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Abstract We present a study examining feature selection from high per-
forming models evolved using Genetic Programming (GP) on the problem
of Automatic Speaker Verification (ASV). ASV is a highly unbalanced binary
classification problem in which a given speaker must be verified against ev-
eryone else. We evolve classification models for 10 individual speakers using
a variety of fitness functions and data sampling techniques and examine the
generalisation of each model on a 1:9 unbalanced set. A significant difference
between train and test performance is found which may indicate overfitting in
the models. Using only the best generalising models, we examine two methods
for selecting the most important features. We compare the performance of a
number of tuned machine learning classifiers using the full 275 features and a
reduced set of 20 features from both feature selection methods. Results show
that using only the top 20 features found in high performing GP programs
led to test classifications that are as good as, or better than, those obtained
using all data in the majority of experiments undertaken. The classification
accuracy between speakers varies considerably across all experiments showing
that some speakers are easier to classify than others. This indicates that in
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such real-world classification problems, the content and quality of the original
data has a very high influence on the quality of results obtainable.

Keywords Speaker Verification · Feature Selection · Unbalanced Data ·
Genetic Programming

1 Introduction

Speaker recognition is the process of identifying a person from their voice.
Each individual’s voice is audibly unique due to physical attributes such as
length of vocal tract, size of larynx etc. along with habitual characteristics
such as accent and inflection. Whereas Automatic Speaker Recognition (ASR)
involves recognising one speaker from many, Automatic Speaker Verification
(ASV) is the process of accurately verifying that a speaker is who they claim to
be. Thus for any given speaker, ASV is a binary classification problem, either
the subject is in the speaker class or the non-speaker class. This may be posed
as a text-dependent or text-independent problem. Text-independent ASV has
important applications in the fields of phone banking, shopping and security
systems. Such systems should be able to determine with 100% accuracy from
any text-independent utterance if a person speaking is who they claim to be.
The proposed study considers text-independent ASV as a highly unbalanced
classification problem.

In real-world classification problems, it is common for datasets to be biased
towards one class, resulting in an unbalanced class distribution. In unbalanced
binary classification, one class has a small number of instances (the minor-
ity class) whereas the other contains a much larger number of data instances
(the majority class). Such distributions are common in realistic data. ASV is
inherently a highly unbalanced binary-classification problem since it requires
accurately recognising one speaker from everyone else. In ASV, the minority
class contains examples from the to-be-verified speaker, whereas the majority
class contains examples from the rest of the speakers (i.e. impostors). This im-
balance in class distribution is a significant problem as it introduces a learning
bias and often results in classification models that are not accurate in the cases
of the to-be-verified speaker. In general, in unbalanced classification problems,
the smaller the ratio of minority class examples to majority class examples,
then the stronger this bias becomes and the harder it is for a classifier to gener-
alise [7]. Although classic machine learning studies rarely took this imbalance
into account, there has been an increasing interest in machine learning with
unbalanced data since 2000 [3,4,11].

1.1 Contributions of this research

The results in this paper are an extension of work presented at EvoIASP
2016 [50]. This work was carried out as an investigation on the application of
GP to the problem of ASV, specifically with a very high class imbalance. With
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the notable exception of [15], ASV is an application area that has received little
attention from the GP community. The 1:9 class imbalance proposed in this
work is distinctly higher than any other studies, both in ASV studies on GP
such as [15], but also in the more general literature on unbalanced classification
with GP such as those described in Section 2. The simulations were performed
on the TIMIT corpora [24], a regularly-used dataset for speaker recognition
and verification. We used the original, noiseless TIMIT corpora to study the
generalisation of GP-evolved programs on ASV. A number of different methods
for cost-sensitive training and data sampling were compared in terms of their
effectiveness to assist with the evolution of good-generalising programs. The
details of these systems, the data used and the full original set of features
is given in Section 3. From this initial study, we found that GP performed
well but a decrease in classification accuracy between training and test results
indicated a tendency for the program trees to overfit the data.

This paper progresses with this work by comparing the GP performance
with four alternative machine learning classifiers, namely a Support Vector
Machine, Random Forest, Logistic Regression and Gradient Boosting Clas-
sifier. The results of these experiments are given in Section 4.2. In general,
features chosen for such classification experiments are those found in the lit-
erature; few studies offer experimental reasons as to their choice of features
to include. This is because feature selection is a daunting task; the user must
reduce the dimensionality of the search space with minimal loss of informa-
tion. In recent years, evolutionary computational approaches have been ap-
plied to feature selection with promising results [65]. They note however that
compared with evolutionary approaches such as genetic algorithms or particle
swarm analysis, there are a much smaller number of works using GP for fea-
ture selection. The aim of this proposed paper is to use the evolved GP trees
from our previous experiments to inform these machine learning algorithms of
suitable features to use for ASV. For this purpose, we analysed the terminal
nodes of highly-performing trees using two separate feature selection methods,
termed the Original Selection and Accuracy Selection methods, to determine
the most useful features from the total 275 used in the terminal set. These
feature selection methods are used in an attempt to optimise the performance
of the four independent machine learning classifiers. A comparison of classi-
fication results with the inclusion of all 275 features against the performance
using only the top 20 features from both feature selection methods is provided.
A description of these results, including statistical analysis, is given in Section
4.3. Finally we perform a comparison between the speakers used throughout
the experiments and discuss the differences between these experiments and
previous speaker verification experiments in Sections 4.4 and 4.5.

2 Background

This section provides an overview of traditional classification models for ASV
and describes the two main categories of methods for tackling class imbalance
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problems. We specifically look at experiments from the GP literature that have
tackled the class-imbalance problem.

2.1 Automatic speaker verification

Standard ASV depends on extracting features from a given set of speech sam-
ples and using this set of features to train and test a given classifier. The first
method of implementing speaker models was based on Vector Quantisation
(VQ) [41]. VQ determines a standard measure such as the Euclidean distance,
known as the average quantisation distortion, between the feature vector from
a speaker X = {x1, . . . , xT } to that of a reference vector R = {r1, . . . , rK},
where T is close or ideally equal to K. This idea of representing speech with
vectors has been expanded with the development of Supervectors. These Su-
pervectors in general consist of any high and fixed dimensional representation
of an utterance. One of the most prominent classification methods for ASV
to emerge in the early 1990s were those based on Gaussian Mixture Mod-
els [57]. Such classification models are based on the distribution of features
from a section of speech by a Gaussian mixture density. Over the next three
decades other classification techniques were applied to the problem of speaker
recognition and verification such as Supervectors, Support Vector Machines
(SVM) [9], Artificial Neural Networks [59], ensemble learning [48], and Ge-
netic Programming [15].

A number of studies focussed on methods to counteract inter-speaker and
inter-session variability by examining channel compensation between record-
ings. Such studies have used feature mapping to transform obtained features
into a channel-independent feature-space. Methods such as Joint Factor Anal-
ysis [37], i-vectors [38] and PDLA [18] were applied for this purpose. Recent
studies have reported good results by extending the i-vector representation to
consider utterances of arbitrary duration [39], the total variability space [14]
and local session variability [12]. This focus on channel effects is in part driven
by the NIST Speaker Recognition Evaluation 1 which evaluates novel speaker
recognition systems on a corpora of phone recordings. The contest has be-
come so competitive that large scale collaborations have been founded to pro-
pose multiple submissions to the challenge with promising results and conclu-
sions [58]. The proposed study uses noiseless original speech data, rather than
the noisy channel dependent recordings used for these experiments.

Spoofing or imposture is a well-known problem in biometric systems [23]. In
recent years, studies have been undertaken to consider the problem of spoofing
in ASV [43,2,23,64,63]. There are four identified typical spoofing techniques
for ASV: Impersonation, Speech Synthesis, Replay and Voice Conversion. Even
with this new interest, it is noted in [64] that spoofing in the domain of ASV is
still in its infancy. They point to the use of non-standard databases, protocols
and metrics giving rise to difficulties in comparable research and countermea-

1 http://www.nist.gov/itl/iad/mig/ivec.cfm
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sures that lack generalisation. The focus of the proposed work is towards gener-
alisation by using unbalanced data and comparison of selected features rather
than a specific focus on countermeasures of a specific spoofing technique.

Most recent studies have used a dimensional reduction of previous features
such as Acoustic Factor Analysis [28], Multitaper windows [43,55], or a com-
bination of features and classification techniques in an attempt to develop a
robust speaker verification system [61,26,46]. The breadth of methods still
being used demonstrate the difficulty of the problem. The current study poses
noiseless ASV as an unbalanced binary classification problem and considers
how feature selection may be used to improve the performance of a number of
classifiers on this problem.

2.2 Unbalanced data

In problems such as ASV we are trying to verify one speaker from everyone
else, inherently an unbalanced problem. There exist a number of methods for
learning good-generalising classifiers for class imbalance datasets. The tax-
onomy of these methods originally consisted of two major categories; those
of training data sampling (often called external methods) and cost-sensitive
training (internal methods). The work of [7] provides an excellent overview of
these methods, with references from both statistical machine learning and GP.
A brief overview of both approaches is provided below.

2.2.1 Training-data sampling.

Balancing of training examples can be achieved either by over-sampling the
minority class or under-sampling the majority class [5]. These sampling meth-
ods have limitations. Under-sampling can reduce training times as it reduces
the number of training samples, but it is possible that this reduction leads
to a loss of important information and therefore loss of generalisation. Over-
sampling increases training times and can also lead to overfitting due to the
repetition of samples [47]. The relative benefits of under-sampling versus over-
sampling appear to be problem-dependent [21,35]. Synthetic over-sampling
and editing have been often shown to be superior to the sampling techniques
described above. Synthetic over-sampling of the minority class creates addi-
tional examples by interpolating between several similar examples [6], while
editing removes noisy or atypical examples from the majority class [44].

The work of [35] found that random over-sampling is more effective than
random under-sampling for C5.0 decision-tree learning, whereas it was shown
that under-sampling outperforms over sampling for the C4.5 decision tree
learner with an unbalanced dataset in [21]. As part of their study into the
nature of the class imbalance problem, [35] found that the higher the degree
of class imbalance, the higher the complexity of the concept of imbalance, and
the smaller the size of the overall training set the greater the effect of class
imbalance in classifiers’ sensitivity to the problem.
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2.2.2 Cost-sensitive training.

In a typical classification problem, we are given a training set of N examples
{(xi, yi)}Ni=1, where x ∈ Rd is a d -dimensional vector of explanatory variables
and y ∈ C = {1, . . . , c} is a categorical response variable, with joint distribu-
tion P (x, y). We seek a function f(x) for predicting y given the values of x. The
loss function L(y, f(x)) for penalising errors in prediction can be represented
by a K×K cost matrix L, where K = card(C). L will be zero on the diagonal
and non-negative elsewhere, where L(k, l) is the price paid for misclassifying
an observation belonging to class Ck as Cl. Most often, in cases of balanced
datasets, a zero-one loss function L(y, f(x)) = I(y 6= f(x)) 2 is used, where all
misclassifications are charged one unit. In the case of unbalanced datasets, the
cost matrix can be adjusted to increase the cost of misclassifying the examples
of the minority class.

2.3 GP on unbalanced datasets

Genetic Programming has been applied to unbalanced datasets in a number
of studies. Work using the data sampling techniques of Random Sampling
Selection (RSS) and Dynamic Subset Selection (DSS) is reported in [13,25].
In [13] a two-level sampling approach is first used to sample blocks of training
examples using RSS and then select examples from within those blocks using
DSS. In [25] DSS is used to bias the selection of training examples towards
hard-to-classify examples, while RSS was used to bias towards the selection of
minority class training examples.

Cost adjustment strategies usually focus on adapting the fitness function
to reward programs which have good accuracy on both classes with better
fitness, while penalising those with poor accuracy on one class with low fit-
ness. The use of different misclassification costs to incorrect class predictions
is reported in [33]. In the work of [22] an adaptive fitness function increases
misclassification costs for difficult-to-classify examples. In [60] RSS and DSS
are used in conjunction with three novel fitness functions with an applica-
tion to a network intrusion detection problem. The work of [54] used both
rebalancing of data and cost-sensitive fitness functions in comparing GP with
other data-mining approaches to predict the rate of student failure in school.
The work of [7] used six datasets with different class imbalance ratios and
applied GP with a number of different fitness functions. A multi-objective
GP approach for evolving accurate and diverse ensembles of GP classifiers
that perform well on both minority and majority classes was proposed in [8].
A weighted average composed of error rate, mean squared error and a novel
measure of class separability similar to Area Under Curve is used in [62]. In
the work of [20], data sub-sampling is used in combination with the average of
the geometric mean between minority and majority class accuracies and the
Wilcoxon-Mann-Whitney statistic.

2 I(·) is the indicator function.
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2.3.1 GP on unbalanced ASV

To the best of our knowledge, the application of GP to speaker verification
has only been reported in the work of [15]. One of the principal applications
of ASV systems is remotely confirming the identity of a person for reasons of
security such as telephone banking. The literature review conducted in [15]
showed that while good results have been reported using a variety of statis-
tical machine learning systems on noiseless input signals, most systems suffer
heavily if the signal is transmitted over a noisy transmission path (i.e. a tele-
phone network). In order to create a “noisy” environment, several datasets
were derived from the original TIMIT corpora using filters that included both
additive and convolutive noise. GP experiments were set to evolve classifiers
based on extracted features impaired by noise. Twenty-five speakers to-be-
verified and forty-five “impostors” were selected from the TIMIT corpora. For
each of the to-be-verified speakers the training set consists of fifteen seconds
of to-be-verified speech and forty-five seconds of impostor speech. This re-
sults in a minority class to majority class imbalance ratio of 1:3. A pool of
hand-engineered features were extracted from the raw signal to populate the
terminal set. The fitness function was dynamically biased to concentrate on
difficult-to-classify examples. Finally, an island model was used to improve
population diversity. Results showed that generated programs can be evolved
to be resilient to noisy transition paths, which was mainly attributed to the
speaker-dependent and environment-specific feature selection inherent in GP.

Although both the proposed study and the paper described above discuss
GP applied to the problem of ASV, they differ from one another significantly
in their use of the data and in their intended goals. One focus of the proposed
work lies in viewing ASV as a highly unbalanced classification problem. Stud-
ies such as [7] consider unbalanced data problems directly in relation to the
level of imbalance present in the data, while ASV problems (including the one
discussed above) rarely consider a ratio above 1:3. The proposed study pushes
this imbalance to a much more severe 1:9 ratio of minority to majority class,
thus making it a substantially more difficult classification problem. While [15]
used filtered noise to deteriorate the signal as may be expected in a real-world
scenario, the focus of the proposed study is to highlight two alternative real
world problems in ASV: that of reducing the amount of data used to represent
the signal (through feature selection) and of considering the high number of
imposter classes that a real world system would be subject to (through a very
high class imbalance). Typical features from the literature were implemented
in [15] which led to an interesting discussion on which features were chosen by
their successfully evolved programs — but specifically in relation to which were
useful for a noisy vs. a noiseless problem. Furthermore they refrained from ac-
tually implementing any feature selection methods. An alternative interesting
paper by the same authors [16] actually focussed on the idea of creating a Su-
perfeature for audio classification using GP. This study did not directly tackle
the problem of ASV however, but instead trained a system to classify between
three different types of audio namely noise, speech and music. The proposed
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study actually implements two Feature Selection techniques developed from
the original GP runs and uses these in an attempt to increase the performance
of a bank of separate ML classifiers. As such, the focus of the study is taken
away from the GP classification performance and towards its performance as
a meaningful method of feature selection or data reduction.

3 Methods

3.1 Speaker Corpus

The speech recordings used in this study are taken from the TIMIT cor-
pora [24]. This was chosen due its regular use in the speaker recognition and
verification literature. The corpora consists of 630 speakers, 192 female and 438
male, from 8 American dialects each reading 10 phonetically rich sentences.
Each sentence was recorded on a high quality microphone at a sampling rate
of 16kHz.

3.2 Training and Test data

For these experiments we chose 10 random speakers, 4 female and 6 male, from
the corpus and developed a classifier for each speaker. For each experiment the
audio from the given speaker is the to-be-verified minority class and the audio
from the nine other speakers constitute the majority class. In this manner we
created a 1:9 class imbalance ratio for each experiment.

Each speaker offers 10 utterances of approximately 3 seconds each. To in-
crease the number of speech utterances, we split each sentence into three equal
parts of approximately 1 second. Early analysis showed that the third part of
each sentence was of lower timbral quality than the preceding sections, possi-
bly due to pausing or hesitation at the end of the utterance. Thus only the first
two thirds of each sentence were included in the learning dataset of 200 exam-
ples. In the experiments, a training set of size 120 examples is used to evolve
programs, and a test set of 80 examples is used to assess generalisation. When
splitting the data into training and tests sets we ensure using stratification
that the class imbalance ratio of 1:9 is maintained in both sets.

The features calculated on this data are detailed in Section 3.4. As audio is
a time-varying signal, many of these features are measured across the duration
of the signal giving multiple points for each feature. Rather than reducing these
features using the statistical mean or variance of the windowed signal, we
employed Principal Component Analysis (PCA) on these time-varying, high-
dimensional features. PCA was used on these results to record the maximum
variance within each feature while reducing the dimensionality of the data.
Each time we employed PCA, we recorded the top four principal components
for that particular feature. In total this resulted in 275 features calculated on
200 data samples.



Feature Selection for ASV using GP 9

3.3 GP systems

A number of systems tailored to unbalanced classification problems from the
literature were chosen for this study. These are detailed below.

3.3.1 ST.

This Standard system is trained using the original unbalanced dataset. We
employ a version of the MSE-based loss function that has been shown [7] to
improve upon the performance of fitness functions based on classification accu-
racy 3 or the weighted average of true positive and true negative rates. Given
N training examples {(xi, ti)}Ni=1 containing the examples of both majority
and minority classes, LMSE is defined as:

LMSE =
1

N

N∑
i=1

(Φ(f(xi))− ti)2 (1)

where

Φ(x) =
2

1 + e−x
− 1 (2)

and f(xi), ti are the program output and target values for the ith training
case respectively. The sigmoid function in Equation 2 scales f(x) within the
range {−1 . . . 1}. Similarly to [7], the target value for the majority class is set
to −0.5, while the target value for the minority class is set 0.5. Classification
is based on a zero-threshold approach; positive program output is mapped to
the minority class label, while negative output is mapped to the majority class
label.

3.3.2 AVE.

This Average system is trained using the original unbalanced dataset. The loss
function uses a weighted-average classification accuracy of the minority and
majority classes [7]. Minority accuracy corresponds to the true positive rate,
whereas majority accuracy corresponds to true negative rate. The weighting
coefficient between the two is 0 < w < 1. When w is set to 0.5, the accuracy
of both classes contributes equally to the loss function. In case of w > 0.5 the
accuracy of the minority class contributes more to the loss function, lowering
the contribution of the majority class accuracy. The loss function LAV E is
defined as:

LAV E = 1.0−
(
w ×

TP

TP + FN
+ (1− w)×

TN

TN + FP

)
(3)

where TP, TN, FN, FP is the count of true positives, true negatives, false
negatives and false positives respectively.

3 The number of examples correctly classified as a fraction of the total number of training
examples.
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3.3.3 US.

The Under-sampling system adjusts the number of examples in the majority
class to balance it with the size of the minority class. Since static under-
sampling of the majority class examples can introduce unwanted sampling
bias and discard potentially useful training examples, we resort to a dynamic
version of under-sampling. At every generation, a new set of examples is drawn
random-uniformly from the set of training examples of the majority class.
Under-sampling ensures that the number of examples drawn from the majority
class is the same as the number of examples for the minority class. The loss
function used is given in Equation 1.

3.3.4 RS.

This Random-sampling method is implemented as an extreme form of under-
sampling. A type of random sampling technique in which programs are eval-
uated on a single example drawn uniform-randomly from the entire training
dataset in each generation was shown to improve the generalisation of pro-
grams as compared to the use of the complete training set [27]. An obvious
extension of this method to datasets with class imbalance is to populate the
training set with two randomly-drawn examples (different in each generation),
one each from the minority and majority class. The loss function used is given
in Equation 1.

3.4 Features

In the context of speaker verification, a ‘feature’ is any numerical measurement
that can be used to describe or distinguish a given speaker. High-level prosodic
features such as those describing fundamental frequency or rhythm have been
used for speaker verification [17]. Such high-level features are difficult to mea-
sure accurately, possible to mimic and are susceptible to the speaker’s emo-
tions. Thus lower level spectral, cepstral, spectro-temporal and statistical fea-
tures are more common in verification tasks. The short-term spectral features
used in this study are described below. These features were chosen due to their
frequent use in the literature [41].

Mel-frequency Cepstral Coefficients MFCCs have become the standard mea-
sure of speech analysis for some time [56]. They consist of a set of coeffi-
cients that can represent the spectral quality within a sound according to a
scale based on human hearing. Obtaining the MFCCs consists of windowing
the sound, calculating amplitude spectrum of cepstral feature vector for each
frame and then converting this to the perceptually derived mel-scale [49]. As
described earlier, the dimensionality of the MFCCs were reduced in this study
using PCA. The first four PCs of the first 12 MFCCs along with their deriva-
tives are included in these experiments resulting in 48 discrete MFCC feature
values.
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Linear Prediction Coefficients Linear prediction calculates a given signal based
on a linear combination of the previous inputs and outputs [53]. As a spec-
trum estimation it offers good interpretation in both the time and frequency
domains. In the time domain, LP predicts according to

s[ñ] =

p∑
k=1

aks[n− k] (4)

where s[ñ] is the predicted signal, s[n] is the observed signal and ak are the
predictor coefficients at time step n and p is the order of the system. The
prediction error or residual is defined as the difference between the predicted
signal and the observed signal:

e[n] = s[n]− s[ñ] (5)

The linear predictive coefficients (LPCs), ak, are determined by minimising
this residual. This analysis leads to the Yule-walker equations that can be
efficiently solved using Levinson-Durbin recursion [34]. Given the LPC coeffi-
cients ak, k = 1 . . . p, the linear predictive cepstral coefficients (LPCCs) are
computed using the recursions [40]:

c[n] =

{
ak +

∑n−1
k=1

k
nc[k]an−k if 1 ≤ n ≤ p∑n−1

k=n−p
k
nc[k]an−k if n > p.

(6)

The first 21 LPCs and 10 LPCCs (apart from the zeroth order) were included
in our dataset. An equivalent measure to these that has become popular in
speaker analysis is line spectral frequencies (LSFs) [34]. These can be useful
in practice as they result in low spectral distortion and are deemed to be more
sensitive and efficient than other equivalent representations. The first 20 LSFs
were included in the dataset resulting in a total of 49 linear features.

Perceptual Linear Prediction One downfall of the LP method is that it approx-
imates the spectrum of speech equally well at all frequencies. In contrast, after
800Hz, the human ear becomes less sensitive and spectral resolution decreases
with frequency. This is compensated for using Perceptual Linear Prediction
(PLP) [29]. This combines three concepts from the psychophysics of human
hearing to improve the estimation of the auditory spectrum: the critical band
spectral resolution, the equal-loudness curve and the intensity power law. The
critical band spectral resolution warps the spectrum into the Bark frequency
and then convolves it with the power spectrum of the simulated critical-band
masking curve. The equal loudness curve is used to to pre-emphasise the re-
sultant samples. It is then subjected to the cubic-root amplitude compres-
sion which approximates the power law of hearing. PLP and other short term
spectral values are vulnerable when the values are modified by the frequency
response of the channel. The RelAtive SpecTrAl (RASTA) [30] method was
developed to make PLP more robust to linear spectral distortions by replac-
ing the short-term spectrum by a spectral estimate. This suppresses any slow
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varying component making the spectral estimate of that channel less sensitive
to slow variations and noise. PCA was again used to reduce the dimensionality
of the first nine PLPs and RASTA PLPs resulting in 72 discrete measures for
these features.

Other Features A number of descriptive spectral features were also included
in our dataset. These features have been found to be very useful in musical in-
strument identification [52], but are not typically used for speech analysis. Ten
specific values were included: the Spectral Centroid, Inharmonicity, Number
of Spectral Peaks, Zero Crossing Rate, Spectral Rolloff, Brightness, Spectral
Regularity and the Spectral Spread, Skewness and Kurtosis. Many of these
were calculated using the MIRToolbox [45], a Matlab toolbox dedicated to the
extraction of musically-related features from audio recordings.

3.5 Primitive language, variation operators, GP parameters

The primitive language and the evolutionary run parameters are given in Ta-
ble 1. Many of these are typical values taken from the literature for problems of
a similar size. We include 40 randomly chosen constants to create an approx-
imate 7:1 ratio of features:constants. This creates a bias towards a program
tree selecting a feature as a terminal node while allowing opportunity for it to
pick a constant if necessary. Each generation, the ST and AVE methods per-
form 120,000 fitness evaluations, whereas the US and RS only perform 24,000
and 2,000 respectively. To ensure a fair comparison between experiments, it
is imperative that the same the number of calculations are performed across
their duration and so the number of generations used in the US and RS meth-
ods are adjusted accordingly. Preliminary experiments revealed a tendency of
all systems to overfit, thus the maximum tree-depth is set to 8 to restrict the
complexity of the evolved programs.

The search strategy that we employed relies heavily on mutation-based
variation operators. The operation of pointMutation(x) traverses the tree
in a depth-first manner, and depending on the probability x it substitutes
a tree-node by another random tree-node of the same arity. The operation of
subtreeMutation() selects a node uniform-randomly and replaces the subtree
rooted at that node with a newly generated subtree. The tree-generation pro-
cedure is grow or full, each applied with equal probability. To improve on the
exploratory effect of the mutation operator, other than picking the tree-node
to be replaced from the whole expression-tree, we devised an additional node-
selection method. In this method a depth-level is picked uniform-randomly
from the range of all possible depth-levels present in the expression-tree, and
subsequently a node is picked uniform-randomly from the set of nodes that lie
in the chosen depth-level. The decision between the two node-selection meth-
ods is governed by a probability set to 0.5 for both methods. Finally, our imple-
mentation of recombination operator is the standard subtree crossover defined
for expression-tree representations. The probability of selecting an inner-node
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Table 1 Function/Terminal sets and run parameters

PRIMITIVE LANGUAGE
Function set +, −, ∗, / (x/y returns x if |y| < 10−5), sin, cos, ex,

log (log(x) returns x if x ≤ 0), sqrt (sqrt(x) returns x if x < 0)
Terminal set 275 features

40 uniform-randomly drawn constants in the range of [−1.0, 1.0]
GP PARAMETERS

Evolutionary algorithm elitist (1% of population size), generational
Population size 1,000
Tournament size 4
No. of generations 51 for ST

51 for AVE
251 for US
3,001 for RS

Population initialisation ramped half-and-half (depths of 2 to 4)
Max. tree depth 8
Crossover Probabilities inner node probability: 0.9

leaf node probability: 0.1
Mutation Probabilities pointMutation(0.1): 0.1

pointMutation(0.2): 0.1
pointMutation(2/treesize): 0.2
subtree mutation: 0.6

as a crossover point is set to 0.9, while the probability of selecting a leaf-node
is set to 0.1.

In generating offspring, a probability is associated with applying either
mutation or crossover, set to 0.7 in favour of mutation. If mutation is chosen,
pointMutation(0.1) is applied with a probability of 0.1, pointMutation(0.2)
is applied with a probability of 0.1, pointMutation(2 / tree_size) is ap-
plied with a probability of 0.2, and subtreeMutation() is applied with a
probability of 0.6.

3.6 GP for Feature Selection

As detailed above, 275 features were used for these original GP experiments. In
ASV, as in many other classification problems, the features used are generally
chosen from those found in the literature on alternative methods applied to
the given problem; there is rarely experimental justification for the inclusion
of specific features. One of the best practical aspects of GP is that it results
in a white-box system, meaning that the the final trees can be observed. The
implication of this is that successful trees can be analysed to determine which
temporal and spectral features are included to make them successful. Two
specific feature selection methods termed the Original Selection and Accuracy
Selection methods were derived from our GP results as detailed below.

3.6.1 ‘Original’ Method for Feature Selection

We can determine the most beneficial features for the given problem by exam-
ining which features are most often chosen by high performing trees. A similar
method has been used for feature selection in musical instrument analysis [51,
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tree = current_tree;

tree_acc = classification_accuracy(tree);

if (tree_acc > 90%) {

for feature in tree {

do 1000 times{

shuffled_tree = shuffle(tree(feature)); %shuffle the feature value

acc = classification_accuracy(shuffled_tree); %calculate the new accuracy

}

new_acc = average(acc)

feature_acc = abs(new_acc-tree_acc)

}

else {

tree = next_tree; %move to the next program tree

}

Fig. 1 Outline of Accuracy Selection method

52]. In examining these successful features, we only consider those program
trees from 50 independent GP runs that attain a test classification accuracy
greater than 90%. This benchmark was chosen because in employing a 1:9
class imbalance, a naive system that merely classifies all data into one class
would be able to achieve 90% accuracy. Hence we only consider programs that
achieve higher than this to be successful. The number of times each feature
was used in one of these successful trees is noted. The top 20 features as cho-
sen by successful trees can then be selected for training and testing a number
of machine learning classifiers. As this is based on the trees evolved from our
original GP experiments we termed this selection method Original Selection.

3.6.2 ‘Accuracy’ Method for Feature Selection

The second method of feature selection is based on the degree of change in
classification accuracy that results from a change in a given feature. To distin-
guish this from the original count-based method of selecting features we term
this method Accuracy Selection. A similar method of feature selection was used
in studying the use of GP on the oral bioavailability problem in [19]. Again
only trees that achieve over 90% test classification are considered successful
and used for feature selection. For each feature in the successful tree, its value
is shuffled among the values present in the test set and the test classification
accuracy is recalculated. This process is repeated 1000 independent times and
an average value is obtained. The absolute percentage change is calculated be-
tween the original classification accuracy and the average obtained by shuffling
this feature. This process is outlined in Figure 1. A large absolute percentage
change in accuracy for a given feature indicates that this feature is important.
The top 20 important features obtained in this manner can then be selected
to train a number of classifiers.

These two sets of selected features by each of the four GP methods were
compared against the full set of 275 features used to train and test four Ma-
chine Learning Classifiers, namely Support Vector Machines (SVM), Logis-
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tic Regression (LR), Random Forest (RF) and Gradient Boosting Classifier
(GBC).

4 Results

This section reports results on the generalisation performance of the GP sys-
tems, comparison of the GP system with other tuned Machine Learning meth-
ods, using GP for feature selection on these other methods and a comparison
between the speakers.

For each experiment, we created 50 splits of the 200 learning examples
into training and test sets. In each split, 120 examples were drawn uniform-
randomly for the training set, while the remaining 80 examples populate the
test set. Stratification ensures that the class imbalance ratio is maintained in
both sets. Using each split, we performed 50 independent evolutionary runs
using each GP system for each of the to-be-verified speakers. Many practition-
ers use an equal weighing in the AVE system by setting w = 0.5 [7]. In this
work the effectiveness of AVE is evaluated using a set of values for w, that of
W = {0.5, 0.6, 0.7, 0.8}. In the experiments we performed no model selection,
thus the fittest individual (on the training dataset) of the last generation is
designated as the output of a run.

4.1 Generalisation performance

Table 2 presents statistics of training and test classification accuracy for the
different systems on all 10 speakers. In each case, we report the median, in-
terquartile range, and maximum based on 50 independent runs. Note that in a
classification setup, in which the true positive rate corresponds to the minority
class accuracy, a classifier that always outputs the majority class label attains
a classification accuracy of 0.9 (true positive rate of 0%). Our first observa-
tion concerns the significant difference between training and test performance
in all datasets. This is indicative of overfitting, a typical problem in unregu-
larised GP [1]. There are a number of reasons why overfitting is occurring in
these preliminary experiments. First and foremost, this is attributed to the
limited number of examples for the to-be-verified speakers in each dataset. A
second reason is the absence of both model selection and regularisation from
the learning process. In light of the above, we attempted to limit the syntac-
tic complexity of the evolved programs by setting the maximum tree-depth
allowed during search to 8, however this was not adequate for preventing over-
fitting.

The generalisation performance of different systems is presented in the
second part of Table 2. Table 4 presents the p-values of a two-sided Wilcoxon
rank sum test, which tests the null hypothesis that two data samples have
equal medians, against the alternative that they don’t. We set the significance
level α to 0.05. Median test accuracy of ST is shown to be statistically superior
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to rest of the systems AVE, RS, US for speakers FJEN0, MMGC0, MPGR1.
In addition, ST median is shown to be statistically superior against that of
(a) AVE for speakers FPJF0, FSAH0; (b) RS for speakers FGRW0, FPJF0,
MTRT0; and (c) US for speakers MJDC0. This result is consistent with the
findings in [7], which showed that the MSE-based loss function of Equation 1
routinely outperformed loss functions based on classification accuracy or the
weighted average between true positive and true negative rates (Equation 3).
The results also suggest that ST, which uses the original unbalanced datasets,
is often statistically superior or no different to the data-sampling methods
of RS and US. Specifically ST is statistically better in 6/10 speakers, and
statistically worse in 1/10 speakers against RS. Also, ST is statistically better
in 4/10 speakers, and statistically worse in 1/10 speakers against US.

Overall, the median of ST is equal to 90% in 6/10 speakers, and greater
than 90% in 4/10 speakers. This suggests that in 50 runs, the median general-
isation performance of ST is consistently equal or better to the performance of
a classifier that always outputs the majority class label. The median test ac-
curacy is higher than or equal to 90% in 4/10 speakers for AVE; 4/10 speakers
for RS; and 5/10 speakers for US. Nevertheless, among 50 runs, the maximum
test classification accuracy that is achieved through evolution is always higher
than the one yielded from the classifier that always outputs the majority class
label, for all speakers.

Table 3 presents the test accuracy statistics for the different values of w in
the loss function (Equation 3) of the Ave system. A two-sided Wilcoxon rank
sum test is performed to test the difference in the median values. We found that
no value of w, where w 6= 0.5 resulted in a significantly better test classification
accuracy compared to equal weighing. This finding is in accordance with the
result reported in [7].

4.2 Comparison with Other Classifiers

To evaluate the performance of the GP classification systems we compared
the results from the best generalising system (ST) against a number of tuned
machine learning classifiers, namely a Support Vector Machine (SVM), Ran-
dom Forest (RF), Logistic Regression (LR) and Gradient Boosting Classi-
fier (GBC). A parameter search was performed to optimise each classification
model from the parameters shown in Table 5.

The Training and Testing classification accuracies for GP and the four ma-
chine learning methods are shown in Figure 2. From this figure we can again see
a very noticeable reduction in accuracy between train and test performance
for all methods. While the training classification accuracy for a number of
methods on a number of speakers is close to 100%, it is clear that this classifi-
cation accuracy rarely exceeds the majority threshold of 90% in any of the test
classifications. This shows that it is not only GP that suffers from over-fitting
in classification problems like this that contain such a severe class imbalance.
In regards to test classification accuracy, of the 10 speakers, SVM performed
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Table 2 Training and Test performance for all systems showing the median (with interquar-
tile range in parenthesis) and maximum accuracy for each speaker based on 50 independent
runs.

Training Classification Accuracy

AVE(w = 0.5) ST RS US

Speaker Median Max Median Max Median Max Median Max

FGRW0 0.97 (0.04) 1.00 0.98 (0.09) 1.00 0.96 (0.03) 0.99 0.99 (0.03) 1.00

FJEN0 0.97 (0.05) 1.00 0.95 (0.09) 1.00 0.97 (0.02) 0.98 0.98 (0.03) 1.00

FPJF0 0.99 (0.03) 1.00 0.93 (0.08) 1.00 0.97 (0.03) 1.00 0.98 (0.03) 1.00

FSAH0 0.97 (0.05) 1.00 0.90 (0.06) 0.98 0.97 (0.03) 0.99 0.98 (0.03) 1.00

MEFG0 1.00 (0.02) 1.00 0.98 (0.07) 1.00 0.98 (0.02) 1.00 0.99 (0.01) 1.00

MJDC0 0.97 (0.04) 1.00 0.97 (0.07) 1.00 0.96 (0.01) 0.98 0.99 (0.03) 1.00

MKDD0 0.98 (0.04) 1.00 0.97 (0.09) 1.00 0.97 (0.03) 1.00 0.99 (0.02) 1.00

MMGC0 0.95 (0.04) 1.00 0.92 (0.07) 0.99 0.96 (0.03) 0.98 0.97 (0.03) 1.00

MPGR1 0.97 (0.03) 1.00 0.97 (0.06) 1.00 0.96 (0.03) 0.98 0.98 (0.04) 1.00

MTRT0 0.96 (0.03) 1.00 0.90 (0.05) 0.98 0.96 (0.03) 0.99 0.97 (0.03) 1.00

Testing Classification Accuracy

AVE(w = 0.5) ST RS US

Speaker Median Max Median Max Median Max Median Max

FGRW0 0.90 (0.06) 0.97 0.91 (0.03) 0.96 0.90 (0.04) 0.97 0.93 (0.04) 0.97

FJEN0 0.85 (0.06) 0.91 0.91 (0.01) 0.95 0.89 (0.03) 0.96 0.88 (0.02) 0.96

FPJF0 0.86 (0.05) 0.95 0.90 (0.04) 0.95 0.88 (0.04) 0.94 0.89 (0.10) 0.96

FSAH0 0.84 (0.05) 0.91 0.90 (0.01) 0.95 0.89 (0.04) 0.96 0.90 (0.05) 0.95

MEFG0 0.93 (0.05) 0.99 0.90 (0.05) 0.99 0.94 (0.03) 0.97 0.91 (0.05) 0.96

MJDC0 0.90 (0.08) 0.96 0.90 (0.04) 0.96 0.90 (0.04) 0.94 0.88 (0.02) 0.94

MKDD0 0.93 (0.07) 1.00 0.90 (0.04) 0.95 0.91 (0.05) 0.97 0.94 (0.04) 1.00

MMGC0 0.81 (0.14) 0.94 0.91 (0.01) 0.94 0.86 (0.04) 0.93 0.86 (0.06) 0.94

MPGR1 0.79 (0.10) 0.94 0.92 (0.03) 0.93 0.88 (0.06) 0.94 0.85 (0.05) 0.93

MTRT0 0.89 (0.07) 0.94 0.90 (0.01) 0.94 0.88 (0.05) 0.94 0.90 (0.05) 0.95

Table 3 Test classification accuracy for AVE. Interquartile range in parentheses.

AVE(w = 0.5) AVE(w = 0.6) AVE(w = 0.7) AVE(w = 0.8)

Speaker Median Max Median Max Median Max Median Max

FGRW0 0.90 (0.06) 0.97 0.88 (0.11) 0.99 0.84 (0.10) 0.97 0.86 (0.14) 0.96

FJEN0 0.85 (0.06) 0.91 0.85 (0.06) 0.93 0.82 (0.10) 0.90 0.82 (0.10) 0.93

FPJF0 0.86 (0.05) 0.95 0.89 (0.12) 0.95 0.86 (0.09) 0.95 0.86 (0.06) 0.94

FSAH0 0.84 (0.05) 0.91 0.86 (0.06) 0.94 0.82 (0.10) 0.96 0.84 (0.06) 0.91

MEFG0 0.93 (0.05) 0.99 0.93 (0.06) 1.00 0.91 (0.06) 0.95 0.94 (0.05) 0.97

MJDC0 0.90 (0.08) 0.96 0.86 (0.06) 0.96 0.78 (0.12) 0.90 0.84 (0.08) 0.95

MKDD0 0.93 (0.07) 1.00 0.88 (0.12) 0.97 0.91 (0.10) 0.99 0.88 (0.12) 0.99

MMGC0 0.81 (0.14) 0.94 0.81 (0.08) 0.90 0.81 (0.09) 0.90 0.84 (0.07) 0.94

MPGR1 0.79 (0.10) 0.94 0.79 (0.06) 0.93 0.85 (0.09) 0.93 0.82 (0.10) 0.94

MTRT0 0.89 (0.07) 0.94 0.85 (0.10) 0.94 0.85 (0.07) 0.96 0.84 (0.12) 0.95

the highest for three speakers, GP and RF for two and GBC for one. RF and
GBC also performed equally highest for two speakers. Hence, no one method
performs consistently higher across all speakers.

To statistically confirm this overall performance, we conducted a Fried-
man aligned ranking test [31] across all methods for all speakers to test the
null hypothesis that there is no significant performance difference between the
classifiers across all speakers. This resulted in a p-value of 0.28 indicating that
we must accept the hypothesis that there is not a signifiant performance dif-
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Table 4 p-values of Winlcoxon rank-sum test. AVE uses w = 0.5.

FGRW0

ST RS US

FJEN0

ST RS US
AVE 0.27 0.50 0.03 AVE 0.00 0.00 0.00
ST 0.03 0.08 ST 0.04 0.00
RS 0.00 RS 0.09

FSAH0

ST RS US

MEFG0

ST RS US
AVE 0.00 0.00 0.00 AVE 0.00 0.42 0.01
ST 0.17 0.47 ST 0.00 0.65
RS 0.16 RS 0.00

MKDD0

ST RS US

MMGC0

ST RS US
AVE 0.35 0.71 0.00 AVE 0.00 0.00 0.00
ST 0.12 0.00 ST 0.00 0.00
RS 0.00 RS 0.87

MTRT0

ST RS US

FPJF0

ST RS US
AVE 0.21 0.28 0.19 AVE 0.02 0.32 0.20
ST 0.00 0.80 ST 0.02 0.92
RS 0.00 RS 0.23

MJDC0

ST RS US

MPGR1

ST RS US
AVE 0.17 0.79 0.05 AVE 0.00 0.00 0.00
ST 0.03 0.00 ST 0.01 0.00
RS 0.00 RS 0.00

Table 5 Parameters for optimisation for each of the machine learning classifiers

SVM
C: [0.01, 0.1, 1, 10, 100]
Gamma: [0.1, 0.01, 0.001, 0.0001]
kernel: [‘rbf’]

RF

no. estimators: [10, 50, 100, 200, 300, 400, 500, 1000]
max depth: [1,2,3, None]
max features: [1, 3, 5, 10, 50, 100]
min samples split: [1, 5, 10, 20]
min samples leaf: [1, 5, 10, 20]
bootstrap: [True]
criterion: [‘gini’, ‘entropy’]

LR C: [0.0001, 0.001, 0.01, 0.1, 1]

GBC
no. estimators: [10, 50, 100, 200, 300, 400, 500, 1000]
learning rate: [0.001, 0.01, 0.1]
max depth: [1,2,3]

ference between all classifiers across all speakers. In the next section we try to
improve this result by optimising each classifier using only specifically chosen
features from the two feature selection methods described in Section 3.6.

4.3 Feature selection with GP

As described in Section 3.6, the white-box nature of GP facilitates an analysis
of the evolved tree programs. Using GP to create classifiers with a wide range
of possible features allows us to determine the most beneficial features for the
given problem by examining which are most often selected by high performing
systems. Thus we can use the experiments above to determine which may be
the best features to include for use with other machine learning classifiers. To
do this, we only analysed successful classifiers, those that achieved over 90%
test classification accuracy. We compare the two methods of feature selection
below.
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(a) (b)

Fig. 2 Training and Testing Classification Accuracy for all classifiers using all data

4.3.1 Original Selection

A plot of the mean percentage of times each feature is chosen by a successful
classifier is shown in Figure 3. A more detailed account of the top 20 chosen
features for each system is given in Table 6. This overall set of 20 most popular
chosen features from each GP system was selected to train and test the next
set of machine learning classifiers. This table names each of the top chosen
features, reporting the mean percentage of times this feature was chosen from
the list of all 275 features and the standard error of this selection.

From the plots in Figure 3 it is clear that certain features are chosen more
consistently by high performing classifiers than others. In each system investi-
gated there is a strong peak at feature number 218. We can see from Table 6
that this corresponds to Inharmonicity. If a sound is perfectly internally ‘har-
monious’ each of the upper partials will be integer multiples of the fundamental
frequency. Inharmonicity is a measure of how much the spectral content of a
sound differs from this ideal relationship. Although it has been generally used
as a musical descriptor, its prominent and consistent selection in high per-
forming classifiers in these experiments indicate that it may be a very strong
indicator for voice verification also. Other individual spectral features are not
strongly represented although the Zero Crossing Rate, Spectral Centroid and
the Number of Spectral Peaks did appear in the top 20 features chosen by at
least one system.

From Table 6 we can see that higher order PLPs were the next most se-
lected feature. Within these only the first PC was chosen, indicating that
the variance in the principle dimension for these features contains the most
useful information. Surprisingly, the RASTA variations were not selected as
frequently implying that the original implementation of the PLPs are more
important for this problem. This is most likely because we used the high qual-
ity audio signal from the TIMIT database without adding noise. The RASTA
method was developed to compensate for noisy channels, but as our signals
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Fig. 3 Mean of the occurrence of all features in the top performing programs from inde-
pendent runs for the AVE, ST, RS and US systems described in Section 3.3. Features are
grouped into the mel-frequency cepstral coefficients (MFCC), their derivatives (DMFCC),
perceptual linear prediction (PLP), other spectral features (MIR) and the linear prediction
coefficients (LPC).

are not noisy these are not found to be more beneficial than the standard PLP
implementation.

The LPCCs were prominent among the highly selected features. LPCC3
was within the top 20 for each system and LPCCs 7 and 5 also featured in
three of the four systems. Interestingly, the LPCs did not feature as strongly
as their cepstral counterparts, indicating that in linear prediction for these
problems the cepstral domain may be more influential than the spectral do-
main. MFCCs have for a long time been one of the most widely used features
in speech analysis. It may be surprising then to see that they did not appear
as prominently as other features already discussed. In saying that, the first PC
of a number of higher MFCCs did emerge as consistently chosen by success-
ful classifiers. The derivatives of the MFCCs were among the least successful
features.

These results show a clear tendency towards the selection of certain spec-
tral features over others. Such a result shows how important it is to consider
feature selection when designing machine learning classification experiments.
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Table 6 Top 20 features Originally selected by each system. Values are reported as the mean
percentage of times each feature was chosen by a successful classifier (accuracy greater than
90%) with the standard error in parenthesis.

Ave ST RS US

Feature Mean(%) Feature Mean(%) Feature Mean(%) Feature Mean(%)

Inharm 0.89 (0.38) Inharm 0.66 (0.2) Inharm 0.85 (0.16) Inharm 1.03 (0.23)

plp9 1 0.39 (0.18 ) plp7 1 0.53 (0.1) plp7 1 0.3 (0.11) plp9 1 0.76 (0.15)

plp6 1 0.34 (0.27) plp9 1 0.44 (0.11) plp8 1 0.27 (0.06) plp8 1 0.49 (0.18)

lpcc4 0.27 (0.1) plp8 1 0.43 (0.11) plp9 1 0.24 (0.06) plp7 1 0.47 (0.09)

plpR5 2 0.23 (0.13) mfcc12 1 0.34 (0.08) plpR3 2 0.21 (0.01) mfcc12 1 0.43 (0.1)

lpcc3 0.2 (0.15) lpcc7 0.28 (0.09) mfcc12 1 0.19 (0.03) plp6 1 0.4 (0.16)

mfcc12 1 0.19 (0.04) plp5 1 0.28 (0.1) plp5 1 0.19 (0.05) plp5 1 0.37 (0.1)

plp5 1 0.19 (0.1) mfcc6 1 0.22 (0.1) plp8 3 0.16 (0.05) lpcc5 0.28 (0.14)

lpcc2 0.18 (0.17) mfcc7 1 0.2 (0.08) mfcc3 1 0.14 (0.04) lpcc7 0.27 (0.16)

lpcc5 0.18 (0.1) lpcc8 0.19 (0.09) lpcc7 0.14 (0.03) lpcc3 0.26 (0.1)

Dm7 2 0.17 (0.07) plp4 1 0.19 (0.07) plp3 1 0.14 (0.09) mfcc9 1 0.21 (0.06)

plp7 1 0.17 (0.06) lpcc5 0.18 (0.09) DDm9 1 0.13 (0.02) DDm6 2 0.21 (0.06)

mfcc9 1 0.14 (0.07) mfcc9 1 0.18 (0.06) Centroid 0.12 (0.02) ZeroC 0.2 (0.09)

mfcc5 3 0.14 (0.09) mfcc2 1 0.17 (0.08) mfcc10 3 0.1 (0.00) NoPeaks 0.19 (0.1)

plp3 1 0.13 (0.12) mfcc8 1 0.12 (0.06) Dm5 2 0.1 (0.00) mfcc4 1 0.18 (0.05)

plp4 1 0.12 (0.08) plp9 2 0.12 (0.05) DDm1 2 0.1 (0.00) mfcc6 1 0.17 (0.07)

DDm6 1 0.12 (0.11) mfcc10 2 0.12 (0.08) lpcc3 0.1 (0.04) lpcc9 0.17 (0.06)

plp8 1 0.11 (0.08) DDm4 1 0.12 (0.05) lsf19 0.09 (0.09) plp4 1 0.16 (0.04)

plpR6 2 0.1 (0.05) Dm6 1 0.12 (0.07) mfcc7 1 0.09 (0.04) mfcc2 1 0.16 (0.11)

ZeroC 0.1 (0.1) lpcc3 0.11 (0.06) mfcc6 1 0.08 (0.05) DDm11 1 0.15 (0.05)

Evolutionary computational techniques have been shown to be useful for this
kind of feature selection [65]. Hence we have used the top 20 features as chosen
by this Original Selection to try to optimise the performance of the machine
learning classifiers.

4.3.2 Accuracy Selection

The second Accuracy Selection method for feature selection considers the
change in accuracy in each speaker when the value of each feature used for
that speaker is altered. In this case, the top 20 features for each individual
speaker were chosen to train and test the next set of machine learning clas-
sifiers for that speaker. This Accuracy Selection method was used to test if
selecting features deemed important to the specific speaker would increase
generalisation.

A comparison of the test classification accuracies on each of the methods
for both feature selection methods is shown in Figure 4. These would appear to
indicate that features included from the Original Selection method increased
generalisation for more methods than those found from the Accuracy Selection.
To examine this more closely, Table 7 shows the mean and standard error of
the classification across all speakers for each of the methods. This shows a
improvement in the mean classification accuracy when Original Selection is
employed over no feature selection, despite a reduction in data from 275 to only
20 selected features. This clearly indicates that many of the included features
(chosen from those commonly used in the literature) were superfluous or even
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Table 7 Test classification accuracy for each ML classifier for each GP system averaged
across all ten speakers for both Original and Accuracy feature selection methods. The none
values report classification accuracy for each classifier without any Feature Selection.

Original FS Accuracy FS

ML GP Mean Std. Dev Mean Std. Dev

SVM

none 91.0 1.35 91.0 1.35

AVE 92.75 2.78 90.25 1.66

ST 93.25 2.51 91.13 1.8

US 92.5 3.0 90.88 2.4

RS 91.0 1.56 92.75 2.7

RF

none 91.0 1.1 91.0 1.1

AVE 92.63 1.72 90.63 1.88

ST 92.38 2.34 90.75 2.18

US 92.13 2.1 90.25 3.3

RS 92.5 1.37 91.75 1.6

LR

none 90.13 0.88 90.13 0.88

AVE 90.13 0.38 90 0

ST 90.13 0.38 90 0

US 90.13 0.38 90 0

RS 90 0 90 0

GBC

none 90.37 1.68 90.37 1.68

AVE 91.75 1.39 90.13 3.13

ST 91.75 2.18 90.75 2.69

US 92.25 1.56 90 3.6

RS 92.63 1.78 94.38 1.79

detrimental to the system. The results obtained using the Original Selection
method outperform those from the Accuracy method for each machine learning
classifier from features selected by all but the RS GP systems. This would
indicate that taking the instances of a given feature in a successfully evolved
GP classifier is a better method of feature selection than considering the change
in accuracy resulting from a change in that feature.

Figure 4 also shows a strong difference in performance of the Machine
Learning Classifiers. Most notably, regardless of the GP system or feature se-
lection used, the LR very rarely achieves a classification accuracy of higher
than the benchmark of 90%. This result is also shown in Table 7 whereby,
regardles of GP method used, neither feature selection method manages to
improve the original classification that used the full set of 275 features. This
would imply that this method is not good at generalising for highly unbal-
anced classification studies such as this. Each of the other methods suffer from
stagnation at 90% accuracy for a number of runs, but each of the SVM, RF
and GBC methods manage to improve this to over 95% for a least one run in
the results shown in Figure 4.
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Table 8 p-values for aligned Friedman tests for each Classifier with respect to GP methods
using Original Selection

AVE ST US RS
p-value 0.188 0.916 0.897 0.694

Table 9 p-values for aligned Friedman tests for each GP method with respect to Classifier
using Original Selection

SVM RF LR GBC
p-value 0.005 0.008 0.029 0.0007

4.3.3 Analysis

To confirm the significance of these results we ran a number of statistical
analyses. To consider the effect of the GP method on each classifier we first
ran a Friedman aligned ranking test [31] across each of the four GP methods
(AVE, ST, US and RS) for each of the classifiers across all speakers. The
p-values from this analysis using the Original Selection method is shown in
Table 8. If we consider a significance level of 0.05, it is clear from the high
value of each of these results that we can accept the null hypothesis that there
is no significant performance difference on any classifier depending on the GP
method chosen. Table 9 shows the results of another Friedman aligned ranking
test in respect to the different classifiers used with each GP method. In this
case the small (< 0.05) obtained p-values mean that we must reject the null
hypothesis that there is no significant performance difference in choosing the
classification method (i.e. SVM, RF, LR and GBC). To examine this further
we conducted a post-hoc analysis using the Holm-Bonferroni method [32].
This sequential post-hoc correction performs pair-wise analyses to control the
family-wise error rate among multiple comparisons. The results in Table 10
indicate that it is particularly the performance of the LR method that causes
a significant change in performance, which agrees with Figure 4 showing the
LR classifier to have notably poor performance across a number of speakers.

The results of a similar Friedman test for the Accuracy Feature Selection
with respect to the chosen GP method and chosen ML classifier are shown in
Tables 11 and 12 respectively. Considering a significance level again of 0.05,
we do not see a significant difference in the performance of the variations of
the system and determine that equivalent null hypotheses could be accepted
in all but the GBC and RS variations of the experiment.

Figure 4 shows a marked increase in accuracy in a number of experiments
but we would like to clarify how many times applying feature selection resulted
in an improvement in test classification accuracy. To do this, we counted the
number of speakers for which each feature selection method improved test clas-
sification accuracy in comparison to the classification results using all features
shown in Figure 2. The results are tabulated in Table 13. This clearly shows
that the application of feature selection results in an increase in classification
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Table 10 p-values of post-hoc analysis using the Holm-Bonferroni method

AVE

RF LR GBC
SVM 0.81 0.003 0.81
RF 0.0007 0.42
LR 0.01

ST

RF LR GBC
SVM 0.38 0.0007 0.166
RF 0.015 0.768
LR 0.05

US

RF LR GBC
SVM 1 0.02 1
RF 0.02 1
LR 0.01

RS

RF LR GBC
SVM 0.03 0.15 0.058
RF 0.0002 0.69
LR 0.0006

Table 11 p-values for aligned Friedman tests for each Classifier with respect to GP methods
using Accuracy Selection

AVE ST US RS
p-value 0.09 0.25 1.0 0.005

Table 12 p-values for aligned Friedman tests for each GP method with respect to Classifier
using Accuracy Selection

SVM RF LR GBC
p-value 0.78 0.49 0.75 0.001

Table 13 Number of speakers (out of 10) for which each method of feature selection in-
creased (⇑), had no effect (⇔) or decreased (⇓) the test classification on each of the machine
learning classifiers.

Original FS Accuracy FS
⇑ ⇔ ⇓ ⇑ ⇔ ⇓

SVM

Ave 7 2 1 1 4 5
ST 8 1 1 3 5 2
US 5 4 1 2 4 4
RS 2 6 2 6 3 1

RF

Ave 7 1 2 3 2 5
ST 6 2 2 4 2 4
US 4 3 3 3 2 5
RS 8 1 1 5 5 0

LR

Ave 1 8 1 1 8 1
ST 2 7 1 1 8 1
US 1 8 1 1 8 1
RS 1 8 1 1 8 1

GBC

Ave 5 4 1 3 5 2
ST 4 6 0 6 2 2
US 6 3 1 2 3 5
RS 7 3 0 10 0 0
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more often than a decrease. Again the Original Selection method performs
stronger than the Accuracy Selection method. Specifically, the application of
Original Selection resulted in an increase of classification accuracy in a total
of 74 individual experiments and a decrease in only 19; using Accuracy Se-
lection resulted in an increase of 52 and a decrease in 39. This means that
in reducing 275 features to 20 using the Original Selection we obtained test
classification results that are as good as or better than those obtained using
all data in 88.12% of experiments undertaken (75.6% using Accuracy Selec-
tion). Notably, the test classification results for the LR methods showed little
increase or decrease in accuracies — the accuracy of most speakers were not
changed regardless of feature selection.

4.4 Comparison Between Speakers

Regardless of the method used above, it is clear from the results that classifi-
cation models created for certain speakers are more successful than for others.
To examine this we once again consider the results shown in Figure 4, but this
time in regards to the individual speakers. We again used a Friedman aligned
ranking test across our results to determine if there is a significant difference
in performance between speakers. We obtained a p-value of 0.0001 for the
Original Selection and 0.0007 for Accuracy Selection determining that there
is a significant difference between the performance of the speakers. Table 14
shows the maximum, average and standard deviation for each of the speakers
over all systems using both feature selection methods. We can see from this
table that the maximum achieved accuracy for both feature selection methods
was for speaker FGRW0 at 98.75% for both models. From Figure 4 we can
see that this result was achieved by an SVM in both instances, from the AVE
system using the Original Selection and the US system using the Accuracy
Selection. This speaker does not have the highest average accuracy however,
this is MKDD0 and MEFG0, both of whom also achieve a high maximum
accuracy also. The most difficult speakers to verify are FJEN0 for the Orig-
inal Selection, achieving an average accuracy of 90.23% and only reaching a
maximum of 91.25%. This speaker also appeared to be difficult for systems us-
ing the Accuracy Selection, achieving an average and maximum classification
accuracy of 89.92% and 93.75% respectively.

The difference in accuracies between speakers is indicative of difficulties
in the data rather than the ability of any of the proposed methods’ ability
to be able to overcome these difficulties. Throughout this study we have cre-
ated classification models specifically for each individual speaker; each speaker
proposes a different classification problem and some of those problems have
proven easier to solve than others. We would like to concentrate further efforts
in this domain on considering the differences in the problem posed by looking
at different speakers.
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Table 14 Average test classification accuracy for each speaker across all methods.

Original FS Accuracy FS

Speaker Max Mean Std. Dev Max Mean Std. Dev

FPJF0 97.5 92.19 2.05 95.0 90.55 2.38

MEFG0 96.25 92.34 2.02 97.5 92.89 2.45

MTRT0 92.5 90.70 0.99 93.75 90.39 1.86

FJEN0 91.25 90.23 0.66 93.75 89.92 1.79

FGRW0 98.75 92.34 2.42 98.75 91.17 2.63

FSAH0 96.25 91.48 2.04 93.75 91.02 1.61

MMGC0 95.0 91.02 1.67 91.25 89.92 1.12

MKDD0 96.25 92.97 2.46 97.5 92.03 3.48

MJDC0 97.5 92.73 2.66 96.25 89.77 1.94

MPGR1 95.0 91.41 1.70 93.75 90.86 2.53

4.5 Comparison with Other Methods

The breadth of studies discussed in Section 2.1 is a testament to the work
which is being undertaken in the field of ASV. Accurate and reliable ASV has
important practical real-world applications and as such have received much
attention from numerous focus groups in the academic community. State of
the art methods are compared generally during the bi-annual NIST Speaker
Recognition Evaluation which evaluates novel speaker recognition systems on a
corpora of i-vectors based on phone recordings. As discussed in Section 2.1, this
contest has become so popular as to create collaborations across multiple insti-
tutes and countries in an attempt to succeed in this challenge. The presented
work does not evaluate on any of the proposed NIST corpora of i-vectors,
but rather on real audio signals drawn from the TIMIT speaker database. The
focus of this work has been on manipulating this raw data through data reduc-
tion (from feature selection) and in considering a more extreme class imbalance
as has been considered in classification problems in alternative problem do-
mains. While there has been limited study of evolutionary methods on ASV,
we have seen many studies of evolutionary computation applied to unbalanced
classification problems [8] and feature selection techniques [65]. We have not
yet implemented one of the typical speaker representation such as i-vectors
or noisy channel dependencies that have become popular in recent years, but
instead framed the problem in a new way. Although this makes a direct com-
parison with state-of-the-art techniques impossible, we feel that this will add
to the ever growing body of work focussed on ASV and can help in maintaining
diversity within the field.

The TIMIT corpora used throughout this study has however been widely
used in speech and speaker analysis for many years. Of the previous studies,
the most similar experimental setup to the proposed study is in [15], how-
ever as discussed earlier, even this study differed in class imbalance (1:3 as
opposed to 1:9), signal representation (noisy as opposed to noiseless), features
used, results reported and the overall purpose of the experiment. For these
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reasons, a direct comparison of our results to other studies would not appear
to be feasible or meaningful. Nevertheless, as a qualitative comparison, we
briefly present some of the results from previous speech and speaker classifi-
cation studies undertaken on the TIMIT corpora. [15] reported classification
accuracies of between 79.6% to 97% for clean to various levels of noisy data.
This improvement in noisy environments is a very successful result from this
study. In a separate study looking at Superfeatures [16], depending on the
model used, the best classification between music, noise or TIMIT speech,
ranged from 76% to 100%. In [42] methods based on multiple time-domain
windows (tapers) with frequency domain extraction were employed in MFCC
extraction to develop robust ASV methods using both TIMIT and NIST cor-
pora. Although the TIMIT corpora is used in the development of the system,
evaluation is performed on two separate NIST databases. Multi-taper short
term windows were again used in [55] on the TIMIT corpora in examining
Gammatone filters for robust speaker verification. They present their results
as equal error rates (EER), rather than classification error determining that
using a Gammatone filter can be more effective than traditional triangular
Mel filterbanks over multiple windows for ASV. [36] explored the use of non-
negative matrix factorization for speaker recognition using the TIMIT corpus
and reported classification results among eight speakers of up to 98.99% when
a decision was made from majority voting based on the previous 1 second
window and a maximum of 76% without any such voting. [10] used the Ntimit
database, which is composed of clean speech signals from the TIMIT database
recorded over local and long-distance telephone loops. They proposed an evo-
lutionary strategy that optimised feature extraction complementarity of two
speaker verification systems but again only in examining noisy signals. They
report that their evolutionary strategy resulted in improvements (measured as
EER) for both databases.

5 Conclusions and Future Work

This paper presented a study on the application of GP for feature selection
on a highly unbalanced implementation of the binary classification problem of
ASV. Initial experiments implemented four specific GP systems. An analysis of
high performing systems facilitated the development of two separate feature
selection methods termed Original Selection and Accuracy Selection. These
feature selection algorithms were used in an attempt to optimise a series of
machine learning algorithms, a SVM, RF, LR and GBC. The focus of the
study was to highlight two real world considerations in dealing with ASV: data
reduction through feature selection and severe class imbalance compensation.

In the first series of GP experiments, using a number of independent GP
runs, it was possible to evolve good-generalising programs, but this gener-
alisation was not consistent in terms of median performance across all runs
for the majority of systems. The MSE-based loss function that measured the
discrepancy between program output and target value attained a median gen-
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eralisation performance that was at least as good as the ‘majority classifier’
for all speakers. This outperformed the loss function based on the weighted
accuracy between minority and majority classes for most speakers. In addi-
tion, the MSE-based loss function performed better when used on the original
unbalanced dataset than when used in combination with down-sampling in
nearly all speakers. The use of non-equal weighted misclassification costs for
the minority and majority classes did not significantly improve generalisation
compared to an equal weighting.

This MSE-based GP method was found to have comparable classification
results to other machine learning algorithms. Of the algorithms considered,
Logistic Regression performed consistently weaker than the rest, rarely able to
classify unseen samples better than a majority classifier. By examining high
performing program trees evolved with GP, two feature selection methods
were used to reduce the number of features from 275 to 20. Using feature
selection noticeably improved the generalisation for a number of individual
models. Specifically it was found that the Original Selection method formed
by counting the number of instances of particular features in high-performing
trees was very beneficial to a number of methods. In reducing 275 features to 20
using this Original Selection, we obtained test classification results that are as
good as or better than those obtained using all data in 88.12% of experiments
undertaken. These results indicate that a 1:9 class imbalance ratio poses a
very difficult classification problem for any machine learning algorithm and
that it is highly important to consider what data (i.e. features) to include
when designing such experiments.

We noted that certain speakers are significantly easier to verify than others
throughout the experiments. This is because each speaker poses a unique clas-
sification problem. In future work we would like to determine what makes one
speaker more difficult to verify than another. By examining different speakers,
and by analysing the features selected by methods such as those discussed,
we hope to be able to investigate specific timbral qualities within the human
speaking voice that are important for accurate verification.

As a classification problem, the class imbalance ratio of 1:9 is very high,
but speaker verification poses a much higher imbalance in practice. True ASV
requires the verification of one speaker from every other person in the world.
We have considered scaling up the problem to a higher degree of imbalance but
in reality, trying to verify one in a million amounts to detecting an anomaly
in a dataset. Hence in future work, we may reframe and examine the problem
again, not with a heavy class imbalance but by trying to verify one speaker
against the rest of the corpus by implementing anomaly detection.
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Fig. 4 Comparison of the Test Classification accuracy on each of the Machine Learning
Classifiers using Original Selection and Accuracy Selection.


