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Abstract. The merit of a given piece of music is difficult to evaluate
objectively; the merit of a computational system that creates such a piece of
music may be even more so. In this paper, we propose that there may be
limitations resulting from assumptions made in the evaluation of autonomous
compositional or creative systems. The paper offers a review of computational
creativity, evolutionary compositional methods and current methods of
evaluating creativity. We propose that there are potential limitations in the
discussion and evaluation of generative systems from two standpoints. First,
many systems only consider evaluating the final artefact produced by the
system whereas computational creativity is defined as a behaviour exhibited by
a system. Second, artefacts tend to be evaluated according to recognised human
standards. We propose that while this may be a natural assumption, this focus
on human-like or human-based preferences could be limiting the potential and
generality of future music generating or creative-Al systems.
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1 Introduction

Whether or not computers can actually display creativity is a thorny subject, one
that is unlikely to be resolved in the immediate or even near future. This is in part due
to the prickly nature of the general understanding of creativity and all this word
implies, before a computational emanation of it is even considered. This lack of
understanding naturally leads to a difficulty in quantifying or enumerating what it
means to be creative or to display creativity; there is a subjective nature to creativity
that is very difficult to measure empirically. This difficulty in subjective measures has
resulted in most computationally creative systems being evaluated using human
opinion. This is understandable because comparing a computer’s displayed creativity
against that which is understood as being human creativity would seem to be the best
(or only) way to circumvent this inherent subjectivity. On the other hand, Boden
posited an interesting take on how true computer creativity could be recognised in the
future (1998, p. 355): ‘The ultimate vindication of Al-creativity would be a program
that generated novel ideas which initially perplexed or even repelled us, but which
was able to persuade us that they were indeed valuable.” This suggestion of
recognising computer creativity retrospectively as something we could not appreciate
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(or were ‘repelled’ by) when first exposed to it implies that we must look further
afield than our own human opinion for evaluation of computational creativity. If we
adjudicate a creative artefact merely according to whether or not it is ‘liked” by a
human consensus, then Boden’s above hypothesis will be impossible to realise.

This article examines the phenomenon of creativity, computational creativity and
in particular musical computational creativity and the importance of evaluating it in a
meaningful and sufficient manner. In recent years, we have witnessed remarkable
progress in the field of machine learning and artificial intelligence. We have seen a
program beat a human champion in chess (Campbell, Hoane & Hsu, 2002) and more
recently one of the oldest human board games in the world, Go (Silver et al., 2016).
While this illustrates human-competitive levels for computer programs at logical tasks
such as gaming, when it comes to more subjective, creative tasks such as musical
composition, people can be less accepting of a computer’s ability to match that of a
human. Music is considered beautiful, aesthetic and above all personal — we each
have our own taste in music that is ours to own with no need to defend. Can we
expect autonomous programs to create aesthetic artefacts such as musical
compositions that are comparable or indistinguishable from those created by humans?
Is the only method of evaluating the creativity of a program to compare it against
human creations using human opinion? While this may seem like the natural option,
we propose that this is a limiting assumption — one that may hinder the development
of computational creativity. In this article we discuss various aspects of musical
computational creativity and consider if there are alternative manners in which to
think about computational creativity — other than as a method of mimicking human
creativity.

The following section considers the semantics of the word ‘create’ and how
everyday use of the word and its variants can affect the meaning interpreted from it.
Section 3 considers algorithmic compositional methods that are focussed on
evolutionary techniques. The idea of conceptual space and transformations that can
result in creativity is discussed in Section 4. The role of intelligence and how it relates
to creativity and music is discussed in Section 5. Section 6 describes and discusses a
number of methods that have been used to evaluate computationally creative systems
in the past. A discussion of why we have this tendency towards human-comparisons
and how this has changed in the definition of computational creativity is offered in
Section 7. Finally, some conclusions are offered in Section 8.

2 Create, Creation, Creative, Creativity

Boden has stated that creativity is not magical but a feature of human intelligence
(Boden, 2009, p. 23). Yet somehow, when we talk about creativity or whether or not
someone is creative, it does translate into more than a simple ability to create. The
specific use of the terms ‘create’, ‘creation’, ‘creative’ and ‘creativity’ does infer a
different internal meaning when used colloquially. Although this is merely a
grammatical or semantic difference, the implications of what is assumed are worth
noting.

Ritchie discusses difficulties in implications from the words ‘creative’ and
‘creativity’, noting the lack of scientific rigour in the use of these words in ordinary
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discourse (Ritchie, 2006, p. 242). The words creative and creativity in relation to the
process of creating raises ambiguities in the colloquial uses of such terms. Even
dictionary definitions of the terms ‘create’ and ‘creative’ can vary, as discussed in
(Jordanous, 2012, p. 254). The ability to create, to make something, does not
immediately instil awe or wonder in us. We encourage and expect pre-school children
to create drawings, models or stories as part of early development. We assume that we
all posses this innate ability to be able to create or make a creation. Once we switch
terminology to being creative, however, we somehow assume that this is a special
ability, only afforded to a lucky few. In contrast to the simple creative ability we
attribute to small children, adult creativity can often be used to infer a special talent or
artistic ability. When considering creativity in absolute terms, or in terms of
recognising creative ability in any autonomous system, the meaning of what is to be
expected must be clear.

2.1 Types of Creativity

A creative idea must have novelty and value, but this can mean many things. An idea
can refer to a physical artefact — a painting, composition, joke — or it can refer to a
more abstract concept, theory or interpretation. The term ‘value’ can be interpreted as
having many meanings; the idea could be beautiful, interesting, useful, more efficient,
etc. Furthermore, there are two distinct variations to the term ‘novel’. Ideas that are
novel to the individual who generated it are considered Psychologically (P) Creative,
whereas ideas that are novel to the world — ones that no one has considered before are
said to be Historically (H) Creative (Boden, 2009, p. 24). By this reasoning, H-
Creativity is a special case of P-Creativity. P-Creativity is the type of creativity we
display in our everyday lives — which we expect from small children as discussed
above. H-Creativity, on the other hand, results in the big discoveries — the famous
symphonies and Nobel Prize discoveries. It is likely that the assumption that creativity
mostly refers to, or even aspires to, H-Creative feats instils this idea of ‘magical’
creativity in us; creative accomplishments appear to be reserved for those talented
few. The ability to be creative, however, is possessed by us all. While very few of us
may display H-Creativity at any point in our lives, we display P-Creativity every time
we make a joke, solve a problem or hum a tune.

There are three distinct types of creativity: combinational, explorational and
transformational (Boden, 2004, p. 4). Combinational creativity combines familiar
ideas resulting in a new unfamiliar idea or concept. An analogy is a form of
combinational creativity that combines familiar concepts. Combinational creativity is
the type of creativity that is most often used in studying experimental psychology.
Exploratory creativity relies on the notion of a ‘conceptual space’. This space is
defined and constrained implicitly according to the domain being considered; it is the
space within which a creative idea can be iteratively explored. Transformational
creativity involves the most drastic alterations of all methods. In transformational
creativity, the space within which one is searching is itself altered. This type of
creativity offers the greatest opportunity for discovery or ‘shock value’, but it is also
the most difficult to evaluate, as the transformations make meaningful interpretation
or evaluation criteria very difficult to define. This idea of conceptual space is
considered further in Section 4 below.
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2.2 Computational Creativity

Computational Creativity is a subfield of Artificial Intelligence (AI) research that
focuses on computational systems that undertake creative ideas. There have been a
number of variations on the definition of computational creativity as the field has
developed, but for this article, we will consider that given by Colton and Wiggins
(Colton & Wiggins, 2012, p. 21): ‘The philosophy, science and engineering of
computational systems which, by taking on specific responsibilities, exhibit
behaviours that unbiased observers would deem to be creative.” Thus computational
creativity is defined in terms of being deemed creative — a term easy to discuss and
describe (as above) but still difficult explicitly to define. This inherent difficulty in
defining creativity in general is inevitably transferred to the domain of computational
creativity. Such a difficulty leads to a further difficulty in evaluating any such
creativity. As discussed in Section 1, there remains a strong tendency to evaluate such
things using human opinion, but we would like to emphasise that the above definition
makes no reference to human-like or human-competitive behaviour;! this definition
explicitly states that it is an unbiased observer that must deem the behaviour to be
creative. Thus, we again suggest that we must look further than human comparison in
the evaluation of creativity.

Of the three types of creativity described above, combinational is the easiest for
humans and yet the most difficult for an Al to achieve (Boden, 2009, p. 25). This type
of creativity requires access to a vast range of ideas and concepts that a human
naturally builds up over time but which must be made explicitly available to an Al.
Nevertheless there have been a number of studies in humour that have looked at
computational combinational creativity (Binsted, Pain & Ritchie, 1997; Manurung et
al., 2008; Valitutti & Veale, 2016). Using Al to model exploratory creativity requires
high expertise and deep insights into the problem domain. Artists and musicians can
spend years gaining expertise in their respective domains. Using a computational
system to generate novel and valuable ideas requires close consideration of this
knowledge. Yet exploratory systems have been developed in these areas of art
(Colton, 2012) and music (Cope, 2004). Transformational creativity is the most
difficult type of creativity to control, because it requires domain knowledge that must
be maintained even when this domain is transformed. Boden has posited that
evolutionary computational methods may be best suited to transformational creativity
(Boden, 2009, p. 29). We discuss evolutionary methods applied to algorithmic
composition in Section 3.

2.2 Algorithmic Composition
Algorithmic Composition (AC) can be considered a computationally creative task, but

only if the compositions display true originality and creativity. Systems that merely
mimic or adapt previously composed music would not, on the surface, appear to be

! Nevertheless, earlier definitions, such as that in Wiggins (2006), did make
comparison to ‘human’.
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creative. In saying that, David Cope has stated that that creativity does not come from
a vacuum, but synthesizes the work of others (Cope, 2005, p. 87). Cope’s algorithmic
compositional system EMI (Experiments in Musical Intelligence) was created to
generate music in a given style and was trained on a corpus of existing music, initially
a set of Bach chorales. He developed this system further into Emily Howell, an
algorithmic composer who has released albums in her own style. Cope’s definition of
creativity is based on new connections between ideas not otherwise considered
connected (p. 11). He warns against confusing creativity with novelty (p. 51) and
instead focuses on recombinance (or rules acquisition) and allusion. He hypothesises
that all composers in part combine ideas from other composers in their own work,
hence he considers recombinance to be at the core of his computer models of musical
creativity (p. 127).

The motivation for applying computation to musical tasks was examined and
discussed in detail in Pearce, Meredith & Wiggins (2002), whereby they determined
four distinct reasons, namely algorithmic composition, design of compositional tools,
computational modelling of musical styles, and computational modelling of music
cognition. Clearly there is more to be learned by applying algorithms to compositional
tasks than merely creating computer music, although arguably algorithmic
composition is still the most creative of these tasks. In discussing the motivations and
evaluation of the compositional aim, however, they determine that ‘researchers often
fail to adopt suitable methodologies for the development and evaluation of
composition programs and this, in turn, has compromised the practical or theoretical
value of their research’ (2002, p. 1). Thus a fundamental issue in applying
computational methods to composition lies in the evaluation of the systems created.

3 Evolutionary Composition

The three types of creativity, introduced above, describe three ways in which
computers can simulate creativity (Boden, 2004, p. 3):

* Combining novel ideas.
¢ Exploring the limits of conceptual space.
* Transforming established ideas that enable the emergence of unknown ideas.

Grammar-based evolutionary methods such as Grammatical Evolution (GE)
(Brabazon, O’Neill & McGarraghy, 2015) offer an interesting parallel to such
processes. The ‘combination of ideas’ concept can be likened to the crossover
operator used in evolutionary systems; similarly, ‘exploration’ can be likened to the
mutation operator. The use of grammars in GE can facilitate the third idea of
‘transformation’ listed above. Thus we propose that grammar-based evolutionary
systems are particularly suitable for creative tasks such as melody writing. The
creation of melodies offers a particularly difficult computational challenge, because
there is no absolute correct answer; judging whether one melody is better than another
is inherently a subjective matter. Systems based on Evolutionary Computation (EC)
methods require the use of a fitness function — a user-defined function that can give a
numerical assessment as to whether one solution is better than another. The design of
this fitness function is hence very problematic for subjective tasks such as algorithmic
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composition. Often, this problem is addressed by using a human as a fitness function,
using a set of known musical rules or comparing the music to a given style or genre.
Each of these methods is based on the assumption that human-made music is best
(and consequently is what is being searched for). But there is already an abundance of
music being created (by humans) that follows such rules, with more being created
every day. In looking at algorithmic composition as a computational problem, we are
given an opportunity to consider it from a different angle. Assuming that the music
created by machines must automatically be judged in human terms is an assumption
that has the potential to limit the capabilities of any computationally creative system
(Loughran & O’Neill, 2016a).

EC methods are fundamentally based on Darwin’s evolutionary theory of ‘survival
of the fittest’. A population of random solutions to a given problem is created and
each solution is assigned a fitness according to how well it solves that problem. The
solutions are then selected for survival and reproduction into the next generation
based on this fitness. As this process is repeated, the overall population of solutions is
improved and the best in the final population can be chosen as the solution to the
given problem. In applying EC to composition, the conceptual space is defined by the
representation, musical rules or grammars used. Each individual in the population is a
melody or part of a melody. The representation of music, fitness function and manner
in which the results are interpreted or combined into music are all design
considerations for the experimental programmer. The following discussion introduces
a number of experiments that used EC methods for compositional tasks.

EC methods were developed using problems that had a specific optimal solution,
such as symbolic regression and the artificial ant trail. In developing these systems for
aesthetic purposes, we should perhaps look at a broader way of using and interpreting
them. These are tools for composers to use, and as tools they can be utilised as seen
fit. Miranda examined three distinct approaches to using evolutionary methods in
music: the engineering approach uses EC techniques in the field of sound synthesis;
the creative approach uses EC in compositions; and the musicological approach
searches for the origins of music by means of computer simulations (Miranda, 2004).
An overview of earlier studies in EC for musical composition is offered in Burton &
Vladimirova (1999), determining that Genetic Programming (GP) (Koza, 1992)
methods perform better than those that use Genetic Algorithms (GA) (Goldberg &
Holland, 1988). This may be unsurprising because GP methods use a tree-based
structure whereas GAs are limited to a linear string in their representation. Hence, GP
can represent more complex representations and operations — something that would be
very useful in representing music.

GenJam (Biles, 1994) used a GA to evolve jazz solos, building solos from pre-
generated MIDI sequences that were judged by a user to determine the fitness
measure. The system has been modified and developed into a real-time, MIDI-based,
interactive improvisation and performance system that regularly performs in
mainstream venues (Biles, 2013). VoxPopuli is an interactive compositional tool that
uses evolutionary methods in real-time algorithmic music composition using notes
and chords (Moroni, Manzolli, Von Zuben & Gudwin, 2000). Dahlstedt has discussed
how we may use EC as the basis of a wide range of tools but that in doing so we may
have to relinquish some level of control (2007, 2009). More recently, adapted GAs
have been used with local search methods to investigate human virtuosity in
composing with unfigured bass (Munoz, Cadenas, Ong & Acampora, 2016), with a



Limitations from Assumptions in Generative Music Evaluation 7

grammar to augment live coding in creating music with Tidal (Hickinbotham &
Stepney, 2016), and with non-dominated sorting in a multi-component generative
music system that could generate chords, melodies and an accompaniment with two
feasible-infeasible populations (Scirea, Togelius, Eklund & Risi, 2016).

Evolutionary processes work well in aesthetic tasks such as music composition
because they are generally non-deterministic. The evolution of a population offers so
much scope and possibility that it is reminiscent of the music creation process — a
solution is not linearly determined but instead emerges from a fluid, incremental
process. As introduced above, the biggest issue in using EC for aesthetic purposes is
in the design of the fitness measure. Individual solutions (compositions in the case of
AC) can only survive on to the next generation if they are judged worthy according to
a predetermined fitness measure designed by the programmer. Thus the problem
becomes: how do we measure the musical fitness of the individual?

3.1 Measuring Fitness

The most obvious approach to developing an aesthetic-judgment-based fitness
measure is to use a human as the fitness function. Such systems are referred to as
Interactive EC (IEC). In these experiments, a human user must rate each individual in
every given generation. The survival of that individual is then dependent on the value
given by the user. These systems are very well suited to design and creative tasks
because they remove the need to automate a subjective judgment. A number of
systems have used IEC to successfully create melodies (Biles, 1994; Moroni et al.,
2000; Reddin, McDermott & O’Neill, 2009; Shao, McDermott, O’Neill & Brabazon,
2010). The biggest drawback with interactive methods is that they create a bottleneck,
particularly in musical tasks. For the analysis of visual art, whereby the user can
observe a number of creations concurrently, the fitness can be measured very quickly.
For musical tasks, however, users need to listen to musical excerpts successively,
rendering these methods very expensive. For IEC experiments in algorithmic
composition, the experiments must be designed so that the user only has to listen to
and adjudicate a small number of compositions before fatigue or boredom sets in.
Every time an experiment is run a new set of listening tests (possibly with a new set
of listeners) must be set up. This makes it very cumbersome to re-run experiments and
so IEC experiments must be very carefully prepared. For this reason it is simpler and
less costly to develop an automatic fitness function.

In some studies, the initial population only contains individuals that are already of
high quality. Because of this, individuals can be randomly selected (regardless of
fitness) for reproduction (Waschka II, 2007) or the entire population can be used in
creating the composition (Eigenfeldt & Pasquier, 2012; Loughran, McDermott &
O’Neill, 2016). The idea of a random fitness function is alien to EC programmers
because it is nonsensical to evolve a population without any fitness measure. If the
system uses a priori musical knowledge to ensure the entire population is of high
fitness, then the search space is confined so that the evolutionary process can be used
to traverse the space safely. This may not be considered a proper use of EC — but it
can make good music.

The use of a traditional, autonomous measure of fitness may be more economical
than IEC and make more sense than random selection, but such a measure is not easy
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to define. An overview of the most prevalent measures and ideas used to examine and
evaluate melodies is given in de Freitas, Guimaraes & Barbosa (2012). They discuss
ten attributes used in the evaluation of melodies based on pitch and rhythm
measurements, concluding that previous approaches to formalise a fitness function for
melodies have not comprehensively incorporated all measures. Nevertheless, many
studies have used various types of autonomous fitness functions to drive EC systems
to create music (Todd & Werner, 1999; Dahlstedt, 2007; Loughran, McDermott &
O’Neill, 2015b, 2015a; Munoz et al., 2016).

System-Based Fitness A notable study demonstrated that in computationally
creative evolutionary systems, it is only important that the fitness measure chosen
need be defensible; what makes one creative item better than another may not be what
a human would choose, but it must be a sensible, defensible and reproducible choice
by the computer program. In other words there must be a logical and explainable
method in assigning fitness measures. This was investigated using the idea of a
preference function by measuring qualities such as specificity, transitivity and
reflexivity to determine the choice of a system in a number of subjective tasks (Cook
& Colton, 2015). Such a measure may not agree with what a human may choose as
the best but, most importantly, it agrees with itself. This preference function chooses
one item over another due to a logical system of comparing between items and
determining a decisive preference. A related idea was proposed for a compositional
GE system that based fitness on the concept of conforming to the popular opinion of
the population (Loughran & O’Neill, 2016b). In this system a population of ‘critics’
were evolved on a corpus of melodies according to how well each individual critic
agreed with the ranking of the melodies by the entire population. This best critic was
then used as a fitness function to create a new melody that replaced one of the original
melodies in the corpus and the cycle was repeated. This resulted in a complex
adaptive system that was self-referential and autonomous once it had been initialised.
This system was generalised from a ranking-based system to a cluster-based system in
Loughran & O’Neill (2017). The purpose of the development of such systems is to
remove any human-defined measures of aesthetic fitness, enabling a compositional
system to be autonomous and unbiased from human influence.

3.3 What’s the Objective?

The above argument only considers EC applications but other Machine Learning
(ML) music creation systems suffer from the same dilemma. Any supervised ML
algorithm needs an error function — a target it must aim towards. Backpropagation,
used in Artificial Neural Networks such as the Multi-layered Perceptron, requires a
mean-squared error, which requires a target. Similarly any other supervised ML
algorithm needs an error function — a target it must try to approach or optimise
towards.

Such targets are, however, completely misaligned with the human method of
composing. Human composers do not start with a target composition and iterate
towards that. Students of academic music may be given assignments in which they
must conform to a set of theoretical rules or emulate a given composer’s style — but
this is not where great compositions come from. Is the purpose of applying Al to
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music to produce a bunch of mediocre students or to create new, genuinely good and
novel music?

One problem with traditional fitness functions is that they result in good or bad
results, leading to a scale of ‘goodness’ depending on how close an individual is to a
specified objective. Some Al researchers would propose that using a pre-specified
objective is not necessarily a good idea when searching a space to solve a problem.
This theory suggests that searching for novelty is a better method in looking for a
great solution, in that the optimal solution can often be found when looking for a
different solution or when searching for no particular solution at all (Lehman &
Stanley, 2010; Stanley & Lehman, 2015). Such a theory fits very well in searching
any creative space. A musician does not know what music they are trying to create
when they start; they work through ideas, changing their process and hence their
output as they observe what they are creating. We propose that for any automated
machine-learning system to be truly creative there cannot be a pre-defined objective;
the fitness function should be a measure of the progress of the system.

In recent years, the field of computational creativity has embraced this idea that
creating an artefact means more than outputting a number. The context within which a
creative product is judged, including background information and the feeling it
evokes in the creator, is defined as Framing (Charnley, Pease & Colton, 2012). Such a
concept reveals that there is more to computational creativity than the output, and that
intent, motivation and aspects of the creative or computational process all contribute
to the overall result. Similarly, a Computational Creativity Theory (CCT) has been
proposed to provide a computationally detailed description of how creation could be
generated and the impact it can have (Colton, Pease & Charnley, 2011). These studies
demonstrate that there is more to measuring the progress of a creative system than
merely taking a numerical measure of error, target or fitness.

3.4 Fitness versus Evaluation

In the case of using EC techniques for compositional tasks we must be very clear on
the distinction between fitness measure and evaluation. The fitness is the continuous
measure taken from individuals within the population that drives the evolution of the
composition. Evaluation in this sense refers to the measure of the performance of the
system as a whole — how successful the given system is at composing a piece of
music. In creative tasks such as music creation, this results in a distinct disjunction
between fitness measurement and the perceived quality of the output — one that is not
present in more traditional, empirical uses of EC. We highlighted EC applications to
music creation in this section because this fitness measure plays a crucial role
although many other types of machine learning methods have been applied to the task
of music composition (Fernandez & Vico, 2013). Regardless of the type of algorithm
used, with any optimisation or error-based functionality, some metric of the aesthetic
progress of the melody must be given throughout the composition process. This is not
the same as evaluation, however. Evaluation involves measuring the overall success
of the system either from the process involved or the final result produced, depending
on the aim of the system.
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4 Conceptual Space

The previous section drew parallels between evolutionary computation and
computational creativity in terms of combinational, explorational and
transformational creativity and the workings of evolutionary computation. While the
terminologies used do offer an interesting conceptual analogy, a direct comparison is
overly simplistic in regards to the space in which computational creativity is studied:
the conceptual space. This conceptual space can be thought of as the abstract location
of the artefacts produced by the creative system. As defined by Boden (2004, p. 4):
‘Conceptual spaces are structured styles of thought... any disciplined way of thinking
that is familiar to (and valued by) a certain social group.” Depending on the
constraints of the given problem domain, this space can be sparsely or densely
populated. In any given conceptual space, many thoughts may be valid or possible,
but only some of them will actually be thought. Some thoughts may be obvious and
natural and are reached without any effort or conscious deliberation. Others involve a
deeper traversing of this space, to find the links to ideas not immediately obvious to
us.

Both exploratory and transformational creativity are linked to this idea of the
conceptual space. Exploratory creativity searches and traverses this space in
generating novel ideas, whereas transformational creativity transforms a dimension of
the space so that new ideas can be formed that would not have previously adhered to
the space. Depending on the degree of transformation or the degree of exploration,
these two forms of creativity can be seen to be operationally quite similar.
Exploration of the space can be seen as a small ‘tweaking’ of some defined constraint
that amounts to a minor transformation. The distinction between tweaking and
transforming can be specific to the domain, but it is dependent on how well defined
the concept space is (Boden, 1998, p. 348).

We are not aware of any attempt to define how many dimensions may be in a
concept space, however in idea management systems an idea space has been
suggested which was reduced in dimensionality (Spencer, 2012). This study proposed
that by using feature-based Jaccard-Tanimoto similarity, this ‘idea space’ was
consistently about 14-dimensional, regardless of the origin or specifics of the ideas.
Although this result may appear over-simplified, the proposal to reduce such a space
is interesting and may warrant further consideration.

4.1 Transformational creativity

Boden has posited that many big scientific discoveries involved some form of
transformation, but many people believe computers could not achieve this type of
transformational creativity (Boden, 2009, p. 29). The idea that transformational
creativity results in the highest levels of creativity was formulated by Ritchie as a
hypothesis for experimental testing (Ritchie, 2006). This study reconsiders some
fundamental assumptions on computational creativity in a formal and informal sense.
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Informally, he considers that a creative action takes place in a society of individuals
resulting in an artefact. Within the society there is a small set of medium types and
genres. An artefact belongs to a medium type, which merely indicates a raw data type
of an artefact — a string of characters, etc. A genre is a culturally defined type of an
artefact. The medium type of an artefact is trivial to decide, but which genre it
belongs to may be made subjectively. In this discussion, Ritchie reconsiders a more
abstract requirement for the conceptual space. In doing so, he considers a number of
functions that a space must fulfil in order to support an analysis of creativity (p. 250).
He states that whatever a space is, formally it must be something that can be
abstracted from a set of artefacts. Thus, the given space must be able to hold all
artefacts that exist within it. He considers a number of options for a formal model, but
find no obvious formal distinction between minor and major changes or indeed
whether a change would amount to the altering of a boundary of a space or multiple
spaces. He notes that a transformation cannot be sufficient criteria for high creativity
— merely a necessary one, while pointing out that this has not been verified in human
creativity (p. 259). To test this hypothesis, he states that a precise formal model (of
one of the types discussed in the paper) must be developed and that the space, the
space induction and the transformation must be defined. He argues that while this is
not trivial, if it cannot be done then empirical testing of the hypothesis would be
impossible (p. 260). While he states that such an approach may not be the only option,
anyone trying to assume transformational creativity is superior to other forms should
offer some similar or comparable analysis (p. 263).

4.2 The Creative Step

Creativity is a step-wise process. Creativity cannot exist in a vacuum, nor can it just
appear, but instead it must be reached through combination, exploration or
transformation. Thus we propose that there must always be a ‘Creative Step’ — a
movement from one idea to the next that results in the emergence of a sufficiently
novel yet interesting idea. The size or extent of this step is critical in the recognition
and perception of creativity. If this step is too wide, the creativity is lost as being
random or nonsensical, but if it is too narrow it is too trivial to actually be creative.
This is evident in artefacts as well as ideas. A Pollock painting would surely have
been ridiculed in the 18th Century, but through gradual explorations and
transformations within the artistic conceptual space it now may be revered as great
work. The painting (artefact) could physically exist at either time, but it is only the
changing appreciation of artistic works over time that can result in this painting being
perceived as creative.

5 Musicality, Creativity and Intelligence

This article considers the implications of assumptions made in evaluating
computationally created music or, more generally, in asking if an Al can be musically
creative. The relationship between intelligence, creativity and music is clearly both
complicated and yet highly important to establish in considering these ideas. One
would naturally assume that the act of displaying creativity inherently displays
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intelligence. Indeed, Boden has described creativity as ‘a feature of human
intelligence in general’ (Boden, 1998, p. 347). One would also assume that displaying
musicality naturally displays creativity; it is fair to assume that if someone was to
write an acceptably pleasing piece of music that this person would be considered
creative. If the transitive property was to hold in this space, then we could state that in
displaying musicality one is inherently displaying intelligence. While the level of
intelligence that a display of musicality (or creativity) actually indicates is certainly
debatable, a conflicting example of a system or person completely lacking in
intelligence producing something musical does appear to be implausible. The
converse of this is not true, however; there are many creative people that are not
musical, just as there are many intelligent people that are not musical and would not
claim to be creative.

In the non-human or machine context, Artificial Intelligence became a computing
priority long before computational (or artificial) creativity became a topic of interest.
Hence we know that there are many extant Al systems whose priority was not to
display or consider any creativity. But, as per the argument above, does a system that
displays musicality automatically display intelligence? If we again assume that
musicality implies creativity and alter Boden’s above description of creativity to state
‘a feature of intelligence in general’ rather than ‘a feature of human intelligence’, then
we can state it does.

A more in-depth discussion on the relationship between music, intelligence and
artificiality is offered in Marsden (2000). In this study, that appeared before many of
the formal papers on computational creativity, the discipline of Music-Al is studied
by considering two possibilities of machines: the idea of computers imitating human
behaviour and also performing musical tasks. In this study the distinction between
machines and other artificial objects is defined by their behaviour. From the point of
view of information technology it makes the point that we value machines for what
they can do, not what they are; computers were designed to have unconstrained
behaviour, to be the universal programming machine. In discussing the history of
Music-Al Marsden states that one characteristic of an intelligent being is that it can
learn, not just from explicit teaching but that it can learn spontaneously. In a
philosophical discussion on the definition of music and how an artificial system may
be defined to be musical he states: ‘... if any system is to be musical it must make
reference to human behaviour, and to that extent any musical system must involve
artificial intelligence’ (2000, p. 21). Thus Marsden states that when determining the
musicality of a system, there is no obvious boundary to be drawn between considering
human behaviour that is not intelligent and considering (non-human) behaviour that is
intelligent. In this sense ‘musicality’ and ‘intelligence’ are very much intertwined, and
very much dependent on emanating human-like behaviour. With the ever increasing
computational power of machines, often what is expected of them is not equal-to-
human but superhuman abilities; computers can process more data, faster than any
human ever could. Marsden proposes that the real goal of an Al is for it to perform in
a human-like manner in some respects and a non-human manner in others; but again
this leads to questionable boundaries as to what constitutes ‘human-like’ and when
human-like should be prioritised over non-human-like. Throughout the paper,
Marsden considers three types of definitions of intelligence: behaving human-like,
exhibiting spontaneous learning and responding to the surrounding environment.
From this third definition, he states that one must consider the possibility that Al is
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not necessarily a copy of human intelligence. He proposes that this would offer
interesting and productive (or valuable) and novel approaches which would be very
interesting to musicians and in particular for the musical task of composing.

An interesting angle in the above study is its comparison between Al and
intelligence in humans and animals. A thought provoking, if at times whimsical,
comparison between an artificial mind and the mind of a dog is discussed at length in
McFarland (2009).

6 Evaluating Creativity

The idea of evaluating creativity in terms of human opinion is nearly always assumed
but rarely justified. One explicit justification for this is offered in Ritchie (2006). He
defends this standpoint on two grounds. Firstly, he states that humans have used the
term first and so this is the meaning that is well established. Secondly, Ritchie argues
that to measure machine creativity in terms of mere machine performance could lead
to the danger of circularity in claims about the nature of this process. The first of these
arguments appears weak; justifying using humans merely because we used the term
‘creative’ first is not a very strong point. The second point on the danger of circularity
due to the lack of clarity of the definition of the term ‘creative’ is a much stronger
argument. The difficulty in defining creativity naturally leads to a resultant difficulty
in evaluating whether or not a computational system is creative. This has led to a
number of authors undertaking self-evaluation, minimal evaluation or no evaluations
at all on their systems. The lack of evaluation in CC systems has been noted
throughout the development of the field (Boden, 1998; Cardoso, Veale & Wiggins,
2009; Jordanous, 2011). Such studies highlight the need for a clear definition of what
can be considered creative.

Ritchie was one of the first to propose a set of formal empirical criteria for
creativity. He originally proposed a set of 14 criteria (Ritchie, 2001), which was
extended to 18 (Ritchie, 2007) as a framework describing the design and
implementation of a creative system. These criteria aim to judge the two main aspects
of creativity — namely typicality (or, in contrast, novelty) and value or quality. The
individual criteria are weighted in various ways to determine the quality and typicality
of the produced output in comparison to what the system is expected to produce.
Colton designed a framework entitled the Creative Tripod to determine if a system is
creative, or if it merely has the perception of being creative (Colton, 2008). The
Tripod framework describes a system as creative if it exhibits three elements: skill,
appreciation and imagination. Furthermore, the framework states that there are three
involved parties that may be perceived as contributing to this creativity, namely the
programmer, the computer and the consumer. For creativity to be experienced, all
three elements must be exhibited by at least one of these three parties. This is an
extremely important step in the description and definition of creativity because it can
separate the idea of creativity from the human user. If a programmer shows no
creativity but the program she creates does, then creativity is present. A framework
for evaluating genre-specific compositions was proposed in Pearce & Wiggins (2001).
In this work they describe a framework that examines each phase of a generative
music system culminating in a discrimination test. This evaluation was performed by
human subjects by asking them how well the generated music conformed to a pre-
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specified genre. Pearce and Wiggins use a subsequent study to evaluate melodies with
a learning-based perceptual model of music listening (Pearce & Wiggins, 2007). This
study involved using a number of experienced human observers to judge the output of
three computational methods of creating chorales, and then statistically analysing
their judgements in order to help develop towards an autonomous creative system.
This work proposes an excellent study in modelling a computational system on
measured cognitive behaviour, but they acknowledge that their results suggest that
these compositional tasks still present significant challenges in modelling cognitive
processes.

A further discussion of various methods of evaluation applied to musically creative
systems is given in Ariza (2009). He discusses the Musical Directive Toy Test
(MDtT), whereby an interrogator, using a computer interface, gives a musical
directive to two composers, one human and one machine. The given directive may be
a style or abstract instruction and the interrogator must decide which output is from
the human. A similar Musical Output Toy Test (MOtT) is described whereby two
composers (again one human one machine) produce a piece of music that may be
related in terms of style or instrumentation but are created without specific directive.
Again the goal is to convince the interrogator that they are the human composer.
Ariza compares the application of these tests in numerous studies but note that these
tests, unlike the traditional Turing Test, do not rely on or require natural language,
and that the decision made by the interrogator may rely as much on preference or
subjective judgments as on logic. He proposes that the continued use of such tests
does more to ‘investigate the limits of musical judgement than the innovation of
generative music systems’ (Ariza, 2000, p. 57).

Currently, the most highly recommended system for evaluating creative systems is
the Standardised Procedure for Evaluating Creative Based Systems (SPECS)
(Jordanous, 2012; Jordanous, 2013). This work performed an initial survey of
evaluative practice in contemporary (from 2007-2010) computational creative
systems and papers. Jordanous found that evaluation of computational creativity was
not being performed in a systematic or rigorous manner. She observed that these
results indicate computational systems are being presented as ‘creative systems’
without justification of this creativity; the term ‘creative’ has become another
descriptor of the system, rather than the focus of such systems. Furthermore, the
survey in Jordanous (2012) drew attention to a lack of clarity as to what should be
involved in evaluating a creative system — what interpretation of creativity should be
used, who should perform evaluation and when, etc. Jordanous identified a lack of
universally accepted and comprehensive definition as to what it means to be creative
as a major complication in developing a standard or consistent method of evaluation.
From the linguistic analysis performed on a review of literature over 60 years of
creativity research, Jordanous identified 14 distinct components that act as building
blocks for creativity. These components were used in developing a set of Evaluation
Guidelines (Jordanous, 2011), involving three distinct steps to clarify what is being
evaluated and then performing tests according to that clarification. For any developed
creative system one must:

Step 1: Identify a definition of creativity that your system should satisfy to be
considered creative
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Step 2: Using this definition, clearly state the standards you use to evaluate the
creativity of your system.

Step 3: Test your creative system against the standards stated in step 2 and report the
results (Jordanous 2012, p. 259).

These guidelines were expanded into methodological steps that encompass the
SPECS methodology (Jordanous, 2012). The SPECS framework has become a
suggested standard for evaluation of creative systems (see, for example, the guidelines
for this journal JCMS, 2017)).

6.1 Artefact versus Behaviour

Unfortunately, a number of previous evaluation methods only evaluate the output
artefact created by the system and do not consider the process or behaviour of the
system itself. In fact, one of the Open Problems in Evolutionary Music and Art
(McCormack, 2005, p. 434) states that it is important to create evolutionary art (or
music) recognised by humans for it’s artistic contribution as opposed to technical
fascination. This is in direct contrast to the definition of computational creativity
given in Colton & Wiggins (2012, p. 21) which is based on ‘exhibited behaviour’ of
the system — and is not defined in terms of the output, or in terms of human opinion.
This is an important distinction to be aware of in this stage of developing autonomous
creative systems. If a system composes music it is very interesting to hear what kind
of music it composes, but if it is the system’s ability to create being evaluated, it is
imperative to look further than the output in making this evaluation. The relevance of
this distinction is dependent on the focus of one’s research. Pearce and Wiggins
specify two ways in which machine composers may be evaluated: in terms of the
music they compose and in terms of the manner in which they compose (2001). There
are many music generative systems and human-interactive systems whose purpose is
to create music while other studies are more focussed on the academic exploration of
autonomous musicality or creativity. Music systems focussed on ‘mere’ generation
are defended in Eigenfeldt, Bown, Brown & Gifford (2016), highlighting that much
music innovation has been achieved in Musical Metacreation (MuMe, 2017) from
generative systems focussed on human-interactive co-creativity. As such, any given
music generative system lies somewhere on a spectrum between pure generation (the
artefact is most important) and pure computational creativity (the behaviour is most
important). Meaningful and relevant evaluation of any system is dependent on where
the system lies within such a spectrum.

This is not a new distinction to make. John Cage’s 4°33” is undeniably recognised
as a musical work, but this is the classic example of appreciating the method or
concept used over the output. Similarly, the serial works of Schoenberg and many
Musique Concréte works are as focussed on the way in which the sounds within a
piece are made as the final output. Such works also caused controversy (certainly
outside an academic music audience) in their time, but they have stood the test of time
and are recognised as landmarks in musical history. Such precedence should leave us
open to more generalised methods of evaluations beyond whether or not people ‘like’
1t.
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6.2 The Lovelace Test

Often known as a founder of computer programming, Ada Lovelace had some
remarkable insights into the possibilities that computer programming could offer. In
the 1840s, Lovelace saw a capability in Charles Babbage’s recently proposed
Analytical Engine far greater than that of mere numerical manipulations. She saw that
such machines could in time be used to represent art and music, but she maintained
that these machines would never be able to create, as creation requires originating
something. Her objections have been paraphrased by Bringsjord, Bello & Ferrucci
(2003, p.4): ‘But computers originate nothing; they merely do that which we order
them, via programs, to do’. Her considerations on this topic were remarkable in
relation to such a new theoretical invention at the time. In her writings, Lovelace
posed a number of questions in this regard, which have been distinguished by Boden
into the four ‘Lovelace Questions’ (Boden, 2004, p. 16). These questions ask:

¢ Can computational ideas help us understand human creativity?
¢ Can computers ever do things that appear creative?

¢ Can computers ever recognise creativity?

¢  Can computers ever really be creative?

Most people would agree that the first two questions have been answered (with a
resounding ‘yes’). The third may offer more argument, but it is the fourth question
that causes the most bother to people. Bringsjord et al. (2003) consider that Lovelace
posed these questions as an objection to the idea that computers could actually be
creative. They note her objection that creation requires the origination of something
whereas computers are not capable of originating anything. They subsequently
developed the aptly named Lovelace Test (LT) for creativity. This test involves an
artificial agent, A, its output, o, and its human architect, H. Simply put, the test is
passed if H cannot explain how A produced o. While this may seem like simple
criterion, it is actually extremely difficult to pass. This test requires that the algorithm
written by the programmer must produce an output that the programmer, or another
agent with the programmer’s expertise, cannot explain. On the surface it may seem
like many AC systems would quickly pass this. EC compositional systems, for
example (see Section 3), having a non-deterministic nature, can produce output not
predictable by the programmer. Not predictable is not the same as not explainable,
however. The programmer can explain the representation, fitness measures or
grammars used in such systems, thus explaining the process of how the music is
produced. For the LT to be passed, the output must be truly surprising and
unexplainable to the programmer.

The LT is much more difficult than other TT-style tests because it is the
programmer, the one person who understands the workings of the algorithm more
than anyone else, that acts as the interrogator of the system. In a sense the program
must fool or trick its own creator for it to be deemed successful. If the programmer
made a mistake, and suddenly could not remotely explain the output of her own
system, would this be allowed to pass the LT? We would assume not, since a mistake
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implies randomness (on the programmer’s part) and randomness is not equivalent to
creativity. However, if the seemingly random human mistake led to a genuine creative
streak, shouldn’t this satisfy the specified criterion to pass the LT? Often our own
most creative successes are attributed to a moment of inspiration. Could this not be
seen as a ‘mistake’ in the mind that we cannot explain? If we can accept the results of
our own random mistakes as creative, why does it need so much more explanation in
the programs we create and, paradoxically, why is it that once we can explain it, it no
longer can be claimed as creative?

The LT can be seen as an attempt to satisfy the fourth Lovelace Question posed
above, and therein lies the difficulty. To be really creative is something that many
humans feel they can only aspire to. The difficulties inferred by our colloquial use of
the term ‘creative’ were discussed in Section 2. But creativity is not magic; it is not an
elite quality only to be found in a lucky few, but an ability possessed by us all. The
LT may be doomed to be impassable — by definition, if the programmer understands
their own code, they can always offer some explanation as to the output that is
produced. As algorithms become more complex, however, involving domain
transformations, stochastic, statistical and non-deterministic measures, then surely this
explanation will become a more abstract way of explaining how the output came
about, rather than an exact explanation of how A produced o. Human artists are not
held up to such scrutiny as to how they create a work of art. Critics may examine an
artist through their teachers, mentors and influences, determining their reasoning for a
given style according to what they have learned along their career path. This
explanation of influences or learning does not negate the resultant creativity of a
human artist. Why then should such an explanation automatically negate the creativity
of an algorithm?

7 Discussion

Creativity must involve a display of reason and intent. Random acts that result in
seemingly creative artefacts cannot be perceived as being creative. The current
definition of computational creativity given above refers to systems that ‘exhibit
behaviour’; it does not in fact refer to the artefact produced. When evaluating a
creative system it is vital to bear this in mind and not merely judge the system on the
final output produced. The need for evaluating creative systems was discussed in the
previous section but, while we do not dispute this, we want to mention studies that are
purely focussed on the system rather than the output. For studies that are focussed on
the method behind a system — for example, the architecture, level of autonomy or
even an underlying concept — evaluation in the sense proposed may not be as
important as it is for other more artefact-focussed systems. For such studies, is not
submitting work for peer-review to suitable conferences or journals in itself a form of
evaluation of the validity of the method or reasoning behind such a system?

7.1 Non-human Creativity
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We have a tendency to anthropomorphise behaviours typically associated as being
specifically human when we see such behaviour exhibited by non-human systems.
For example, many dog owners consider their canine companions to have
comprehension or understanding beyond what is empirically evident. A quick online
search would offer a multitude of videos of dogs ‘singing’ along to music, humans
singing, or to other dogs howling. Certain dogs may howl when they hear a musical
instrument playing or a baby crying, but to say that this is singing along is attributing
too much understanding and intent to an observed behaviour. Assuming animals have
an aesthetic appreciation or enjoyment of music is ascribing a set of values that we
possess onto a being that may not have the same set of values. No doubt the dog
enjoys howling along (assuming she does it on her own accord), but this does not
mean she appreciates music in the same sense as us. This concept of attributing a set
of human values onto a non-human system or animal may seem natural, but it is
questionable from a philosophical standpoint (McFarland, 2009). Such a
philosophical argument is equally valid for an Al system. No Al system has yet been
developed that exhibits intelligence to the level of that of a dog, yet we automatically
assume that it will have the capabilities to generate or appreciate music in the same
way as we do. Is that not again assuming too much for systems that are still in
development?

7.2 The Human Comparison

In the development of the field of computational creativity, authors have defined and
described creativity in terms of a ‘human’ ability to various extents. This has often
been an implicit suggestion within the explanation of ideas or proposals. Boden has
described creativity as something not magical but as an ‘aspect of normal human
intelligence’ (Boden, 2009, p. 24). In Marsden’s discussion on intelligence, music and
artificiality he discusses the ‘intention to perform in a human-like fashion’ as one of
the two major topics of the paper (Marsden, 2000, p. 16). Ritchie justifies alluding to
human-creativity when considering more general (non-human or machine) creativity
for two reasons: firstly, that this is the established usage and, secondly, that doing
otherwise would risk circularity in claims about the process (Ritchie, 2006, p. 243).
The definition of computational creativity offered by Wiggins (2006) referred to
behaviour of systems which would be ‘deemed creative if exhibited by humans’ (p.
210). As late as 2012, Jordanous’ definition referred to behaviour ‘if observed in
humans’ (computationalcreativity.net, cited in Jordanous, 2012 p. 248). Although the
Colton & Wiggins (2012, p. 21) definition quoted above in Section 2 does not make
any reference to ‘human’, it does appear that many (if not all) other definitions made
this comparison in some form. This distinction warrants further discussion from the
computational creativity community.

Wiggins, Miillensiefen & Pearce (2010, p. 234) offer an interesting take on music
and what it means in which they state: ‘Music, in its own right, does not exist.” This
refers to the fact that when we talk about ‘music’ what we are actually referring to is a
specific representation of music such as an audio recording, a live show or a musical
score. The only way in which these representations actually mean music to us is in
our brains’ interpretation of them. By this reasoning, ultimately music only exists in
our minds. Although this may be a philosophical stance, it is an important one to
consider from the outset when trying to establish how computationally generated
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music should be judged or evaluated. Taking this standpoint is one of the strongest
arguments for continuing to use human judgements on generated music, if evaluation
is purely performed on the artefact produced by the system.

On the other hand, discussions on the Creative Tripod in Colton (2008, p. 17) state
that creativity can be exhibited by either the programmer, the computer or the
consumer, thus asserting that creativity can be present regardless of the explicit
opinion of the observer. Furthermore, Colton and Wiggins definition of computational
creativity discussed in Section 2 foregoes any reference to human or human-like
behaviour (Colton & Wiggins 2012, p. 21). As the field of computational creativity
develops there appears to be a move away from describing or defining creativity in
terms of human opinion. Should evaluation of systems developed in this field not
follow such a move?

7.3 Who is the Music ‘For’?

When arguing against the use of human-based evaluation, the most obvious (and most
often asked) question is ‘who is this music for?” If we are suggesting that human
evaluation is not the most important judgement (or, in the more extreme, not even
relevant) to be made on autonomous music generation systems, then what is the
point? Suggesting that such music is written for the enjoyment of computers is
(certainly for the moment) silly, farcical and more suitable for weak science fiction
than academic research. However, writing music for something else is not the goal or
point of this research, nor is it something we currently aspire to. Fixating on ‘who’ the
music is written for is again a pure judgement of the final artefact produced, rather
than on the behaviour of the agent that created this music. Furthermore, it assumes
that any future use of music must be interpreted by the same value-system as we have,
an assumption that we may want to relax for a broader philosophical standpoint. We
would suggest that the focus of this research is not to ask who the music is for but to
completely disregard this notion of ‘for’ in an attempt to approach a more general
evaluation of creativity involving a truly unbiased observer. Asking who the music is
for is a natural question when considering music as a subjective, aesthetic and
meaningful form of entertainment, but in this purely academic sense of considering
computational creativity, a continued focus on human opinion is a meaningless
distraction from the goal of unbiased evaluation.

8 Conclusion

This paper has presented a discussion on limitations that may arise when evaluating
musical computationally creative systems. Evaluating creative systems inherently
raises difficulties in that there is a subjective nature to the value of the artefact
produced. In the case of musical systems, evaluating the output amounts to making an
objective decision as to how ‘good’ the resultant piece of music is. This not only
relies on a human definition as to what constitutes good music, but such tests only
evaluate the final artefact produced by the system and not the behaviour of the system
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itself. Throughout this article we have discussed the implications of this and outlined
possible limitations of considering generative music and creativity purely from this
narrow standpoint. Section 2 introduced various types of creativity, computational
creativity and some ideas that the field is built upon. Evolutionary methods applied to
algorithmic composition were discussed in Section 3, including the difference
between internally based fitness measures and external evaluation of the systems.
Section 4 introduced the notion of conceptual space and the step-wise nature of
creativity. The relationship between musicality, creativity and intelligence was
discussed in Section 5. Previous methods of evaluating such systems were reviewed
in Section 6. An overview of the implications of this research was discussed in
Section 7.

We acknowledge that this discussion remains open-ended; we argue against
limiting to human evaluation on music and creativity, yet recognise that this is still the
logical way to evaluate such subjective systems. What we propose is that at this stage
we open the discussion to the possibility that there may be alternative options, that
aspiring to what we as humans think is best may not be the most general or most
informative solution. We are currently in an age where Al is developing at a
remarkable rate. If we are considering the capabilities of such Al systems in creative
domains, we must surely broaden the possibilities within which to evaluate such
capabilities. When we restrict evaluations to human-based judgement we may be
assuming too much about systems whose limits and capabilities we are only yet
discovering and which are growing and developing constantly. This is not a good time
to limit the possibilities of any computational system.

The arguments presented here are not limited to the field of computer science.
Never before have the boundaries between technology, art and philosophy been so
vague or fluid. Pragmatically, it appears that making subjective judgements in
comparison to what we know and believe as humans appears to be the only sensible
option. Philosophically, however, we need to look to a broader picture. If Boden’s
vindication of Creative Al is to be realised, and if the Lovelace questions are to the
answered, the argument for a more generalised evaluation of creative systems must be
continued, regardless of whether they make us uncomfortable. After all, if the
argument makes one uncomfortable or leaves one thinking of unanswerable questions,
is that not what art, philosophy and technological development are all for?
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