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Abstract—Grammatical Evolution (GE) is applied to the
problem of load balancing in heterogeneous cellular network
deployments (HetNets). HetNets are multi-tiered cellular net-
works for which load balancing is a scalable means to maximise
network capacity, assuming similar traffic from all users. This
paper describes a proof of concept study in which GE is used in
a genetic algorithm-like way to evolve constants which represent
cell power and selection bias in order to achieve load balancing in
HetNets. A fitness metric is derived to achieve load balancing both
locally in sectors and globally across tiers. Initial results show
promise for GE as a heuristic for load balancing. This finding
motivates a more sophisticated grammar to bring enhanced Inter-
Cell Interference Coordination optimisation into an evolutionary
framework.

I. INTRODUCTION

Cellular networks are subject to exponentially increasing
strain from the proliferation of mobile devices and the shift
from voice traffic to multimedia streaming [1]. In order to keep
pace with demand, network operators are supplementing their
existing Macro Cell (MC) deployments with Small Cells (SCs).
SCs are low-power cells located within the operational reach
of MCs, with which they share a common channel. The overall
performance of a network can be improved by offloading user
equipment (UE) from the MC tier to the SC tier, thereby easing
congestion and increasing data throughput.

Multi-tiered heterogeneous networks (HetNets) have been
identified as an efficient infrastructure for 3rd Generation
Partnership Project-Long Term Evolution (3GPP-LTE), the
current standard in wireless technology [2]. Channel sharing is
attractive to operators because bandwidth is costly and scarce.
However, high power MCs pose two problems for SCs within
their operational reach. Firstly, low-power SCs are unable to
offload enough UEs from the MC tier because UEs attach
based on signal strength. Therefore, the SC tier is typically
underutilised. Secondly, SC attached UEs in the cell edges are
subject to significant interference from the signals of nearby
MCs in co-channel deployments.

Cell Range Expansion (CRE) is employed as a mechanism

to prevent under-utilisation of the SC tier. Attachment to the
SC tier is promoted by adding a bias to the SC pilot signal
strengths. SC coverage areas are thereby expanded because
UEs attach to whichever cell offers the strongest pilot signal.
Under the CRE mechanism UEs may attach to a SC in
deference to their better serving local MC for the global good
of the network. This is achieved by adding a cell selection bias
(CSB) βi to the reference-signal received power (Pui) of cells,
so that UE u attaches to cell k if:

k = arg max
i

(Pui + βi). (1)

Where, βi = 0,∀i ∈M , the set of all MCs, and βi ≥ 0,∀i ∈
S, the set of all SCs [3]. Note that P TX

i (transmitting power
of cell i) is subject to path loss so that the signal strength
perceived by u is given by,

Pui = P TX
i [dBm] +Gui[dB], (2)

such that Gui is the signal gain to u, see Section III.

Since UEs greedily attach to their best serving cell per
attachment rule (1) intelligent inter-tier load balancing, by
setting optimal SC powers and biases, is crucial in HetNets.
If a large imbalance exists between the number of UEs
(load) attached between MCs and SCs it follows that per-
cell congestion will limit downlink rates for UEs attached to
congested cells. Expression (1) describes how UEs may be
offloaded onto the SC tier by increasing SC CSBs (assuming
that SCs are in hotspots). However, UEs in the expanded region
of a SC will always receive lower signal strength from their
serving SC than from the local MC. It follows that UEs in
SC expanded regions will experience strong interference from
nearby MCs. Note that the expanded region is the additional
overage area realised when CSB is positive. The enhanced
Inter-Cell Interference Coordination (eICIC) mechanism has
been proposed to mitigate inter-tier cell-edge interference in
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HetNets [2]. A key interference mitigation feature of eICIC is
the notion of Almost Blank Subframes (ABSs) [3].

ABSs are quiet subframes during which MCs mute, save
for minimal but indispensable control signals, thus providing
clear subframes in which SCs can transmit without interfer-
ence. Note that a full frame consists of 10 subframes that are
1 ms in duration. As the number of UEs in an expanded region
increases due to increasing CSBs, so must the proportion of
ABSs sacrificed by nearby MCs so that their influence is
minimised. In this sense ABS patterns and CSBs are coupled.

ABSs are necessary in HetNets implementing eICIC be-
cause SCs operate at much lower power than MCs. Therefore,
UEs at the cell edges experience significant interference from
nearby MCs and require quiet periods so that they experience
acceptable signal to interference and noise ratios (SINRs). It
is important that the user-experience is acceptable for all users
including those at cell edges.

The combination of ABSs and CRE enable effective in-
terference management and load balancing in HetNets, see
for example [3]–[5]. We assess Grammatical Evolution (GE)
[6]–[8] as a potential framework for automatically evolving
eICIC algorithms. Since load balancing is a prerequisite for
maximising overall network capacity, we first apply GE to the
problem of load balancing in a non-eICIC context (i.e. without
the use of ABSs). Furthermore, as a first approximation we are
assuming a ‘full buffer’ model where all UEs are static and
request data at the same constant rate. Results are encouraging
and motivate several directions for future work.

II. PREVIOUS WORK

Release 10 of 3GPP [9] describes eICIC at the conceptual
level but does not specify algorithms for setting ABS patterns
and CSBs. This gap has generated a number of research
contributions which address the NP-hard problem (see proof
Section IV-A in [3]) of setting ABS configurations. Tall et
al. (2014) derived an algorithm to jointly balance load and
optimise ABS ratios (the proportion of ABSs in a frame) [5].
Their distributed self-organising network algorithm is based
on stochastic approximation. A key finding is that network
throughput is maximised when, for each SC, UEs attached to
the SC centre (i.e. UEs not within the SC expanded region)
are scheduled during both ABSs and non-ABSs. Using this
result, Deb et al. (2014) employed a non-linear programming
formulation which achieved better utility than the standard
approach using fixed ABS ratios and CSBs [3]. In both cases
convergence is guaranteed by the mathematical structure of the
model. As the problem is NP-hard it presents an opportunity
for Grammatical Evolution (GE), a heuristic technique in
evolutionary computation [8], [10].

GE takes metaphorical inspiration from the principles of
evolutionary and molecular biology to create machine ex-
ecutable solutions for a diverse spectrum of problems [6],
[7]. GE has been successfully applied to financial modelling,
structural engineering and indeed HetNet optimisation [4],
[11]–[14]. This heuristic approach is appropriate for problems
that do not easily admit analytic treatment, i.e. those where
complete domain knowledge is lacking, or for dynamic envi-
ronments [15]. A variant of Genetic Programming (GP) [16]
but using formal grammars [17], GE is flexible and allows
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Figure 1. Flow of the GE algorithm. Adapted from [13].

the practitioner to constrain and bias the search by simply
modifying the grammar. A strength of GE is that domain
knowledge can be incorporated into the grammar to guide the
search. Furthermore, simplicity of the crossover and mutation
search operators, a key feature of GP, is preserved in GE but the
operators can be applied at both the genotypic and phenotypic
levels.

The process flow of GE (as illustrated in Figure 1) can be
described thusly [6]:

1) A set of chromosomes (integer strings, also known as
Genotypes) are generated to initialise the population.

2) Genotypes are then mapped to phenotypes which are
executable blocks of code. This mapping is accom-
plished by reading an individual’s chromosome left
to right. Each codon (integer) on the chromosome
selects a production choice based on the codon value
modulo the number of production choices associated
with the current non-terminal.

3) Individual solutions are evaluated or executed and a
fitness is assigned based on some assessment of their
performance.

4) Populations of solutions are varied using selec-
tion (tournament, roulette wheel, etc.), variation
(crossover and mutation), and replacement (steady-
state, generational, etc.).

5) Step 4 is repeated until a terminating condition is
satisfied.

Hemberg et al. (2011, 2013) examined a variety of different
grammars on the related HetNet coverage optimisation prob-
lem [4], [13]. In this instance, the three conflicting objectives
of mobility (number of UE hand-overs) minimisation, load
balancing, and cell power minimisation were jointly optimised
for various indoor femtocell deployment scenarios using the
multi-objective optimisation algorithm NSGA-II [18]. The
authors employed a symbolic regression approach in [13]
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to evolve femtocell power control equations. The grammar
combined smooth and non-linear functions so that a wide range
of non-trivial behaviours were accessible to evolved solutions.
In [4] the authors compare a symbolic regression grammar, a
grammar consisting exclusively of conditional statements and a
hybrid combining both conditionals and functions. The purely
conditional grammar allowed discrete power changes and was
found to converge faster than the less constrained symbolic
regression grammar. The combined grammar was slowest to
converge and evolved solutions exhibited significantly worse
fitness over all scenarios. It was noted that less domain
knowledge is required for symbolic regression grammars but
engineers favour the easily interpretable conditional solutions
[19]. Finally, the utilities of control programs evolved using GE
were found to match and sometimes exceed those achieved by
partial enumeration of the search spaces.

There are two main differences between the coverage
optimisation and the eICIC optimisation problems. Firstly, the
objective function is univariate in eICIC because the goal is
simply to maximise network capacity (load balancing is a
prerequisite for this), while coverage optimisation observes
a multivariate objective. Secondly, we currently have three
degrees of freedom in eICIC: SC powers, SC CSBs and
MC ABS patterns, as opposed to the single variable of SC
powers. With this in mind, we now describe our simulation
environment for a GE implementation of eICIC load balancing.

III. APPROACH SUMMARY

This section describes the fitness model used to evaluate
load balancing GE individuals and the simulation set-up. Note
that a GE individual describes an array of power and CSB
settings for SCs, see Section IV.

A. Fitness Model

We define a typical MC sector for m ∈ M as the region
in which UEs would attach to m if no SCs were present.
Individuals that balance UE load between the SC and MC
tiers in all such sectors are assigned a good fitness.

More formally, the sets Pm and Ps are populated ∀m ∈M
and ∀s ∈ S, where Pm describes all UEs for which MC m
proves their best serving MC according to equation (1) and Ps
describes all UEs for which SC s proves their best serving SC.
In other words, Pm describes all UEs which would attach to
MC m if no SCs were present and Ps describes all UEs which
would attach to SC s if no MCs were present. Attachment is
set via equation (1), giving Am ⊆ Pm and As ⊆ Ps, the sets
of attached UEs. Observe that Pm and Ps store UEs in the
‘potential’ coverage regions of MCs (hence MC sectors) and
SCs but Am and As are subsets storing those UEs that actually
attach. The former sets depend on the realisation of cell and
UE locations, cell powers and G, while the latter additionally
depend on SC CSBs.

Figure 2 illustrates the regions in which UEs would popu-
late these sets for a typical MC m. In the upper left quadrant
the potential coverage area for m is indicated by the shaded
region. Herein the pilot power from m is greater than the pilot
powers from all other MCs in the network. In the lower left
quadrant the shaded region indicates where the pilot power
from m exceeds that of all other MCs and all other SCs,
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Figure 2. The sets Pm, Am (left) and Ps, As (right) are visualised for a
MC m and two SCs s1 and s2.

herein UEs would populate Am. Similarly, the shaded regions
in the upper right and lower right quadrants depict where UEs
would populate Ps1 , Ps2 and As1 , As2 respectively. Our goal
is to evolve power and CSB constants for SCs so that UEs are
evenly shared between the MC and SCs in each MC sector.

A sector is well balanced if |Am| ≈
∑
s |Pm∩As| ≈

|Pm|
2 ,

for SCs s that overlap with that sector. We sum the difference
of the square of the imbalances ∀m ∈ M to compute the
overall fitness of an individual. Thus, a phenotype’s fitness is
given by:

fitness←
∑
m∈M

|Am|2 −
 ∑

s:Pm∩As 6=∅
s∈S

|Pm ∩ As|


2 (3)

This fitness metric ensures that network settings resulting in
high degrees of MC/SC load imbalance are penalised; the
greater the imbalance of a particular MC sector, the greater
the penalty. Consequently, a low fitness value is desirable as
it indicates a well balanced network. The best possible fitness
is zero which occurs when load is perfectly balanced in all MC
sectors. Equation (3) penalises the overall fitness if any one
sector exhibits high imbalance so that resources are shared in
a proportionally fair manner. Furthermore, equation (3) tends
to achieve global inter-tier balance so that the same number
of UEs attach between the SC and MC tiers. In Figure 2 if
|Am| = |As1 |+ |As2 | then equation (3) would return a fitness
of zero because load is perfectly balanced (assuming m is the
only MC in this toy network).

Ultimately the goal of eICIC is to provide acceptable
downlink rates for all customers served by the HetNet. By
load balancing across sectors we approximate this objective
because downlink rates improve as congestion eases. Finally,
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the fitness model described in this section assumes the full-
buffer model whereby UEs request data at a constant rate, in
reality traffic is variable.

B. Simulation

A network deployment consisting of 21 MCs and 79 SCs
is simulated in a 3.61 km2 sector of Dublin City Centre. MCs
are distributed in a regular hexagonal pattern and SCs are
distributed randomly to reflect their user-deployed nature, see
Figure 3. A Google Maps [20] screen shot of the physical
terrain is processed to model obstacles such as buildings,
parks and open water, see Figure 4. Signal gain path losses
are computed accounting for the location of cells, cell gain,
shadow fading, and environmental obstacles.

Figure 3. MC sites (concentric circles) are distributed in a hexagonal pattern.
SCs are distributed randomly. Cell gains [dB] are visualised as a heat map.

Figure 4. False colour map of Dublin City Centre showing the coding of
buildings (yellow), park lands, water and open spaces (shades of blue).

Cell gain data is stored in a layered [900 x 900 x 100]
matrix G where G[i, j, k] stores the signal gain in decibels

from cell k to the 4 m2 sector [i, j]. Since the grid resolution
of the environment map is 2 m × 2 m, and since gain levels
are stored for all of the cells for all sectors, it follows that
the gain matrix is highly memory intensive, at over 650 MB.
This makes optimisation of the network environment quite a
computationally intensive problem. Finally, UEs are placed
randomly on the map at an average density of 60 UEs per MC
sector. MC power is invariant and only SCs can take on non-
zero CSBs. SC powers and CSBs are restricted to the intervals
23–35 and 0–5 [dBm] respectively. The simulation parameters
are summarised in Table I.

Table I. SIMULATION PARAMETERS

Parameters Value
Scenario

Type capacity problem
Indoor/outdoor map Dublin (central eNodeB at WGS84 N 53.340494 and W 6.264374)
MC BS placement 7 eNodeB with 3 sectors each (hexagonal grid)
SC BS placement 79 eNodeBs (uniformly randomly distributed)
Inter-MC BS distance 800 m
Scenario resolution 2 m
Transmit power Ptx,n = 21.6W (MC), 1W (SC)
LPC power weight set {0, 1} (binary on/off power control)
Noise density −174 dBm/Hz
SC REB 5− 35 dB

Channel
Carrier frequency 2 GHz
Bandwidth 20 MHz (1 LTE carrier with 10 LPCs of size L = 8
NLOS path-loss GPn = −21.5− 39 log10(d) (MC) [21]

GPn = −30.5− 36.7 log10(d) (SC) [21]
LOS path-loss GPl = −34.02− 22 log10(d) [21]
Shadow fading (SF) 6 dB std dev. [22]
SF correlation R = e−1/20d, 50% inter-site
Environment loss GE,n = −20 dB if indoor, 0 dB if outdoor

Antenna
Height 25m (MC), 10m (SC)
Maximum gain Gmax = 15.5 dBi (MC), 7.06 dBi (SC)
H. halfpow. beamwidth α = 65◦

V. halfpow. beamwidth β = 11.5◦ (MC)
Front-to-back ratio κ = 30 dB (MC)
Downtilt δ1 = 8.47◦ (MC)
Elements & spacing 4 element dipole, delem.=0.6λ (SC)
Phase difference δphase = 95◦ (SC)
Element amplitude aelem. = [0.9691, 1.0768, 1.0768, 0.8614] (SC)

IV. EXPERIMENTS

Constants to represent SC powers and CSBs are evolved
using the following simple grammar:

〈E〉 ::= 〈power〉 , 〈bias〉
〈power〉 ::= 〈P〉 , 〈P〉 , ..., 〈P〉
〈bias〉 ::= 〈B〉 , 〈B〉 , ..., 〈B〉

〈P〉 ::= 23 +
12× 〈n〉 〈n〉 . 〈n〉

100

〈B〉 ::= 0 +
5× 〈n〉 〈n〉 . 〈n〉

100
〈n〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This grammar allows GE to express SC powers and CSBs
(in Decibels, see Table I) as a percentage within the range
of their minimum and maximum permissible values, allowing
for adjustments in increments of 0.01%. Three codons each are
used for both the power and CSB values for each SC, meaning
the required chromosome length is six times the number of SCs
(474 in total for this simulation). Since the only production rule
which produces non-terminals has exactly 10 non-terminals,
the maximum codon value is set at 10 so as to avoid any bias
towards a particular outcome. It should be noted that while GE
operates in a similar fashion to a standard genetic algorithm,
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Table II. EVOLUTIONARY PARAMETER SETTINGS

Number of Runs: 30
Initialisation: Random
Pop. Size: 500
Generations: 100
Total Evaluations: 50000
Crossover Type: Single Point
Crossover Probability pcross: 70%
Mutation Type: Per-Codon
Mutation Probability pmut: 1%
Selection: Tournament
Tournament Size: 2
Replacement: Generational with Elites
Elite Size: 3

the above grammar allows for finer control over the ranges
from which to choose than a traditional GA implementation.

Evolutionary parameter settings are listed in Table II.
Single-point crossover is used so that the same point is chosen
on the chromosomes of both individuals. This ensures that
the chromosome length is preserved. A randomly selected
pair of individuals has a probability pcross of crossing over
genetic material, otherwise the pair are carried over unchanged.
Mutation then occurs on each individual. Mutation operates on
a per-codon basis, where each codon has a probability pmut

of being randomly mutated.

The genotype to phenotype mapping process yields two
arrays which describe power and bias settings for all SCs in
the network. These settings are then passed to the simulation
described in Section III which computes fitness via equation
(3). The best individual at the end of a run is identified as the
optimised network configuration.

A set of parameter sweep experiments were conducted
to ascertain the best evolutionary population settings for this
problem. Six different settings were examined, with succes-
sively increasing population sizes, as delineated in Table III.
The total number of evaluations was kept constant at 50000
across all runs and 10 individual runs were executed for each
setting. As suggested by Figure 5, no statistically significant
differences in the end of run (best) fitnesses were observed
across all six settings.

Table III. PARAMETER SWEEP EXPERIMENTS

Population Generation
1 500 100
2 400 125
3 250 200
4 200 250
5 400 125
6 100 500

Computing the fitness of a single individual takes approxi-
mately 0.04 seconds and a single run of 100 generations with a
population size of 500 individuals completes in approximately
37 minutes using four cores on a 3.2 GHz Intel Core i5
processor. Note that while a significant speed-up is realised by
evaluating individuals in parallel across multiple cores when
performing a single run, it is more computationally efficient
to execute one run per core when performing multiple runs.

V. RESULTS AND DISCUSSION

Grammatical evolution is an effective load balancing
heuristic for HetNets. Figure 6 illustrates how the average
best fitness across 30 runs, with fixed population size of
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Figure 5. The heuristic is robust with respect to a range of parameter settings.

500, improves monotonically over 100 generations. Recall that
low fitness indicates a well balanced network. Furthermore,
low variance in fitness across multiple runs (± 216.13 at
generation 100) indicates that the method is stable. Figures
5 and 6 illustrate how the heuristic aggressively explores the
search space before exploiting promising regions as the fitness
converges to an asymptote.
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Figure 6. Average best fitness across 30 runs over 100 generations. The
shaded region encloses one standard deviation above and below the mean.

Figure 7 compares the empirical distribution function
(EDF) of load imbalances for the ten fittest evolved pheno-
types against ten randomly generated phenotypes. The leftmost
(blue) trace corresponds to the evolved phenotypes, with all
MC sectors (10 different configurations, each with 21 MC
sectors) achieving an imbalance of 38 or less. Approximately
75 % of all evolved MC sectors have an imbalance of 13 or
less, with over 15 % realising perfect balance (imbalance of
0). In contrast, the randomly generated phenotypes (which are
representative of non-evolved solutions) give rise to 0 perfectly
balanced MC sectors, that is, no sectors have an imbalance of
0, and indeed 10 % of sectors exhibit an imbalance of 40
or more. We can surmise that GE significantly outperforms
the random baseline because the EDF trace for the former is
shifted left relative to the latter. That is, evolved settings for SC
power and bias result in lower load imbalances, where most are
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Figure 7. Empirical Distribution Function of MC sector load imbalances
for ten evolved phenotypes (leftmost curve) and ten randomly generated
phenotypes (rightmost curve). GE clearly outperforms the random baseline.

only a few UEs. As expected the realisation of more extreme
imbalances in the randomly configured network indicates very
poor performance for some cells.

The sets Pm, Am and As summarised in Table IV are
realised by the best phenotype (with a fitness of 6549, shown
in Table V) over all evolutionary runs. Consider for example
MC 2 of Table IV. The optimised settings give |P2| = 70
UEs for which this is their best serving MC, 35 of whom are
attached to the MC itself (|Am| = 35) with the remaining 35
attaching to SCs in the sector (|As| = 35). The load on MC 2
can therefore be considered to be perfectly balanced between
the MC and SC tiers in this MC sector. At the other extreme,
the imbalance for MC 12 is 38, as the SC tier only offloads 1
UE from the 40 total UEs in this MC’s sector.

Table IV. LOAD BALANCING RESULTS

MC ID |Pm| |Am| |As| |imbalance| No. Local SCs
1 71 35 36 1 8
2 70 35 35 0 2
3 91 46 45 1 5
4 32 20 12 8 1
5 70 35 35 0 4
6 80 40 40 0 9
7 83 42 41 1 6
8 4 4 0 4 0
9 70 35 35 0 6
10 71 42 29 13 2
11 67 34 33 1 7
12 40 39 1 38 0
13 75 48 27 21 3
14 70 35 35 0 4
15 37 20 17 3 1
16 34 17 17 0 4
17 68 34 34 0 7
18 40 34 6 28 0
19 45 29 16 13 1
20 69 34 35 1 7
21 73 36 37 1 2

For the majority of evolved MCs, it can be seen that the
load is well balanced. However, for MCs 4, 10, 12, 13, 18 and
19 it is clear that the load is very unevenly distributed between
tiers. Figure 8 depicts a pathological scenario to illustrate why
load balancing (by way of adjusting SC powers and CSBs) is
a non-trivial problem.

Consider the toy network described in Figure 8. In MC 2

sector, the UE imbalance is 6 (with 7 attached to the MC
tier and only 1 attached to the SC tier). In this case it is
clear that increasing either the power or CSB (or both) of
SC 2 will enable UE offloading from the MC tier, thereby
reducing the overall imbalance. However, MC 3 and MC 4
impose conflicting demands on SC 3 which overlaps with both
MC sectors. In order to achieve balance for the MC 4 sector,
UEs must be offloaded from SC 3. However, MC 3 requires
more UEs to be offloaded onto SC 3 in order to mitigate its
imbalance. Hence, it is not possible to satisfy both demands
and to perfectly balance the load on this network.

Figure 8. Lobe (red) and circular (green) shaped regions indicate MC and
SC coverage areas respectively. UEs are indicated by black dots.

Load balancing algorithms must strike appropriate compro-
mises for SCs that overlap multiple MC sectors. It is therefore
unlikely that a network can ever achieve perfect global balance
between the MC and SC tiers. In practice conflicting demands
will be imposed on those SCs that overlap multiple MC sectors.
Note also that in our simulation SCs are randomly distributed
on the map. The large imbalances observed in MC sectors 12
and 18 are simply due to a paucity of SCs within their coverage
areas. In practice network operators would deploy SCs near
traffic hotspots to maximise their offloading potential.

VI. CONCLUSIONS AND FUTURE WORK

GE is capable of evolving well-balanced networks by vary-
ing SC power and CSB settings directly through a grammar.
However, it is not possible to fully satisfy the need for a
balanced network due to conflicting demands on individual
SCs which service multiple MC sectors. Compromises must
be made in order to create an acceptably balanced network.
Furthermore, in reality UEs generate variable traffic bursts so
that one ‘heavy’ user may create a larger strain at a cell than
multiple ‘light’ users. Our assumption of constant static traffic
is a first approximation to the ideal model with dynamic traffic.
The results provide a proof of concept for the suitability of GE
as a heuristic for HetNet optimisation. However, GE is too slow
for online deployment when used in a GA-like way to evolve
parameters. In future work GE will be used to evolve control
algorithms that can optimise network parameters on a much
shorter timescale.

The next challenge is to implement full eICIC optimisation
in an evolutionary framework with the addition of ABS pat-
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terns for MCs. Finally, the evolved algorithms will operate in
a social setting because the decisions at an arbitrary cell will
have knock-on consequences for all other cells in the network.
This motivates future work where the role of social search in
evolutionary computation will be investigated. By addressing
the socio component of the evo-devo-socio paradigm we aim
to evolve eICIC algorithms that work well as a collective.
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APPENDIX

Table V. BEST GE PHENOTYPE

SC ID CSB Power
1 4.15 26.73
2 2.37 23.29
3 2.15 30.30
4 4.27 34.63
5 1.52 27.44
6 1.14 23.76
7 3.91 32.64
8 0.92 23.24
9 4.60 33.54
10 1.04 26.64
11 4.08 23.86
12 4.88 23.04
13 4.35 33.56
14 2.71 28.65
15 2.23 23.28
16 4.48 23.92
17 4.15 33.18
18 0.48 28.32
19 1.27 23.25
20 0.76 25.57
21 4.41 33.26
22 1.14 30.69
23 4.28 33.34
24 1.54 25.40
25 0.99 25.64
26 1.49 30.52
27 0.88 26.06
28 4.90 34.95
29 1.69 27.82
30 4.93 33.74
31 4.96 27.62
32 2.17 23.34
33 4.30 34.10
34 2.57 32.65
35 1.92 33.64
36 4.94 34.60
37 0.09 24.01
38 4.97 34.05
39 4.26 30.37
40 0.06 25.45

Cell ID CSB Power
41 4.36 30.26
42 4.83 33.46
43 2.08 25.83
44 2.44 27.00
45 0.03 34.66
46 1.09 23.07
47 0.73 29.83
48 4.65 32.28
49 0.98 28.18
50 0.87 25.68
51 2.23 30.93
52 2.32 32.28
53 4.07 31.34
54 4.32 33.78
55 3.65 32.30
56 4.01 34.28
57 1.81 24.56
58 0.87 24.49
59 1.39 23.92
60 1.32 24.44
61 2.45 26.95
62 3.63 32.92
63 1.92 25.72
64 0.92 24.82
65 2.35 31.72
66 1.61 26.85
67 4.73 34.93
68 0.36 23.32
69 0.59 24.45
70 0.13 24.31
71 4.17 33.15
72 0.56 24.60
73 3.63 26.96
74 4.18 23.95
75 1.93 31.10
76 4.75 33.52
77 0.16 25.41
78 3.99 23.35
79 0.63 26.96
— — —
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