
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2020) 21:55–85
https://doi.org/10.1007/s10710-020-09380-7

1 3

Evolutionary music: applying evolutionary computation 
to the art of creating music

Róisín Loughran1   · Michael O’Neill1

Received: 20 October 2018 / Revised: 8 August 2019 / Published online: 6 February 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We present a review of the application of genetic programming (GP) and other vari-
ations of evolutionary computation (EC) to the creative art of music composition. 
Throughout the development of EC methods, since the early 1990s, a small num-
ber of researchers have considered aesthetic problems such as the act of composing 
music alongside other more traditional problem domains. Over the years, interest 
in these aesthetic or artistic domains has grown significantly. We review the imple-
mentation of GP and EC for music composition in terms of the compositional task 
undertaken, the algorithm used, the representation of the individuals and the fitness 
measure employed. In these aesthetic studies we note that there are more variations 
or generalisations in the algorithmic implementation in comparison to traditional 
GP experiments; even if GP is not explicitly stated, many studies use representa-
tions that are distinctly GP-like. We determine that there is no single compositional 
challenge and no single best evolutionary method with which to approach the act 
of music composition. We consider autonomous composition as a computationally 
creative act and investigate the suitability of EC methods to the search for creativ-
ity. We conclude that the exploratory nature of evolutionary methods are highly 
appropriate for a wide variety of compositional tasks and propose that the develop-
ment and study of GP and EC methods on creative tasks such as music composition 
should be encouraged.
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1  Introduction

Throughout history, computers and music have exhibited a symbiotic relationship 
with one another. When presented with the Analytical Engine, a precursor to the 
modern computer, Ada Lovelace saw past the mere numerical possibilities and spec-
ulated on its ability to ‘compose elaborate and scientific pieces of music’ [70]. The 
first musical score to be composed by an electronic computer is generally agreed to 
have been the Illiac Suite in 1957 [35]. Just a few years later, in 1961 the IBM 704 
at Bell Labs performed ‘Daisy Bell’ (or Bicycle Built for Two) as the first dem-
onstration of computer speech synthesis [16, 53]. In 1968 the public was invited 
to ‘Cybernetic Serendipity’—an exhibition curated by Jasia Reichardt which show-
cased art and music created by algorithms and computers [84]. As technology has 
developed, music has been used to showcase the abilities and possibilities attainable 
from the latest advances. The same is true in this age of Machine Learning (ML) 
and Artificial Intelligence (AI).

This paper presents a review of the application of GP and more generally EC to 
music, in particular to the creative act of algorithmic music composition. As the 
field of EC has developed in recent decades, the importance of creative applications 
such as music have become more apparent. The International Conference on Com-
putational Intelligence in Music, Sounds, Art and Design (EvoMUSART) started as 
a workshop in 2003 as part of the EvoStar conference, and has now become a con-
ference it its own right with independent proceedings since 2012 [41, 85]. Whereas 
back in the 1990s practitioners were writing conference papers on such topics, stud-
ies and discussions on the application of EC to creative challenges such as music and 
art have developed into journal articles, chapters and numerous full books focussing 
on these types of problems [74, 86]. In addition to academic papers, many of these 
systems have been implemented in live musical performances in jazz improvisations 
[4], the performance of arias [101] and piano pieces [19].

The upsurge of interest in aesthetic problems has come about as researchers real-
ised that the automation of such processes pose much more of a challenge than the 
mere generation of ‘pretty things’. Yes, EC systems can be used to produce music, 
but often the question of how they produce such music or artefacts can be more 
interesting than what they actually produce. Evolving aesthetic results has no one 
final solution, there is no goal to evolve towards. We shall see in this paper that 
many people have created EC systems that evolve music towards a set of music the-
ory rules or a similarity to a corpus or an individual’s taste and determined that 
these systems have ‘successfully’ created music. But as successful as these systems 
are, no one system can claim to be the best. Music composition is not a challenge 
that can be won; this is not a regression or classification task where the result can be 
measured. If this is the case—why do we apply ourselves to such tasks, and why has 
interest in this area increased over the years?

The question of why we apply EC to music generation can only be answered once 
we define exactly what it is we intend to achieve in undertaking this task. In this age 
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of AI1 there is much interest in mimicking the human brain, although many people 
maintain the belief that while computers can best a human at numerical challenges 
or strategic games, they would never be able to be creative. While the question as 
to whether or not a computer can genuinely be creative has not been definitively 
answered, it is a question that is now open for discussion. Unfortunately, as we detail 
in Sect. 5, this discussion starts with a lack of definition as to what creativity actually 
means. While the term creative may be colloquially understood, it is inherently diffi-
cult to define explicitly. In contradiction to many popular opinions, creativity is not a 
gift or talent that only a few people possess; creativity is merely an aspect of general 
intelligence [9]. If we acknowledge that creativity is an ability possessed by us all, 
it follows that creativity must be explored within the general field of AI. Because of 
this, the field of Computational Creativity (CC) has emerged and grown in recent 
years, supporting high-quality research into creative acts including story-telling, art 
and music. This interest had led to establishment of the International Conference of 
Computational Creativity (ICCC) [2]. In a parallel emergence of the EvoMUSART 
conference, ICCC has grown from a joint workshop started in 2006 into an inde-
pendent international annual conference since 2010. Throughout the discussion of 
creativity and CC, it has often been noted that EC systems are particularly adept to 
being applied in this field [32, 46, 63]. We discuss this view, and the suitability of 
EC to the application of creative acts such as music composition later in this paper.

So when we ask ‘Why apply GP to music composition?’ we must consider what 
level of creativity we wish GP to emulate in this application. In the field of CC it has 
been proposed that the creativity emulated by autonomous systems is variable, along 
a scale from mere generation to computationally creative [29]. All systems along 
such a scale are useful in the understanding of CC, but to evaluate any system it is 
important to recognise where it lies on such a scale. Musical systems that focus on 
generation automate the process of composition and so it is the output of these sys-
tems that should be of high quality. Other systems are considered co-creative; such 
systems augment the creativity of the user in a computative manner. The evaluation 
of such systems is often based on user feedback. Often in systems that are deemed 
purely creative, the goal is to analyse the process of creativity; sometimes the pri-
mary function of such systems is not in creating something but in helping our gen-
eral understanding of creativity. The concept of creativity itself is still not very well 
understood. GP can be applied to musical or creative systems in any of the above 
manners. In designing creative GP systems we must first decide if the goal is for the 
system to be creative or to help us understand creativity.

This paper offers an overview of the use of various EC methods applied to music 
composition from the 1990s up to the present day. Sects. 2 and 3 detail a number of 
such experiments, which are discussed more generally in terms of algorithm, prob-
lem, representation and fitness measure in Sect.  4. Section 5 discusses the defini-
tion and computer emulation of creativity and musicality and the use of EC on such 
applications as music composition. Finally, Sect. 6 draws some conclusions from the 
review.

1  A term that is so over-used in the media it effectively refers to ‘computer science’.
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2 � Evolutionary music

The application of EC methods to musical tasks began to emerge in the early 1990s, 
alongside other more traditional applications of EC. In applying EC to music there 
are a wide range of aspects to consider, however, the three fundamental criteria to 
consider upfront are problem domain, individual representation and fitness measure. 
The problem domain defines exactly what type of ‘music’ you wish to evolve; are 
you planning to create melodies, harmonisations, chord progressions? What style 
of music do you wish to create? In what format will it be played—through audio, 
printed scores, Musical Instrument Digital Interface (MIDI) messages? Once these 
high level decisions have been made you must decide how to represent your music 
as an individual. Does the genome represent pitch values, durations, are translational 
grammars required? The encoding of the domain, representation and operators are 
all intrinsically linked to define the space—and hence the musical limits or style—
within which the algorithm searches. Finally there is the question of fitness: assum-
ing two individuals represent pieces of music in your desired domain—what makes 
one ‘better’ than the other? One of the advantages of applying EC in this type of 
subjective domain is that it can optimise towards a relative measure of quality or fit-
ness. EC continuously updates a population of solutions, rather than an individual, 
so the relationship between individuals can be incorporated into the search process. 
This is utilised in numerous studies that use the whole final population or multiple 
individuals from the population in forming a result. But, even if we are not evolving 
towards a single best objective, we do need some form of fitness measure to drive 
the search. This is one of the most challenging aspects of designing such experi-
ments as will be discussed later on.

This section discusses numerous studies that have applied EC to various music 
composition tasks. Each study involves the application of either Genetic Algorithms 
(GA), GP or Grammatical Evolution (GE) or a variation of these to some aspect of 
algorithmic composition. We assume the reader is familiar with the general behav-
iour of these algorithms. Those new to the field may find an introduction to such 
methods in [10]. In each discussion we focus on approaches to problem domain, 
representation and fitness measures and less so on operators or other experimental 
specifics.

2.1 � Early applications of EC to music

Horner and Goldberg [38] were one of the first to apply a GA to the process of 
musical composition by considering ‘thematic bridging’. In this they considered 
the transformation of one melodic phrase to another through the use of a defined 
operation set. The individuals represented the series of transitions from one phrase 
to the desired phrase. Fitness was based on how well the final pattern matched the 
desired pattern. As such, the system was used to create the transitions (sequence of 
operations) rather than actually creating music. NUREGEN was a system developed 
to produce small four-part harmony melodies using an Artificial Neural Network 
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(ANN) as the fitness function [33]. The authors limited their domain by only con-
sidering harmonies based on three chords within the key of C major and only creat-
ing melodies of four bars in duration. The composition was then broken down into 
‘building blocks’ consisting of rhythm, primary melody and harmony which were 
each composed in sequence. For each sequential block a GA was used to generate 
a population and an ANN was trained from examples given by the user to judge 
suitable candidates as the fitness function. The authors acknowledged that this com-
bination of GA and ANN could produce pseudo compositions, but the limitations 
applied to the domain and the three levels of training input from the user limited the 
system.

Regardless of the representation used, music evaluation is most often a subjec-
tive task and, as such, a reliable and robust fitness measure can be difficult to define. 
Many early researchers circumvented this issue by employing the use of a human 
judge as the fitness function; such systems are known as Interactive EC (IEC). 
John Biles created the well known system GenJam which used a GA to evolve jazz 
solos [3]. GenJam used two independent populations: one for measures and one for 
phrases. Individuals in the measure population were mapped to a series of MIDI 
events; individuals in the phrase population were mapped to a series of measures. 
The user graded these phrases in real time as either ‘good’ or ‘bad’. The system then 
used the entire population of phrases and measures to build a jazz solo. A human-
based fitness function had been previously used successfully in evolving images [91] 
but the authors noted the practical difference in that multiple images can be viewed 
at once—and very quickly—whereas music is a temporal phenomenon and hence all 
individuals must be listened to sequentially in real time. This results in a very high 
cost in using a human as the fitness function, a problem termed the fitness bottle-
neck. While there is always some degree of fitness bottleneck in any interactive EC 
system, this issue is exacerbated in musical studies. Music is a temporal phenom-
enon and so it takes time to experience, let alone evaluate, the resultant outcome. 
This is similar to other applications requiring dynamic analysis such as automated 
programming whereby the result must be executed in some manner before a fitness 
measure can be made. For his music system, Biles addressed this bottleneck issue 
in later studies by training an ANN to act as the fitness function, thus removing the 
need for the human listener [5]. In this he found the results to be somewhat lacking 
however, and determined that humans listen to and experience music in complex 
and subtle ways that are not captured well by statistical models such as ANNs. Gen-
Jam has been modified many times over the last two decades and has been devel-
oped into a real-time, MIDI-based, interactive improvisation system that is regularly 
used in live performances in mainstream venues [4].

A system that generated musical rhythms using an interactive GA was proposed 
by Horowitz [39]. This system used a combination of methods along with user pref-
erences in designing a fitness measure. Several objective functions were defined for 
which the user made specifications at the beginning of a run. The author noted that 
while the GA may be simple to implement, it is the fitness measure that is difficult 
to define and which ultimately determines the musicality of the output. A GP-like 
system was used for the automatic generation of style oriented music in an early 
system proposed by Laine and Kuuskankare [52]. In this Lisp system, melody lines 
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were approximated by simple mathematical functions and the fitness was measured 
as a note by note comparison to a target input melody. The authors found that their 
biggest challenge was in finding functions that were complex enough to represent 
the full time-series of the music.

The problem of evaluating the work of ‘constructed artists’ was considered at 
length in the mid 1990s by Spector and Alpern [92]. In this paper the authors argued 
that at that time the AI community was concerned with rigour and standards in such 
systems and many were calling for the use of standard examples and more crite-
ria for assessment.2 They rejected the formerly used assessment methods based on 
human judgment or formalised criteria and instead proposed that the ‘right’ crite-
ria were not strictly necessary for such judgments; a range of criteria was sufficient 
for adjudication if it was known that the system was capable of conforming to the 
given range of criteria. They proposed a system framework based on GP that would 
produce an artist—one that could produce new artworks that were successful to the 
given criteria and a culture defined by a given library of past works. They illustrated 
the framework by generating a BeBop musician that created jazz melodies. This sys-
tem generated four-measure melodies as output when given four-measure melodies 
as input. The melodies were represented as a list of 64 numbers and the function 
set consisted of 13 distinct functions. The fitness was measured from a number of 
criteria that were compared against all of the melodies from the case-base when the 
program (the individual) was run. From their results they noted that the produced 
melodies that were most pleasing to the system were not the most pleasing to the 
authors and that although their framework did not rely on any particular critical cri-
teria, it did require some encodable criteria. This system was extended by using con-
nectionist techniques trained on a corpus of music to make judgements on the qual-
ity of the melodies produced [93]. This GP system used a more generic function and 
terminal set. The fitness was measured by a three-layer network trained to recognise 
reasonable continuations to reasonable fragments of jazz melody. Spector and Alp-
ern found that combining the two types of fitness measures into a ‘hybrid critic’ 
offered the best results.

A GA compositional system was proposed by Jacob that considered the problem 
of the search domain, not by reducing the size of the domain, but by employing 
larger building blocks for the GA to work with [42]. The system was implemented 
by reducing the compositional process to a number of simple rules based around a 
set of primary motives. The composition, evaluation and arrangement of the music 
was then performed by agents with three specific modules—the composer, ear and 
arranger. A human observer judged the modules’ ability to perform its given task 
and recombined successful agents for future generations. Instead of working with 
individual notes, this system concentrated on generating short phrases and combin-
ing these phrases into larger pieces of music. Jacob described this system in more 
detail amid a more general philosophical look at algorithmic composition as a model 
for creativity in [43]. In this paper he stated that there were two types of creativity: 

2  Over 20 years later this is still an issue, as we discuss below.
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inspirational or genius and hard work. We contest this view of creativity below in 
Sect. 5.

An Adaptive Resonant Theory (ART) neural network was used as the fitness 
measure in a GA applied to musical rhythm composition by Burton and Vladimi-
rova [13]. The ART network used unsupervised learning to cluster similar patterns 
in accordance to a given vigilance. Initial parameters such as rhythm type, tempos 
and time signature were given while the representation consisted of a binary array of 
data. Fitness was based on the similarity of the produced rhythm to an appropriate 
rhythm pattern cluster. The authors concluded that the ART network possessed an 
advantage over other neural networks for this purpose of acting as a fitness for a GA 
as they had the ability to add new classifications when the existing clusters could not 
represent the given individual.

During the 1990s many practitioners applied EC to aspects of music generation, 
but no one ideal method has emerged as the best choice. Burton and Vladimirova 
offerred a comprehensive overview of EC applications to music during this time 
[14]. They determined that GP techniques were generally more successful than GAs 
at compositional tasks, due to their ability to work in a less constrained space.

3 � Twenty years of GP music

In keeping with the objective of this volume, we present a more detailed look at how 
GP, and all variants of EC, have been applied to music creation from 1998 to 2018. 
An overview of these systems is given in Table 1.

GPMusic was an interactive system developed by Johanson and Poli which 
allowed users to evolve short musical sequences using interactive GP [44]. To 
tackle the fitness bottleneck, users ratings were used to train a neural network to be 
employed as an ‘auto rater’ (automatic fitness measure) for longer runs. The musical 
sequences were represented as a sequence of musical notes in the extended module 
(XM) format. The terminal set consisted of notes, allowed chords and rests and the 
function set was made up of operations that could be performed on a given note 
sequence. In this manner, an evaluated individual program generated a string of 
notes. A user was then asked to rate the resulting musical pieces. Interactive studies 
discussed runs with increasingly complex functionality added to the GP run. Finally 
a run of 20 individuals over 10 generations was used to gather training data for the 
ANN. Three trials using this trained ANN indicated that the system could evolve 
interesting, pleasant music but it would not achieve the consistency shown by the 
human user.

Todd and Werner [98] proposed a ‘Frankensteinien’ imagery to the use of EC for 
algorithmic composition:

But when, with Frankensteinian hubris, we dare to create an artificial system 
and imbue it with the spark of musical invention in our stead, how are we to 
assemble its constituent parts to ensure that its behavior will be on the whole 
pleasing and majestic, rather than filling us with aesthetic horror that no mor-
tal could support?



62	 Genetic Programming and Evolvable Machines (2020) 21:55–85

1 3

Table 1   Overview Of EC applications to music composition

System Problem Alg. Representation Fitness

Horner [38] Thematic Bridging GA Transitions Target comparison
NUREGEN [33] 4-part harmony GA 4 bar melodies ANN
GenJam [3] Jazz improv. GA MIDI Interactive/random
GenJam [5] Jazz improv. GA MIDI ANN
Horowitz [39] Rhythms GA Rhythm sequence Multiple criteria
Laine [52] Melody line GP Mathematical Target comparison
Spector [92] Jazz melodies GP 4 bar melodies Multiple criteria
Spector [93] Jazz melodies GP 4 bar melodies ANN
Jacobs [42] Building blocks GA Building blocks Interactive
Burton [13] Rhythm GA Binary array ART NN
GPMusic [44] Short melodies GP XM Interactive/ANN
Todd [98] Melodies GA Bird pairs Co-evolution
GeNotator [96] Melody GA MIDI Interactive
Pearce [79] Drum and bass GA Drum loops MLP
Vox Populi [75] 4-part melodies GA 4 words of 7 bits Interactive
De la Puente [24] Melodies GE Note values Multiple criteria
Music Blox [31] Music composition GA 3D visual blocks Similarity to target
Manaris [65] Music composition GP MIDI Zipfs Law
NEvMuse [64] Music composition GP MIDI ANN
Dahlstedt [20] Scores/sound synth GP Recursive trees Statistical measures
Khalifa [49] Music composition GA 16 gene motif Grammars/rules
Phon-Amnuaisuk [80] Melodies GP Musical trees SOM
NEATDrummer [37] Drum tracks EC MIDI drums Interactive
GenDash [102] Music composition EC Measure of music Random
Elevated Pitch [83] Short melodies GE MIDI Interactive/rules
De Prisco [25] Unfigured bass GA i/p harmonisation Multi-objective
Donnelly [28] 4-part harmony GA 4-part tuples Scores
McDermott [69] Music composition GP Executable graphs Interactive/features
Melomics [27] Auto. composition GA Unspecified Multiple criteria
Jive [90] Music composition GE Wii remote Interactive
De Freitas [22] Music composition GA Music measure Random
DarwinTunes [61] Musical loops EC Tree-based structure Interactive
Eigenfeldt [30] Music composition EC Musical motives Multiple criteria
Pirnia [81] Melodies GP Trees Target based
Sulyok [95] Compositional process GP Program Statistical (Bach)
Kunimatsu [51] Blues composition GP Chords/melodies Musical/entropy
PIEC [97] Phrase imitation GA Phrase notes 4 rule-based
Hofmann [36] Music composition GP Constraints Muli-objective
Loughran [56] Melodies GE MIDI Statistical
MetaCompose [89] Music composition GA Note values Multi-objective
Muńoz [76] Unfigured bass MA Bass line Harmonic rules
Loughran [55] Melodic shapes GE MIDI Target shape
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 They discussed multiple applications of EC to musically creative tasks but focussed 
on their coevolutionary system of evolving both the music and the critic (or fitness 
measure) simultaneously. From the inspiration of bird-song, they evolved male 
agents who played musical melodies along with female critics who judged the per-
formed melodies. The females chose a mate according to which melodies they liked 
best. In their preliminary experiments both males and females were coded as neural 
networks that were evolved over time; the males produced rhythms and the females 
chose a mate according to how much she liked or disliked the song. A later experi-
ment replaced the song-generating network of the male with a set of genes that 
directly encoded the melody. Each male song consisted of 32 notes whereas each 
female’s genes encoded a transition matrix that rated transitions from one note to 
another in the male’s songs. Each female listened to all male’s compositions and 
chose one as her mate, ensuring that all females had one mate but males may have 
had multiple, or no, mates. Each mating pair had one child per generation before 
the population was again reduced to its target size. Three types of scoring by the 
females was considered. The authors concluded that while the system created the 
musical diversity and novelty they desired, the final produced melodies were lacking 
in musical structure and not pleasant to listen to.

GeNotator was a composition tool proposed by Thywissen that used a modified 
GA to manipulate a musical composition using a hierarchical grammar [96]. The 
system combined a user-defined music grammar with an automatically generated 
genetic description to map individual genes in the chromosome to choices from the 
grammar. This was input to an interactive GA. The phenotypes were played as music 
by generating a MIDI stream using the grammar. Originally the grammar had to be 
specified in textual form, but the author developed a graphical way of specifying a 
grammar making GeNotator more accessible to those not versed in computer pro-
gramming. The author acknowledged that the system can create interesting music, 
but that this is often dependant on a good starting position and a level of form space 
bounding. While GeNotator may have been based on a GA, the developer made a 
number of amendments from the standard form in developing this system.

Vox Populi was an interactive compositional system developed by Moroni et al 
that evolved four-part melodies towards harmonical compatibility or a tonal centre 
[75]. Each individual had a genotype represented as a chromosome of four words of 
seven bits, each word representing a voice. The phenotype was the corresponding 
chord. The user had graphical control over the fitness measure which were based 

Table 1   (continued)

System Problem Alg. Representation Fitness

Loughran [59] Melodies GE MIDI Critics/popularity
Plecto [40] Audio synthesis GA Audio Interactive
Hickinbotham [34] LIve-coding GA Tidal code Interactive
Loughran [57] Live-coding GE Chuck code Random
Olseng [78] Music composition GA Melody and harmony Multi-objective
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on the melody (tonal centre used to evaluate fitness), biology (time given to evo-
lutionary operators), rhythm (time between evaluations), octave and orchestra. The 
authors concluded that Vox Populi could generate complex sound structures with 
perceptual and efficient control in real time.

When proposing a framework for evaluating machine compositions Pearce and 
Wiggins [79] illustrated the framework on an evolutionary Drum and Bass system. 
The authors proposed four essential elements in an evaluation framework: specify-
ing an aim; inducing a ‘critic’ from a corpus of data; composing music; and evalua-
tion. The example system employed a GA to create drum loops using a trained ANN 
as the fitness measure. While we may not necessarily concur with the details of each 
step—such as requiring a corpus to develop a critic (or fitness function), this was an 
important step in formalising the application of EC to music composition.

De la Puente et al were the first to apply GE to the problem of algorithmic compo-
sition [24]. In this paper GE generated melodies for the AP440 auxiliary processor. 
The melodies were encoded from pitch and duration values into a vector from which 
the fitness was measured. The melodies produced were not presented or discussed.

Music Blox was a real-time compositional system proposed by Gartland-Jones 
that utilised a domain specific, knowledge rich GA [31]. The system was created 
as a way of defining a limited search space for a non-composer user and allowing 
that space to be explored by the user. The system used blocks, depicted in a 3D 
visual graphical model, each of which had the capacity to play music. The blocks 
were then combined together in a physical structure, which in turn created a piece 
of music. The organisational structure of the blocks controlled the music played. 
Each block consisted of a bottom-up and top-down compositional system. The start-
ing music fragments or ‘home’ music for each block was provided by the user. This 
was then directed towards a specific target melody using a GA. The fitness measure 
was dependent on a similarity measure between the home and target fragments. The 
author proposed that this system thus addressed the fitness bottleneck by developing 
an automatic fitness measure and considered the issue of over-limiting the search 
space. Gartland-Jones and Copley described the reasoning behind the system along 
with a general consideration of the usefulness of GAs to the challenge of musical 
composition in [32]. They described GAs as a directed search process and discussed 
how creative search processes relate to music composition.

Zipfs Law is a law often observed in nature relating to the statistical frequency 
of occurrence of events. It states that the frequency of an event is inversely propor-
tional to its rank in frequency of occurrence [105]. For example, in a Zipfs distribu-
tion of pitches in a piece, if C is the most popular note followed by G and A, there 
will be twice as many Cs in the piece as Gs, and three times as many Cs as As etc. 
Such laws have been used in the investigation of pleasantness in music [66]. Musi-
cal events such as pitch, duration, melodic intervals and melodic/harmonic bigrams 
have all been shown to follow Zipfs distributions to varying degrees in numerous 
genres of music. The ideal of this Zipfs distribution was used as the fitness measure 
to drive an evolutionary composition system by Manaris et al [65]. This system was 
based on the NEvAR system that evolved visual art using symbolic representation 
in GP [62]. This idea was further developed by using the Zipfs distributions to train 
a neural network which was then used as the fitness measure in a GP compositional 
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system entitled NEvMuse [64]. More recently, Loughran et  al used the Zipfs dis-
tribution among a number of melodic and rhythmic aspects of music in the fitness 
measure in a system that used GE for the composition of MIDI melodies [54].

A number of evolutionary methods for generating novel musical scores and syn-
thesised sounds have been proposed by Dahlstedt [20]. Dahlstedt’s thesis described 
the underlying evolutionary methodologies and a number of interactive installations, 
tape and concert pieces that were composed and performed using these methodolo-
gies. He later described the composition of complete piano pieces and subsequent 
performance of these pieces [19]. This system implemented recursively described 
binary trees as genetic representation for the evolution of musical scores. In an 
individual tree each leaf represented a note or a series of notes while the branching 
nodes contained operators that merged or concatenated notes into larger segments. 
The trees were recursive in that a leaf node could contain a pointer to a branching 
node higher up the tree. Crossover and three types of mutation were used as opera-
tors. The system could be initialised randomly, with genomes previously stored or 
from human input. He noted that this representation contained no information about 
keys or harmony and that the recursive form could quickly create interesting musical 
fragments, making fitness evaluation difficult. A number of statistical measures were 
taken to eliminate undesirable characteristics. A weighted sum of these measures 
were used as the fitness measure.

Khlaifa et al developed an autonomous music compositional system using GAs 
with the integration of formal grammars [49]. This system started with the devel-
opment of 16 musical motifs, whereby each individual motif contained 16 genes 
which allowed up to 16 notes in each motif. A grammar based fitness function was 
used to evaluate these motifs. The production rules of the devised context free gram-
mar were based on known musically pleasing relationships between notes and chord 
progressions according to Western tonality. In the second stage of the system, these 
motifs were combined to form longer phrases. The fitness measure for these com-
bined phrases was based on a combination of a measure from the acceptable inter-
vals between notes and a relationship from the ratio of notes within the composition. 
The authors determined that interesting music could be composed but that multi-
objective optimisation would be beneficial to the system.

Phon-Amnuaisuk et  al proposed a method that used a Self-Organising Map 
(SOM) as a fitness function with GP for evolving simple melodies [80]. Each indi-
vidual was made up of branching functions at the top of the tree with musical func-
tions which occurred below them. Each musical function acted on an automatic 
defined function (ADF) which defined the note to be played. The SOM was trained 
on well known simple melodies. The authors proposed that the SOM provided a 
flexible means to capture domain knowledge while the use of GP searched around 
the given examples. ANNs were also used in combination with an evolutionary 
approach in the NEAT Drummer system [37]. This system was based on the Neu-
roEvolution of Augmenting Topologies (NEAT) system that evolves the topology of 
an ANN [94]. NEAT Drummer applied these principles to the generation of drum 
loops with the user interactively selecting towards MIDI rhythms of their choosing.

In contrast to more traditional applications of EC, some musical applications 
avoid the fitness problem altogether by implementing the algorithm with random 
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fitness. It is arguable as to whether or not such a system actually evovles but if the 
focus is on the aesthetic output, and the representation used is strong and musical, 
a random fitness measure can be used to good effect. GenDash was such a system 
that used random fitness but also used and played all individuals that were created 
as music [102]. The author detailed the use of GenDash for the particular challenge 
of composing a single line of vocal music and the performance of the composed aria 
‘Sappho’s Breath’ in 2001 [101].

Reddin et  al developed a system called Elevated Pitch which employed GE for 
composing short melodies using four different experimental set-ups of varying fit-
ness functions and grammars [83]. In this system the authors used a combination 
of automatic fitness generation and interactive human judgment on a number of 
methods. They determined that users preferred melodies created with a structured 
grammar.

A multi-objective GA was proposed by De Prisco et al to the problem of unfig-
ured bass harmonization [25]. In such problems the composer is given a bass line 
and must compose the three other parts to create a four-part harmony. In this system, 
the individuals were harmonizations of the input bass line and the two objective 
functions were based on harmonic considerations and melodic considerations. The 
authors tested the system using Bach chorales, measuring the number of melodic 
and harmonic errors. Four part harmony was again considered using a GA by Don-
nelly and Sheppard starting from a single musical chord [28]. Each individual con-
tained four parts, one for each voice, consisting a list of tuples representing pitch and 
duration. This system evolved melody, harmony and rhythm all at once; the fitness 
of an individual was a weighted combined measure of a number of scores from rules 
for each of these three aspects of the composition. In their experiments the authors 
examined the probabilities of their operators, determining that by the final genera-
tion, crossover accounted for most of the operations. They determined that their sys-
tem could create four-part compositions that displayed a number of desirable musi-
cal qualities.

Melomics (Melody-genomics) was an approach to algorithmic composition 
based on evolutionary techniques that was focussed on the complete automa-
tion of the composition of professional music [27, 82]. The fitness functions used 
with Melomics were developed from a collaboration with professional musicians 
and assessed the generated compositions according to various criteria of formal 
and basic aesthetic nature. Melomics was implemented in two computer systems: 
Iamus produced scores of complete contemporary works and Melomics109 was a 
computer cluster dedicated to composing and synthesizing popular music. Although 
details of the system are unclear, it is stated that it was based on an evolutionary-
developmental process where evolutionary changes interpreted as small mutations in 
the genome could create complex changes in the phenotype.

GE was used with an interactive fitness function for musical composition using 
the Wii remote for a generative, virtual system entitled Jive [90]. This system inter-
actively modified a combination of piece-wise linear sequences to create melodic 
pieces of musical interest. This Jive system and the NEAT Drummer were used to 
influence a system from McDermott and O’Reilly [69] that generated music based 
on executable graphs. This system implemented a representation where a piece of 
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music consisted of a directed, acyclic multigraph along with several continuous con-
trol variables. They ran the system with three separate fitness functions: one based 
on 24 musical features, measurements from the variety in the graph’s behaviour and 
an interactive function.

De Freitas and Guimarães [22] presented a system that considered the evolution 
of a composition from a known piece to repeated patterns with a random fitness 
measure. In this system each individual represented a measure of music and the full 
population of measures formed the melody. While there was a minimum implicit 
fitness evaluation in the generation of melodies, the evolution was not driven by an 
explicit fitness function. Instead this system used random fitness and observed how 
long it took for genetic drift to result in takeover (whereby all or most individuals 
in the population are identical). In this case, when takeover occurred, the popula-
tion translated into a melody with a constant repeating measure. The system was 
initialised with a known melody and evolved until takeover occurred. The authors 
considered that the most interesting melody would be neither at the end of evolution 
(where the melody is too repetitive) nor at the beginning (where the melody is too 
similar to the original input) but somewhere in between. This point was selected as 
a measure of the originality-diversity trade-off calculated from the devised Takeo-
ver Matrix. Each generation was assigned a compromise value according to the 
Takeover Matrix. The median of the compromise values could be used to select the 
generation which should be used as the final resultant melody. They concluded that 
the system could be used to either generate melodies or extend and develop earlier 
known melodies.

DarwinTunes was a system developed for studying musical evolution in which 
fitness was determined by the aesthetic tastes of a group of musical consumers 
[61]. Each individual consisted of a tree-based structure, representing a program 
that generated a musical loop. Each population contained 100 loops each of which 
were 8 s long. When 20 loops had been rated, by the user on a five point scale, 
truncation selection allowed the top 10 loops to reproduce. This system involved 
large scale Interactive EC whereby 6,031 consumers made 85,533 ratings over 2,513 
generations. Using both interactive web-based evaluations and two music informa-
tion retrieval (MIR) algorithms, the authors determined that the evolved melodies 
improved over the first 500-600 generations and then fluctuated around a long-term 
mean. Although they stated that this could ‘shed light on the evolution of real musi-
cal cultures’ they did acknowledge that music in society is shaped by other forces 
than merely liking a loop. Cultural, social, societal, historical and peer influences are 
among many factors that are likely to effect the evolution of any real music, but no 
such measures were considered in this experiment.

Eigenfeldt and Pasquier [30] considered the time-based nature of music in their 
system in which individuals within the population represented musical motives 
and the audible evolution of populations over time were of musical interest. Musi-
cal designs and considerations within the system were influenced by the author’s 
compositional style. Throughout evolution, the population remained ordered and the 
temporal sequence of all individuals in the population constituted a musical phrase. 
A trajectory was determined according to the variation over generations, which was 
then used to select the order and repetition of generations over time. Trajectories 



68	 Genetic Programming and Evolvable Machines (2020) 21:55–85

1 3

were selected according to a fitness function that rewarded certain characteristics. 
These trajectories could then be combined or ‘braided’ to form full compositions. 
The authors concluded that the system generated complete compositions that were 
musically interesting while being representative of the composers’s style.

Pirnia and McCormack [81] examined representations of musical structure 
and their suitability for use with EC methods. They designed a series of experi-
ments with a target based approach: for each representation, the musical space was 
searched towards a variety of pre-defined target melodies. The fitness measure was 
based on edit distance from candidate to target melody. They examined three rep-
resentations: standard GP with eight functions and notes as terminals, extended 
GP which could use both notes and durations and ADFs which were able to use 
re-usable components. They found that the first representation suffered from the fact 
that the pitch and duration were tied together as one ‘note’ structure. The GP with 
ADFs representation were found to be most effective in finding melodies that had 
high instances of repetition but the addition of ADFs did not help significantly in 
melodies that had fewer repeated patterns.

3.1 � Recent trends

GP was employed by Sulyok et  al to examine evolving not a musical piece but a 
compositional process [95]. The action of composing the piece was considered as 
a process running on a Turing-complete virtual machine. Each individual genotype 
was run on the virtual machine, the output of which was parsed by a model builder 
to give a musical model. Each musical model was then evaluated in relation to a cor-
pus of Bach melodies according to a number of statistical properties. This mecha-
nism operated in a similar manner to grammar based evolutionary approaches where 
the grammar is replaced by the virtual machine. Kunimatsu et  al also used GP in 
constructing two cooperative models for chord progression and melody [51]. In con-
sidering Blues music, they implemented a GP tree structure where the depth of the 
tree corresponds to the length of the note. The system composes by generating a 
melody followed by chords and finally a bassline. The fitness measures are devel-
oped from a comparison of the notes within the chords and examining the entropy 
function from partial progressions

Ting et al proposed the phrase imitation-based evolutionary composition (PIEC) 
system which used a GA to create a new melody from the characteristics of a given 
melodic phrase [97]. The system performed intraphrase and interphrase rearrange-
ment to control phrase motion and fixed inappropriate notes to reduce dissonant 
intervals. Four rule based fitness functions were designed: difference of note vari-
ance, difference of interval variance, rules of arrangement and a hybrid method. The 
authors proposed that by imitating phrases, PIEC could create compositions simi-
lar to the sample melodies in characteristics without merely copying notes within 
phrases.

Hofmann proposed a GP approach to musical composition, written in a domain-
specific language, by representing musical pieces as a set of constraints changing 
over time [36]. The constraints included tonal, rhythmical, instrumental and musical 
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elements that control the composition of the music. Individual tree-based structures 
consisted of musical constraints, constraint modifiers, constraint generators and con-
trol structures. The model was modular, allowing subtrees to be referenced so that 
musical ideas could be re-used and varied within the composition. The system used 
a multi-objective fitness from a large range of statistical musical measures along 
with a number of structural features of the model. The authors noted that while their 
successful compositions were able to meet the statistical requirements of their fit-
ness functions, the results were not always aesthetically pleasing.

Loughran et al used GE for the composition of short MIDI piano melodies [56]. 
For this system they developed a grammar that created individuals consisting of 
musical elements such as notes, turns chords and arpeggios. The fitness of the indi-
vidual was measured, not in relation to Western tonality but from a statistical distri-
bution of the pitches in each melody. Final compositions were formed by concatenat-
ing the top four individuals in the population. As these evolved towards a common 
goal, they were found to be similar, resulting in the emergence of motifs in the com-
position. The similarity between these individuals or motifs was used to evolve a 
later version of this system that aimed to match the distance between the individu-
als to given patterns [55]. A further development of this framework attempted to 
remove the explicit fitness measurement and instead investigated an implicit meas-
ure of fitness evolved as separate population of critics [59]. In this system a cor-
pus a melodies was created, as per the original GE system. A population of critics 
were initialised that could give a numerical value for each melody. While this had 
no individual value as to the merit of the melodies, these critics were then evolved 
according to a mutual agreement as to which were the better or worse melodies in 
the corpus; the critic that had the most popular opinion received the best fitness. The 
best evolved critic could then be used as a fitness measure to evolve a new melody 
for the corpus and the cycle repeated. The authors noted that this would not neces-
sarily create ‘better’ melodies than their original system, but it did create a complex 
adaptive system that would generate musical output without relying on an explicit 
fitness measure from the user. An extension of the system that examined clustering 
of melodies rather than pure numerical rankings has been considered [58].

MetaCompose was an evolutionary music composer that split the act of composi-
tion into three processes: chord generation, melody generation and accompaniment 
[89]. The chords were generated using a random walk through a directed graph of 
common chord sequences and the accompaniment was generated with a stochastic 
process. The melody was generated using a multi-objective optimization evolution-
ary technique based on NSGA-II [26] with constraints of two Feasible/Infeasible 
populations as used in FI-2POP [50]. The fitness was measured from three objec-
tives based around melodic leaps and the flow of the melody in relation to the 
chords. User evaluations determined that participants preferred melodies from their 
complete system over randomised parts of the system in terms of pleasantness, ran-
domness and harmoniousness. MetaCompose was recently used to generate music 
in real-time that could express different mood-states in the Checkers game-playing 
environment [88].

Muńoz et  al used the compositional technique of unfigured bass (creating the 
melody of the bass voice without specifying the upper parts) as an evolutionary 
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compositional challenge [76]. They approached this task using a multiagent system 
comprised of co-adapting memes that emerged to characterise the unfigured bass 
technique. They notably considered memes rather than genes, where a meme was 
modelled as instructions that specify the procedure of a search. They used memetic 
search as it included a local search optimisation as part of the search strategy. Each 
memetic composer agent used a musical fitness function based on well-known har-
mony rules. The system had two steps: in the first (evolutionary) step composer 
agents took a bass line input and explored the space to find a suitable melody sub-
space; the second (local search) step completed the bass line using a set of local 
composer agents who exploited this subspace. Throughout this process the system 
employed six memetic composer agents, three evolutionary composer agents and 
three local composer agents. From a series of experiments they determined that 
their adaptive memetic algorithm was superior to conventional evolutionary music 
approaches, at this task.

The use of GAs for evolving Continuous Time Recurrent Neural Networks 
(CTRNNs) for audio synthesis was examined in the Plecto system [40]. The authors 
employed this as a method to use ‘low-level of abstraction’ between genotype and 
phenotype thus freeing the system from constraints introduced by some high-level 
system and hence expanding the audio search space. Plecto employed a collabora-
tive interactive fitness measure sourced from online communities. Although this 
study described the musical process as audio generation rather than music composi-
tion, at a low level, the two are the same and the one process—the creation of musi-
cal sound.

In recent years a number of systems have been proposed that integrated evolu-
tionary methods with the practice of live coding. Live coding is a practice where 
software that creates music, and sometimes visuals, is written and manipulated in 
real-time as part of a live performance [12]. The use of evolutionary techniques in 
generating new musical constructs during live coding has been explored in [34]. 
This system was built around the Extramurous platform in which performers entered 
Tidal code to text-boxes in a web-based client to control their musical contribution. 
A GA was used to evolve patterns (pieces of code) that produced music that was 
pleasing to the listener. The population was initialised empty and the user added 
individual patterns to the initial population as they encountered them. Once there 
were enough patterns, the population was evolved in real time using mutation with 
a constructed grammar and the user as the fitness measure. A framework for devel-
oping an evolutionary system that generated music using the live-coding language 
ChucK [100] was presented in [57]. The system proposed the development of gram-
mars that would stochastically create valid ChucK code using GE that could then be 
amended by the user in realtime.

Olseng and Gambäck described a multi-objective EA that generated short MIDI 
melodies by developing the melody and abstract harmonization in tandem [78]. Indi-
viduals contained both a melodic and harmonic genotype which directly encoded 
pitches. Four fitness measures were used. The melodic local objective measures the 
tonality and pleasantness of the melody, the melodic global objective is based on 18 
statistical features, the harmonic local objective attempts to stabilise chords vertically 
and the harmonic global objective judges chords in relation to other chords in the 
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phenotype. While the system did evolve successful results, evaluations determined that 
the system did not compose pieces that were found to be universally appealing.

4 � Discussion

An overview of the main points from some of the papers discussed in the previous sec-
tion is shown in Table 1. In this table System is specified as either the name of the given 
system or the first author of the cited paper. Problem is the problem domain as stated in 
the paper. Alg. refers to the algorithm used. Where an algorithm is not explicitly stated 
in the paper, we denote it as EC. Representation is an indication of the type of repre-
sentation used for an individual as described in the paper. Fitness refers to the type of 
fitness measure used in the system.

The most notable point from looking at an overview of this sort is to acknowledge 
that results can not be compared. There is no best solution, best result, or best fitness 
measure for the problem of ‘music’.

4.1 � Problem

It is evident from Table 1 that many of the problems reviewed have been merely listed 
as ‘music composition’. Indeed it could be argued that each of these papers described 
the problem of music composition, yet in looking at them in detail we can see that 
they each posed the problem in their own way. Music composition can refer to the gen-
eration or creation of many forms of music such as polyphonic music, short melody 
lines or four-part harmonies/unfigured bass. These forms can be further broken down 
into simpler tasks. For instance where unfigured bass is named as the problem, the task 
at hand could be either composing the unfigured bass line itself [76], or in creating 
the upper voices once given a specific bass line [25]. The practicalities in the differ-
ence between such musical tasks could only be succinctly explained and understood by 
someone with third level knowledge of music theory. Such explanations go beyond the 
scope of this paper, but each problem is introduced and explained in each study. The 
point is that ‘music composition’ is a highly complicated and nuanced problem—in 
fact it should not be described as one specific problem but as a family of problems, 
each of which should be addressed in its own way. The only way to approach each indi-
vidual problem is by employing sufficient amounts of domain knowledge. From this 
review it is clear that the authors generally have sufficient musical knowledge to embed 
this in each experiment. The success of any EC experiment in music composition or 
generation is dependent on sufficient domain knowledge being supplied and understood 
by the programmers of the experiment.

4.2 � Algorithm

When we attempt to summarise the type of EC used in each system in Table  1, 
it appears that GA is the most popular type of evolutionary algorithm applied to 
music composition. On closer inspection however, we must acknowledge that this is 
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somewhat of a generalisation. From examining these studies in detail we note that 
many authors implement their own variations of the algorithms when applying them 
to the problem of music. Most studies have not employed EC in a typical manner 
used in traditional studies. Traditional EC studies look for one best individual in 
the final problem. But in this musical domain many studies used the full popula-
tion [3, 30, 102] or multiple individuals from the population [56] in creating the 
final result. Some studies didn’t even measure fitness from individuals but instead 
examined musical trajectories across generations [30] or measured the genetic drift 
[23] to drive evolution. Furthermore, some studies stated that they used GAs but 
also included context-free grammars in their implementation thus being more indic-
ative of a generative grammar-based or GP-like approach [49]. Many studies did 
not detail or discuss the implementation as the focus of their studies. DarwinTunes 
for instance specifies a tree-based structure which certainly implies the use of GP, 
although this is not stated [61]. A number of other studies referred to evolutionary 
systems, but again did not give explicit details as to whether they considered their 
system to use GA, GP or some other implementation [82, 102].

We surmise that the reasoning for this is that to the authors, the name of the 
algorithm used was of less importance that the augmentation of its functionality to 
the task at hand. In traditional GP studies on accepted benchmark problems, much 
importance may be placed on the details of the workings of the algorithm as it is the 
comparison of algorithms that is of interest. If a benchmark result can be attained, 
then all details of experiments must be transparent, and combinations of EC experi-
mental criteria such as selection methods, operator probabilities, population size and 
number of generations must be explored and reported on. For aesthetic problems 
that have no benchmark, such details are less crucial. The reviewed studies, for the 
most part, did stipulate such attributes but the focus of these studies has been on 
finding an optimal method for producing music (in some form) rather than optimis-
ing any EC algorithm. Studies with such a focus do not detract from the validity of 
EC but rather they can only enrich the study of evolutionary methods by considering 
alternative or complementary methods of approaching problems.

There have also been many other successful applications of alternative popula-
tion-based methods to music composition such as swarm optimisation [6] or cellular 
automata [73] among others, but these were not considered for this review.

4.3 � Representation

The representation of an individual in an EC application to music is one of the most 
specific aspects of any study. Although Table 1 offers an indication of the type of 
representation used, full details can only be acquired by reading each paper in full. 
Some studies offer a description of both genotype and phenotype representation, 
although this is not universal across all studies. There is no standard way that a piece 
of music is encoded. The representation used is highly dependent on the specifics of 
the problem domain, but even experiments in similar domains do not necessarily use 
similar representations. The representation is dependent on the amount of informa-
tion an individual must convey; does the individual represent a melody or harmony, 
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does it represent pitch only or pitch and duration, are there pitch limits in place, how 
long is the melodic segments being represented, is translation being used through 
grammars, coding, MIDI interpretations? Furthermore, appropriate operators must 
be designed to alter such individuals. Most systems require variations of the tradi-
tional crossover and mutation or separate custom-made operators that can evolve 
individuals in the given representation. As in the discussion on problem domain, it is 
not possible to compare the merits of one representation to another; such a decision 
is dependent on the musical task undertaken. However, we have noted that authors 
of multiple variations of a system tend to use the same or highly similar represen-
tations in each of their experiments [3–5, 19, 20, 54, 56, 59]. Therefore we would 
advise anyone embarking on such studies to pay particular attention to the relation-
ship between the problem domain and their representation and any limitations that 
each would enforce, at the beginning of any set of experiments.

4.4 � Fitness measures

Once the musical problem has been succinctly described, the algorithm specified 
and a sensible individual representation proposed—how does one determine if a 
given individual is better or worse than another? This is not a trivial issue; among 
all the aspects of applying EC to music composition, the notion of fitness is the most 
difficult to consider. Studies that examine the translation of one melody to another 
can consider some form of distance to a target melody [38, 55, 81]. In these studies 
the fitness may be easily measurable, but for most compositional studies it is the 
merit of the resultant composition, rather than a pre-specified target, that is to be 
measured. Approaches to musical fitness have included interactive fitness, similarity 
to musical corpora, rule-based measures and the training of ANNs.

Interactive fitness is arguably the most subjective measure of fitness but it leads 
to the problem of the fitness bottleneck due to the cost in time and money to imple-
ment such measures [3]. Furthermore, such experiments will naturally lean towards 
the preferences of the person giving the fitness judgements and hence cannot be con-
sidered objective. More recently crowd based collaborative fitness measures from 
online participants have been used [40, 61]. Although these are based on human 
perception, they are not truly interactive as the judgements are not generally used 
as fitness in real-time. Furthermore, while such online crowd-based measures are 
cheaper and more easy to access, they are likely to be heavily biased in age, gender 
and experience depending on the sourcing of volunteers. A number of studies have 
used ANNs trained on previous human judgements as fitness measures. While this 
may seem like an efficient way to replace a human observer and address the fitness 
bottleneck, a number of authors from such papers have concluded that these meas-
ures were lacking in comparison to human judgments [5, 44].

Fitness measures based on a corpus of music or a set of musical rules can again 
suffer from biases. Experiments that use a musical corpus to derive a genre-based 
fitness measure will always be limited to creating music in a similar style to the 
given corpus thus limiting the creative potential of the system. A number of systems 
employed fitness functions that were based on musical measures, either through 
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harmonic rules or statistical measures. For such a fitness function to indicate true 
musical creativity, however, they would need to be heavily justified. Such measures 
drive the evolution, but regardless as to how involved or multi-faceted a given fitness 
measure is, it is surely impossible to say that this is the ultimate measure of music. 
Generally, the fitness measure is derived as part of the experiment; the fitness drives 
evolution in some meaningful manner through the search space. While each experi-
ment justifies its choice in fitness measure, there is no one particular ‘best’ measure 
by which to select good music over bad.

One other measure that has been used in musical systems but would not be nor-
mally seen in EC experiments is the idea of random fitness. Random fitness is gener-
ally only employed when the full population is used as part of the result [3, 23, 102]. 
The notion of random fitness is alien to EC researchers as it is the fitness meas-
ure that drives evolution, and a random measure cannot achieve meaningful search. 
However, in systems that examine the process of evolution or consider the manner 
in which individuals combine within a population to form a single composition, this 
notion of searching towards an objective becomes less explicit. This use of random, 
obscure or implicit measures is one of the most interesting amendments to systems 
that examine music and other artistic applications.

A review of fitness measures used in evolutionary art and music in the early years 
of EvoMUSART was presented by Johnson [45]. At a similar time a separate over-
view of the most prevalent measures and ideas used to examine and evaluate melo-
dies was given by De Freitas [23]. They discussed ten attributes used in the evalua-
tion of melodies based on pitch and rhythm measurements, concluding that previous 
approaches to formalise a fitness function for melodies have not comprehensively 
incorporated all measures. It does not appear that there is a simple solution to the 
creation of a musical fitness function. However, one option that is of particular inter-
est is that of an intrinsic fitness measure, a measure of performance not stated from 
the outset but emergent from the system itself. Alternative external measures such as 
the progressions of genetic drift in [23] or the internal self-circular creation of crit-
ics and melodies in [59] could lead to more interesting systems that do not merely 
follow arbitrarily created rules for the given experiment but emulate complex self-
adaptive systems that could explore a search-space through implicitly generated 
ideals.

The interplay of domain, representation and fitness will determine what a given 
system can and will produce: the search domain determines the space (or ‘style’) 
of music, the representation limits the individuals that can be created within that 
space and the fitness measure determines which individuals will be considered a 
good result. In EC experiments we know that fitness drives the search. However, it is 
a mistake to assume that the fitness measures in an EC music system drives towards 
musicality. Yes, we hope to emulate musicality in such systems, but if musicality 
does not lie in the fitness function it could instead lie in the domain, representation, 
initial population. In such cases the search is not towards musicality, the system is 
optimising towards another objective in a musical domain. But as creativity (or in 
this case musicality) is such a difficult concept to define, as discussed in Sect. 5, an 
indirect search with high levels of exploration may be the best method to attempt to 
find it.
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4.5 � Evaluation

Some studies consider music to be a stagnant object, others consider it a process; 
it has even been argued that music does not exist [104]. Let us assume for the pur-
pose of this discussion that it does exist and that, given appropriate context, either 
this music or the process that created it can be measured in some way.3 A lack of 
evaluation of creative systems has been noted many times in recent years [7, 47]. 
Evaluation on autonomous systems is required to determine if they are performing 
as expected. However, as with the problem of fitness, evaluating the performance 
of a music generation EC system is not as straight-forward as evaluation on more 
traditional problems. Fitness plots can be examined—but even if an average vs. 
best fitness plot over 50 generations averaged over 40 runs showed a typical fitness 
improvement—does this mean that the system succeeded in creating good music? 
If such results were seen we could certainly say that the evolution has occurred as 
expected; if our problem domain was well defined we could confidently state that it 
created music; if our individual representation was sufficiently constrained we may 
even speculate that it created good music. But—can we determine if the evolution-
ary process has autonomously created music over successive generations? This is a 
more complicated question to address.

When discussing a compositional system, the temptation is to evaluate the system 
on the melodic output, often through performing human listening tests. What con-
stitutes ‘good music’ is subjective to the individual however. Human listening tests 
may not result in objective or reproducible results. Furthermore, performing evalu-
ations purely on the output of a system can limit the validity of your evaluation. 
The output of a musical system may be interesting, but if it is the system’s ability 
to compose being investigated, it is imperative to look beyond the generated output. 
The relevance of this distinction is dependent on the focus of one’s research. Pearce 
et al specified two ways in which machine composers may be evaluated: in terms of 
the music they composed and the manner in which they composed [79]. There are 
many generative music systems whose purpose was to compose music while other 
studies were more focussed on the academic exploration of autonomous musicality 
or creativity. Music systems focussed on ‘mere generation’ were defended in [29], in 
highlighting that much music innovation has been achieved in Musical Metacreation 
(MuMe [77]) from generative systems focussed on human-interactive co-creativity. 
Any music compositional system fits somewhere on a spectrum between pure gener-
ation (the musical output is most important) and pure computational creativity (the 
behaviour of the system is most important). Meaningful and relevant evaluation of 
any system is dependent on where the system lies within such a spectrum.

In the context of applying EC methods to music composition it is hence impor-
tant not to automatically limit evaluations to those taken based on human measure-
ments from the produced musical output. Limitations that can be incurred by such 
measure have been discussed at length by Loughran and O’Neill [60].

3  Wiggins, who made this argument, has authored many papers on EC applied to music and we hope 
will forgive this assumption in this context.
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4.6 � Outstanding issues

In 2005 Jon McCormack proposed five Open Problems in Evolutionary Music and 
Art [68], revised in [67]. These problems considered representations and mecha-
nisms that were both robust to modifications, effective and suitable fitness functions, 
systems that evolved artefacts recognisable as art, systems where agents created and 
recognised their own creativity and the development of an ‘art theory’ of such sys-
tems. Each of these raised an important issue in EC applied to any creative process 
including representation, fitness, the purpose of such systems, self-referential (or 
even self-aware) systems and what we may learn from such systems. The author was 
correct in concluding that such grand challenges would not be solved in the immedi-
ate future; these questions remain open today. Each of these problems deserve much 
discussion, but the one we would like to draw attention to is Problem number three. 
This proposes:

To create evolutionary music and art systems that produce art recognized by 
humans for its artistic contribution (as opposed to any purely technical fetish 
or fascination).

While we agree that, for most systems, the output should be of interest, this should 
not exclude systems whose contribution lies within the system rather than the gener-
ated output. As with our argument above regarding limitations from evaluation, it 
is imperative that we look past traditional aesthetic evaluations in determining the 
merit of autonomous music systems. McCormack does address this point in propos-
ing the idea of ‘art-as-it-could-be’ and the idea of a wider movement in machine 
generated art. Furthermore later problems in the paper were more focussed on the 
operations of the system and what could possibly be learned from a developed sys-
tem, indicating that the purpose of such systems can be found in other aspects apart 
from what they produce. In a sense, if Problem number four (self-awareness of crea-
tivity) and Problem number five (art theory) were to be solved, Problem number 
three may not be such a problem anymore.

In an early discussion on EC applied to AC, Wiggins et al determined that GAs 
could be useful in musical tasks but only on small constrained tasks [103]. They 
argued that because evolutionary algorithms are heuristic search methods and lack 
structure in their reasoning they will never be able to replicate or simulate the 
human thought behaviour undertaken in music composition. While this may be 
true, this does not mean that EC cannot be useful in examining the creative act of 
music composition. The idea of replacing the full compositional process with one 
autonomous system may not be possible, but as we have seen from this review, most 
systems tackle a small domain-constrained aspect of composition. Breaking the act 
of composition into modules is not unlike the human-composer approach; composi-
tions are not created instantly but rather through a series of iterations. While no one 
autonomous system could replace a composer, it is possible that they could replace 
part of the composition process. In time, might some hierarchical evolution of evolu-
tion structure be able to theoretically approach the whole problem? We propose that 
systems should be developed that remain within sensible constraints, while being 
applied and exposed to increasingly creative challenges.
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Tatar and Pasquier recently published a review of all autonomous agents that 
have been applied to the problem of music composition. They stated towards the 
end of this paper that they had ‘not found any musical agents applying GP in their 
system design.’ While they may not have met the authors’ definition of ‘musical 
agent’ we have noted several studies that have directly applied GP4 to some aspect of 
algorithmic composition [19, 20, 36, 44, 64, 81, 92, 93, 95]. This is not to negate the 
validity of Tatar and Pasquier’s comprehensive review. Instead we wish to highlight 
that in reviews of the field of AC, GP systems are not making enough impact to be 
found. This is something that the community should aim to rectify.

5 � EC and the search for creativity

The emerging field of CC has been growing in momentum as a recognised and val-
ued sub-field of AI for a number of years [18]. Those that would once have assumed 
and off-handedly remarked such comments as ‘Obviously computers can never be 
creative’ may have to re-consider their words. Such a derisive attitude is not new 
however. As far back as 1982 Marvin Minsky argued that making such statements 
bordered on silly, and were mainly due to the fact that people considered creativity 
to be a kind of super-ability afforded only to the few geniuses among us [72]. As he 
stated in his essay:

There’s a big difference between “impossible” and “hard to imagine.” The first 
is about it; the second is about you!

Instead he proposed that there was no substantial difference between ordinary 
thought and creative thought and that as such there is no such thing as ‘creativity’ at 
all. This sentiment is similar although the conclusion starkly different from Boden’s 
argument whereby she stated that creativity is merely an aspect of human intelli-
gence. Whether you follow Minksy’s or Boden’s conclusion as to the existence of 
creativity, they are in agreement that creative thought or creative ability is merely 
part of general intelligence and not an abstract phenomenon requiring specialised 
explanation. It follows that if AI has become so important in modern computer sci-
ence and creativity is a part of general intelligence, then the study of CC must also 
be considered a matter of importance.

Much of the confusion or negativity in relation to the idea of computers being 
creative stems from a lack of definition and understanding as to what creativity actu-
ally means. While people may believe they have an understanding of what creativity 
means, a technical definition still alludes us. The standard definition of creativity is 
succinct [87]:

Creativity requires both originality and effectiveness

4  And many more that used GE, see Table 1.
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Unfortunately this is far from the only definition used. It has been stated that there 
are over a hundred definitions in the literature [71], but considering the subject is 
studied in so many varied fields and is now entering computational fields, this num-
ber is likely to be much higher than this. This lack of definition leads to difficul-
ties in measuring or evaluating creativity—as how can we measure what we cannot 
define?

It is generally accepted that for a system to be deemed creative it must display 
novelty and value. There are two distinct variations to the term ‘novel’. Ideas that are 
novel to the individual are considered Psychologically (P) Creative, whereas ideas 
that are novel to the world, that have not been derived before, are said to be His-
torically (H) Creative [9]. This confusion between H and P creativity can attribute 
to the colloquial notion that creativity must involve big important creative acts or 
achievements. In fact it is P-creativity that is of interest to computer programmers; 
from a computational stance it does not matter if the world has seen this creative 
act—as long as it is novel to the system under development. The concept of ‘value’ 
is dependent on the purpose of the system under development. More recently, some 
researchers have added that for a system to be deemed creative it must display nov-
elty, value and intent [99]. This third criteria ‘intent’ is likely the most difficult 
criteria to demonstrate. When a human creates something, it can be assumed they 
did so with intent, but when a computer system creates, intent must be explicitly 
determined.

Evaluating whether or not a system is creative is hindered by the lack of defini-
tion of creativity and the lack of consensus as to what should be measured to deter-
mine creativity. The lack of evaluation in CC systems has been noted throughout 
the development of the field [7, 15, 47]. This issue has been addressed in recent 
years and a number of evaluative frameworks have been proposed including the 
Lovelace Test [11], the Creative Tripod [17], Turing-style tests [1] and the Stand-
ardised Procedure for Evaluating Creative Systems (SPECS) [48]. We noted earlier 
in this paper that music generative systems can be purposed along a scale from mere 
generation to genuine creativity. Systems that focus on automating part of the com-
positional process can be considered generative, those that augment the human com-
positional experience are co-creative and those that focus on emulating creativity 
either through generating an artefact or in understanding the process are aiming to 
be truly computationally creative. Thus we can use evolutionary (and indeed any 
computational) systems both in generating creative music or in the search for the 
understanding of creativity. Ideally, we would like to be able to determine the scale 
or level of the creativity that is obtainable from such systems; we could consider 
the experiments listed in Table 1 along such a scale. The difficulties in evaluating 
creativity, however, make such comparisons extremely difficult and we would not 
wish misrepresent any work by classifying it in such a way. Nevertheless, we would 
advise future creators of generative systems to bear such considerations in mind 
when evaluating their systems and presenting results.

Boden has stated that there are three types of creativity that may be observed: 
combinational, explorational and transformational [8]. Combinational creativity 
combines familiar ideas resulting in a new idea or concept. Explorational creativ-
ity searches the ‘conceptual space’—a space defined and constrained by the domain 
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under consideration. Transformational creativity results in a transformation of the 
conceptual space itself. Boden regarded transformational as the type of creativity 
with the greatest opportunity for discovery, although it may be the most difficult 
to evaluate. The processes of exploration and combination are reminiscent of the 
processes involved in EC; mutation operators explore the search space and crosso-
ver combines individuals in the space for new ideas. Also, the use of grammars or 
genotype-phenotype mappings in GP systems offer a platform for the transforma-
tion of ideas and concepts. Furthermore, population based search heuristics such as 
EC begin searching from multiple start points allowing much better exploitation and 
coverage of the conceptual space than single point search heuristics. As we have 
noted, in EC systems there is a variety of ways in which to define fitness—includ-
ing methods that consider the full population or the relationship between individuals 
in the population. Hence there is more scope and possibility to search towards less 
specified and more relative ideas, such as creativity, than there may be with other 
error-based ML methods. It is thus unsurprising that so many systems are emerging 
that apply, and as we have seen amend, EC algorithms for the purpose of creative 
studies.

In the mid 1990s Spector and Alpern [92] noted the challenge of considering 
cultural relevance in rigorously adjudicating the output of an artistic system. They 
argued against evolving aesthetically towards rules derived from a given form or 
genre on three grounds: that this genre may be only formalisable because it is cur-
rently dead, that adherence to rules of a form does not necessarily indicate aesthetic 
value and that it is not clear if such values or rules would generalise to other gen-
res. Instead they proposed that in using EC methods they could factor out aesthetic 
judgement and instead develop a set of critical criteria which the system was capa-
ble of conforming to. By providing a way to separate aesthetic judgement from sys-
tem judgements they proposed that EC methods could offer a better opportunity to 
explore creative space:

The new technologies of GAs and GP offer the promise of tractable evolution-
ary processing, and hence theories of creativity-through-evolution may now be 
explored experimentally.

In an early discussion on algorithmic composition as a model of creativity, Jacob 
stated that there were two types of creativity: genius and hard work [43]. In this 
he proposed that the first type consisted of inspirational ideas that could not be 
explained and therefore could not be re-produced. His second type of creativity was 
more akin to incremental revisions which could be replicated algorithmically in an 
iterative manner. We do not agree with this view of creativity but rather view that 
elements of both of these ‘types’ are needed for the emergence of creativity. This 
notion of unexplainable ‘genius’ is akin to the fallible argument of specialised crea-
tivity argued against by Minsky and Boden. But iterative search on its own is also 
not likely (albeit possible) to result in creativity. Unexplainable inspiration is not 
necessary, but search is not necessarily sufficient for creativity to be present.

From these discussions around the meaning and pursuit of creativity, it is evi-
dent that creativity can only be attained through exploration and search. In the Blind 
Watchmaker, Richard Dawkins stated [21]:



80	 Genetic Programming and Evolvable Machines (2020) 21:55–85

1 3

Effective searching procedures become, when the search space is sufficiently 
large, indistinguishable from true creativity.

We do not wholly agree with this statement however, particularly with the 
emphasis on ‘sufficiently’. If the emphasis instead was to be place on effective 
we believe the statement may carry more weight. The size of the search space is 
irrelevant to the possibility of creativity. Imagine if we could consider the search 
space to encompass the real world. In this case it must contain creativity, as we 
know it. Searching through this space is not creativity, but searching it effectively 
could lead to creativity. It is this idea of effective search that is imperative for the 
emergence of creativity from heuristic search methods such as EC.

5.1 � EC for music composition

In conducting this review we noted that quite a number of studies made state-
ments such as ‘other studies only considered…’ before proceeding to state that 
the new idea considered in their study was the one that enabled it to autono-
mously create music. The problem with such arguments is that no individual 
system could possibly, at this time, autonomously compose music. To claim that 
your system ‘solves’ the problem is doomed to be simply wrong. We have noted 
many variations within the problem domain, representation, fitness measures, 
algorithmic implementation and evaluation methods. There is no one combina-
tion of these requirements that will outperform all other systems. We should not 
be designing EC systems to be able to produce the ‘best music’. However, neither 
should such systems be focussed on composing music to test for the best architec-
ture or experimental set-up within EC. Without a measurable objective as to what 
constitutes a ‘good’ result we cannot determine a definitive answer as to whether 
GAs, GP, GE or some other variation is better at composing music let alone if 
a particular operator or selection method is superior to others; the question is 
non-sensical.

But in the scientific world we must aspire to create systems that are improve-
ments on what has come before. If these systems are not to generate the best music 
and not to improve EC functionality, then what is their purpose? We believe that 
the answer to this lies in the above discussion on creativity. The search for creativ-
ity relies on effective exploration of the search space. In EC experiments we can 
limit the search space through domain constraints and individual representations, we 
can direct the search implicitly or explicitly through the design of fitness measures, 
we can transform individuals and domains through grammars, mappings and opera-
tors. In EC experiments, we start with a population of solutions, not an individual. 
As seen from the studies reviewed we can use the whole population, an individual 
result, a few individuals from the population or consider how the population changes 
within the process of composition. Evolutionary methods allow us to constrict or 
expand the data and processes necessary for exploratory creative search. Such meth-
ods have proven to be highly versatile in their approach to algorithmic music com-
position. We hope that this versatility will grow and be encouraged in future studies.



81

1 3

Genetic Programming and Evolvable Machines (2020) 21:55–85	

6 � Conclusion

We have presented a review on the application of EC methods to the creative task of 
algorithmic music composition. With the growth of events such as EvoMUSART, 
the number of papers encompassing both of these fields has steadily increased over 
the last three decades. We detailed the problem domains, methods, representations 
and fitness measures used in numerous studies from the early 1990s to today. We 
noted throughout this paper that the application domain of music composition can 
refer to a large number of musical sub-tasks which must be clearly defined through 
domain and representation constraints. Even when such constraints are in place, one 
of the biggest challenges for aesthetic applications such as music, in comparison to 
more traditional problems such as symbolic regression, is that there is no simple way 
to measure the ‘fitness’ of a piece of music. While fitness measures have been devel-
oped that follow rules, mimic given corpora or rely on human judgment, we noted 
that no single fitness measure can autonomously, objectively and reliably determine 
what is good music; musicality is not an easily defined objective.

We introduced the field of CC and examined the nature of creativity and its rela-
tion to evolutionary methods. We addressed some of the modern day objections to 
the notion of computers being creative. As noted from the opening of this paper, 
music and computers have witnessed a long history of complementing each other. 
The simulation of creative acts such as music composition and the ability of a com-
puter program to genuinely display creativity is a philosophical question as well as a 
technical challenge. Music, among the other creative arts, poses a different challenge 
than numerical tasks in that there is no correct answer. It has been claimed that 
music does not exist [104] and it has been claimed that creativity does not exist [72]. 
But if such things did not exist, there would be no way to even attempt to measure or 
emulate them computationally. Instead of dwelling on such arguments, we propose 
to continue the exploration of musical tasks and challenges using the versatility of 
GP and evolutionary methods in the pursuit of identifying, examining and ideally 
exhibiting musical creativity.
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