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Abstract. This paper presents a cyclical system that generates au-
tonomous fitness functions or Agents for evolving short melodies. A
grammar is employed to create a corpus of melodies, each of which is
composed of a number of segments. A population of Agents are evolved
to give numerical judgements on the melodies based on the spacing of
these segments. The fitness of an individual Agent is calculated in re-
lation to its clustering of the melodies and how much this clustering
correlates with the clustering of the entire Agent population. A prepara-
tory run is used to evolve Agents using 30 melodies of known ‘clustering’.
The full run uses these Agents as the initial population in evolving a new
best Agent on a separate corpus of melodies of random distance mea-
sures. This evolved Agent is then used in combination with the original
melody grammar to create a new melody which replaces one of those
from the initial random corpus. This results in a complex adaptive sys-
tem creating new melodies without any human input after initialisation.
This paper describes the behaviour of each phase in the system and
presents a number of melodies created by the system.
Keywords Algorithmic composition, grammatical evolution, clustering,
self-adaptive system, autonomous fitness function.

1 Introduction

Boden has suggested three ways in which computers can display creativity [2]:

– Combining novel ideas
– Exploring the limits of conceptual space
– Transforming established ideas that enable the emergence of unknown ideas

Grammar based evolutionary methods such as Grammatical Evolution (GE)[4]
offer an interesting parallel to such processes. The ‘combination of ideas’ concept
can be likened to the crossover operator used in evolutionary systems, while ‘ex-
ploration’ can be likened to the mutation operator. The use of grammars in GE
can facilitate the third idea of ‘transformation’ listed above. Thus we propose
that grammar-based evolutionary systems are well-suited to creative tasks such
as melody writing. The creation of melodies offers a particularly difficult evolu-
tionary computational challenge as there is no absolute correct answer; judging



whether one melody is better than another is inherently a subjective matter.
Often, this problem is addressed by using a human as a fitness function, using
a set of known musical rules or comparing the music to a given style or genre.
Each of these methods are based on the assumption that human-made music is
best — and consequently is what is being searched for. But there already is an
abundance of music being created (by humans) that follow such rules, with more
being created every day. In looking at algorithmic composition as a computa-
tional problem, we are given an opportunity to consider it from a different angle.
Assuming that the music created by machines must automatically be judged in
human terms is an assumption that has the potential to limit the capabilities of
any computationally creative system [16]. As Boden stated [3]:

‘The ultimate vindication of AI-creativity would be a program that generated
novel ideas which initially perplexed or even repelled us, but which was able to
persuade us that they were indeed valuable’.

As long as autonomous creative systems are focussed on human judgement, this
will be impossible to realise. For these reasons this paper proposes a system that
evolves melodies, not according to any musically-derived fitness function, but
by developing an autonomous fitness function that is created in response to the
system itself.

The proposed system creates a population of Agents that result in a numerical
output for a melody, evolved using a given melody corpus. An Agents’ fitness is
not based on any musical quality but on how well each individual Agent clusters
the melody corpus in relation to the average clustering of the entire population
of Agents. As such, it mimics the social phenomenon of agreement: those Agents
that conform to the population are given better fitness than those that do not.
In this way an individual Agent does not have any merit on its own — its
performance can only be measured in relation to the overall behaviour of the
population. Once an Agent is evolved, it is used in a further evolutionary run
as a fitness function to create a new melody. This new melody replaces one of
those in the original corpus and the process is repeated. This results in a cyclical
process of Agents used to create melodies that are in turn used to create new
Agents. Thus we present a complex adaptive system that continuously updates
in response to its own behaviour without any human influence.

The following section describes relevant literature in evolutionary systems
applied to melodic composition. Section 3 describes each stage of the system.
Experimental results and the behaviour of each stage of the system is described
in Section 4. Conclusions and proposed future work are given in Section 5.

2 Previous Work

This study proposes a novel method for using GE to evolve melodies, focussing
on developing an autonomous fitness function that has no a priori musical knowl-
edge or preference. In recent years, a number of EC methods have been applied
to the problem of algorithmic composition. Genetic Algorithms (GA) have been
applied in the systems GenJam to evolve real-time jazz solos [1], GenNotator to



manipulate musical compositions using a hierarchical grammar [23] and to cre-
ate four-part harmony from music theory [9]. More recently, adapted GAs have
been used with local search methods to investigate human virtuosity in compos-
ing with unfigured bass [18], with a grammar to augment live coding in creating
music with Tidal [10], and with non-dominated sorting in a multi-component
generative music system that could generate chords, melodies and an accompa-
niment with two feasible-infeasible populations [20]. Genetic Programming (GP)
has been used to recursively describe binary trees as genetic representation for
the evolution of musical scores. The recursive mechanism of this representation
allowed the generation of expressive performances and gestures along with mu-
sical notation [7]. Interactive Grammatical Evolution (GE) has been used for
musical composition with promising results [21]. GE has also been used recently
with autonomous fitness functions based on statistical measures of tonality and
the Zipf’s distribution of musical attributes [14, 13]. These studies found the mu-
sical representation created by the grammar and the combination of individuals
from the final population could be as important as the fitness function. Some
studies have addressed the problematic issue of determining musical subjective
fitness by removing it from the evolutionary process entirely. GenDash was an
early developed autonomous composition system that used random selection to
drive the evolution [25]. Others used only highly fit individuals within the popu-
lation from initialisation and then used the whole population to create melodies
[1, 8].

The evolution of a population of individual Agents (or ‘Critics’ or similar ter-
minology) that adjudicate a melody in some way has been proposed in a number
of notable studies. The concept of populations co-evolving in a composer-critic
paradigm was presented in [24]. This modelled the production of birdsong in
nature by co-evolving males who composed songs along with female critics who
decided, based on these songs, who to choose as a mate for the next generation.
An evaluation framework consisting of a number of critics was proposed in [19].
This study induced a set of critics from a set of musical examples after first spec-
ifying specific musical criteria. The system then created music and was evaluated
by a set of human listeners. A distributed population of autonomous composing
agents is described in [17], which co-evolved agents with repertoires of melodies
according to a measured ‘sociability’. This sociability was measured in terms of
similarity of the agent’s repertoires; individual melodies survived or were altered
depending on reinforcement feedback between co-evolving agents. This study
differs from the proposed method as it is the correlation of a individual Agent’s
clustering of melodies to that of the (single) population that is measured in this
system rather than a direct similarity measure between melodies.

A notable study demonstrated that in Computationally Creative Evolution-
ary systems, it is only important that the decision of fitness need be defensible;
what makes one creative item better than another may not be what a human
would choose but it must be a sensible, defensible and reproducible choice by
the computer program. In other words there must be a logical and explainable
method in assigning fitness measures. This was investigated using the the idea



of a preference function by measuring qualities such as specificity, transivity and
reflexivity to determine the choice of a system in a number of subjective tasks
[6]. Such a measure may not agree with what a human may choose as the best
but, most importantly, it agrees with itself. This preference function chooses
one item over another due to a logical system of comparing between items and
determining a decisive preference. We try to build on this idea in the system
proposed. Creating a fitness function (or Agent) based on a dynamic measure-
ment of the system rather than a typical human measure is a key idea in the
proposed system.

It has been proposed that using a pre-specified objective is not necessarily
the best approach to searching. This theory suggests that searching for novelty is
a better method when considering a problem, that good solutions can be found
when looking for a different solution or when searching for no particular solu-
tion at all [12, 22]. Such a theory fits very well in searching any creative space.
A musician may not know exactly what piece of music they are trying to create
when they start, they work through ideas, changing their process and hence their
output as they observe what they are creating. Furthermore it was discussed in
[16] that using human-based fitness measures may not be ideal in generative mu-
sic; the prevalent and consistent adjudication of autonomously generated music
against human opinion or measures determined from human-created music the-
ory may in fact be limiting the potential of systems that could create music
outside of such constraints. It is for such reasons that the current system de-
velops an autonomous fitness function that is based purely on self-referential
organisation of melodies by the system as it develops; the proposed method con-
stitutes a complex, adaptive system that recursively amends an initialised corpus
of melodies in response to the continually updating fitness measure. The steps
in this process are detailed in the following section.

3 Method

The main focus of the system is in the creation of a fitness function that can be
used to search through a population of melodies and ‘adjudicate’ them by means
other than using known musical qualities. To do this a population of fitness func-
tions is evolved, which from henceforth will be referred to as Agents in this work.
Each Agent is used to cluster a population of constructed melodies. An overall
clustering measure from the Agent population is calculated and each individual
Agents’ fitness is measured in relation to how much it agrees with this general
clustering. The form of the Agents is specific to the melodies created for these
experiments; Agents are constructed as a linear combination of the distances be-
tween each segment of the given melodies. The full proposed system is cyclical:
a corpus of melodies is used in the evolution of an Agent which is used to evolve
a new melody to be included in the original corpus, and the cycle repeats. This
section describes the representation of the melodies, the representation of the
Agents and how they are used together as the system evolves.



3.1 Melody Representation

Each Agent is evolved according to its correlation with the population in the
clustering of a selection of melodies. Throughout the system, melodies are created
using a previously developed system for composing short melodies with GE. A
full description of this system and the results obtained can be found in [15]. The
grammar used is based on:

<piece>::= <seg><seg><seg><seg><seg><seg>

<seg>::= <event><event><event><event><event>

<event>::= <style>,<oct>,<pitch>,<dur>

<style>::= <n>|<n>|<n>|<n>|<n>|<n>|<chd>|<chd>|<chd>|<chd>|<turn>|<arp>

<chd>::= <in>,0,0|<in>,<in>,0|<in>,<in>,<in>

<turn>::= <dir>,<len>,<dir>,<len>,<stp>

<in> ::= 3|4|5|7|5|5|7|7

<len>::= <stp>|<stp>,<stp>|<stp>,<stp>,<stp>|<stp>,<stp>,<stp>,<stp>

<dir>::= down|up

<stp>::= 1|1|1|1|1|2|2|2|2|2|2|2|2|3

<oct>::= 3|4|4|4|4|5|5|5|5|6|6

<pitch>::= 0|1|2|3|4|5|6|7|8|9|10|11

<dur>::= 1|1|1|2|2|2|4|4|4|8|8|16|16|32

This grammar creates a melody <piece> containing six segments, each com-
prising of a number of musical events. Each <event> can either be a single note
(<n>), a chord, a turn or an arpeggio. A single note is described by a given pitch,
duration and octave value. A chord is given these values but also either one, two
or three notes played above the given note at specified intervals. A turn results
in a series of notes proceeding in the direction up or down or a combination of
both. Each step in a turn is limited to either one, two or three semitones. An
arpeggio is similar to a turn except it allows larger intervals and longer dura-
tions. The application of this grammar results in a series of notes each with a
given pitch and duration. The inclusion of turns and arpeggios allows a variation
in the number of notes played, depending on the production rules chosen by the
grammar.

The use of this grammar results in MIDI melodies split into six segments. A
pitch vector for each segment is found by expanding the segment to give the pitch
value at each demisemiquaver. This vector is normalised by setting the first value
to zero (and transposing the remaining pitches accordingly) resulting in a pitch
contour for each melodic segment. These contours can then be compared directly.
In this manner, a distance can be measured between each of the segments of
a given melody. The distances between all six segments in a melody can be
represented numerically in a 6 by 6 matrix. This matrix is symmetrical about
the diagonal, allowing it to be collapsed into a single vector of length 15 (i.e.
5+4+3+2+1) that represents the distance between each pair of segments. It is
from these distances that an Agent measures a given melody.



3.2 Agent Construction

As described above, each melody may be represented by a vector of 15 distance
values. Each Agent is formed to syntactically result in a linear combination
of these 15 measured distances. This is realised using GE with the following
grammar:

<expr> ::= <O><D1><O><D2><O><D3><O><D4><O><D5><O><D6><O><D7><O><D8>

<O><D9><O><D10><O><D11><O><D12><O><D13><O><D14><O><D15>

<O> ::= <op><scalar>

<op> ::= + | - | *

<scalar> ::= 1 | 2 | 3 | 4 | 5

This very simple grammar takes a linear combination of each of the 15 distance
measures used to represent a given melody. Thus any Agent will output a single
numerical value for each melody. The fitness function used to evolve a given
Agent is based on a measure of how the individual Agent clusters the melodies
in relation to how the current population of Agents cluster the melodies. Thus
the Agent has no merit from its own output, but only in relation to the way in
which it performs in respect to the rest of the population. This idea forms the
crux of the proposed system. It can be summarised in the following steps:

– Each Agent clusters the corpus of melodies
– The most most prevalent clustering of all melodies across all Agents is noted
– Each Agent is assigned fitness according to how well it correlates or ‘agrees’

with the overall clustering

As each Agent produces a numerical result for each melody, clustering in one
dimension is only to be considered. This was implemented using Jenks natural
breaks optimisation technique [11]. This method determines the best division of
data between classes by seeking to minimise the average standard deviation of
each element from the class mean while maximising each class’ mean from those
of the other classes. We consider between two and six clusters and choose the
option with the best return of variance. To acquire a measure of classification
we consider whether or not each pair of the melodies are found to be in the
same class, assigning a value of 1 if they are and 0 otherwise. This results in
a matrix of 1s and 0s again symmetrical about the diagonal (if melody 2 is in
the same class as melody 3 then the reciprocal is also true). As an illustrative
example, consider the arrangement [a, a, b, b, c, c] — a corpus of six individuals
that should be logically clustered into three groups of two elements. If these
values are indexed 1-6, all possible pairings between these six individuals can be
represented by the 15-length vector:

[(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]

If we consider ‘1’ indicates both indexed elements are in the same cluster and
‘0’ implies not, the clustering of the 6-element list of letters should be:

[1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]



A similar vector can be calculated for any known clustering of one-dimensional
data — such as that produced by each Agent on a corpus of melodies.

A population of 100 Agents will thus result in 100 binary-valued vectors.
These are summed across all 100 Agents and normalised within the limits [0, 1]
to give the Population Clustering. The mean squared error of the ‘cluster result’
of the given Agent to this Population Clustering is calculated and assigned as
the fitness value of that Agent. By minimising this fitness the Agent that con-
forms with the majority clustering of the population is assigned best fitness in
the evolutionary run. The experiments in Section 4 describes two implementa-
tions of this phase of the system — the preparatory run and the full system
implementation. In the preparatory run this Population Clustering is replaced
by an ideal clustering known by creating melodies of three specific shapes; in the
full evolutionary system it is updated with each new Agent population at each
generation.

3.3 Evolving a Melody

Once a best Agent has been evolved, this can then be used to evolve a new
melody. GE is employed with the grammar described above in Section 3.1 and
this best Agent as a fitness function to evolve a new melody. Each Agent is a
linear combination of the distances measured from the six segments within the
given melody. Hence the fitness of each melody is calculated as:

fitnessmelody = abs(Agent(distancesmelody)

Minimising this fitness will result in the melody with the lowest absolute output,
as measured by the Agent, being deemed the best melody. This melody replaces
one of the randomly generated melodic representations. After 30 full cycles of the
system, the corpus has been re-populated with melodies created by the system.

3.4 Full System

As detailed in the following section, an preparatory phase is used with melodies
of known shape to create an initial population of Agents. Once this is completed,
a full run of the system can be undertaken using a randomly initialised corpus
of melodies. The saved Agents from the preparatory phase are used as the initial
population in evolving a best Agent, which is then used to evolve a best melody,
which is subsequently used to update the corpus. A graphical overview of the
system is shown in Figure 1.

The phases in these experiments are all based on evolutionary runs. The pa-
rameters shown in Table 1 (chosen as those typical in the literature) are common
to all experiments; generation and population size can vary and are stipulated
in each relevant section.



Parameter Value

Selection Tournament (size 2)
Crossover Rate 0.7
Mutation Rate 0.01
Initial Genome Length 100
Elite Size 1

Table 1: EC parameters common to each evolutionary phase.
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Fig. 1: Graphical overview of the full proposed system.

4 Experimental Results

This section describes the behaviour of each individual section of the system.
A selection of melodies produced and described below can be found at http:

//ncra.ucd.ie/Site/loughranr/evo_2017.html.

4.1 Preparatory Cycle

This proposed system is cyclical and self-referential, each stage of the cycle
responding to the current state of the system. To start the system, however, we
initialised a population of melodies that conformed to three pre-defined shapes,
thus having a predictable clustering. This initial melody corpus was used to
create an initial population of Agents, which can be shown to possess the required
(or typical) clustering ability. These initialisation steps are described below.

Initial Melody Corpus To create the initial population of Agents, a prepara-
tory training corpus of 30 melodies conforming to the three shapes in Figure



2 was created. The melodies were created to contain six segments, using the
grammar described above in Section 3.1. Each of the three shapes can be rep-
resented by measuring the distance between each of the six given points of the
shape, again resulting in a 15-point vector. Melodies can then be evolved to-
wards one of these shapes using the mean-squared error between the melodic
contour representation and that specified by the graphical shape. The evolu-
tionary strategy used to evolve the melodies was based on a population-based
hill-climbing strategy entitled the Music Geometry GUI, described in full in [15].
This strategy applied variable neighbourhood search as a series of operators of
increasing complexity until an improvement was found. Using this method, an
initial corpus of 30 melodies was evolved containing 10 Hexagonal, 10 Returning
and 10 Alternating shapes.

Fig. 2: Shape Targets for the Hexagonal, Return and Alternating melodies

Initial Agent Population The 30 melodies in the given corpus are clustered
using natural breaks as described in Section 3.2. The initial melody corpus de-
scribed above contains melodies that form three distinct clusters — Hexagonal,
Returning and Alternating melodies. As this is known, we can create a target
‘ideal’ clustering 435-length vector (30x30 matrix again reduced along the diag-
onal) for the evolving Agents. The fitness measure of each Agent is calculated as
the mean-squared error from its clustering vector to this ideal target clustering
vector. This was run independently 100 times with a population of 100 over 50
generations. A plot of the population average and best fitnesses achieved over
these 100 runs is shown in Figure 3. This shows a typical evolutionary response
with a steady reduction in both average and best fitness over successive gener-
ations. Each Agent consists of a linear combination of each of the 15 distance
measures in each melody e.g.

-1D1+3D2*4D3-0D4+2D5-2D6+5D7*4D8*4D9*1D10+4D11+5D12-5D13-3D14-1D15.

These 100 best evolved Agents were examined and it was found that, although
they achieve similar fitness results, no two were syntactically identical. Hence
we can be confident there is enough diversity among these Agents to use them
as an initial population for an evolutionary run. Evolving 100 unique solutions



Fig. 3: Average vs. best fitness of the evolution of the initial Agents averaged over 100
runs.

to a problem indicates that it is a simple problem with many local optimal
solutions. Such a challenge is ideal for initialising a problem such as this: the
aim is to create a diverse group of individuals that have some ability relevant to
the domain, yet are not specialised.

Of the 100 best Agents it was found that 30 achieved a perfect fitness score of
0. Further to such fitness measures, it is possible to examine the actual clustering
of these Agents on the data. Using the original training (ordered as 10 Hexagonal,
10 Alternating, 10 Returning) the ideal clustering order (of the indexes of the
melodies) is naturally:

[(0,1,2,3,4,5,6,7,8,9) (10,11,12,13,14,15,16,17,18,19) (20,21,22,23,24,25,26,27,28,29)]

In comparison to this ideal cluster pattern, 83 melodies were clustered otherwise
by the best Agents. Considering 30 melodies over 100 experiments, this results in
a Clustering Accuracy of 97.23%. As a test to the generality of these Agents, the
data corpus was rearranged to be ordered [Hexagonal, Alternating, Returning,
Hexagonal, Alternating, Returning...] resulting in ideal clustering of

[(0,3,6,9,12,15,18,21,24,27) (1,4,7,10,13,16,19,22,25,28) (2,5,8,11,14,17,20,23,26,29)]

When compared it was found that 83 (different) melodies were mis-clustered by
the Agents, again leading to a Clustering Accuracy of 97.23%. This indicates that
this initial population of Agents can generalise and are robust to re-arranging
the melody corpus. These Agents were then used to cluster unseen data in a full
run of the system.

4.2 Full Cycle

Each full cycle of the system evolves one best Agent, which is used to create
one best melody, that replaces one of the melodies from the original corpus.



Hence in each cycle the corpus is different only by one melody, and the evolving
population of Agents is initialised each time from the population created in the
preparatory run. The Agents are evolved according to an agreement among the
population as to what way to cluster the current corpus of melodies — hence
the system learns through self-organisation.

The known shapes for melodies shown above in Figure 2 were chosen to create
an initial population of Agents to seed the Agent evolution at the beginning of a
full experiment. This is to ensure the initial population of Agents contains some
useful ability — evolving towards the clustering consensus of randomly generated
Agents does not necessarily hold any merit. Once an Agent population has been
created that can reliably classify the ordered melody corpus, this population is
saved. A new random melody corpus is generated to start the experiments. The
graphical tool used to create the shapes shown in Figure 2 has a limit of length
42 (between opposing diagonal corners), hence the target integer vectors were
filled with random integers between 0 and 42. Each random target was used in
a GE run to create an initial corpus of 30 melodies to start the experiments.

In each full cycle a melody is replaced; after 30 cycles the entire corpus has
been replaced with melodies created by the system. Each cycle involves a full
evolutionary run to create an Agent. For each of these runs the population was of
size 100 (seeded by the 100 Agents evolved in the initialisation phase) run over
100 generations. A plot of the best and average fitnesses achieved across 100
generations is shown in Figure 4. This plot shows a rapid decrease in best fitness
which tapers off around generation 16 and becomes more stable after generation
50. The average fitness remains higher which indicates the population is still
diverse at the end of a run. Only a single best Agent is chosen as a fitness
function for the following Melody run.

The average of the best fitnesses across 30 Melody runs is also shown in Figure
4. While on average the best fitness does taper off over generations it is clear that
there are large differences in the values obtained (note the log10 scale) resulting
in large peaks particularly towards the beginning of a run. These differences are
a result of the syntax of the Agent (fitness function). For example Agent:

-1D1+3D2*4D3-0D4+2D5-2D6+5D7*4D8*4D9*1D10+4D11+5D12-5D13-3D14-1D15.

contains several multiplication terms which will lead to very large results for a
number of melodies. As the system always evolves with minimising fitness, these
melodies will be eliminated over time but these wide ranges are an inherent part
of the system. Such large differences made it infeasible to include the average
fitnesses on the same plot.

4.3 Melodies

This paper presents a study based around algorithmic composition, although
composing ‘good’ melodies or compositions better than other, more focussed
systems was not the main aim of the study. This study is based on the concept of
creating a self-adaptive cyclical system creating subjective fitness functions that
make decisions in a justified, reproducible and explainable manner. Nevertheless,



Fig. 4: Average vs. best fitness of the evolution of the evolving Agents and the best
fitness of the evolving Melodies averaged over 30 runs.

it is an implemented compositional system and as such we offer the reader a
number of short melodies available at http://ncra.ucd.ie/Site/loughranr/

evo_2017.html. Hex1, Hex2, Alt1, Alt2, Return1 and Return2 are examples of
melodies created from the shapes shown in Figure 2 used to create the initial
Agent population. Each melody is played twice to help the ear recognise the
given shape. The Hex melodies display a series of slightly altering segments
that return to the original segment such as in an hexagonal (or ideally circular)
shape, the Alt melodies alternate between two distinct styles of segments and
the Return melodies start with a segment, change it somewhat and return to
the original a number of times. For completeness we have included two sample
Random melodies.

It is worth noting that the average fitness obtained when creating the prepara-
tory corpus of melodies was 5.69 whereas the average fitness obtained when cre-
ating the Random melodies was 22. This is as to be expected as, although the
randomly created distances were defined to be within the ranges of those of the
shapes, the relative distances between them were not controlled to be graphi-
cally meaningful and so may not have been possible to achieve. It was observed
by listening to the melodies from the initial Random corpus that some of these
melodies compensated for this by simply repeating individual segments. Thus
there is a wide variety within the Random melodies with some containing ele-
ments of repetition such as Random1, whereas others such as Random2 contain
no such discernible patterns. This is acceptable in the proposed experiment, as
all that is required to start the experiment is a varied population of melodies
represented in segments. Whether or not they now conform to specific shapes is
of no consequence once the full evolutionary run is started.

Four short Evolved melodies are included as a demonstration of the output of
the final system. Each is again played twice in succession. From listening to the
final outputs, it is clear that some of the final melodies have kept remnants of
the original shapes whereas others have not. Evol45 for example clearly displays
an Alternating pattern. Evol0 on the other hand (the first melody created by
the system) does not display any such pattern. Thus the best Melodies, and



subsequent best Agents, have learned from a corpus that was originally full of
well patterned melodies, yet such knowledge is sometimes apparent in the output
and sometimes not.

Melody20 is a longer composition created from the final (melody) population
of the last cycle. For this composition the top 20 melodies were selected according
to the fitness given by the current Agent. A distance metric was calculated
between each of these melodies by calculating the Levenshtein distance between
the pitch contours (at each time-step) of each pair of melodies. These 20 melodies
were then grouped according to melodic similarity and concatenated together
in this grouping as one extended melody. This was in an attempt to create a
smooth transition between individuals; individuals that are melodically similar
would be grouped together creating a smooth transition between musical ideas
rather than an abrupt jump between individuals in a diverse population. The
top 20 individuals are clustered in this case as:

[[0, 1, 2, 4, 7, 9], [3, 10], [5, 8], [16, 17, 12, 15, 18], [11], [14], [20], [6, 13], [19]]

Unsurprisingly, four out of the top five ‘top’ melodies are clustered together —
at the end of an evolutionary run, the population has converged and it is likely
that the top few individuals are identical or very similar. After that, however, it
is evident that the melodies are grouped more in relation to similarity than in fit-
ness. There is, however, some similar content audible in a number of individuals.
Much of the content in the top individual can be heard to re-surface many times
throughout this composition. This is to be expected in an evolutionary run and
we have previously considered it to be of benefit in using evolutionary methods
for composition as this ‘similar yet different’ aspect of parts of a melody can
lead to variation on a theme, which is known to be a pleasant quality in music
[14]. In future studies we plan to investigate more interesting ways of traversing
through the population for the creation of well-formed compositions.

4.4 Discussion

An important concept throughout an experiment such as this is to consider how
data or knowledge is being transferred through the system. The initial Agent
population is created using a clearly patterned database (melodies evolved to
emanate a certain shape) but such patterns are not directly input into the sys-
tem again at any point. The population was created in such as way as to ensure
the individuals had some meaning — that each Agent was not completely naive
but was created to start with some innate ability. Thus the system is not pro-
vided with an explicit target for the fitness function; the initial population is
created from a preparatory run using a known target and the ability learned
from this preparatory run is maintained within the initial population and prop-
agated through the system in an indirect manner. The system adapts to its own
response in creating new Agents and subsequent new melodies once the full cycle
is started. Hence the system is self-sustainable and runs without any external
human input, once it has been initialised.

In each cycle, the population was initialised using the same Agents created
in the preparatory run, with all other parameters remaining the same; the only



difference between cycles is one different melody in the corpus. The stochastic
elements of EC methods combined with this one change resulted in a differ-
ent Agent population and hence new melody in each cycle. This demonstrates
that even in controlled experiments with very few degrees of freedom, evolu-
tionary methods still have the power to develop numerous varied results that
satisfy the proposed criteria. This search ability and flexibility is one of the
reasons EC methods are so suitable for the development of creative systems.
Furthermore, the transformation of knowledge or ability throughout an experi-
ment such as this, is reminiscent of Boden’s third suggestion of how computers
may be creative as discussed in the Introduction: the ‘transformation’ of ideas.
The proposed system transforms ideas and information many times throughout
its operation: in the transformation from genome-phenome through the use of
the grammar, in the passing of clustering ability through from the preparatory
step to the evolution of the clustering Agents and in the cyclical employment of
the evolved Agent in evolving new melodies. Knowledge transformation is a key
concept throughout this proposed system for it is through the transformation
and abstraction of data, knowledge and ideas that true creativity can emerge.

The Lovelace Test for creativity states that for a system A with output o
and human architect H , the system can only be deemed to be creative if H
cannot explain how A created o [5]. While on the surface this may seem an easy
test to pass, on closer inspection it is remarkably difficult — if at all possible. By
default the architect (or programmer) — assuming they understand their own
code — will be able to explain how the system created the resultant output. The
system proposed in this study is certainly still explainable, but it was created
in a way that the knowledge gained and behaviour displayed by the system was
abstracted an extra level away from the human architect. We hope that further
studies into conceptual, knowledge transferring and self-organising systems may
assist in the development of computational creative systems or creative AI.

Although this system does produce melodies (discussed in Section 4.3), at
this stage of development we have not conducted any human-evaluations on
these melodies. The system at the moment represents a theoretical computa-
tional study; the focus of this study is on the description and proposal of the
ideas within the system rather than an adjudication of the output. Furthermore,
we acknowledge that at the moment, the melodies produced are short and not
particularly impressive. We believe this can be improved in the next phase of the
system that will run in a similar cyclical and adaptive manner, but could be em-
ployed with an improved grammar that can create more sophisticated melodies.
As a compositional system we are interested in gauging human response to the
results. Future work on more sophisticated version of the system will involve a
comprehensive survey-based set of human evaluations.

5 Conclusions

This paper presents a cyclical algorithmic compositional system based on mu-
tually dependent runs of GE. The system creates a best Agent, evolved using a



corpus of melodies, which is subsequently used as a fitness function to create a
new melody that replaces a melody in the corpus and the process is repeated.
This best individual Agent is evolved according to the way in which it clusters
the melodies, and how much its clustering correlates with the average clustering
of the population of Agents. Each initial population of Agents is populated with
a set of Agents trained in a preparatory step on a corpus of melodies whose
ideal clustering is pre-defined. In this way, the Agents take some learned ability
and transfer it into the system. No other outside influence is introduced to the
system once it has started. A number of melodies created during various stages
of the system were presented.

Although an implemented system is presented accompanied by a number
of produced melodies, we still consider this system to be of more theoretical
than practical interest at this stage. The strength of the proposed system lies in
the data transformation and knowledge transfer that is described throughout the
paper. Immediate future work will consider further analysis of the running of the
system over a number of cycles to determine if there is any predictable behaviour
exhibited by the system and what this may imply. We plan to develop the system
to include a more sophisticated grammar that would enable more interesting
musical compositions to be created. The key challenge in this development will be
to improve the compositional ability of such a system while explicitly maintaining
the autonomy of the entire system. We feel that the strength and novelty of
this study lie in the autonomy of a self-adaptive complex system applied to a
subjective task and, as such, it is imperative that this autonomy is maintained
and preserved in future implementations.
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