in the chapter.

Similar numerical fitness classifications have been implemented successfully

in previous GP experiments (Landry et al., 2006; Loveard and Ciesielski,

2001).

The fitness was based on the sum of the difference between the target

vector of the data and the output of each individual rounded to the nearest

whole number. Initially, the target was set so that 1 corresponded to piano, 2

to violin, 3 to flute, 4 to trumpet and 5 to guitar. The fitness function calcu-

lated the output of each individual when implemented using the training data
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and rounded each output to a whole number. The output of this individual

could then be compared to the target vector to determine how many train-

ing samples this individual misclassified. The fitness of this individual is the

number of samples misclassified during training. Hence this is a minimising

fitness function, which may be specified in GPLAB by setting the parameter

lowerisbetter equal to 1. The best individuals are those programs which

output the greatest number of correct identity numbers for all samples. The

algorithm was trained on 2706 samples leaving 300 for testing at a later stage.

Thus the optimal fitness is 0 — where no samples are misclassified and the

highest (worst) fitness value that could be obtained while training was 2706

whereby all samples were mis-identified.

7.3 Experimental Runs

As discussed above, GP has not yet been employed for musical instrument

identification. As an initial experiment, simple programs were developed to

analyse the way in which they combined the features available to them. This

section describes the various implementations of GP on the features data and

the results obtained.

7.3.1 Feature Analysis

The GA experiments in the previous chapter examined the evolved genomes

to determine the most commonly used features for instrument identification.

The first GP experiments perform a similar analysis in determining which

features are most often chosen by the program trees evolved using GP. The full

95 by 3006 data set employed by the GA experiments was again used to create

the programs. As the depth of the tree was confined to prevent bloat, evolving

the trees would most likely involve selecting the features that give the best

training fitness value1. Each GP was run 30 times with a population of 100

individuals over 500 generations. The functions allowed in the programs were

limited to the arithmetic functions times, plus, minus and mydivide. The

fitness function calculated the number of incorrect identifications as described

above.

The initial training fitness values from these programs were not as low as

anticipated, as the lowest fitness obtained from any of the 30 programs was

equal to 608. Nevertheless, these evolved programs were analysed to ascertain

1technically a full tree at depth 15 could have 215 terminals, but this is unlikely to
occur
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if any features emerged as more likely to be selected for these programs. The

number of times each of the 95 features appeared in any of the strings of each

of the 30 best individuals was totalled. It emerged that the first principal

component of the Centroid Envelope was the most commonly selected feature

— being selected 80 times among the 30 strings. The next most often chosen

features were the first principal component of the Temporal Envelope (57),

the first principal component of MFCC4 (51), the first principal component

of the Spectral Envelope (41) and the second principal component of the

Centroid Envelope (40). The Centroid Envelope and the Temporal Envelope

were both also found to be important in both the GA experiments in the

previous chapter and the neural network experiments in Chapter 5 agreeing

with these initial results.

To examine this method of analysis further, the data set was split up into

two groups — the MFCCs and the data without the MFCCs. The MFCCs,

although only representing one type of feature, contain 64 individual feature

points. We may recall that experiments in Chapter 5 ran ANN classification

experiments both with and without the MFCCs and determined that they

were very important for instrument identification. These experiments, how-

ever, only had a choice of 11 other feature points, whereas the GP used in

these experiments may use any combination of 35 timbral feature points in

addition to the MFCCs to create the classification program. Splitting up the

data may also lend itself to the idea of a hierarchical GP, whereby a combina-

tion of programs built of two subsets of the data may be used for classification

(Koza, 1992c).

The GP experiment was run with the same parameters as before but with-

out the 64 MFCC data points included. The results were found to be similar

to those achieved with the whole data set as the first principal component

of the Centroid Envelope was chosen most often (96 times) followed by the

first principal component of the Temporal Envelope (77), the second principal

component of the Temporal Envelope (56), the second principal component

of the Centroid Envelope (51) and the Zero-Crossing Rate (48). When the

GP was repeated for just the MFCC values, it was found that the lower

MFCCs — in particular their first principal components — emerged to be

the strongest: first principal component of MFCC4 (87), first principal com-

ponent of MFCC2 (65), second principal component of MFCC1 (47), first

principal component of MFCC1 (28), first principal component of MFCC3

(23). This result appears contrary to those achieved in the previous GA ex-

periments, where the higher MFCC values emerged to be the more dominant.
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Table 7.1: No. of times each feature was selected for the four data sets

Feature All No MFCCs MFCCs Reverse MFCCs
Zero-Cross 9 48 - -

Rolloff 22 25 - -
Brightness 14 21 - -
Regularity 3 23 - -

First Att. Time 6 16 - -
First Att. Slope 8 23 - -

No. Onsets 9 25 - -
Onset Distance 12 20 - -

MIRCent 23 9 - -
MIRSpread 20 26 - -
MIRSkew 15 20 - -
MIRkur 6 20 - -

Inharmonicity 5 5 - -
No Peaks 4 5 - -

Spec. Irreg 8 30 - -
Envelope(1) 57 77 - -
Envelope(2) 27 56 - -
Envelope(3) 35 37 - -
Envelope(4) 16 37 - -
Centroid(1) 80 96 - -
Centroid(2) 40 51 - -
Centroid(3) 3 6 - -
Centroid(4) 15 15 - -
Residual(1) 12 13 - -
Residual(2) 1 12 - -
Residual(3) 3 18 - -
Residual(4) 2 19 - -
Spec Env(1) 41 41 - -
Spec Env(2) 2 26 - -
Spec Env(3) 1 9 - -
Spec Env(4) 3 14 - -
MFCC1(1) 16 - 28 39
MFCC1(2) 29 - 47 49
MFCC1(3) 13 - 17 24
MFCC1(4) 10 - 11 17

MFCC2(1) 19 - 65 77
MFCC2(2) 23 - 12 2
MFCC2(3) 7 - 8 7
MFCC2(4) 6 - 10 14

MFCC3(1) 20 - 23 30
MFCC3(2) 13 - 21 50
MFCC3(3) 22 - 9 13
MFCC3(4) 4 - 18 18

MFCC4(1) 51 - 87 116
MFCC4(2) 17 - 21 20
MFCC4(3) 15 - 3 5
MFCC4(4) 9 - 11 10
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Table 7.2: No. of times each feature was selected for the four data sets (cont.)

Feature All No MFCCs MFCCs Reverse MFCCs
MFCC5(1) 7 - 17 12
MFCC5(2) 3 - 7 9
MFCC5(3) 4 - 3 14
MFCC5(4) 14 - 17 12

MFCC6(1) 19 - 5 14
MFCC6(2) 3 - 9 10
MFCC6(3) 8 - 6 6
MFCC6(4) 14 - 2 6

MFCC7(1) 10 - 7 14
MFCC7(2) 6 - 4 11
MFCC7(3) 1 - 6 7
MFCC7(4) 8 - 3 23

MFCC8(1) 5 - 18 20
MFCC8(2) 0 - 7 3
MFCC8(3) 3 - 3 2
MFCC8(4) 5 - 1 11

MFCC9(1) 3 - 3 21
MFCC9(2) 2 - 10 22
MFCC9(3) 0 - 2 3
MFCC9(4) 3 - 7 9

MFCC10(1) 12 - 1 4
MFCC10(2) 1 - 7 6
MFCC10(3) 3 - 7 6
MFCC10(4) 18 - 0 14

MFCC11(1) 2 - 3 8
MFCC11(2) 0 - 6 2
MFCC11(3) 1 - 11 3
MFCC11(4) 5 - 6 1

MFCC12(1) 3 - 0 7
MFCC12(2) 1 - 8 10
MFCC12(3) 2 - 3 6
MFCC12(4) 2 - 13 11

MFCC13(1) 0 - 0 9
MFCC13(2) 4 - 3 18
MFCC13(3) 12 - 10 11
MFCC13(4) 1 - 3 3

MFCC14(1) 0 - 1 9
MFCC14(2) 0 - 3 13
MFCC14(3) 0 - 10 10
MFCC14(4) 0 - 6 5

MFCC15(1) 0 - 2 2
MFCC15(2) 0 - 1 6
MFCC15(3) 0 - 4 7
MFCC15(4) 0 - 8 13

MFCC16(1) 0 - 2 8
MFCC16(2) 0 - 1 8
MFCC16(3) 0 - 17 3
MFCC16(4) 0 - 11 1
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To confirm this result, the experiment with only the MFCCs was repeated

with the data presented in inverse order to the GP. The results appear con-

sistent with the previous forward run, with the lower MFCCs emerging as

the stronger features: first principal component of MFCC4 (116), first princi-

pal component of MFCC2 (77), second principal component of MFCC3 (50),

second principal component of MFCC1 (49), first principal component of

MFCC1 (39). A full list of how many times each of the features was chosen

for each of the data sets is shown in Table 7.1 and continued in Table 7.22. It

is clear from this table that there are many consistencies among the results.

The above GP runs were only examined in terms of common emerging

features. As mentioned above, the training fitness obtained using this GP

was not particularly encouraging. The next section describes modifications

made to the GP run in an attempt to create a more accurate classifier. The

results are discussed in terms of training fitness, test classification accuracy

and features present.

7.3.2 Modifying the Fitness Function

GP was run again a number of times with various set-ups. The parameters

for creating the first generation and for the operators were kept as before. In

each case the maximum level of the tree was again set to 15 and the dynamic

level was set to 6. For each of these experiments, the number of individuals

in each population was 100 and each experiment was run for 500 generations.

These experiments were repeated 30 times.

As discussed earlier, GP may accept any number of functions in creating

the individual trees. The above experiment limited the selection to just four

arithmetic operators. Boolean logical operators may also be useful in the

evolved programs. The combination of arithmetic and boolean operators is

not always a sensible idea. Boolean operators return a logical value — a 0 or

1 whereas the mathematical operators manipulate the numbers given by each

feature (valued between 0 and 1 as the feature values are all normalised).

Preliminary experiments indicated that the inclusion of too many boolean

operators, such as AND and OR tended to create over-simplified programs

and so were not included. However, operators that compare two feature val-

ues — such as less than (lt) and greater than (gt) may be of more interest

to such programs. As in the GA experiments in the previous chapter, the

relationships between the features may be of interest. A strong 0 output,

2As a visual aid, the first principal component of each MFCC is highlited in bold font
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should Residual(2) be greater than Centroid(1) (an ‘unexpected’ relation-

ship), for example, could be useful for determining an unusual relationship

between features — thus possibly identifying a particularly difficult timbre.

These two operators (< and >) were combined with the mathematical oper-

ators +, − and ∗, the constants 2, 3 and 4 and a random constant generator

which can give any floating point number between 0 and 13. As the targets

range from 1 to 5, these constants should enable the programs to reach these

targets numerically. It was found in early experiments that the use of con-

stants and boolean operators may cause the GP to fall into a local minimum

with a very small tree giving a mediocre result that is not dependent on any

features. This can easily happen if a tree is developed early on that gives a

constant output such as a 1. If this happens the fitness abruptly drops (as

all pianos are now correctly identified but no other instrument will be) and

the program may fall into a local minimum that it cannot escape. This was

prevented in the fitness function by heavily penalising any tree that did not

give a different answer for each sample value. This penalty was implemented

by forcing the fitness of that tree to 3000 — a fitness higher than if all samples

are incorrectly identified. Likewise, program strings that contained less than

50 characters were penalised to prevent very small trees being included.

In addition to a change in function selection, an alternative fitness method

was considered. Up to this point, the fitness was compared against a target of

values 1 to 5, each representing a different instrument. This is a very specific

for GP to match. As discussed in Koza (1992b), judgement must always be

exercised in creating fitness cases for the given problem. It is possible that

it may be easier for GP to evaluate values to a range of target values rather

than an individual number. To allow more scope in the evaluation of the

trees, the fitness values were transformed to a range of fitness values. Thus

in this case the following fitness ranges were implemented:

• [1 - 10] = Piano

• [11 - 20] = Violin

• [21 - 30] = Flute

• [31 - 40] = Trumpet

• [41 - 50] = Guitar

3mydivide was not included in these runs as it was causing problems with the logical
operators, plus it may be effectively implemented by combing times with a constant between
0 and 1

171



To ensure that the program trees can generate values that high, further con-

stants — namely, 5, 10, 20 and 40 were included in each run. This Range

fitness method may expand the search space, enabling the GP run to find a

solution more easily.

These methods were all implemented using the GP and run 30 times. The

four separate GP runs consisted of:

• Single Math — original fitness method using just arithmetic operators

• Single All — original fitness method using arithmetic and boolean op-

erators greater than and less than

• Range Math — range fitness method using just arithmetic operators

• Range All — range fitness method using arithmetic and boolean oper-

ators greater than and less than

The training fitness of each individual was noted and a measure of the average

and best fitness for each generation was stored. As when examining the GAs

in the previous chapter, the changes in the average and best fitness over

the 500 generations may be examined as an indication of how the GP run is

behaving. A plot of the average and best training fitness for each of the fitness

methods is shown in Figure 7.2. It is clear from these plots that the average

fitness does not converge towards the best fitness substantially over the 500

generations. This implies that the population is still diverse, with both good

and bad individuals remaining in the population. It may be noted however,

that in each case the best fitness appears to be still decreasing — indicating

that the search may be continued for more generations as a global minimum

does not appear to have been found. These plots also indicate that a lower

fitness is obtained from using the Single fitness methods rather than the Range

fitness methods. After 500 generations, the lowest training fitness observed

appears to be from the Single All fitness method. This fitness remains over

800 which may be still a poor result, although it must be remembered that

this is averaged over the 30 runs, therefore the best individual training fitness

is likely to have achieved a much lower value than this.

To test the classification accuracy of the evolved trees, the corresponding

programs were used to classify a set of test samples. The trees evolved by GP

above were trained using 2706 instrument samples. These were taken from

the Cross Validation sets 1-9 as described in the previous chapter. To test the

evolved trees, initially the one-octave test set was used. This set (as described

in the previous chapter) consisted of one octave of notes from each of the five
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(a) Single Math (b) Single All

(c) Range Math (d) Range All

Figure 7.2: Average vs. Best fitness over 500 generations for the four fitness
methods

instruments. The 30 best program trees from each of the four fitness methods

were used to evaluate each of the notes. The classification results are given

as the percentage of times each program correctly identifies an instrument

sample. A boxplot of the results obtained for each of the four methods is

shown below in Figure 7.3. It can be seen from this plot that the results are

somewhat disappointing, as the mean accuracy of classification for each of

the methods is around 40%. The Single All method gives the highest mean

accuracy of 43.49%. The range of accuracy achieved by each of the methods is

quite large however. The highest accuracy achieved using any of the programs

evolved is 73.85% from a program using the Range All methods. This was

closely followed by an accuracy of 69.23% using the Single All method. These

are clearly much higher than the average classification results, demonstrating

that when GP is run a number of times, a good classifier will emerge. Thus

it appears that using a combination of arithmetic and boolean operators as

functions may result in the most accurate classifications.

To examine this point further, the above classifications were repeated
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Figure 7.3: Classification results for the one-octave test set by each of the four
fitness methods

using a larger unseen test set. As Sets 1-9 were used to evolve the programs,

Set 10 consists of unseen samples that may be used to test the resultant

strings. Set 10 contains 300 samples of various pitch and dynamic ranges from

each of the five instruments. As the target or correct classification of each

sample is known, the classification result may be calculated as the percentage

of times each string correctly identifies one of the 300 unseen samples. The

classification results of each of the four fitness methods may be seen in Figure

7.4. It is clear from this plot that a higher classification accuracy may be

achieved by using these more general test samples rather than the samples

that are specific to one octave. This result is similar to that achieved in the

previous chapter using the GA and MLPs. This demonstrates again that

constraining the test samples according to pitch and dynamic in this way

does not test the generalisation of the classifier. The highest classification

accuracy achieved in this experiment was 88.3%, obtained using the Single

All method. Again the Range All method also achieved a high accuracy of

80.67%. Notably, the mean accuracy of classification is higher for this larger

test set with the Single All method displaying the highest mean accuracy of

64%. The Range All method actually achieved the lowest mean classification

accuracy of just 49.63%. These results combined with those for the one octave

test and the best and average fitness imply that of the methods considered,

the most consistent results were obtained using the Single fitness method with

a combination of arithmetic and boolean operators.
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Figure 7.4: Classification results for the 300 element test set by each of the four
fitness methods

Feature Analysis of Evolved Trees

The above four methods evolved 30 program trees each. As seen from the clas-

sification results above, these programs obtained varying degrees of success

in classifying new sample sounds. This section examines the features chosen

most often for the 30 most successful programs chosen by each fitness method.

Table 7.3 displays the features most often chosen for the Single Math fitness

method. As can be seen from this table, the first principal component of the

Centroid Envelope was found to be the most often chosen feature followed

the first principal component of MFCC4 and the first principal component of

the Temporal Envelope. This is very similar to the result for the Single All

fitness method shown in Table 7.4. For this method the first component of

the Centroid Envelope was again the most often chosen followed by the first

component of the Temporal Envelope and the first component of MFCC4.

The most common chosen features for the Range Math and Range All

fitness methods are shown in Table 7.5 and Table 7.6 respectively. Again,

these show a strong correlation with the results from the Single fitness meth-

ods. Although there may be a difference in the order of prominence, the first

principal component of the Centroid Envelope, the Temporal Envelope and

MFCC4 appear in the top five features chosen by this method. There are

also similarities in that further principal components of the Temporal Enve-

lope were chosen, along with first components of a number of other MFCCs

— notably the early MFCCs. These results re-inforce the values obtained
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Table 7.3: Number of times the top 10 features were selected across 30 runs using
the Single Math Fitness method

Instances Feature No. Feature
49 20 Cent1
37 44 MFCC4-1
28 16 Env1
20 21 Cent2
19 17 Env2
18 28 Spec2
18 41 MFCC3-2
18 45 MFCC4-2
17 40 MFCC3-1
16 33 MFCC1-2

Table 7.4: Number of times the top 10 features were selected across 30 runs using
the Single All Fitness method

Instances Feature No. Feature
88 20 Cent1
77 16 Env1
64 44 MFCC4-1
56 36 MFCC2-1
36 17 Env2
32 21 Cent2
28 2 Rolloff
25 28 Spec1
19 3 Brightness
18 60 MFCC8-1
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from GP experiments shown earlier in the chapter in Table 7.1 and Table 7.2

which also found the first principal component of the Centroid Envelope and

Temporal Envelope along with the low valued MFCCs to emerge as the most

important features.

Table 7.5: Number of times the top 10 features were selected across 30 runs using
the Range Math Fitness method

Instances Feature No. Feature
84 44 MFCC4-1
83 36 MFCC2-1
60 16 Env1
60 20 Cent1
28 45 MFCC4-2
26 17 Env2
22 28 Spec1
21 33 MFCC1-2
20 19 Env4
19 18 Env3

Table 7.6: Number of times the top 10 features were selected across 30 runs using
the Range All Fitness method

Instances Feature No. Feature
42 16 Env1
36 3 Brightness
36 20 Cent1
35 44 MFCC4-1
29 36 MFCC2-1
27 17 Env2
17 14 No Peaks
15 28 Spec1
15 40 MFCC3-1
12 5 First Attack Time

Although there appears to be significant consistencies in the features be-

ing chosen for the evolved programs, the training and classification fitness

performances remain quite poor. As we have seen, the training fitness was

still decreasing after 500 generations. In addition to this, it may be noted

that a number of the best evolved program trees had reached the maximum

allowed depth of 15. To attempt to increase the performance of the evolved

program trees, the values of these parameters were relaxed.
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7.3.3 Extended GP Run

The method that achieved the best fitness, Single All, was run again 30 times

with a population of 100 for 2000 generations. In this run, the dynamic level

of the trees was set to 15 and the realmaxlevel was set to 25. This would allow

much larger trees to be created if their fitness was better than those in the

current generation. A plot of the averages of the best versus average training

fitness for all 30 runs is shown in Figure 7.5. This plot shows that the average

and best fitness do continue to decrease after 500 generations and appear to

level out before reaching 2000 generations. The average and best fitness still

do not converge however, indicating that the populations are still diverse.

The average of the best training fitness indicates that there is not a great

improvement from the individuals evolved over 500 generations. However, in

examining the strings individually, it was found that three individuals had a

best training fitness of under 200 with the best achieving a low fitness of 149.

Figure 7.5: Average vs. Best fitness across 2000 generations

The evolved programs were again tested by using them to classify a test

set of unseen samples, which again consisted of the 300 samples from Set10.

A boxplot of the classification results is shown in Figure 7.6. This again

shows a wide range of classification accuracy between the programs. The best

classification accuracy of 94% was achieved by the program from individual

nine. Further analysis of the individual programs and the features chosen is

given in the next section.

Analysis of Evolved Individuals

The 30 programs represent the best trees or individuals evolved from 30 sep-

arate runs. As seen above, these individuals vary in terms of their fitness.
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Figure 7.6: Classification results for the 300 element test set for extended run
(over 2000 generations)

Table 7.7 lists the size of these individuals in terms of depth and number of

nodes. This table also displays the training fitness both in terms of abso-

lute fitness (how many out of 2706 were misclassified) and the percentage of

correct training identifications, along with the test classification fitness as a

percentage of correct identification by each of these individuals on the test

set. It is clear from this table that both the training and testing accuracy

vary between the different individuals. It must also be noted, however, that

each individual only experiences a slight decrease in accuracy from training

to test fitness — and in fact the best individual, number nine, experiences a

slight increase in accuracy from training to test data. This implies that while

the results of the individuals may vary, each individual is approximately as

good (or as weak) at recognising a new sample as it was at recognising the

training samples. This shows that the individuals are generalised over the

data set, as opposed to being over-fitted to the training data.

It may be seen from this table that the three most successful programs,

both in terms of low training fitness and high classification accuracy were

from individuals 2, 9 and 15. It may also be noted from this table that these

are three of the largest evolved trees — with depths of 19, 23 and 20, and

245, 241 and 173 nodes consecutively. This demonstrates that increasing the

allowed depth size of the trees was necessary to create more accurate program

trees. Although a test accuracy of 94% is quite high, it may be noted that

it is still not as high as the classification accuracy of the GA-MLP classifiers

described in the previous chapter.
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Table 7.7: The depth, number of nodes, training fitness and classification accuracy
for each of the 30 best evolved strings

Ind. Depth #Nodes Train(/2706) Train(%) Test Class(%)
1 4 9 979 63.8 60.33
2 19 245 149 94.5 93
3 17 79 953 64.7 61
4 17 59 874 67.7 64
5 11 33 1014 62.5 58.33
6 20 81 923 65.9 63
7 16 69 1051 61.2 57.67
8 19 75 814 69.9 66.67
9 23 241 174 93.6 94
10 15 87 771 71.5 67.33
11 14 67 316 88.3 86.33
12 18 35 948 65 61
13 18 79 973 64 60
14 23 95 979 63.8 59
15 20 173 155 94.3 92
16 23 199 773 71.4 68.67
17 17 85 775 71.4 68.67
18 19 89 999 63.1 58.33
19 22 121 704 74 71.67
20 20 121 860 68.2 64
21 21 125 970 64.2 61.33
22 7 21 1007 62.8 57.67
23 20 77 890 67.1 64.67
24 16 147 762 71.8 69
25 22 123 766 71.6 70
26 10 25 882 67.4 62.33
27 21 147 779 71.2 67.67
28 19 47 894 66.9 62.67
29 23 105 956 64.7 61
30 23 225 193 92.8 89.67
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Feature Analysis

The 30 programs evolved over 2000 generations were again analysed to deter-

mine which features were most often used among the trees. The ten features

most often chosen are displayed below in Table 7.8. This shows that again

the first principal component of the Centroid Envelope and the Temporal

Envelope and the lower valued MFCCs — in particular the first principal

component of MFCC4 were the most common features among the best pro-

grams. The more successful programs were found to use these features several

times within the one program tree. These particular features have been found

to be the most common among all the GP runs described in this chapter. The

consistency of selection of these features implies that these features are very

important for accurate instrument classification.

Table 7.8: Number of selections of the top 10 features among the 30 strings evolved
over 2000 generations

Instances Feature No. Feature
137 20 Cent1
98 16 Env1
86 44 MFCC4-1
81 36 MFCC2-1
71 17 Env2
58 28 Spec1
51 21 Cent2
39 18 Env3
37 35 MFCC1-4
35 33 MFCC1-2

7.3.4 Extended Size of Population

The previous section described the improvement obtained in the classification

of the individuals by increasing the length of the run — or increasing the

number of generations. Although this did improve individual results, it was

clear that there was still much variation within the population. From Figure

7.5 it may be seen that little improvement is made on the fitness after 100

generations. This section again attempts to improve the performance of the

entire population, this time by using a larger population evolved over fewer

generations. Thus the experiments in this section run GP 30 times with a

population of 500 over 100 generations. Having more different individuals in

any given generation would make it more likely that a better individual may

be found in the next generation.
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The best and average fitness is plotted in Figure 7.7. Again this shows

that most of the improvement in the fitness occurred within the first 40 gen-

erations. Again the best and the average fitness do not converge, indicating

that there is still much diversity among the 30 populations. The training

and testing fitness of the best three evolved programs are shown in Table

7.9. This shows that the best classification accuracy by any program in this

experiment was 88.3%. This is not quite as accurate as the program evolved

over 2000 generations that achieved 94% accuracy. Nevertheless, this is a

generalised program that has a test accuracy that is almost as high as its

training accuracy (88.7%). Although this is a slight decrease in accuracy, it

may be noted that this experiment took less than three days to evolve all 30

GP programs (in comparison to over 10 days for 2000 generations).

Figure 7.7: Average vs. Best Fitness across 100 generations with population 500

Table 7.9: The depth, number of nodes, training fitness and classification accuracy
for the 3 best evolved strings with population 500 over 100 generations

Ind. Depth #Nodes Train(/2706) Train(%) Test Class(%)
25 14 93 305 88.7 87.3
22 17 141 579 78.6 76
23 13 47 606 77.6 76

The next section examines in more detail the most commonly chosen fea-

tures by both GP and the GA in the previous chapter.
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7.4 Comparison of Features Chosen

Experiments in both the previous and the current chapter have examined

which of the 95 features emerged as most important for instrument identi-

fication. This section examines the variation between samples for some of

these features to determine what may make them so useful to the classifers.

The GP experiments in this chapter found that the first principal component

of the Centroid Envelope, the Temporal Envelope and MFCC4 were the most

commonly chosen features. Analysis of the genomes from the GAs in the

previous chapter also found the first PC of the Centroid Envelope and to a

lesser extent that of the Temporal Envelope to be important. A plot of the

first component of the Centroid Envelope and the Temporal Envelope of all

3006 samples ordered according to sets (Set1 followed by Set2 etc.) is shown

in Figure 7.8. Clearly there is a periodicity emerging in these plots. This

may be explained by the cyclical order in which the sets were formed. Before

filling the sets, the RWC samples were arranged in the order of piano, violin,

flute, trumpet, guitar and then followed by the MUMS samples. Filling each

set with the 10th sample (ie. note sample) from this list meant that each

set contains approximately 54 piano samples followed by approximately 75

violin, 44 flute, 35 trumpet and 70 guitar samples, and finally approximately

20 MUMS samples (again in the order piano, violin, flute and trumpet). Thus

for features that are indicative of the instrument, this periodicity should be

evident when the samples are lined up like this.

The cycles in the Centroid Envelope are particularly evident. To inspect

this further Figure 7.9 displays the values for the first 300 values of Set1.

Although the five instrument regions are not all distinct, there is a very

clear distinction between the piano and violin section compared to the other

instruments. A similar divide is seen in each set, explaining the periodic

plot of this value across all 3006 samples. In contrast to this, Figure 7.10

displays the values for Inharmonicity across all 3006 values. The lack of

periodicity in this figure indicates that this feature is not consistent for a

particular instrument, thus explaining why it was not chosen very often by

either evolutionary technique.

Similar plots for the MFCCs produced varied results. Low valued MFCCs

such as MFCC4-1 were the most often chosen feature using GP whereas high

valued MFCCs such as MFCC13-4 were favoured by the GA. A plot of these

two values across all samples is given in Figure 7.11 with accompanying plots

of the first 300 samples in Set1 displayed in Figure 7.12. It is clear from these
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(a) Centroid Evolution (b) Temporal Envelope

Figure 7.8: Plot of the variation across all 3006 samples for the first principal
component of the Evolution of the Centroid and the Temporal Envelope

Figure 7.9: Plot of the variation across 300 samples for the first principal com-
ponent of the Evolution of the Centroid

plots that the lower MFCC value gave the more consistent periodic plots —

the five distinct intervals may be associated with each of the instruments.

Although there is some distinction between the instrument for MFCC13-4,

it is not as pronounced as that in MFCC4-1. This implies that while GP

strongly favours features with this ‘instrument periodicity’, GAs may not.

7.4.1 Limiting GP to ‘Popular’ Features

As seen in the experiments in this chapter, the individuals created using GP

do not, in general, use all 95 features due to limitations on their size. Thus

along with deciding how to combine the features used, GP must also decide

which features to use. It may be seen from the experiments in this chapter

that there is a strong tendency for GP to choose certain features over others.
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Figure 7.10: Plot of the variation across all 3006 samples for Inharmonicity

(a) MFCC4-1 (b) MFCC13-4

Figure 7.11: Plot of the variation across all 3006 samples for the first principal
component of MFCC4 and the fourth principal component of MFCC13

Therefore as an attempt to reduce the variation within the individuals, GP

was run again but with a limited number of features. The features were

limited to the most often chosen features according to the ‘All’ category in

Tables 7.1 and 7.2. Only features that appeared 20 or more times were

included in this experiment. This limited the features to the 14 values listed

in Table 7.10.

The best and average training fitness averaged over the 30 runs are shown

in Figure 7.13. Again this shows that the average and best fitness do not

converge, indicating that there is still a lot of diversity in the population. The

best individual result was found from individual number 20 which only made

mistakes on 281 of the 2706 samples, giving a training accuracy of 89.6%.

When this was tested with the 300 unseen samples of Set10, it was found

to have a classification accuracy of 91.3%. The training and testing of the
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(a) MFCC4-1 (b) MFCC13-4

Figure 7.12: Plot of the variation across the first 300 samples for the first prin-
cipal component of MFCC4 and the fourth principal component of MFCC13

top three evolved programs is shown in Table 7.11 indicating that these three

programs achieved test accuracy rates of almost 90%. This indicates when

evolving classification programs with GP such as these, a large number of

features may be removed with only a slight decrease in classification accuracy.

This implies that a large number of features used in previous classification

studies may add unnecessary calculations and actually be superfluous to the

identification of musical instruments.

Figure 7.13: Average vs. Best Fitness across 100 generations with population 500
for limited feature data

Limited Features Extended Run

It is clear from the results in Table 7.11 that the test classification accuracy

of the best strings evolved using a population of 500 over 100 generations

with limited features is higher than the classification results using these same
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Table 7.10: The top 14 features as found from the Feature Analysis experiment
displayed in Tables 7.1 and 7.2

Feature No. #Instances Feature
2 22 Rolloff
9 23 MIRCent
10 20 MIRSpread
16 57 Env1
17 27 Env2
18 35 Env3
20 80 Cent1
21 40 Cent2
28 41 Spec1
33 29 MFCC1-2
37 23 MFCC2-2
40 20 MFCC3-1
42 22 MFCC3-3
44 51 MFCC4-1

Table 7.11: The depth, number of nodes, training fitness and classification accu-
racy for the 3 best evolved strings using limited features with population 500 over
100 generations

Ind. Depth #Nodes Train(/2706) Train(%) Test Class(%)
20 15 57 281 89.6 91.3
26 19 221 273 89.9 87.6
29 12 173 283 89.5 88.66
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parameters with the full set of features as shown in Table 7.9. However it

was also shown that the best program was created using all features over a

longer GP run (2000 generations). Thus as a final experiment, GP was run

again with a population of 100 over 2000 generations, this time only using

the 14 features listed in Table 7.10. The training and classification results

are shown in Table 7.12

Table 7.12: The depth, number of nodes, training fitness and classification accu-
racy for each of the 30 best evolved strings using only the top 14 features

Ind. Depth #Nodes Train(/2706) Train(%) Test Class(%)
1 19 189 669 75.3 73
2 17 151 170 93.7 93.3
3 24 145 441 83.7 82.3
4 25 125 758 72 68.7
5 22 195 249 90.1 89.7
6 24 199 678 74.9 71.7
7 20 161 246 90.9 89.3
8 25 125 771 71.5 69.7
9 21 263 151 94.4 94.3
10 16 99 965 64.3 61.3
11 22 223 707 73.9 69.7
12 18 181 659 75.6 72.7
13 17 115 266 90.2 90.3
14 21 101 1040 61.6 56.4
15 25 241 726 73.2 68.7
16 25 253 662 75.5 74.3
17 18 155 747 72.4 68.7
18 24 259 710 73.8 70.3
19 23 193 744 72.5 68.7
20 24 149 901 66.7 64.7
21 24 327 329 87.8 86.7
22 20 57 777 71.3 67.7
23 22 293 174 93.6 93.7
24 22 295 693 74.4 71
25 23 169 632 76.7 75
26 21 203 703 74 71.3
27 24 263 789 70.8 69.3
28 23 231 238 91.2 89
29 20 101 887 67.2 65.3
30 22 229 460 83 83.7

The best program evolved in this run was string number 9 which had a

training fitness of 94.4% and a test classification accuracy of 94.3%. This is a

very slight improvement on the best classification accuracy using all features.

The average of the test classification accuracy has risen to 75.67% as opposed
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to 68.2% for the strings incorporating all 95 features. Six individual programs

achieved a test classification accuracy above 89%. Hence, limiting the fea-

tures to those most often chosen has increased the classification accuracy of

the resultant evolved programs. This again demonstrates that accurate in-

strument identification is dependent on a careful selection of features, rather

than merely incorporating as many features as one can in a given classifier.

From the depth of the programs shown in Table 7.12 and Table 7.7 it

appears that limiting the features used by GP has created larger rather than

smaller programs. Unfortunately, this makes the resultant program trees

more difficult to visualise. The following section discusses this issue of tree

visualisation and the problem of ever-expanding trees or bloat.

7.5 Tree Visualisation and Bloat

One of the most significant advantages of GP is that the resultant program

is accessible to the user. It is this accessibility that has allowed the programs

evolved throughout this chapter to be analysed in terms of the features used.

These features may be analysed as each program is described by a program

string. This string in turn may be drawn as a program tree. GPLAB includes

the function drawtree for drawing individual program trees. An example of

a program tree is shown in Figure 7.14. This is the tree that corresponds to

one of the best training fitness for the GP run using all feature data with

a population of 500 over 100 generations, or string number 23 in Table 7.9.

The string itself is :

minus(minus(minus(times(plus(X10, 4), plus(X20, X21)), X43), X21), minus(X40, mi-
nus(X45, minus(X40, gt(minus(X7, minus(X36, X19)), minus(minus(minus(minus(times(4,
plus(X20, X21)), X17), X44), gt(X39, minus(minus(minus(minus(2, X44), X44), X16),
X3))), X44))))))

This program is easily drawn, as shown in Figure 7.14, as it has only a

depth of 13 and contains just 47 nodes. By comparison, the best testing

tree of that experiment was string number 25, which has a depth of 14 and

contains 93 nodes. The program tree of this individual is shown in Figure

7.15. Its full string is:

plus(minus(times(X20, minus(plus(X20, X21), X44)), times(minus(X36, plus(gt(X86,
plus(X2, plus(lt(minus(plus(X20, minus(plus(X20, X21), X44)), X28), X91), plus(X3,
X16)))), plus(X1, X33))), X40)), plus(times(gt(minus(plus(X20, X46), X40), plus(X2,
plus(lt(minus(plus(X20, X90), plus(lt(minus(plus(X20, 2), X13), X35), X6)), X10),
plus(X45, X16)))), minus(times(X20, minus(plus(X20, 2), X44)), times(X17, plus(lt(minus
(plus(X20, X21), X28), X10), plus(X16, X16))))), plus(lt(X42, 2), plus(X16, X44))))
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Figure 7.14: Best Training Program Tree (program 23 in Table 7.9) using all data
with a population of 500 over 100 generations

Figure 7.15: Best Testing Program Tree (program 25 in Table 7.9) using all data
with a population of 500 over 100 generations
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It is clear that although the tree is Figure 7.15 is only one level deeper than

that in Figure 7.14, it is already a much more complicated tree. In creating

larger trees in the experiments throughout this chapter it was evident that it

was not practical to draw these larger trees as they were not clearly readable.

For example, the best tree evolved using all features over 2000 generations,

with 94% testing accuracy was found to have a depth of 23 with 241 nodes.

The string of this program is:

plus(plus(X17, plus(plus(X20, plus(lt(plus(plus(plus(plus(lt(X36, X17), X16), X28), X16),
X15), plus(X20, lt(X18, X20))), lt(X50, plus(X40, minus(X17, lt(plus(X23, minus(X16,
lt(X76, lt(plus(lt(X36, X17), X42), plus(plus(X36, lt(X23, plus(plus(X8, lt(X18, plus(X39,
plus(X5, lt(X18, X20))))), X11))), X32))))), lt(plus(lt(X56, X17), X5), plus(plus(X5,
lt(X18, X20)), X5)))))))), X21)), plus(X20, lt(X17, plus(lt(plus(plus(plus(X20, X17),
X16), X40), plus(lt(X85, plus(plus(lt(plus(plus(X36, X20), X40), plus(lt(X20, plus(X17,
X23)), lt(X17, plus(X5, lt(X84, plus(lt(X36, X34), X20)))))), lt(X56, X12)), lt(lt(X36,
X44), lt(X17, X20)))), lt(X17, plus(X21, lt(X36, plus(lt(X36, plus(X20, X21)), X5)))))),
lt(X77, plus(plus(lt(X20, plus(X93, lt(X16, plus(X75, minus(minus(X50, X1), lt(X21,
plus(lt(X36, X64), X16))))))), minus(lt(X87, lt(X18, plus(lt(plus(plus(0.57809, X45),
X44), plus(X36, X20)), lt(X18, X8)))), lt(X21, X20))), minus(lt(X8, lt(X14, plus(lt(X11,
X41), minus(lt(X7, plus(lt(plus(plus(plus(X20, X17), plus(X20, X21)), plus(X11, X36)),
plus(lt(X87, plus(X44, X11)), lt(X40, plus(X21, lt(X36, X20))))), lt(0.57809, plus(lt(X11,
X41), minus(lt(X44, lt(X64, X20)), 0.57809))))), lt(X11,X35))))), lt(X11, 0.40868))))))))

This tree was too complicated to draw legibly using the drawtree function

in GPLAB. Similarly, the best tree found using the limited set of 14 features

across 2000 generations was found to have a depth of 21 with 263 nodes which

was again too large to draw.

The growth in length or size of the individual programs evolved using GP

is a well documented problem commonly know as bloat. Bloat can become a

problem if trees grow much larger in size without any significant improvement

in fitness. It contradicts the principle of ‘Occam’s Razor’ or the ‘law of parsi-

mony’, which states that ‘entities should not be multiplied beyond necessity’

(Affenzeller et al., 2009). If there are no size restrictions in GP, programs

may become unnecessarily large over many generations. This can be due to

the inclusion of introns — redundant code that is of no benefit to the solution

yet adds to its size. Excessive bloat is prevented in the experiments in this

chapter by restricting the depth of the programs. Smaller programs are also

encouraged as described in Section 7.2 using the selection method lexitour

which favours shorter programs.

Although bloat may be a problem with GP in general, it must be noted

from the results in this chapter that the two best evolved programs with 94.3%

and 94% accuracy had depths of 21 and 23 (quite large programs). When

the maximum program depth was limited to 15 the classification was not this

accurate, it only managed this accuracy when the maximum depth was set to
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25. Also, it was noted that the average classification accuracy was increased

when only the top 14 features were used. By reducing the number of features

used from 95 to 14, it was thought that the programs might not tend to grow

this large. In contrast to this, the reduction in features coincided with an

increase in average depth from 18 to 22 and an average number of nodes from

103 to 188. From Table 7.12 it may be seen that 10 of the 30 best evolved

strings had a depth of either 24 or 25, whereas none of the strings evolved

using the full feature set were this deep. Thus it appears that for creating

a musical instrument classifier, the programs benefit from growing in size.

This demonstrates that although, unnecessary bloat must be discouraged,

programs should not be forced to be too small as this may prevent some of

the best solutions from being found.

7.6 Conclusion

This chapter used GP to develop a musical instrument classifier. Section 7.1

described the basic operation of GP. Section 7.2 described the implementation

of GP as used in experiments throughout this chapter, the results of which

were discussed in Section 7.3. The most prominent features that emerged in

both this and the previous chapters were examined in Section 7.4. Finally,

Section 7.5 took a brief look at some of the program trees evolved throughout

the chapter and discussed them in terms of tree size.

The training fitness from experiments run over 500 generations was found

to be still decreasing which prompted an increase in the number of generations

to 2000. In addition to this, it was found that from the 500 generation

experiments a number of the best individuals were at the maximum depth

of 15, hence the maximum allowable depth was increased up to 25. The

difference between the average and best training fitness values even after

2000 generations indicated that the populations were still diverse and so a

global minimum may not have been reached. A further run with an increase

in the population up to 500 over 100 generations found that this caused

no reduction in the diversity of the population. As with GAs, GP has the

tendency to evolve a general acceptable solution to a problem rather than a

global optimal solution.

The highest classification accuracy of the best evolved tree program using

all features was 94%. This was slightly outperformed by the best evolved

program using just the top 14 features at 94.4%. The average of the classifi-

cation of the top 30 programs was also higher for those evolved using just 14
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features than those evolved from all 95 features. Thus better classifiers were

created using a small carefully selected set of features, rather than the whole

set. This demonstrates that a classifier such as this one may be improved

by reducing the number of features implemented with it. This reduction of

timbral features was one of the main aims of this thesis — it has been shown

here that for a GP classifier, the classification accuracy may be increased by

decreasing the number of features used. This result implies that further ex-

periment in musical instrument identification should carefully consider which

features should be incorporated into any classifier used.

This 94.4% correct classification is not as accurate as the GA-MLP classi-

fier developed in the previous chapter. However, as discussed at the beginning

of this chapter, GP has the advantage over GA in that it can evolve the en-

tire solution to the problem. The musical instrument classifier developed in

this chapter that can classify a musical note with 94% accuracy is the direct

result of GP; this solution did not need any PCA in the fitness function to

help it evolve, nor any MLP to help it to classify new samples. In addition

to this, once evolved, the resultant program may be simpler to understand

than the MLP classifier used previously. An MLP is an unintuitive ‘black

box’ classifier, whereas by specifying the primitive set, it was ensured that

the evolved GP program is limited to the feature values and a small set of

simple functions. Section 7.2.1 described how the concept of sufficiency may

not be guaranteed from this primitive set until results have been found. Al-

though not a perfect score, a classification accuracy of 94% implies that this

primitive set of features and function is sufficient for representing a solution

to the problem of musical instrument recognition.

The high diversity both within the final populations and between the re-

sults of the best evolved genomes would imply that further experiments in

this area could improve on the results discussed here. The main issue in im-

plementing these experiments is in the amount of computation required for

an individual run. Although the resultant classifier may consist of a simple

program, the evolution of it may be very computationally expensive. The

experiment of evolving 30 program trees, using the full set of data, with 100

individuals over 2000 generations took approximately 10 days to compute.

The same experiment using less data (14 as opposed to 95 features) took just

under 8 days to compute. As discussed in the previous chapter, evolving the

genomes with the GA took an even longer amount of time — approximately

1 day for each genome, each evolved on one tenth of the data. These exper-

iments were all run on Matlab on a Windows PC with a 3.2GHz Pentium
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Processor. While Matlab is an excellent language for signal processing, fur-

ther GA and GP experiments may be quicker and hence easier to run using

a more powerful language on a different platform.

A number of common features were found to be chosen consistently from

all the experiments in this chapter. Values from the Centroid Envelope and

the Temporal Envelope, along with a number of the lower MFCCs were found

to be consistently chosen more often than other features. In the case of

the best evolved programs, these features were often chosen numerous times

within the one program tree. This level of consistency in selection of features

implies strongly that these features are important for instrument recognition

and hence musical timbre. Although the classification results were not as high

in this chapter as they were in the previous chapter, the selection of specific

features is more consistent, implying that creating classifiers using GP may

offer more insight into the timbre of specific instruments.

The success of a classifier may be determined by comparing its accuracy

with that of the original musical instrument classifier — a human mind. The

following chapter describes listening tests carried out on human subjects, the

results of which may be compared to those of the classifiers developed over

the last two chapters.
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Chapter 8

Listening Tests

8.1 Introduction

The preceding chapters of this thesis have discussed the automatic identifi-

cation of musical instrument samples. To test the success of these developed

classifiers, they are compared in this chapter to a series of human listening

tests. The human ability to aurally identify musical instruments may vary

from person to person for a number of reasons. Before comparing the classifier

results to those of the human participants a number of factors were examined

that may affect our ability to recognise instruments from single notes. Are

certain instruments more recognisable than others? Does musical exposure

affect our ability to identify sounds? Does the presence of vibrato or the

loudness of a note make it easier to identify? Are instruments more difficult

to recognise at their pitch extremities? Initially, it was expected that single

note samples may be difficult to identify at dynamic or particularly pitch

extremities — that a very high pitched violin or flute may merely sound like

an unidentifiable ‘squawk’. A wide range of samples were presented to a var-

ied participant group to examine the effect of varying such attributes on the

participant’s ability to accurately recognise an instrument.

This chapter describes the set-up, results and implications of these listen-

ing tests. Section 8.2 looks at some relevant tests undertaken by previous

researchers and discusses the differences in motivation and method between

those and the tests carried out here. Section 8.3 describes the data and choice

of samples played to each participant. Section 8.4 describes the experimental

set-up for the listening tests. Section 8.5 analyses the results obtained from

the participants. These results are compared to those obtained from the au-

tomatic classifiers in 8.6. Finally Section 8.7 offers some conclusions to the

experiments.
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8.2 Previous Tests

The method of testing used in this experiment is a straightforward ‘Name

that Instrument’ type of classification test. Similar tests have been carried

out for numerous reasons with varying degrees of success in the past. In 1947

Eagleson and Eaglson (1947) compared the ability of musicians and non-

musicians in identifying musical tones both directly and over a loudspeaker.

No list of instrument options was given to the participants and overall their

results were quite low. Surprisingly they found that although the average

accuracy of the musician group was higher than that of the non-musicians,

this was not particularly significant and several non-musicians gave some of

the most accurate identifications. Of the instruments examined, they found

the piccolo and the alto horn were the least accurately identified whereas

the cymbals, violin, trumpet and bells were often correctly identified. It is

possible, however, that the lack of specific instruments to choose from meant

that more obscure instruments would be less likely to be chosen — particularly

among non-musicians.

In the 1960’s and 70’s a number of tests were carried out to investigate

the effect of removing temporal or spectral information on identifying instru-

ments. Berger investigated the recognition of a number of brass and wind in-

struments both in their natural state and with information removed (Berger,

1964). He found that the lowest recognition rate was found after removing

the upper partials, but also that recognition rates deteriorated when the at-

tack and decay portions of the sound were removed or when the sound was

played backwards. In his experiments he found the oboe to be the most eas-

ily recognised instrument and the flute and trumpet to be the most difficult.

Elliott also looked at the effect of removing the attack and decay portions

of the sounds (Elliott, 1975). He found that with these sections removed

only the B[ clarinet, oboe and trumpet were recognised a significant number

of times. He also found that the cello was the least recognised instrument

overall. Saldanha and Corso performed similar processes on musical sounds

in examining the recognition of 10 instruments (Saldanha and Corso, 1964).

Unlike the previous studies that examined only one pitch, they looked at 3

different pitches — C4, F4 and A4 on each instrument as they expected the

tonal quality to become more simplified as the fundamental frequency in-

creases due to the removal of formants that are indicative of the instrument.

They found that notes at pitch F4 were better classified than notes at the

other pitches however, which does not agree with this hypothesis. Their re-
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sults on the importance of the transients agree with the other works showing

them to be of high importance for instrument recognition. Of the 10 instru-

ments examined they found the clarinet, oboe and flute to be the most easily

recognised and the violin, cello and bassoon to be the most difficult.

More recent studies in instrument recognition examined more than the

one pitch in experiment set-ups. Kendall compared the recognition accuracy

of single notes and whole phrases of music (Kendell, 1986). He analysed 3

folk songs played on 2 different clarinets, violin and trumpets and examined

the effect of removing the transients from these recordings. It was found that

instruments were more accurately recognised from whole phrases than from

individual notes. From comparing the results he concluded that the tran-

sients were neither necessary nor sufficient for instrument recognition from

whole phrases and that they were sufficient but not necessary in single note

recognition. Brown performed tests to identify either the saxophone or oboe

by playing sections of solo performance (Brown, 1999). This experiment was

forced choice and achieved very accurate recognition rates. Probably the

most comprehensive study on identifying instruments through listening tests

to date was conducted by Martin in his doctoral thesis (Martin, 1999). He

looked at the recognition of tones at 10 different pitches covering 27 instru-

ments both with isolated tones and from segments of solo performances. He

used 14 subjects with substantial musical experience and found that the mu-

sical segments were more easily recognised than the individual tones. The

results for individual tones were quite low in general but when instruments

were grouped by their instrument families the results dramatically increased.

His results found the trumpet and flute to be the most accurately classified.

Srinivasan et al. (2002) repeated a number of the above experiments with

conservatory students and found their scores to be higher than those from

previous studies. He also found that subjects who played orchestral instru-

ments performed better than those who were pianists, guitarist or singers

indicating that prolonged exposure to such instruments does indeed improve

one’s ability to distinguish between them aurally.

The main difference between the current experiment and those discussed

above is in the number of instruments chosen and the number of presentations

of each instrument to the participants. Participants are given the choice of

six options in identifying a tone: flute, guitar, piano, trumpet, violin or none.

Thus the number of options is kept small but we are not enforcing a forced-

choice decision. Each choice of instrument represents a different instrument

family so there will be no intra-family confusion, but the ‘none’ option allows
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the participant to still have the freedom to decide if a sound is not exactly as

they would expect it to be. This approach allows the participants to decide

with confidence if they believe the sound to be produced by the instrument

chosen, as opposed to picking the best of a bad selection of options. The

instruments included were purposely picked to be of the most commonly

known instruments within their respective instrument families. As many of

the subjects chosen are not musicians, offering obscure choices would cause

unnecessary confusion and lead to inaccurate results. A large number of

samples from each instrument were included in this experiment and particular

attention was paid to those within the extreme ranges of pitch as discussed

in the next section.

8.3 Data

This experiment involved presenting a large number of samples to each par-

ticipant. The goal of the experiment was not to gauge the ability of the

candidates in recognising instruments, but to determine how identifiable the

instruments are across their ranges. Thus the selection of samples presented

during the experiment was carefully chosen.

8.3.1 Samples

The set of samples used during this experiment were obtained from the same

set of samples described in Chapter 5 and Chapter 6 from the RWC (Goto,

2004) and MUMS (Opolko and Wapnick, 1987) databases. With such a large

set of samples available it was important to select the most interesting sam-

ples. While it was necessary to bear in mind the length of time it would take

each participant to complete the test, it was important to select a significant

and relevant selection of samples for the experiment. Samples at pitch and

dynamic extremes are more likely to pose a problem resulting in more inter-

esting analysis. The pitch range of each instrument was divided into regions

from which appropriate proportions of samples were chosen. Details of the

samples chosen for each instrument are given in the following sections.

Flute

The RWC flute samples ranged from C4 to C7 and were recorded both with

and without vibrato at dynamic levels p, m and f. These were divided into

ranges low (C4 to F4) mid (F4 to F6) and high (F6 to C7). For each dynamic
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level, one sample from ranges low and mid were chosen for each make either

with or without vibrato. More samples were chosen from the high range,

however, where two samples were chosen for each dynamic both with and

without vibrato. The MUMS offered samples again from C4 to C7 from

which one was taken from the low and mid ranges, and two were chosen from

the high range. This gave a total of 41 flute samples.

Guitar

The RWC Database includes samples from three guitar manufacturers at the

three dynamic levels. The instrument range is from E2 to E5 but a complete

octave of samples is given for each string on each instrument. Playing a note

whose pitch is out of the more typical range of each string (ie. a pitch that

could be played more comfortably on a higher string) will significantly alter

the timbre of that note. Hence, the range of the instrument was split into

low (E2 to E3), mid (A3 to B5) and high (E4 to E5), but in conjunction with

this, the upper 5 semitones on each string were considered ‘high string’ for

that string. For each dynamic level one sample was selected from each of the

low and mid range and two from the high range, with particular attention

paid to include a selection of high string samples. No MUMS were included

for the guitar. This gave a total of 36 guitar sample.

Piano

The RWC piano samples range from A0 to C8 at the three dynamic levels.

The range was split into low (A0 to C1) mid (C1 to C6), high (C6 to C7) and

very high (C7 to C8). At each dynamic level, one sample was chosen from

each make in ranges low, mid and high and two were chosen from very high.

The MUMS offered a similar range of samples, of which five were chosen in

the same manner. This gave a total of 44 piano samples.

Trumpet

Trumpet samples played both with and without vibrato at three dynamic

levels are included with the RWC Database. The range of these recordings

differ somewhat, from E3 to F6, depending on the make and dynamic level.

These were split into ranges low (E3 to E4), mid (E4 to C6) and high (C6 and

upwards). For each dynamic level, with and without vibrato, one sample was

chosen from the low and mid ranges whereas two were chosen from the high

range. Again the MUMS offers samples from a similar range of pitches. From
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these a further five samples were included. This gave a total of 53 trumpet

samples.

Violin

The RWC Database includes violin samples from a range of G3 to E7. The

tones with vibrato are sampled at the three dynamic levels p, m and f but the

non-vibrato tone are only sampled at level m. As with the guitar, each string

is sampled for one complete octave and so samples were chosen depending

not only on the range within the instrument but the range within each string

also. Thus for each dynamic level with vibrato and for the set without vibrato

one note was chosen for the low string range and one for the high string range

while two were chosen from the overall high range (E6 to E7). A further six

violin samples were taken from similar ranges from the MUMS. This gave a

total of 55 violin samples.

The above resulted in a total of 229 samples for the listening test. It was

important to include as many samples as possible for accurate results while

not allowing the test to run too long as fatigue may set in with the participants

causing inaccuracies in judgement. Presuming that each participant spends a

maximum of ten seconds dealing with each sample, the test would take under

40 minutes. The samples were played in a random but consistent order to

each participant. A list of the samples in the order they were presented to

the candidates is given in Appendix C of this thesis.

8.3.2 Subjects

This test was taken by a total of 31 participants. This consisted of 21 males

and 10 females, ranging in age from 21 to 59. As musical training was not

a requirement to participate, these subjects had varying degrees of musical

experience. They were recruited through word of mouth and most were eager

to participate. On completion of the test, each subject was given a short

questionnaire asking them to detail any musical experience they might have.

They were also asked for any comments on the experiment, some details of

which are discussed in Section 8.5.5.
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8.4 Experimental Set-Up

The experiment was conducted on a PowerBook G4 Apple Mac laptop over

a set of Technics headphones in a quiet room. The user had control of the

volume at all times during the experiment. The test was written as a GUI in

Matlab (MATLAB7, 2006). A screenshot of the GUI used is shown in Figure

8.1. The user was instructed to play the current sample and then choose

whether they thought it was played on

A. A flute

B. A guitar

C. A piano

D. A trumpet

E. A violin

F. None of the above

The user was able to play the sample as many times as they pleased and

then choose their selection from a pop-down menu. Once happy with their

selection they can push Next and their answer is stored in an excel file. The

counter in the top left hand corner is to clarify that they have moved on to

the next sample.

Figure 8.1: Graphical User interface used for the Listening Test

Before starting the experiment each participant was asked to read a Sub-

ject Information Sheet, detailing what they are being asked to do and the
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relevance of the work. After completing the experiment, each subject was

asked to complete the short questionnaire. Copies of these documents are

included in Appendix D of this thesis. The experiment was conducted in two

sections, A and B. Section A was included merely as a training session before

the real experiment. It allowed the user to become familiar with the experi-

mental set-up and to have a few practice runs before they undertook the full

experiment. Two samples for each instrument were included in Section A.

They were purposely picked to be very typical samples of each instrument

with none in the extremities. This left 219 samples for Section B.

8.5 Results

As discussed above, Section A of the experiment was intended to allow each

subject to become familiar with the environment. The samples included in

Section A posed no difficulty to most subjects, although mistakes were made

by subjects unfamiliar with such a set-up or particularly by over-zealous sub-

jects who clicked many buttons to get started. The inclusion of this Section

eliminated the possibility that such mistakes would be made early in the ac-

tual experiment. Thus the results in this section only refer to the results

obtained from Section B.

A comparison of the correct identification (as %) for each instrument by

the whole subject group is shown in the bar chart in Figure 8.2. From this

chart it is clear that the piano was the most easily recognised instrument

with 95.4% correct identification overall, followed by the guitar at 90.7 %,

violin at 86.54 %, flute at 83.3% and finally the trumpet was the most dif-

ficult instrument to recognise with only 77.6% correct identification by all

subjects. The confusion matrix in Table 8.1 shows the mis-identification be-

tween instruments. This matrix indicates the number of instances (not %)

each instrument was identified as each of the other instruments. It can be

seen from this table that the flute was most often not identified — or misiden-

tified as none (77 instances), followed by confusions with the violin (60) and

trumpet (54) but it was rarely mistaken for a piano or guitar. The guitar was

most often mistaken for the piano (44 instances) followed by the violin (25)

and not identified (25). As the piano was overall the most recognised instru-

ment, its confusions were not high although it was most often not identified

(24) or confused with a guitar (21). The trumpet was most often confused

with the flute (191) or not identified (135). Finally, the violin was most often

mistaken for a flute (127) followed by not being identified (70).
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From the above results it is clear that the candidates did not automati-

cally pick the none category if they were unsure of a sample. The flute and

the guitar were the only instruments to be most not identified, although a

‘none’ categorisation did feature strongly among the other instruments. The

confusion between the piano and the guitar is not surprising as they both

comprise of a strong attack whereas the flute, violin and trumpet are more

sustained sounds. In the confusion between trumpets and flutes it is shown

that the trumpet was mistaken for the a flute much more often than a flute

was confused as a trumpet as the flute samples were more often not identified

or confused with a violin. The vast majority of mistakes made on the violin

samples however incorrectly identified them as a flute. As hypothesised at

the beginning of this experiment, we expect that many of these mis-identified

sample sounds are from the extreme ranges within the instrument. The fol-

lowing section examines the individual samples that were misclassified the

most to check the validity of this.

Flute Guitar Piano Trumpet Violin
60

65

70

75

80

85

90

95

100

%
 C

or
re

ct
 ID

Figure 8.2: Percentage of correct identification of each instrument for all subjects

Table 8.1: Confusion matrix for all subjects

Fl Gu Pi Tr Vln None
Flute 1007 4 7 54 60 77

Guitar 2 956 44 2 25 25
Piano 3 21 1242 5 7 24

Trumpet 191 2 7 1227 19 135
Violin 127 6 2 16 1442 70
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8.5.1 Samples

Pitch Range

It is clear from the results obtained that certain samples posed more difficulty

for identification than others. Of the 219 samples played to the 31 subjects,

29 samples (7.6 %) were misclassified 10 or more times. A list of these most

problematic samples is shown in Table 8.2. These misclassified samples are

examined here in terms of instrument, pitch, vibrato and dynamic. Of these

worst identified samples, 15 were trumpet samples, 8 were violin samples and

6 were flute samples. The least recognised sample was D6 played at dynamic

level f without vibrato on the Vincent Bach trumpet. This is the highest

pitch that is played on this particular instrument, and it was only correctly

identified by 2 subjects. A number of other trumpet samples caused serious

confusion as 7 trumpet sounds were misclassified by at least 21 of the 31

subjects. Each of these samples were in the highest range of pitch for this

instrument. Furthermore of the 15 trumpet sounds that were included as the

worst classified, 14 were in the highest range of pitch1. This difficulty in the

identification of particularly high pitches is as expected. Similarly all violin

samples included in this list were in the high pitch region. The 6 flute samples

however were not all included in the high pitch region — 2 were low pitches,

3 were mid pitches and only one was a high pitch. This would imply that

high pitches may cause the most confusion in the recognition of the trumpet

and the violin but that this is not necessarily true for all instruments.

Vibrato

Of the five instruments included in this experiment only the violin, flute

and trumpet can be played with or without vibrato. Of the 15 problematic

trumpet samples, 9 are without vibrato and 6 are played with it. Of the 6 flute

samples, 2 were without vibrato and 4 were with it and of the 8 violin samples

5, were without vibrato and 3 were played with it. Let us be reminded from

Section 8.3 however, that although there are equal numbers of vibrato and

non-vibrato samples for the flute and the trumpet, there are approximately

4 times as many vibrato violin samples (at dynamic level f, m, p and the

MUMS) than non-vibrato samples. This implies that vibrato does help in

the recognition of trumpet and violin samples but is less important for the

recognition of flutes.

1The 15th misclassified trumpet sample G5 p on Schilke is in the mid region but is
only 1 tone below the high region and so is also quite a high pitch
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Dynamic

Most of the samples (apart from the non-vibrato violin and MUMS) include

instances of each sample played at three dynamic levels. The 15 misclassified

trumpet samples consist of 4 at levels f and m, 6 at level p and 1 with no

dynamic. The violin samples consist of 1 at level f, none at level m, 2 at p

and 5 with no dynamic. The flute samples consist of none at level f, 2 at level

m, 3 at p and 1 with no dynamic. These results show that a softer dynamic

does tend to lead to more difficult identification although this relationship is

not as pronounced as might have been expected.

Table 8.2: Samples most often misidentified

Number Instrument, note, dynamic # mistakes Pitch Range
1 Trumpet Bach NV D6 f 29 H
2 Trumpet Bach NV B5 f 26 H
3 Trumpet Schilke V A]5 p 25 H
4 Trumpet Bach V A]5 p 25 H
5 Trumpet Schilke NV D6 m 22 H
6 Trumpet Bach NV A5 p 22 H
7 Trumpet MUMS D]6 21 H
8 Flute Sankyo NV D5 p 17 M
9 Violin Fium NV E7E 16 H
10 Trumpet Schilke NV C]6 p 16 H
11 Trumpet Bach V A5 m 15 H
12 Flute Sankyo NV A6 p 14 H
13 Trumpet Bach NV C]6 m 14 H
14 Violin Carcassi NV C]7E 14 H
15 Trumpet Schilke NV E6 f 14 H
16 Trumpet Bach NV C6 m 13 H
17 Violin JFPres V E7E p 13 H
18 Trumpet Bach NV D6 p 13 H
19 Flute LouisLot V G4 m 12 M
20 Violin JFPres V D]7E f 11 H
21 Trumpet Bach V A]5 f 10 H
22 Trumpet Schilke V G5 p 10 M
23 Violin JFPres NV C]7E p 10 H
24 Violin Carcassi NV D]7E 10 H
25 Flute LouisLot V C]4 p 10 L
26 Violin JFPres NV E7E 10 H
27 Violin JFPres NV B6E 10 H
28 Flute MUMS C]5 10 M
29 Flute Sankyo V E4 m 10 L
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8.5.2 Subject Groups

As discussed previously, candidates were not chosen on grounds of musical

experience although a number of them did have musical experience to some

degree. A number of subjects had received some level of formal musical

training whereas a number of others had achieved postgraduate qualifications

in music technology. During the analysis of the results, the subjects were

therefore split into the following three categories:

A. Non-musicians — those that have had no (or minimal) formal or academic

training in music

B. Musicians — those who have studied music to Leaving Cert standard or

studied an instrument for a number of years

C. Music Technologists — those who have obtained a third level qualification

in Music Technology

There are some subjects (three in total) that belong to both categories B

and C above. In these cases the results were included in both categories for

analysis.

A. Non-musicians

There were a total of 18 subjects in the Non-musician category. The iden-

tification of each instrument for this category is shown in the bar chart in

Figure 8.3. This shows that again the piano was the most easily identified

instrument with 96.8%correct identification, followed by the guitar at 92.6%,

the violin at 86.0%, the flute at 83.2% and again the trumpet was the least

identified instrument at 80.2%. Surprisingly this represents an increase in

accuracy compared with the whole subject group.

The confusion matrix in Table 8.3 displays the number of times this non-

musican group identified an instrument as one of the other instruments. The

confusion between instruments is not unlike that in Table 8.1, apart from the

number of instances whereby the subject picked none. For each instrument

the proportion of none choices was significantly lower by comparison to the

other mistaken choices than from the results obtained from all subjects. This

is particularly noticeable in the case of the guitar which was never identified

as a none. The implications of this result are discussed further in Section

8.5.3.
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Figure 8.3: Percentage of correct identification of each instrument for Non-
musicians

Table 8.3: Confusion matrix for Non-musicians

Fl Gu Pi Tr Vln None
Flute 584 2 6 39 37 34

Guitar 0 567 29 1 15 0
Piano 2 11 732 2 5 4

Trumpet 122 1 5 736 13 41
Violin 79 3 1 7 829 35

B. Musicians

There were 9 subjects categorised as Musicians in this experiment. The musi-

cal experience of these subjects ranged from those who had studied a musical

instrument throughout their childhood to those who played numerous in-

struments and have third level qualifications in music. Comparisons of the

identification of each instrument for this category is shown in the bar chart in

Figure 8.4. This shows the piano as the most recognised at 95.5%, followed

by the violin at 94.1%, the guitar at 90.9%, the flute at 83.5% and finally the

trumpet at 80.8%. The most notable difference between these results and the

previous categories is that the violin was better recognised than the guitar.

It is possible that this result may be due to those with classical training being

more familiar with a classical instrument such as the violin than those with no

formal training. Apart from this one result, the identification results for the

Musician group appear comparable with those of the Non-musician group.

The confusion matrix in Table 8.4 indicates that the instrument confusion

is comparable with that of the whole subject group. The piano was again most

often not identified, or confused with a violin or trumpet, the guitar mistaken

as a piano or violin, the piano as a guitar or none, the trumpet as none or a
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Figure 8.4: Percentage of correct identification of each instrument for Musicians

flute and the violin as a flute or none.

Table 8.4: Confusion matrix for Musicians

Fl Gu Pi Tr Vln None
Flute 293 1 1 11 21 24

Guitar 2 278 15 1 9 1
Piano 0 8 361 2 1 6

Trumpet 36 0 0 371 5 47
Violin 13 2 0 5 449 8

C. Music Technologists

There were 7 subjects with a qualification in Music Technology that took part

in this experiment. Most of these subjects had obtained a Masters degree in

Music Technology in recent years. The identification of each instrument for

this category of subjects is shown in the bar chart in Figure 8.5. Again this

shows that the piano was most easily identified at 90.8%, followed closely by

the guitar at 89.1%, the flute at 86.1%, the violin at 80.6% and finally the

trumpet at 68.3%. These results appear to be on average the lowest between

all categories of subjects. The only instrument that was recognised more by

this Music Technologist group than any other was the flute.

A confusion matrix detailing what each instrument was confused with is

shown in 8.5. It is evident from this table that this group chose the none

option more often than the other groups. The most common error for the

flute, guitar, piano and trumpet was to be misidentified as none. The violin

was more often confused with being a flute — although the none option was

still very high for misidentified violin samples.
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Figure 8.5: Percentage of correct identification of each instrument for Music
Technologists

Table 8.5: Confusion matrix for Music Technologists

Fl Gu Pi Tr Vln None
Flute 235 1 0 6 4 27

Guitar 0 212 0 0 2 24
Piano 1 5 267 1 1 19

Trumpet 39 1 2 244 2 69
Violin 35 1 1 5 299 30

To compare the performances of the different groups Table 8.5.2 displays

the average and standard deviation of correct identification for each group.

It can be seen that the Musician group on average scored the highest al-

though they were closely followed by the Non-musican group. The Music

Technologists scored significantly lower than these two groups. The standard

deviation is also significantly higher for the Music Technologists than for the

other categories, indicating a large variation in the accuracy of the subjects.

The Music Technologists chose the none option a significantly higher propor-

tion of the time than the other groups. From speaking to these subjects it

became clear that as they were used to dealing with synthesised sounds they

expected that some of the sounds in the experiment were synthesised — and

indeed a number of them thought that this was what was being looked for.

As such they considered the none option a more likely possibility than the

other candidate groups. To account for this anomaly between the groups we

now examine the results without the none category.
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Measure Total Non-musicians Musicians MusTech

Mean 182.94 191.56 194.67 179.57

Mean(%) 86.19% 87.47% 87.74% 84.47%

Std. Dev. 39.98 17.23 19.05 33.76

Std. Dev.(%) 10.05% 7.87% 9.4% 12.81%

Table 8.6: Average and standard deviation of identification results for each par-

ticipant group

8.5.3 Removing the ‘none’

In total, the Non-musicians chose the none category 114 times. From a total of

3,942 choices that gives a none choice rate of 2.89%. In contrast the Musicians

chose none 86 times or 4.36% of all choices, whereas the Music Technologists

chose none 169 times or just over 11% of all their choices. Thus the Music

Technologists were almost 4 times more likely to pick a none category than

the Non-musicians. To examine the effect of this on the overall result, the

mean and standard deviation of correct identifications of all subject categories

without including the none choices were evaluated. These results are shown in

Table 8.5.4. This increases the average correct identification in each category.

Most notably, the average correct response in the Music Technologists group

has risen from 84.47% to 91.03% and the standard deviation has halved.

There is now a much smaller difference in the overall correct identification

percentage for each group.

8.5.4 Outliers

The majority of subjects that undertook the experiment made identification

errors on less than 40 samples. There were, however, a few subjects who for

some reason made mistakes on a significantly larger number. Subject 25 erred

on 68 samples. It is known that this subject has a hearing impairment and

so his results may be somewhat misleading 2. Subject 26 mis-identified 84

samples. Being the oldest subject to take part it is possible that her hearing

may have deteriorated, although she gave no indication of this. It has been

shown (TestMyBrain, 2009) that the human ability to recognise faces drops

2Although we were purposely recruiting subjects with healthy hearing, this subject was
still included as his hearing has not prevented him from studying music throughout his life
and achieving honours at grade 8 level in both piano and violin
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after the age of 30 — thus it is possible that this subjects hearing deteriorated

over time in a similar manner. She was also the most uncomfortable with the

experiment set up as she had no computer experience. Subjects 28 and 29

erred on 81 and 93 samples respectively. It is not known why these subjects

scores were so poor: they are both young men with experience in music

technology 3. As these four subjects’ errors are in the region of twice that

of the rest of the subject group, they are here considered as outliers to the

experiment. To gain some perspective of the results without these subjects

the averages for each category are again calculated but with these subjects

removed. This leaves 27 subjects overall, 17 of whom are Non-musicians, 8

are Musicians and 5 are Music Technologists. The averages of these categories

of subjects both with and without the none classification are shown in Table

8.5.4.

Measure Total Non-musicians Musicians MusTech

Without ‘none’

Mean 90.69% 90% 91.59% 91.03%

Std. Dev. 5.13% 4.8% 5.32% 5.89%

Without ‘outliers’

Mean 87.76% 87.81% 88.38% 88.5%

Std. Dev. 8.36% 8.2% 8.53% 8.52%

Without ‘none’ or ‘outliers’

Mean 90.84% 90.74% 91.7% 92.02%

Std. Dev. 4.7% 4.46% 4.8% 4.87%

Table 8.7: Identification results without ‘none’ identifications and outliers for

each subject category

As predicted, removal of the outliers improves the results somewhat. This

is most notable again in the Music Technologists group as 2 out of the 7

members of this group were considered outliers. Naturally, removing these

outliers decreased the standard deviation in all categories also. From looking

at all the groups when the results are adjusted to exclude outliers and to

3One could hypothesise that their hearing may have been damaged due to over-exposure
to loud sounds in the music technology field, but more tests would need to be carried out
to make such a claim
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exclude the none identifications, the Music Technology has the most successful

average recognition followed by the Musicians and then the Non-musicians.

These results are illustrated in Figure 8.6.
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Figure 8.6: Average correct identification of each subject category of the original
data, the data without none results, the data without outliers and the data without
outliers or none results

8.5.5 Discussion

This listening experiment was conducted to evaluate how recognisable the

samples used in previous tests in this thesis actually are to human listeners.

Out of 219 samples, the number of samples misidentified by each subject var-

ied from 6 to 93 with an average of 36. Overall the trumpet was found to

be the most difficult instrument to identify and the piano the simplest. This

agrees with many of the comments made by the subjects after taking the ex-

periment. A number of the subjects said that they found the piano and guitar

the easiest to recognise but they found the trumpet and the flute the most

difficult. This would explain the large confusion rate between the trumpet

and the flute. As mentioned earlier the piano and guitar (being struck and

plucked instruments) both have a strong attack and quick release whereas the

other instruments are more sustained. The results here indicate that such a

prominent feature may influence the recognition of instruments but more fo-

cussed research would be needed to confirm this. It is true that the transients

are dominant in such sounds and as discussed in Section 8.2 transients have

been found to be very important features in instrument recognition. Hence

it follows that those with sharp transients should be easier to recognise as we

have found here. The results here do not however agree with previous test
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by Elliott (1975) and Martin (1999) who found the trumpet to be one of the

most easily recognised instruments.

It was found that particularly high pitched trumpet samples were very

difficult to identify. Difficulty in recognition was somewhat more evident in

quieter sounds than in louder ones although this was not pronounced. Quieter

sounds tend to have a smoother amplitude envelope with a less pronounced

attack due to a softer play by the performer. However, it was observed that

the pitch of the note played a more important role in making certain sounds

unrecognisable. This was not the case for the flute however, as only one high

pitched flute sample was found in the most problematic list. The presence of

vibrato did not greatly influence the identification of the flute or the trumpet,

but a large proportion of non-vibrato sounds among the problematic samples

would indicate that it plays some importance in the recognition of violin

tones.

The subjects were divided into groups to determine the effect (if any)

of musical training on their ability to identify sounds. It was interesting to

note that 2 subjects achieved the most accurate score of misidentifying only

6 instrument sounds. Of these two subjects one was an accomplished mu-

sician (who is also a Music Technologist) whereas the other had no formal

music training at all. This result is similar to that noted by Eagleson and

Eaglson (1947) who found that the best result overall was by a non-musican.

Of the three groups it was initially found that the average of the Musicians

group was the highest, followed by the Non-musicians and finally by the Mu-

sic Technologists. After removing outliers and the none category however it

was found that the Music Technologists performed best followed by the Mu-

sicians and finally the Non-musicians. Although this may initially appear to

encourage the removal of the none category altogether it is worth considering

the implications of this result. These subjects have expertise in dealing with

synthesised sounds and so their high rate of selection of the none category

is meaningful and indicative of the quality of these sounds. Thus the none

classifications by the Music Technologists are possibly more important than

those by the Non-musicians who were most likely trying to discern between

instruments rather than really judging the quality of the sounds. It was the

quality of the sounds being scrutinised here — we were not looking for the

highest correct scores of the subjects. This result shows the importance of

knowing the abilities of your test subjects in analysing such results.

In conclusion, we are left with a real set of human results on our sample

sounds, details of which we may now compare with the instrument classifiers
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developed in the preceding chapters.

8.6 Comparison with Automatic Instrument

Classifiers

This section discusses the accuracy of the GA-MLP classifier developed in

Chapter 6 and the GP strings developed in Chapter 7 at classifying the set

of sounds tested in these listening tests. Both of these classifiers have already

been tested with a 65 sample one-octave and a more general 300 sample

set with encouraging results. Rather than representing ‘typical’ samples, as

discussed above this set of listening samples includes a higher proportion

of problematic samples. Hence it is anticipated that these samples may be

difficult for the classifiers to identify correctly.

8.6.1 GA-MLP Classifier

Chapter 6 described the development of an automatic instrument classifier

using an MLP with features selected by a GA. The accuracy of this classifier

was discussed in classifying a typical one-octave set and a larger set that

was more representative of the whole data set. Using the genomes derived

from the 40-dimensional fitness function, the average classification of the one-

octave set was just under 70% whereas that of the larger set was above 99%.

In this section, we examine the accuracy of this classifier at identifying the

set of samples used in the above listening tests.

The GA was trained and tested 10 times for each of the 10 genomes. The

training set consisted of the whole set of data and the testing set comprised

of 219 listening tests samples. The results are discussed in terms of the

classification of the system and the confusion between the tested instruments.

The average classification results of the MLP trained using the 10 genomes is

given in Table 8.8. Clearly this shows a dramatic reduction in classification

accuracy compared to the results of this classifier on the other test sets.

Notably, the piano results have decreased considerably, whereas the piano

was one of the best classified instruments for both the one-octave test set

and the larger test sets. The only instrument to be consistently recognised

from this test set is the violin. Identification accuracy for the trumpet and

the guitar are both particularly poor. Of the 10 genomes, Genome 3 resulted

in the best overall accuracy at 43.97%. The variation in accuracy was not

large between the 10 runs for each genome. From inspecting the results of the
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individual runs it was noted that the total accuracy across all five instruments

did not exceed 50% for any one run.

Table 8.8: Results for the GA-MLP classifier tested on the Listening Set samples
for each of the 10 genomes

Genome Total Piano Violin Flute Trumpet Guitar
1 35.57% 17.38% 90.38% 44.36% 3.92% 10%
2 33.20% 5.95% 88.87% 51.54% 5.88% 0%
3 43.97% 46.9% 87.92% 60% 4.9% 12.06%
4 30.68% 3.81% 91.13% 35.38% 6.08% 1.18%
5 39.18% 24.29% 68.49% 52.82% 13.73% 34.41%
6 32.33% 5.95% 85.28% 50.51% 4.51% 3.24%
7 41.19% 47.62% 73.58% 65.64% 9.61% 2.06%
8 38.68% 31.9% 81.89% 58.72% 6.08% 5.59%
9 37.08% 30.71% 65.47% 68.72% 6.67% 10%
10 37.58% 18.81% 90.94% 32.31% 19.61% 10.59%

Average 36.95% 23.33% 82.4% 52% 8.1% 8.91%

This classifier performs very poorly in comparison to the human results

discussed earlier in this chapter. As before with the human subjects, certain

samples posed more of a problem than others to the classifier. Each sample

was classified 100 times (10 runs by 10 genomes). Of the 219 samples, 9 were

misidentified all 100 times. All 9 of these were trumpet samples, five of which

were in the highest range. A total of 45 samples were misidentified 95 or more

times. Of these samples, 29 were trumpet samples, 15 were guitar samples

and one was a piano sample4. The high misclassification of trumpet sounds

agrees with the human test results, but for the human subjects the guitar

was one of the best classified instruments. The misidentifications between

instruments is shown in the confusion matrix in Table 8.9.

This confusion matrix shows the number of times the classifier misidenti-

fied an instrument sample as on of the other instruments. Note that there is

no none classification in this table as the MLP was trained to select one of five

options, making it a forced choice decision. This table shows that while the

violin and the flute were more often correctly identified than confused with

another instrument, this is not true for the other instruments. The piano was

more often confused with a violin rather than be correctly identified. The

guitar was more often confused with the piano, violin or flute rather than

correctly identified and the trumpet was more often confused with the violin

or flute, rather than correctly identified. Across all instruments, the most

common confusion was with the violin — indicating that the timbre of the

4B0 P — a particularly low, soft piano sample.

215



violin may have been found by the classifier to be somehow ‘in-between’ the

timbres of the other instruments. These results, and those of the human tests

may now be compared with those obtained from the GP classifier.

Table 8.9: Confusion matrix for GA-MLP classifier

Fl Gu Pi Tr Vln
Flute 2028 21 64 94 1693

Guitar 831 303 1197 104 965
Piano 970 70 980 179 2001

Trumpet 1781 34 179 413 2693
Violin 786 11 98 38 4367

8.6.2 GP Classifier

The GP classifier developed in Chapter 7 combined the 95 features using

only simple arithmetic and logical operators. The best results were found

by running a GP using both mathematical and logical operators over 2000

generations. This run created 30 individual programs. Although the accuracy

of classifications varied considerably between individuals, a high accuracy of

94% was achieved with the best strings using Set10 as the test sample set.

A further set of 30 individual programs were evolved using only the top 14

features. These were found to have higher test accuracy, on average, than the

programs using all 95 features. The highest test accuracy found was 94.3%

by programs number 3. The accuracy of these evolved strings at classifying

the set of listening test samples is examined in this section.

As with the GA, when the 30 GP programs were used to test the listening

test samples, the results were again found to be very poor. The highest ac-

curacy achieved by any one program using 95 features was 46.6%, which was

obtained using string number 29. The three programs found to be the most

accurate when tested using Set10 — 9, 2 and 30 were found to have poor

classification accuracy (26.9%, 32.9% and 31.9% respectively) when tested

with these listening test samples. The average classification accuracy of all

30 programs was 28.34%. The programs evolved using just the top 14 features

achieved slightly higher accuracy when tested with these listening samples.

Although the best program (number 9) when tested using Set10 again gave

a poor classification of 29.7%, the highest test accuracy achieved by any pro-

gram was 56.16% by program number 25. The average of the classification

results of the 30 programs evolved using the top 14 features was 31.5% —

slightly higher than that of the programs with all features. Hence, the re-
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mainder of this section considers the classification results of the 30 programs

evolved using just the top 14 features.

A total of 48 samples were incorrectly identified by all 30 programs. Of

these, 31 were guitar samples, 16 were trumpet samples and 1 was a flute

sample. Again, the high proportion of problematic trumpet sounds agrees

with the GA and the human results. The notably higher misclassification of

guitar sounds, however, again disagrees with the human results.

Table 8.10 displays the misidentifications between the musical instru-

ments. Note that the none classification was possible again in these results.

The identification is given by the numerical output of the current string —

1 for piano, 2 for violin etc. If however the output was not one of the five

numbers accounted for (a 0 or a 6 for example) the classification was con-

sidered a ‘none’. It is evident from this table that the piano and the violin

were the only instruments most often correctly identified. Each of the other

three instruments were more often confused with a different instrument than

correctly identified. The flute was most often confused with a violin or a

piano, the guitar with the piano or the violin and the trumpet was most

often confused with the violin or the flute. Evidently, most confusions were

with the violin, piano and flute with few instances of any instrument being

confused with a trumpet or guitar. It was first considered that this might

be due to some bias in the GP coding — as the piano, violin and flute are

identified with the low numbers 1,2 and 3. However, this is unlikely to be the

case as the trumpet and guitar were recognised quite accurately when tested

with Set10. Furthermore, it may be seen from the results of the GA-MLP in

Table 8.9 that a similar tendency to favour misidentifications as the piano,

violin and flute were also noted, where this classifier had no such numerical

bias.

Table 8.10: Confusion matrix for the 30 GP programs evolved using the top 14
features

Fl Gu Pi Tr Vln None
Flute 281 12 329 34 467 51

Guitar 39 23 716 3 200 79
Piano 61 5 828 8 307 47

Trumpet 474 16 330 100 578 32
Violin 238 9 417 10 837 39

These results show that the strings evolved by the GP and the GA-MLP

were both disappointing as classifiers in comparison to humans. The gen-

erality of both the GA and GP methods were shown in the experiments in
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Chapter 6 and 7 as they demonstrated recognition rates of unseen samples

at over 99% and 94% respectively. As stated at the beginning of this sec-

tion, it was anticipated that the accuracy of the classifier would drop as these

samples were picked to contain a high proportion of problem samples to test

the limits of the human ear. It is evident from these results, that the hu-

man ear is more successful as an instrument classifier than the GA and GP

methods employed in earlier experiments. Regardless of musical experience

or ability, the humans outperformed both the GA-MLP and GP classifiers at

recognising this set of samples.

8.7 Conclusion

This chapter described a series of human listening tests on individual note

samples undertaken for comparison with the automatic instrument classifiers

developed in this thesis. Section 8.2 reviewed listening tests previously un-

dertaken by other researchers. Section 8.3 detailed the samples used in the

experiments which were discussed in Section 8.4. The results from the full

participant set and groups of participants selected according to musical expe-

rience were discussed in Section 8.5. Finally, Section 8.6 described the results

of the previously evolved GA and GP classifiers when tested with these lis-

tening test samples.

The human listening tests found that, in general, people are very accurate

at recognising instrument sample sounds. The accuracy of the full set of

participants ranged from 58% to 96% with an average classification accuracy

by all participants of 84%. In comparison to this, the best genome used

with the GA-MLP had a classification accuracy of just under 44% and the

best accuracy obtained from the strings evolved using GP was just over 56%.

This shows that although results from tests in Chapter 6 and Chapter 7

may show very high classification results for these classifiers, they do not

perform at the standard of the human ear when tested with a particularly

difficult test-set. The high accuracy of the human participants are a testament

to the adaptability of the human aural recognition system. Even though

these samples were at the extreme ranges of the instruments, the majority of

participants had little difficulty in identifying most of them.

A notable difference between the human tests and that of both automatic

classifiers is in the success of identifying the guitar. In the human tests

the guitar was the second best identified instrument, and many candidates

commented on it being the easiest to identify. In contrary to this, the guitar
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was the least recognised instrument for the GA-MLP and GP classifiers. We

may hypothesise that this might be due to the familiarity of the guitar to

humans, whereas no such familiarity could exist for the classifiers. Arguably,

the guitar is one of the most common instruments — which most people

would have had opportunity to play at some point throughout their lives.

Thus humans have had much opportunity to learn the sound of a guitar.

Evidently there are aspects of the guitar sound that humans recognise that

the features used do not convey to the GA and GP. As humans we learn

sounds through exposure, thus the familiarity of the guitar could have given

humans more chance to learn the distinguishing features of this instrument.

The results of this chapter show that although successful musical in-

strument classifiers have been developed for classifying ‘typical’ instrument

sounds, they are not a replacement for the human ear. Our human hearing

and perception must still depend on attributes not included in this thesis for

identifying more tricky sounds. Although many timbral features were incor-

porated in these classifiers a perfect recipe for identifying any given musical

sound has not been established.
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Chapter 9

Conclusion

This thesis examined musical sound recognition and the features that are

most important for accurate musical instrument identification. An introduc-

tion to what was meant by a musical sound was given in Chapter 2. Chapter

3 offered an introduction to timbre — what it is and the difficulties in mea-

suring it. The timbral features used throughout the thesis were introduced

in this chapter. The majority of these features have been used already in

previous experiments in sound and instrument recognition, although some of

them such as the Centroid Envelope had not been measured in this particular

way before. A review of previous work in musical instrument recognition was

given in Chapter 4. It is evident from these studies that previous methods

of musical instrument classification varied widely in terms of samples used,

features examined and the type of classifier used to perform the classifica-

tion. This chapter also introduced the field of evolutionary computation and

discussed ways in which it had been applied to the field of sound and music

production.

Chapter 5 described a number of experiments that used PCA and MLPs

for musical instrument recognition. By including many samples for classify-

ing just three instruments, a robust classifier was developed that was highly

accurate at classifying previously unseen samples. This chapter showed how-

ever that not all features were necessarily beneficial to a classifier — some

features appeared more important than others. As testing each combina-

tion of features is unfeasible, an optimisation technique was required. This

optimisation was performed using Evolutionary techniques as although such

techniques have been shown to be powerful optimisation tools, they have not

yet been extensively applied to the area of musical sound recognition. Thus,

the following two chapters selected the best timbral features for classification

using EC methods.
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Chapter 6 developed a GA with a clustering fitness function to determine

the best set of features to use with a MLP. The GA created a genome with

95 gene values, each of which corresponded to a weighting of one of the 95

timbral features. It was possible to reduce the number of features used by ex-

cluding those that had a corresponding gene value below a certain threshold.

Thus the GA was used both to examine the most relevant features and to

improve the performance and reduce the complexity of the classifier. As this

evolutionary method was not able to classify the sample itself, it was com-

pared to another evolutionary method — GP. The experiments in Chapter

7 used GP to evolve a program that can classify an unseen instrument sam-

ple. By limiting the available functions to just simple arithmetic and boolean

functions GP was able to evolve a simple classifier, the structure of which is

available to the user. The best evolved classifier was capable of achieving up

to 94% accuracy in classifying instrument samples. While not as accurate as

the GA-MLP method, these results are still encouraging for future work using

GP. Chapter 8 described a series of listening tests undertaken by a group of

human participants. These tests had a high percentage of problematic sam-

ples and showed that samples, in particular trumpet samples, in the higher

pitch regions prove more difficult to identify than those in the lower or mid

regions. When compared with the classifiers developed by the GA and GP

the human subjects were shown to outperform both methods.

The remainder of this chapter discusses the conclusions and implications

that may be drawn from the main results found in this thesis.

9.1 Classification Results

The MLP used in the experiments in Chapter 5 is a well established classifica-

tion method. Other studies described in Chapter 4, have used this method in

the past to successfully identify musical instruments. Hence, the MLP results

may be used as a benchmark for comparison with the results obtained from

both the GA and the GP. The motivation for including these evolutionary

techniques in the instrument classifier was threefold:

• To attempt to create a more accurate musical instrument identifier.

• To reduce the number of features used with such classifiers, which may

reduce computational costs while maintaining a high rate of identifica-

tion.
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• To determine the most important features, which in turn may lead to

some further insights into timbre measurement and the identification of

musical instruments.

In the experiments carried out throughout this thesis, each of the classification

methods were tested using three sets of samples: a one-octave set containing

an octave of pitches common to each instrument played at dynamic f, a

general set containing 300 samples with equal proportions of samples played

at all pitches and dynamic and a listening set containing a high proportion

of difficult or problematic samples (as described in Chapter 8). A summary

of the best classification results is given in Table 9.1.

Table 9.1: Comparison of the GA and GP developed classifiers against the bench-
mark MLP classifier tested with the one-octave samples, the general samples and
the listening samples.

Set MLP GA-MLP GA Reduced GP GP Reduced
1 Octave 70.31% 69.55% 50.02% 53.85% 70.77%
General 99.63% 99.63% 99.3% 94% 94.3%
Listening 45.21% 43.97% 44.34% 46.6% 56.2%

It is evident from these results that regardless of the method used, the

highest accuracy was reported by testing with the general set. It is not sur-

prising that the general test set is more easily classified than the listening

samples — these were purposely chosen to be difficult. The fact that the

general set is recognised more easily than the one-octave set may be slightly

more surprising as these samples may be considered ‘easy’ for a human lis-

tener. This result demonstrates that what may be easy for a human is not

necessarily easy for an artificial classifier. The common f dynamic in the

one-octave set may have had an affect on the accuracy rates. Transients —

particularly the attack — may be more pronounced in loud sounds than in

quiet sounds. This may cause confusions with instruments which have par-

ticularly strong attacks, such as the piano. Also the pitch range, C4-C5,

while common to each instrument, may not be the most comfortable range

for each instrument to be played in. The smaller size of this test set may also

affect the accuracy of classification, as each individual mistake made on this

set causes a decrease of 1.5% in accuracy as opposed to each mistake on the

general set which causes a drop in accuracy of just 0.33%. These sample set

results demonstrate that to get the most general accuracy of the classifier, it

is important to use a test set of samples that represent the entire set, rather

than ‘pigeon-holing’ the test set into a specific range of pitch, dynamic or
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other quality. Restraining the test samples to those of a specific pitch and

dynamic caused a bias in the test set that skewed the results.

Overall, when all features were used, the MLP performs the strongest

with the majority of test sets. The GA-MLP performs almost as well as

the original MLP in each set (or exactly the same when tested with the

general set). The GP classifier performs slightly worse on the one-octave

and general test set but it slightly outperforms both other methods on the

more difficult listening test set. This implies that the classifier evolved with

GP may be more robust than the other methods at recognising particularly

difficult samples. In general, however, there was no marked improvement on

the results of the benchmark MLP classifier. While the GA-MLP and GP

classifiers developed in this thesis did not outperform the MLP, they also

did not perform badly in comparison to it. In addition to this, both methods

indicate which are the most important features — thus allowing the reduction

of the data incorporated to reduce computation costs.

The reduced GA-MLP quoted in Table 9.1 limits the data to those fea-

tures whose corresponding genomes are 0.7 or higher. This corresponded to

25.2 features on average being used for classification with the MLP. From the

results it is evident that this reduction in features caused a very small reduc-

tion in classification accuracy of the general samples, and resulted in a slight

increase in the best accuracy on the listening set. However, the classification

accuracy on the one-octave has been significantly reduced. It is worth noting

that this result is averaged over the 10 genomes and that the results between

the genomes varied quite widely from 27% for Genome 2 to 68% for Genome 6.

Thus the effect of removing features was more detrimental for some genomes

than others. The success of the classification using the general set, however,

implies that this GA successfully reduced the number of features from 95 to

an average of 25.2 with a minimal reduction in classification accuracy.

The reduced GP classifier used just 14 of the 95 features in classifications.

It is evident from the results in Table 9.1 that this reduction in features

was beneficial to the system for each of the test sets. Most notably, the

classification accuracy of the more difficult listening samples was increased

significantly. Thus the program evolved by GP with reduced features is the

most generalised of all the classifiers developed in this thesis. It must be

noted, however, that the program that gave the best results for the one-octave

and listening test sets was from individual number 25, whereas that which

gave the best classification results for the general set was from individual

number 9. The program from number 25 gave a classification accuracy of
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76.7% when training and 75% when tested with the general set. Thus, this

may not be the most accurate program on the general set, but it does give the

most consistent training and testing results regardless of the samples used.

9.1.1 Human Classification Results

The results of the experiments in Chapter 8 demonstrated that humans are

very accurate at identifying familiar musical instruments. Even though the

selection of samples presented to the candidates had a high proportion of prob-

lematic samples, the average recognition rate was high at 84%. This is con-

siderably higher than the best classification accuracy of the MLP (45.21%),

GA-MLP (44.34%) and the GP (56.2%) classifiers when tested with the same

set of samples. This shows that although high recognition accuracy was re-

ported for each of the developed classifiers, when tested with problematic

samples they cannot match the human ear. As discussed in Chapter 4 many

previous studies have developed musical instrument classifiers quoting results

that may lead one to believe that the problem is effectively solved. How-

ever, the results presented in Chapter 8 show that when tested with difficult

realistic samples, such developed classifiers may remain wanting. Of all of

the classifiers, the one evolved with GP using limited features performed the

best at recognising the listening test samples, but the results were still not as

accurate as those from the human tests. It is demonstrated in this thesis that

although a classifier may be tested and shown to be accurate, it may still not

be an accurate replacement for the human ear.

9.2 Features

Along with classification results, one of the objectives of this thesis was to

determine which features were most important for musical instrument se-

lection. As discussed in Chapter 3, musical timbre remains an ill-defined

property that is difficult to measure. As aurally identifying a particular in-

strument is largely dependent on its timbre, it was hoped that determining

the best features to use for classification may offer some insight into the na-

ture of timbre. Throughout the thesis, a number of features have emerged

to be more important than others. This section discusses the details of these

features.
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9.2.1 Centroid Envelope

Experiment in Chapters 5, 6 and 7 all found the Centroid Envelope to be a

very important feature for accurate instrument classification. In the evolu-

tionary experiments in both Chapter 6 and particularly in Chapter 7, the first

principal component of the Centroid Envelope emerged as the most promi-

nent feature from all 95 features examined. The consistency of this result

among the variety of experiments implies that this particular feature is very

important in timbre analysis. Although the first principal component was the

strongest, the other components — particularly the second, also emerged as

being relatively strong features in a number of experiments. Interestingly, the

static centroid did not emerge as a strong feature in any of the experiments.

Many studies in the literature have found the centroid to be important in tim-

bre analysis (Grey, 1977; Jensen, 1999; McAdams et al., 1995). It was shown

in this thesis that it is not just the value of the centroid, but the changes of

the centroid over the duration of the note that is the most revealing quality

of a musical sound.

9.2.2 MFCCs

Along with the Centroid Envelope, throughout this thesis the MFCCs have

emerged as a very prominent feature for instrument classification. However,

there were some differences in the choice of MFCC values from the different

methods of feature selection. Experiments in Chapter 6 using the GA found

higher valued MFCCs to be the most important. In particular the fourth

principal component of higher value MFCCs were found to be of particular

benefit. This agrees with earlier results in Chapter 5 which found that a

higher number of MFCCs (12 or above) using four principal components gave

the best classification across three instruments. The meaning of these results

differ though, in that the results from Chapter 5 could only indicate that

higher MFCCs are best used along with the lower valued MFCCS, whereas

the GA experiments selected the higher valued MFCCs as being the most

important overall. Thus the results of the GA may indicate that it is solely

the higher valued MFCCs that are important for accurate musical instrument

identification.

The MFCC results from the GP experiments in Chapter 7 do not agree

with the above results however. Over every experiment it was the first or

second component of the lower valued MFCCs that were consistently chosen

for the evolved programs. In particular the first component of MFCC4 was
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one of the top three features selected in almost every experiment. The rea-

sons for the priority of the different MFCC values in the two methods is not

clear. A close inspection of the values indicated that certain lower valued

MFCCs showed more distinction between instruments, thus explaining their

prominence as a useful feature. Higher valued MFCCs showed less prominent

distinctions between the instruments. The higher classification accuracy of

the GA-MLP classifiers may indicate that the GA chose the ‘right’ selection

of MFCC values. However, further GP runs may also result in more accurate

programs. If these programs were to include more high MFCC values they

would agree with the GA-MLP results, proving that higher MFCCs values

are more important. Alternatively, if these more accurate GP programs con-

tinued to stress the lower value MFCCs, they would consolidate the GP runs

in this thesis that found these to be the most important values.

9.2.3 Other Features

Although the Centroid Envelope and the MFCCs produced the most consis-

tent results as described above, a few other similarities emerged among some

other features to a lesser extent. After the Centroid Envelope, the Temporal

Envelope was found to be particularly dominant in the GP experiments. On

the other hand while it was chosen somewhat often by the GA, Temporal

Envelope values appeared among the weakest features chosen by the GA in

a small number of experiments. The Temporal Envelope was found in early

MLP experiments in Chapter 5 to be a very useful feature — obtaining over

84% classification when used alone to classify between three instruments. It

is also regarded as a very important feature in previous instrument classi-

fication studies. Thus it appears that the GP made the correct decision in

including this feature in the majority of its evolved programs.

From Table 7.1 it appears that the Inharmonicity and the Number of Peaks

were two of the least often chosen features using GP. This again agrees with

MLP results in Chapter 5 which found the addition of these features to be

detrimental to the system. Likewise the values from Residual Envelope were

not often included by either the GA or GP reinforcing the decision made in

early MLP experiments in Chapter 5 to not include values from the Residual

in further experiments.

In general it appears that for a number of features, the selection by GP

is consistent with experiments conducted earlier in the thesis. Although the

selections by the GA and GP vary, GP was in general more consistent with

its selections over many experiments than the GA. The selection criteria by
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each of these algorithms was different. GP could only use a selection of the

features — constraint on the size of the programs evolved meant that it could

not select them all. On the other hand, the GA could select all 95 features, it

was only the relative amount of each feature used with the classifier that it was

controlling. A feature that was ‘strong’ according to the GA meant that there

was more of this feature incorporated in relation to the other features. On

the other hand a feature was only ‘strong’ according to GP if it was included

in the classifier at all — weak features were completely dismissed. This may

imply that the selections by GP are a better means of judging which features

are important, as weaker features were completely ignored rather than merely

reduced in magnitude.

9.3 Limitations of Method

Although this thesis does put forward some interesting results, there are areas

within the work which may have been susceptible to problems or limitations

within the methods employed. These possible problems are discussed in this

section.

The most important drawback of evolutionary methods is in the time it

takes to evolve a solution. As discussed in earlier chapters, each of the final

10 GA genomes took approximately one day to evolve, and the longest GP

run (30 runs with population of 100 over 2000 generations) took over 10 days

to compute. Along with the experiments described in Chapter 6 and Chapter

7, many other evolutionary runs were performed that did not yield results

deemed good enough to persue. Even smaller runs at earlier points in the

experimentation were time-consuming. From an experimental point of view

such long times can be tedious, particularly when waiting for results to decide

on the best methods to continue with. These long run times may limit the

potential of the evolutionary runs.

The lack of consistency in the evolved results was discussed in both Chap-

ter 6 and Chapter 7. This lack of consistency is apparent in both the differ-

ences in the best evolved genomes or program trees for each run and in the

variety of individuals among the last population of each run. The diversity

among the final population implies that the algorithm is still searching for the

best solution. Thus longer runs may be a step towards a solution in this case.

However, the differences between the best evolved solutions imply that the

algorithm is finding a different best solution every time — it may be finding

a local minimum rather than the global minimum. The implications of this
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are different for the GA and the GP. The 10 genomes evolved by the GA

are found using 10 different data sets. These sets were chosen to be equally

representative of the whole sample set, but ultimately do contain different

samples. It is therefore possible that the GA is creating genomes that are

specific to the samples used, and so all 10 genomes will be different from one

another. Such a problem is known as over-fitting. However, this in turn may

raise another problem: what if the best set of features to use for each group

of samples are different because no one best set exists for all samples? If one

best set of features does exist, then the GA in Chapter 6 did not find it. On

the other hand if no best set exists, then the GA could not be able to find it

regardless of what set of samples was used to evolve the genomes. It is pos-

sible that the best set of features to use is dependent on which instruments

are being recognised.

The GP programs on the other hand were evolved using the entire sample

set. It was noted in Chapter 7 that although the best evolved genomes were

still diverse, there was more continuous selection of specific features using GP

than using GAs. This implies that using the full set of samples with the GA

might have produced more consistent results. However, the GA took longer

to evolve than the GP which is why the data was split into 10 sets for the

GA experiments. Conducting the GA experiments using the whole set of

data over more generations would require too much time using Matlab on the

platform used in this thesis. Thus the best solution for this problem would

be to implement the same tests using a different language on a more powerful

platform.

The variations in the results may also be due to the randomness involved

in the initialisation of the evolutionary runs. This random initialisation means

that it is impossible to exactly reproduce the results from any one run. An

exact result cannot be taken from just one run — it must be compared to

a number of independent runs to get a true indication of what the results

mean. Thus as in the analysis in the evolutionary chapters, trends emerging

from numerous evolutionary runs must be examined to determine what the

most prevalent features and results are. When the GA or GP is performing

properly, this randomness at initialisation should not matter, as the algorithm

will converge towards the correct result. The fact that there is still so much

variation implies that either over-fitting has occurred, or the algorithm has

not been given enough time to converge.

The previous experiments on musical sound classification, described in

Chapter 4, contained a wide variety of different timbral features. The list
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of features used throughout this thesis and described in Chapter 3 cover the

majority of features used before, but it may be noted that every possible

timbral feature was not incorporated in this thesis. It is therefore possible

that one or more alternative features may have emerged as important, had

they been considered. The problem with this theory is that there is no upper

limit to the amount of features that may be included in an experiment. New

features may always be created and added, therefore making it impossible to

confidently state that an adequate number of features are included. Never-

theless, the evolutionary methods employed as feature selectors in this thesis

should be able to determine which features, of those included, are the most

important for timbral analysis of musical notes.

Another practical limitation of the work carried out in this thesis is that

the experiments are only conducted using five instruments. It was stated that

this limitation was purposely implemented so that numerous instances of each

instrument sound could be incorporated into the experiments. Nevertheless,

this does limit the developed classifier to choosing between a piano, violin,

flute, trumpet and guitar only.

9.4 Future Work

Although there are limitations to the work, there are many prospects for

the expansion of the type of experimentation described in this thesis. Even

though the variations among the evolved results imply that a global set of

optimal solutions have not been found, the classification results given by the

EC methods are still very encouraging. For both the GA and GP methods,

testing on unseen samples produced accurate results, indicating that the clas-

sifiers developed were general enough to handle unseen sounds. The GA-MLP

results were particularly accurate, and remained so even with the removal of

a number of features. Thus further evolved genomes might be more successful

at removing superfluous features for sound classification. Future work using

the GA would require a faster computer set-up that would be able to run

for many days or weeks. Only then could it be determined if a global best

selection of features could be found.

From the discussion on previous work in Chapter 4, it was seen that GP

had not been used previously for musical instrument identification. The re-

sults from Chapter 7 indicate that it is well suited for this purpose. Although

the classification results were not as accurate as with the GA, GP did create

programs limited to a small set of functions that displayed relatively consis-
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tent and high recognition rates. The program trees evolved using GP were

created using a quite limiting set of primitive functions. It is likely that the

classification results of the evolved programs may be improved by further

searching through the possible functions. In particular, the inclusion of more

boolean logical operators may be of benefit to the system as they may be

able to exploit relationships between the features. Boolean operators may be

employed to evolve a different type of classifier that is purely built on the

relationships between the features, rather than a mathematical combination

of the feature values for a given sample. Such programs may contain boolean

operators only, and output a classification ‘label’ that is assigned to a specific

instrument, rather than a numerical calculation. Although the results from

Chapter 7 show that the methods employed here do work, there is no ‘math-

ematical’ relationship between the instruments: a ‘1’ does not literally mean

a piano anymore than a ‘4’ can mean a trumpet — they are merely defined

as such for these experiments. Likewise, another program could be developed

that analyses the relationship between features and outputs a specified out-

put according to certain conditions. The evolution of such a program would

require some subroutines or Automatically Defined Functions (ADF) (Koza,

1994). Such functions may give the programmer some high level control over

the expected relationships among the features, to ensure that only meaningful

programs are evolved.

Other evolutionary methods may also be useful for evolving musical sound

classifiers. In particular Grammatical Evolution (GE) (O’Neill and Ryan,

2001) may be used instead of GP to evolve a classifier. GE performs in a

similar manner to GP in that it can create programs, but it evolves simpler

strings and then maps them to programs using a specified grammar in a

genotype to phenotype mapping. This may be beneficial to the system —

in particular for building programs using more logical operators as described

above. By defining the grammar, it may be possible to include and encourage

certain sections of code such as those that may relate one feature to another

and give a meaningful output.

Further work in this area may also involve creating a classifier that can

classify between more instruments. The instruments used throughout this

thesis were purposely chosen to be from different instrument families. Creat-

ing a more specific classifier that can classify between instruments of the same

family or instruments from the entire orchestra would require a much larger

set of samples and would therefore be much more computationally expensive.

If the speed of calculation could be increased, however, evolving a classifier
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that could recognise many more instruments would be possible.

A big advantage of the GP classifier is that, although it took a very

long time to evolve, once it is evolved the solution program is very simple

and quick to implement. Thus the actual classifier created may take a very

short time to classify or test a new sample. This may be of interest for

the evaluation of synthesised sounds. In particular, if evolutionary methods

were used to evolve a synthesiser, as suggested in Loughran et al. (2007),

the synthesised sounds must be evaluated in some way. Human evaluations

are time consuming and costly, and other classifiers such as neural networks

are computationally expensive if they must be used many times — such as

in a fitness function in a evolutionary algorithm. One general point noted

from the evolutionary experiments carried out throughout this thesis is that a

computationally expensive fitness function (such as the function that included

the PCA in Chapter 6) can slow down the evolution significantly. Thus if one

wanted to evolve a synthesiser, it would be best to have a fitness measure

that is quick to implement. It was shown that a GP may evolve a simple

classifier with high recognition capability. Such an evolved program may be

used as a classifier in a fitness function for an evolutionary synthesiser, as it

may be quick to implement and gives an accurate decision on whether or not

the given synthesised sound may be like a real instrument sound.

Although the machine learning classifiers have not proven to be as accurate

as the human ear, it was shown that the use of evolutionary techniques for the

selection of features —- particularly with GP — may increase the accuracy

of an artificial classifier. Hence, the results from this thesis would warrant

further studies in the use of evolutionary techniques in the field of musical

instrument identification.
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Appendix A

Publications

The following posters and papers have been published as part of this thesis.

Loughran, R., Walker, J., O’Neill, M., and O’Farrell, M. (2007) Instrument

identification with artificial neural networks. Poster presentation in Sound

and Music Computing Summer School, Stokholm, Sweden.

Loughran, R., Walker, J., O’Neill, M., and O’Farrell, M. (2008a). Musical in-

strument identification using principal component analysis and multi-layered

perceptrons. In International Conference on Auditory, Language and Image

Proceedings, pages 643—648, Shanghai, China.

Loughran, R., Walker, J., O’Neill, M., and O’Farrell, M. (2008b). Compar-

ison of features for musical instrument identification using artificial neural

networks. In Computers in Music Modelling and Retrieval, pages 19—33,

Copenhagen, Denmark.

Loughran, R., Walker, J., O’Neill, M., and O’Farrell, M. (2008c). The use

of mel-frequency cepstral coefficients in musical instrument identification. In

International Computer Music Conference, Belfast, Northern Ireland.

Loughran, R., Walker, J., and O’Neill, M.(2009). An exploration of genetic

algorithms for efficient musical instrument identification. In Irish Signals and

Systems Conference, Dublin, Ireland.
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Appendix B

List of Features

A total of 95 feature values were used in the experiments in Chapter 6 and

Chapter 7. The following is a list of the 95 features included in the order

they were presented in.

1. Zero-Crossing Rate
2. Rolloff
3. Brightness
4. Regularity
5. First Attack Time
6. First Attack Slope
7. No. Onsets
8. Onset Distance
9. Centroid (static)
10. Spread
11. Skew
12. Kurtosis
13. Inharmonicity
14. Number of Spectral Peaks
15. Spectral Irregularity
16. 1st Principal Component of the Temporal Envelope
17. 2nd Principal Component of the Temporal Envelope
18. 3rd Principal Component of the Temporal Envelope
19. 4th Principal Component of the Temporal Envelope
20. 1st Principal Component of the Centroid Envelope
21. 2nd Principal Component of the Centroid Envelope
22. 3rd Principal Component of the Centroid Envelope
23. 4th Principal Component of the Centroid Envelope
24. 1st Principal Component of the Residual Envelope
25. 2nd Principal Component of the Residual Envelope
26. 3rd Principal Component of the Residual Envelope
27. 4th Principal Component of the Residual Envelope
28. 1st Principal Component of the Spectral Envelope
29. 2nd Principal Component of the Spectral Envelope
30. 3rd Principal Component of the Spectral Envelope
31. 4th Principal Component of the Spectral Envelope
32. 1st Principal Component of MFCC1
33. 2nd Principal Component of MFCC1
34. 3rd Principal Component of MFCC1
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35. 4th Principal Component of MFCC1
36. 1st Principal Component of MFCC2
37. 2nd Principal Component of MFCC2
38. 3rd Principal Component of MFCC2
39. 4th Principal Component of MFCC2
40. 1st Principal Component of MFCC3
41. 2nd Principal Component of MFCC3
42. 3rd Principal Component of MFCC3
43. 4th Principal Component of MFCC3
44. 1st Principal Component of MFCC4
45. 2nd Principal Component of MFCC4
46. 3rd Principal Component of MFCC4
47. 4th Principal Component of MFCC4
48. 1st Principal Component of MFCC5
49. 2nd Principal Component of MFCC5
50. 3rd Principal Component of MFCC5
51. 4th Principal Component of MFCC5
52. 1st Principal Component of MFCC6
53. 2nd Principal Component of MFCC6
54. 3rd Principal Component of MFCC6
55. 4th Principal Component of MFCC6
56. 1st Principal Component of MFCC7
57. 2nd Principal Component of MFCC7
58. 3rd Principal Component of MFCC7
59. 4th Principal Component of MFCC7
60. 1st Principal Component of MFCC8
61. 2nd Principal Component of MFCC8
62. 3rd Principal Component of MFCC8
63. 4th Principal Component of MFCC8
64. 1st Principal Component of MFCC9
65. 2nd Principal Component of MFCC9
66. 3rd Principal Component of MFCC9
67. 4th Principal Component of MFCC9
68. 1st Principal Component of MFCC10
69. 2nd Principal Component of MFCC10
70. 3rd Principal Component of MFCC10
71. 4th Principal Component of MFCC10
72. 1st Principal Component of MFCC11
73. 2nd Principal Component of MFCC11
74. 3rd Principal Component of MFCC11
75. 4th Principal Component of MFCC11
76. 1st Principal Component of MFCC12
77. 2nd Principal Component of MFCC12
78. 3rd Principal Component of MFCC12
79. 4th Principal Component of MFCC12
80. 1st Principal Component of MFCC13
81. 2nd Principal Component of MFCC13
82. 3rd Principal Component of MFCC13
83. 4th Principal Component of MFCC13
84. 1st Principal Component of MFCC14
85. 2nd Principal Component of MFCC14
86. 3rd Principal Component of MFCC14
87. 4th Principal Component of MFCC14
88. 1st Principal Component of MFCC15
89. 2nd Principal Component of MFCC15
90. 3rd Principal Component of MFCC15
91. 4th Principal Component of MFCC15
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92. 1st Principal Component of MFCC16
93. 2nd Principal Component of MFCC16
94. 3rd Principal Component of MFCC16
95. 4th Principal Component of MFCC16
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Appendix C

Listening Test Samples

The following lists detail the instrument samples presented to the subjects in

Chapter 8. The samples are named in order of the properties:

[Instrument] [Model] [Vibrato] [Pitch] [String] [Dynamic]

Whether or not vibrato is present is only indicated for the the flute, trumpet

and violin samples. Likewise the string is only specified for the violin and

guitar samples. A dynamic is not specified for any of the MUMS samples or

for the non-vibrato samples.

Section A
Violin Fiumebianca Vib F#G F
Flute Sankyo Vib C#4 F
Flute Sankyo Non-Vib F#6 M
Piano Yamaha F#5 M
Guitar Kohno Masaru F3 D F
Trumpet Bach Vib F4 F
Violin Carcassi Vib A3 G M
Guitar Kohno Masaru C#5 E M
Piano Steinway G#6 F
Trumpet Bach Vib B4 M
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Section B
Piano Yamaha C7 P
Flute Louis Lot Non-Vib B6 M
Violin Fiumebianca Non-Vib E7 E
Trumpet Bach Vib E3 F
Flute Sankyo Vib C7 F
Violin JF Pressenda Vib F#4 D P
Trumpet Schilke Vib A#5 P
Flute Sankyo Non-Vib B6 M
Violin MUMS A3
Violin JF Pressenda Non-Vib G#3 G
Trumpet Bach Non-Vib B5 F
Piano MUMS A#0
Violin Fiumebianca Non-Vib A5 A
Violin Fiumebianca Vib A#6 E P
Guitar Stafford E5 E P
Flute Louis Lot Vib A#6 M
Trumpet Schilke Vib F#3 M
Piano Yamaha C7 M
Guitar Imai Yuichi D5 E P
Violin JF Pressenda Vib A6 E M
Guitar Kohno Masaru E5 E M
Violin Carcassi Vib B6 E F
Trumpet Bach Vib A #5 F
Guitar Stafford A#4 E P
Piano Yamaha E3 P
Guitar Stafford E5 E F
Trumpet Bach Vib G#3 M
Trumpet Schilke Vib A4 P
Flute Sankyo Non-Vib A#5 M
Violin Carcassi Vib G#3 G P
Violin Fiumebianca Vib D7 E P
Violin Carcassi Vib D#7 E M
Flute Louis Lot Vib G6 M
Trumpet Schilke Vib G5 P
Violin JF Pressenda Vib C#7 E P
Guitar Imai Yuichi C#5 E P
Piano Steinway G5 F
Flute Louis Lot Non-Vib B6 F
Piano Yamaha C1 F
Piano MUMS A7
Trumpet Bach Vib C5 F
Violin Fiumebianca Vib C5 A M
Trumpet Schilke Non-Vib B3 P
Violin Fiumebianca Vib A#6 E F
Guitar Kohno Masaru B4 B M
Piano Yamaha B6 F

Piano Yamaha F7 F
Piano Steinway D#1 F
Trumpet Schilke Non-Vib G#5 P
Trumpet Bach Non-Vib C4M
Violin JF Pressenda Vib E6 E M
Trumpet Bach Non-Vib D6 F
Flute Sankyo Non-Vib D5 P
Guitar Kohno Masaru F#2 E M
Flute Sankyo Vib G6 F
Trumpet Bach Non-Vib G4 M
Flute Sankyo Non-Vib G#6 P
Violin Carcassi Vib C7 E F
Piano Steinway D#7P
Trumpet Schilke Non-Vib C#6 P
Piano MUMS C1
Trumpet Schilke Vib F#5 F
Piano Steinway A#7 P
Trumpet Schilke Vib G#5 M
Guitar Stafford B4 E M
Guitar Stafford G#3 A F
Violin Carcassi Vib E7 E M
Violin Fiumebianca Non-Vib A6 E
Violin Carcassi Non-Vib D#7 E
Trumpet Schilke Non-Vib A#5 M
Flute Louis Lot Non-Vib F6 F
Flute Louis Lot Vib G4 M
Violin JF Presssenda Vib D6 E P
Piano Steinway B7 P
Piano Steinway C8 P
Trumpet Schilke Non-Vib D6 M
Trumpet Bach Non-Vib C6 M
Piano Yam F3 F
Violin Fiumebianca Vib G5 A P
Piano Yamaha A#7 F
Trumpet Schilke Non-Vib F5 P
Piano MUMS G#3
Piano Stafford D3 E P
Guitar Kohno Masaru G4 G F
Violin JF Pressenda Vib E7 E P
Guitar Imai Yuichi F#4 G P
Piano Yamaha B0 M
Flute Louis Lot Vib F6 P
Trumpet Schilke Vib D4 M
Trumpet Bach Vib A5 M
Violin Fiumebianca Vib E7 E F
Guitar Kohno Masaru B2 A P
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Violin Carcassi Vib F4 G M
Violin Fiumebianca Vib C#7 E F
Trumpet Bach Non-Vib E5 F
Flute Sankyo Vib E4 M
Piano MUMS C7
Flute Louis Lot Non-Vib G6 F
Piano Yamaha A#6 M
Flute Sankyo Non-Vib A6 P
Piano Yamaha A7 M
Piano Steinway A#0 P
Piano Yamaha G#7 M
Guitar Imai Yuichi B4 E F
Piano Steinway G#4 P
Flute Sankyo Vib F6 M
Flute Sankyo Non-Vib F6 F
Guitar Imai Yuichi D#5 E F
Guitar Imai Yuichi C#4 D M
Piano MUMS B6
Trumpet Schilke Non-Vib D#4 M
Flute Sankyo Vib A#6 P
Trumpet Schilke Non-Vib G#3 M
Piano Yamaha B7 F
Piano Yamaha F#7 P
Flute Louis Lot Non-Vib A6 M
Flute Louis Lot Vib C#4 P
Violin Fiumebianca Vib F6 E M
Violin JF Pressenda Non-Vib D5 D
Violin Carcassi Vib D5 D P
Flute Louis Lot Non-Vib G#6 M
Guitar Imai Yuichi D#3 D M
Guitar Stafford D5 E F
Flute Sankyo Non-Vib F5 F
Flute Louis Lot Vib C7 F
Guitar Kohno Masaru C5 E F
Flute Sankyo Non-Vib A#6 F
Violin Carcassi Vib D7 E F
Flute Louis Lot Non-Vib B4 P
Piano Steinway F#7 F
Trumpet Bach Vib G#5 M
Guitar Imai Yuichi G#4 E P
Guitar Stafford F4 G M
Guitar Stafford F2 E F
Flute Sankyo Vib C7 M
Piano Steinway C8 F
Flute Louis Lot Vib E4 F
Guitar Kohno Masaru C#5 E F
Trumpet Bach Non-Vib C#6 M

Piano Yamaha C8 P
Violin JF Pressenda Vib D#4 D F
Piano Steinway C#1 M
Guitar Imai Yuichi D#5 E M
Violin Carcassi Non-Vib C5 A
Flute Louis Lot Non-Vib B6 P
Trumpet Bach Vib G#5 P
Trumpet Bach Vib A3 P
Guitar Imai Yuichi C5 E M
Violin Carcassi Non-Vib C#7 E
Trumpet Bach Non-Vib F#3 F
Piano Steinway G#7 M
Trumpet Schilke non-Vib E4 F
Guitar Imai Yuichi E3 E F
Violin Carcassi Vib D#7 E P
Flute Louis Lot non-Vib F#6 P
Piano Yamaha A0F
Flute Sankyo Vib C4 P
Violin Carcassi Vib G3 G F
Piano Steinway F2 M
Violin JF Pressenda Non-Vib E7 E
Trumpet Schilke Non-Vib A#3 F
Violin Fiumebianca Vib C7 E M
Guitar Kohno Masaru A3 A P
Violin Carcassi Vib C7 E P
Violin Fiumebianca Vib B6 E M
VIolin Fiumebianca Non-Vib G#6 E
Violin JF Pressenda Vib B4 D F
Trumpet Bach Vib C#5 P
Trumpet Schilke Vib F3 P
Piano Steinway A#6 F
Violin JF Pressenda Vib G#6 E F
Piano Steinway E6 M
Violin Carcassi Non-Vib A#4 A
Trumpet Schilke Non-Vib E6 F
Trumpet Schilke Vib A5 M
Guitar Stafford F4 B M
Trumpet Bach Vib A#5 P
Trumpet Schilke Vib A3 F
Flute Louis Lot Vib B6 F
Trumpet Schilke Vib D6 F
Trumpet Bach Non-Vib E3 P
Piano Steinway C8 M
Trumpet Schilke Non-Vib F6 F
Violin JF Pressenda Vib D#7 E F
Piano Steinway C3 M
Trumpet Bach Non-Vib A5 P
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Guitar Kohno Masaru 5E P
Violin JF Pressenda Vib C4 G M
Trumpet Bach Non-Vib F5 P
Piano Steinway C#7 M
Guitar Kohno Masaru D#5 E P
Violin JF Pressenda Non-Vib B6 E
Flute Louis Lot Vib C7 P
Piano Yamaha A0 P
Trumpet Schilke Vib A5 F
Guitar Stafford D5 E M
Trumpet Bach Non-Vib D6 P
Flute Sankyo Vib G6 P
Violin Fiumebianca Vib F#5 E P
Guitar Stafford G2 E P
Guitar Imai Yuichi A4 E F
Violin JF Pressenda G5 A M
Piano Yamaha B0 P
Trumpet MUMS F#3
Violin MUMS B5
Flute MUMS A6
Violin MUMS G#6
Trumpet MUMS D#6
Violin MUMS B6
Trumpet MUMS A6
Trumpet MUMS B6
Flute MUMS C4
Flute MUMS C 7
Trumpet MUMS F4
Violin MUMS A4 D
Flute MUMS C#5
Flute MUMS F#6
Violin MUMS C6
Violin MUMS A4 A
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Appendix D

Listening Test Documentation

Permission to conduct the listening experiments in Chapter 8 was applied for and obtained
from the University of Limerick Research Ethics Committee (ULREC No: 08/33, Audio
Feature and the Classification of Musical Instruments Using Artificial Neural Networks).
In accordance with the committee guidelines, prior to the experiment each subject read
an information sheet and signed an informed consent form. This information sheet and
consent form is reproduced here, along with the questionnaire that each subject was asked
to fill out after the experiment.
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Audio Features and the Classification of

Musical Instruments using Artificial Neural

Networks
Subject Information Sheet

This study aims to identify how recognisable certain instrument sounds are.
Most people can identify a specific instrument (eg a violin, piano, flute) from a
single note sample. It is possible, however, that when instruments are played
at the extremities of their pitch range (ie very low or very high) that they
may not be as identifiable as they are within their more conventional range.
We wish to determine from this study if notes played at a certain pitch or
dynamic level (loud or soft) become unrecognisable to the human ear.

As a participant in this study you will be asked to listen to a number
of audio samples over a set of headphones. You will be asked to determine
whether you think this note was played on:

a. A flute

b. A guitar

c. A piano

d. A trumpet

e. A violin

f. None of the above

You may listen to the sample as many times as you like and choose the answer
on a screen from a pop-down list. The notes will be played at different pitches
and at different loudness levels. You may adjust the volume level at any point
during the experiment to ensure you are comfortable. You will be asked to fill
in a very short questionnaire indicating your age, sex, musical experience and
whether or not you play a musical experience. The examiner will be present
throughout the experiment, which should last no more than 40 minutes.

The benefit of this experiment is that we will be able to decide if there
are note samples that are out of the range of recognition for human subjects.
The results from these tests will then be compared against an automatic
instrument classifier to determine how accurate it is. There are no anticipated

241



risks to subjects. There is no obligation to take part and you may stop the
experiment at any time you may wish to without giving a reason.

We hope that about 20-30 participants will take part in this study. The
results from each participant will be stored in an anonymous form on the
computer. Results from all participants will then be analysed statistically
and may be published in academic papers and in a PhD thesis.

If you have any questions regarding the study, or do not understand any-
thing you may contact the investigator:
Róiśın Loughran
CSIS
A2-012
Main Building
Email: roisin.loughran@ul.ie
Tel: (061) 233290

If you have any concerns about this study and wish to contact someone in-
dependent, you may contact:
The Chariman of the University of Limerick Research Ethics Committee
C/o Vice President Academic and Registrars Office
University of Limerick
Limerick
Tel: (061) 202022
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Audio Features and the Classification of

Musical Instruments using Artificial Neural

Networks
Informed Consent Form

Please read the associated Subject information Sheet. If you wish to partici-
pate in this study, please sign and date this form.
I declare that:

• I have read and understood the subject information sheet.

• I understand what the project is about, and what the results will be
used for.

• I am fully aware of all of the procedures involving myself, and of any
risks and benefits associated with the study.

• I know that my participation is voluntary and that I can withdraw from
the project at any stage without giving any reason.

• I am aware that my results will be kept confidential.

Subject: Date:

Witness: Date:

Investigator: Date:
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Audio Features and the Classification of

Musical Instruments using Artificial Neural

Networks
Questionnaire

Age:

Sex:

Do you play a musical instrument(s)? If so, what instrument(s)
and to what level (Highest grade or number of years studied)?

Please indicate below if you have any academic qualifications in
music:

• Junior Cert Music

• Leaving Cert Music

• Degree (BMus)

• Postgraduate (please specify)

• Other (please specify)

Please give any comments on the experiment in general:
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Appendix E

CD Listings

The CD accompanying this thesis contains a number of folders containing the

main Matlab files and data files used in the experiments described throughout

the thesis. A brief description of the content of the folders is given below.

• ANN This folder contains the Matlab files written for training and

testing an MLP, along with code used for accessing and normalising

stored data.

• DataFiles Due to the licensing of the samples used and space consider-

ations, the original samples could not be included with this thesis. This

folder contains some of the data extracted from the original samples in

three subfolders. PCA data from the full set of samples is included along

with the best genomes evolved from each of the methods described in

Chapter 6 and the data in the cross validation sets used in both Chapter

6 and Chapter 7.

• Feature Selection This folder contains a number of files which, along

with the MIRToolbox, were used to obtain timbral features from the

audio sample files.

• GA This contains the main files written to conduct the GA experiments

in Chapter 6 and to analyse the results obtained.

• GP This contains the main files written to conduct the GP experiments

in Chapter 7 and to analyse the results obtained.

• Listening Tests This folder contains the files written to conduct the

Listening Tests described in Chapter 8.
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