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Abstract. Learning has been shown to be beneficial to in creating more
adaptive algorithms, and also in evolving neural networks. Moreover,
learning can be classified into two types, namely social learning, or learn-
ing from others (e.g., imitation), and individual trial-and-error learning.
A “social learning strategy” – a rule governing whether and when to use
social or individual learning, is often said to be more beneficial than re-
lying on social or individual learning alone. In this paper we compare the
effect on evolution of social learning in comparison with that of individ-
ual learning. A neural architecture called a “self-taught neural network”
is proposed in order to allow an agent to learn on its own, without any
supervision. We simulate a multi-agent system in which agents, each
controlled by a neural network, have to develop adaptive behaviour and
compete with each other for survival. Experimental results show that
evolved self-teaching presents the most effective behaviour in our sim-
ulated world. We conclude this paper with some indications for future
work.

Keywords: Meta-learning · Multi-agent · Baldwin Effect · Neural Net-
works · Hybrid Algorithms

1 Introduction

The idea that lifetime learning can influence evolution in a Darwinian framework
was introduced over one hundred years ago in the famous paper ‘A new factor
in evolution’ [1]. The described phenomeon was later termed the Baldwin Ef-
fect [2]. Following the classic paper of ([3]) which demonstrated an instance of
the Baldwin effect in a computer simulation a significant related literature has
emerged including, [4], [5], and recently [6]. The so-called effect in computation
can simply be understood as a hybrid algorithm combining an evolutionary algo-
rithm (EA) with some form of local-search at the phenotypic level. This line of
research motivated the idea of evolving neural networks, or neuroevolution (NE),
in which one can observe learning and evolution interacting with each other in
creating adaptive neural networks with [7] and [8] being two exemplar studies.
Most recently, authors in [9], [10] proposed a self-teaching neural architecture
which can learn without requiring any supervisory or external reinforcement
signals.
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Learning can generally be classified into two types, namely social learning
(SL) and individual (asocial) learning (IL). IL can be broadly understood as
learning when the learner directly interacts with its environment, e.g., via trial-
and-error, without the presence of others or their information. SL, on the other
hand, can be interpreted as learning from others, e.g., imitation, through obser-
vation or interaction. Several studies have shown that social learning in com-
bination with asocial learning by some strategy can outperform individual or
social learning alone [11], [12], [13]. This line of thought has also been employed
in hybridising EA in which a phenotypic local search combining both social and
individual learning presents an adaptive effect to keep an evolving population
on track in dynamic environments [14], [13]. However, this still leaves an open
challenge as these findings can be problem-specific, and the results may not
generalise beyond the specific modelling of each learning mechanism.

This paper addresses the question of how effectively social and individual
learning influence evolution in evolving self-taught neural networks. We simu-
late a situated multi-agent system in which each agent, controlled by a neural
network, seeks to find and absorb resources from its environment, thereby com-
peting for survival with other agents. In this simulation, agents have limited
‘visibility’ of their environment. As the environment is dynamically generated,
the solution cannot be defined in advance. These factors make it harder for an
agent to develop an intelligent behavioural policy.

In the remainder of the paper we present a brief overview of research on
learning and evolution in neural networks, social learning and related concepts.
In turn we describe simulations used to investigate our research question and
then analyse and discuss the results obtained. Through the rest of paper, we use
the terms observer / learner / student, and teacher / demonstrator / teacher,
interchangeably, in order to keep our terminology in line with that used in the
prior literature that we discuss.

2 Related Work

Evolution and learning are complementary forms of adaptation by which an
organism can modify its behaviour in response to environmental challenges. In-
deed, evolution and lifetime learning are closely intertwined, as a capability for
lifetime learning can only arise as a result of an evolutionary process. Perhaps
less evidently, the linkage also goes the other way and learning can influence
the evolutionary process, enhancing the adaptivity of a species over time. This
phenomenon is termed the Baldwin Effect and was demonstrated in a classic
simulation paper [3]. The so-called Baldwin Effect in evolutionary computation
(EC) means a combination of an evolutionary search over genotypic space and
a local search process over phenotypic space, provided that what is found from
phenotypic search is not directly encoded back into the genotype. This paper
stimulated a number of important follow-on studies in which learning has been
shown to help and guide evolution in different domains, including cases of search
on NK-landscapes ([15]), and search in neuroevolution-controlling robots [7].



Social Learning vs Self-teaching in a Multi-agent Neural Network System 3

Learning and evolution in neural network learning has been studied in several
papers following the original work of Hinton and Nowlan [3]. Notable studies
include [16] in which the authors used a genetic algorithm to evolve the initial
weights of a digit classifier neural network which then can be further adapted
by backpropagation (life time learning). This study found that learning can take
advantage of starting weights produced by evolution to further the classification
performance.

Nolfi and his colleagues made a simulation of animats, or robots, controlled
by neural networks situated in a grid-world, with discrete state and action spaces
[7]. Each agent lives in its own copy of the world, hence there is no mutual inter-
action. The evolutionary task is to evolve action strategies to collect food effec-
tively, while each agent learns to predict the sensory inputs to neural networks
for each time step. Learning was implemented using backpropagation, based on
the error between the actual and the predicted sensory inputs, to update the
weights of a neural network. It was shown that learning to predict the sensory
inputs can enhance the evolutionary search, hence increasing the performance
of the robot.

Researchers at Google DeepMind also employed the Baldwin Effect, using a
genetic algorithm to evolve the initial weights for deep neural networks [17]. By
combining the advantage of searching over a vast distribution of weights using
evolutionary search, and the exploitative power of gradient descent learning, they
reported a meta-learner that can solve a multiple tasks including regression and
physical robot environments. This result is an indication to create meta-learning,
another step towards Artificial General Intelligence (AGI).

More recently, authors in [9] proposed a technique called evolving self-taught
neural networks (ESNN) which are used to control agents living within a food-
patch for survival. Unlike those mentioned above, an ESNN is capable of teaching
itself without external supervision or reinforcement. Evolution plus self-teaching
was shown to provide a way to generate better self-reinforced signals over time,
and to generate more adaptive behaviour than evolution or self-teaching in iso-
lation. An ENSS can be understood as a form of meta-learning towards AGI.

Generally learning in neural networks can be thought of as part of neural
plasticity. There have been some other ideas, like evolving local learning rules
to update the weights [18], evolution of neuromodulation which facilitates the
information transfer between neurons in hopes of creating meta-learning. Please
refer to [8] for more recent studies on evolving plastic neural networks. In short,
neural networks in most of these work still require some sort of supervisory or
external reinforcement signals to guide the learning process.

Delving a little deeper into the term lifetime learning, it can be subdivided
into asocial (or individual) learning (IL), and social learning (SL). Each is a
plausible way for an individual agent to acquire information from the environ-
ment at the phenotypic level. By SL, we mean learning that is influenced by the
observation of, or the interaction with, another animal or its products [19].

Several models have been proposed to investigate how to use SL effectively,
both in biology [20] and in EC [12]. A key finding of these studies is that social
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learning should be combined with individual learning in a strategic way, and
such a strategy can potentially outperform both social and individual learning
alone. Social learning strategies consist of rules specifying the way an individual
relies on social learning by answering three questions: when SL should be used,
from whom an agent should learn, and what an agent should learn or copy1

from others. As an example of a social learning strategy, critical social learning
proposed by [21] and also adopted in recent EC studies ([14], [13]), suggests a
strategy as follows: first learn socially, then learn individually. Prima facie, this
bears loose analogy with the way highly cognitive animals like humans learn in
nature, since we copy significantly from others then innovate ourselves to make
progress. Results obtained from these studies present an effect of a learning
strategy on evolution better than that of social or individual learning alone,
promoting evolutionary optimisation in dynamic environments [14].

Interestingly, an important strand of research in Artificial Life adopts a re-
lated approach in both simulation studies and robotics in which neural networks
are mostly used to control the behaviour of a robot (for a brief recent survey
please refer to [22]). For example, [23] showed that social learning when combined
with individual learning can provide a better way for neural network-controlled
robot to learn and adapt to its environment compared to robots which possessed
either social or individual learning alone.

In this paper, we extend previous research on evolving self-taught neural net-
works [9] by investigating the effect of social learning, or social learning strategy,
might have on evolving autonomous intelligence in a multi-agent system. Unlike
previous work, we do not allow agents live within the food-patch, but force
them do two tasks: first to find resources, and second to compete for food. The
self-taught agent can be considered to be autonomous. Social learning is imple-
mented in the simulations as the student (agent) seeks to copy the process that
has produced “good” behaviour in its teacher. In the next section, we describe
our simulation model in more detail.

3 Simulation setup

3.1 The Simulated World of Food and Agents

Suppose that 20 agents are situated in a continuous 640x640 2D-world, called
MiniWorld. Agents seek to find resources to feed themselves in order to survive.
In MiniWorld, 50 food particles are randomly dispersed and each particle is
represented by a square image with size 10x10. Each agent in MiniWorld also
has a similar size. We use two world maps (map A, and map B) in our simulations
as described in Figure 2. In the simualtions we implement a toroidal environment
– so that when an agent moves beyond an “edge”, it appears on the opposite
“side” of the environment.

Initially agents have to forage to find the food sources. A visualisation of an
agent and its relationship with food particles in MiniWorld is shown in Figure

1 The term copy is often used to stand for any form of social learning, not just copying.
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2. Through the visualisation, based on our assumption on initial heading, it can
be seen that map B is likely to be more difficult than map A from an agent
perspective.

All agents in the population live in the same MiniWorld and their behaviours
interact. As an agent finds and consumes food particles, it changes the environ-
ment faced by the other agents. This creates mutual-competition-within-patch
between the agents.

Fig. 1. MiniWorld – The environment of agents and food, 640x640. a) and b) Denote w and h
as the width and the height of MiniWorld. In both map A and B, initially all agents are located
in a radius of 40 (4 times the size of an agent) around a central point: (w/4, h/4). Food particles
in map A have horizontal and vertical dimensions randomly chosen in the range (5w/8, 7w/8) and
(h/8, 3h/8), respectively. The food region in map A is the square that has the same central point
as the top right quarter, and each side of that square has the length of w/4. In map B, the food
has its horizontal and vertical dimensions randomly chosen in the range (5w/8, 7w/8) and (5h/8,
7h/8), accordingly. The food region in map B is the square that has the same center as the bottom
right quarter, and each side of that square has the length of w/4. When an agent’s body happens to
collide with a food particle, the food particle is “eaten”, the energy level of the agent increases by
1, and another food piece is randomly spawned in the same region but at a different location. The
collision detection criterion is specified by the distance between the two bodies (of the agent and of
the food particle). The environment changes as an agent eats a particle.

The default velocity (or speed) of each agent is 1. Every agent has three basic
movements: Turn left by 9 degrees and move; move forward by double speed; or
turn right by 9 degrees and move. For simplicity, these rules are pre-defined by
the system designer of MiniWorld. We can imagine a perfect scenario such as
if an agent sees a food in front of its current location, it doubles its speed and
moves forward to the food particle. If an agent sees the food on the left (right),
it will turn to the left (right) and move forward to the food particle. The motor
action of an agent is guided by its neural network as described below.
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Fig. 2. Each agent has a heading (in principle) of movement in the environment. Rather than
initialising all agents with random headings, all the agents are initialised with a horizontal heading
(i.e., with a heading of 0 degrees). This somewhat explains the purpose of the design of map A and
map B. In map A, all agents are initially created with a tendency to move forwards the food source.
On the contrary, agents in map B are born with facing away from the food source resulting in a more
difficult environment. Assume that every agent has an a priori ability to sense the angle between its
current heading and the food if this appears in its visual range. The visual range of each agent is a
circle with radius 40. Each agent takes as inputs, three pieces of sensory information. The three bits
(left, front, right) are set to 0 or 1 depending on whether the substance appears (in the left, front,
and right) or not. Let θ (in degrees) be the angle between the agent and the substance in its visual
sense. An agent determines whether a food appears in the left, front, or right side in its visual range
using the following rule: Right if 15 < θ < 45; Front if θ < 15 or θ > 345; and Left if 315 < θ < 345.

3.2 The neural network controller

Each agent is controlled by a fully-connected neural network to determine its
movements in the environment. What an agent decides to do changes the next
sensory information it receives, and hence its future behaviour. This forms a
sensory-motor dynamic, and the neural network acts as a situated cognitive
module, guiding an agent to behave adaptively.

The architectural design of the neural network controller is visualised in
Figure 3. All neurons except the inputs use a sigmoidal activation function.
All connections (or synaptic strengths) are initialised as Gaussian(0, 1). These
weights are first initialised as innate, or merely specified by the genotype of an
agent, but also have the potential to change during the lifetime of that agent.
Note that the neural architecture as shown in Figure 3 has no ability to learn,
or to teach itself. In the following section, we extend this architecture to allow
for self-taught learning agents.

3.3 The Self-taught neural architecture

To allow for self-teaching, two modules are implemented in the neural controller
for each agent. One is called the Action Module, and the other is called the
Reinforcement Module. The action module has the same network as pre-
viously shown in Figure 3. This module takes as inputs the relevant sensory
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Fig. 3. Basic network without learning. Each neural network includes 3 layers with 3 input nodes,
10 hidden nodes, and 3 output nodes. The first layer takes as input what an agent senses from the
environment in its visual range. The output layer produces 3 values in which the max value is chosen
as a motor-guidance.

information and produces reinforcement outputs in order to guide the motor
action of the agent. The reinforcement module has the same set of inputs as
the action module, but possesses separate sets of hidden and output neurons.2

The goal of reinforcement network is to provide reinforcement signals to guide
the behaviour of each agent. The topology of a neural network in this case is
visualised in Figure 4.

In the following sections we describe the simulations we use to investigate
the evolutionary consequence of lifetime learning, including self-taught learning
and social learning.

3.4 Simulation 1: Evolution alone (EVO)

In this simulation, we evolve a population of agents which do not have a lifetime
learning capability. The neural network controller for each agent is as described
in Figure 3a, without any learning capability. The genotype of each agent is the
weight matrix of its neural network, and the evolutionary process takes place as
we evolve a population of weights.

Selection chooses individuals based on the number of food particles con-
sumed. The higher the number of particles eaten, the higher the agent’s fitness
value. For crossover, two individuals are selected to produce one offspring. We
implement crossover as follows. The more successful a parent, the greater the
likelihood that its weights are copied to the child. Each weight element in the

2 The reinforcement and the action modules need not have the same topology. In our
simulation, the reinforcement module possesses the same neuronal structure as the
action module, but has 10 hidden neurons separate from the hidden neurons of the
action module.
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Fig. 4. Self-taught neural architecture. The difference between the output of the reinforcement
module and the action module is used to update the weights in action modules through backprop-
agation. Through this self-learning process, the action module approximates its output activation
towards the output of the reinforcement module. The learning rate is 0.01.

matrix of the child network is copied from the fitter parent if the random prob-
ability is greater than 0.5, and vice versa.

Once a child has been created, that child will be mutated based on a pre-
defined mutation rate. In our work, the mutation rate is set at 0.05. A random
number is generated, and if that number is less than the mutation rate, a muta-
tion occurs. If a mutation occurs for a weight in the child, a random number is
added to that weight. After that, the newly born individual is placed in the next
generation. This process is repeated until the new population is filled with 100
new individual agents. No elitism is employed in our evolutionary algorithm.

The population goes through a total of 100 generations, with 5000 time steps
per generation. At each time step, an agent undertakes the following activities:
Perceiving MiniWorld through its sensors, computing its motor outputs from its
sensory outputs, moving in the environment which then updates its new heading
and location. In the ‘evolution alone’ simulation, the agent cannot perform any
kind of learning during its lifetime. After that, the population undergoes selection
and reproduction processes.
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3.5 Simulation 2: Evolution of Self-taught agents (EVO+IL)

In this simulation, we allow lifetime learning, in addition to the evolutionary
algorithm, to update the weights of neural network controllers when agents in-
teract with the environment. We evolve a population of Self-taught agents –
agents that can teach themselves. The self-taught agent has a self-taught neural
network architecture as described previously and as shown in Figure 4. During
the lifetime of an agent, the reinforcement modules produce outputs in order
to guide the weight-updating process of the action module. Only the weights of
action modules can be changed by learning, the weights of reinforcement module
are genetically specified in the same evolutionary process as specified above in
the evolution alone simulation. We use the same parameter settings for evolution
as in EVO simulation above.

At each time step, an agent does the following activities: Perceiving Mini-
World through its sensors, computing its motor outputs from its sensory outputs,
moving in the environment which then updates its new heading and location,
and updating the weights in action module by self-teaching. After one step,
the agent updates its fitness using the number of food particles consumed. After
that, the population undergoes selection and reproduction processes as in the
evolution alone simulation.

In these experiments, we implement learning and evolution in a Darwinian,
not a Lamarckian framework. This means that the lifetime learning of an agent
(the weights in its action module) is not passed down to its offspring.

3.6 Simulation 3: Evolution + Social Learning Alone (EVO+SL)

In simulation 3, we use social learning, instead of individual learning (self-taught
learning), in combination with evolution. In order to implement social learning,
we first propose the supervised learning-based imitation procedure by which
an individual student learns from its teacher. The process of social learning by
imitation between two agents is depicted in Figure 5. Please note that, imitation
learning here happens between two action networks. The reinforcement module
which is related to self-learning is untouched.

In this simulation, only social learning is implemented, there is no individual
learning. The type of social transmission adopted is called Oblique transmission,
which was also used in previous successful social learning applications in EC [14],
[13]. The Who strategy specifies the most successful agent in terms of fitness
from the previous generation as the teacher for all individuals in the current
population. It is assumed that at each step, each agent keeps its input-output
pair, in which the input includes three sensory values while the output comprises
of three movement values as shown in the neural controller architecture (Figure
3).

For each social learning agent, the social learning strategy (i.e., the answers
to the three questions of When, Who, and What) is defined as follows:
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Fig. 5. Social learning process in the form of imitation learning between a student and its teacher.
The teacher provide its input-output pairs during its lifetime, as a training set of experiences, to its
student. Thus, the student is exposed to the same inputs as the teacher. The output difference be-
tween them is used to guide the student to approximate the teacher’s output. The weight-updating in
student’s action network is carried out using a backpropagation learning algorithm, with a learning-
rate of 0.01.

i. When: a student learns socially at birth before experiencing its own environ-
ment. We can interpret this scenario so that a newborn agent is naive, and
learns from the most successful individual at birth.

ii. Who: learn from the most successful individual in the previous generation.

iii. What: learn the teacher’s sensory-motor experience.

After undertaking social learning, every individual agent returns to and ex-
periences its own environment using the same procedure as described in the pre-
vious simulations. Since we employ Oblique transmission, social learning does
not appear at the initial generation, but starts from the second generation.

3.7 Simulation 4: Evolution in combination with social and
individual learning (EVO+SL+IL)

In this simulation, we incorporate both social and asocial learning (self-teaching)
in combination with evolution. Each type of learning is as already described
above. In the initial generation, there is no social learning, only self-learning is
performed. From the second generation, every agent performs social learning at
birth, as described above, before experiencing its lifetime in its environment.
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4 Results and Analysis

We compare agent performance across the various experimental setups, in terms
of the best and the average amounts of food eaten, of the population in the four
simulation settings as above. All results are averaged over 30 independent runs.

A similar trend can be observed in Figure 6 and Figure 7 in that all experi-
ments produce higher performance in map A than in map B. This is as expected
for the reasons already set out: Map B is designed to be more difficult than map
A as the agents’ initial trajectory is away from the food sources.

4.1 EVO Alone vs EVO+Self-taught

We initially compare the performance between the baseline experiment of evolu-
tion alone with the performance of evolution of self-taught agents. In all maps,
EVO+Self-taught outperforms EVO alone in terms of both best and the average
fitness. This could be explained by the effect of individual learning on evolution,
or the Baldwin Effect. One more notable point here is that EVO alone cannot
absorb any energy at all in map B, while evolved self-taught agents can.

Simply speaking, an agent that cannot learn can only use its innate ability,
hardwired in its brain, to search the environment. However, as analysed above,
in map B the agent in EVO alone is born without any tendency to sense relevant
information (about food) in the environment, and also has no ability to change
its motor program hardwired in its brain. Its sensory-motor experience cannot
be changed since it cannot sense relevant information (i.e. information to find
the food source).

Conversely, with an ability to teach oneself by leveraging the difference be-
tween the action and the reinforcement modules, the weights of the action module
of some self-taught agent can alter to produce a wider range of movement. By
undertaking some initial random movement, the sensory-motor experience of an
agent can be expanded, and there may have been some agents that reached the
food sources. The agents that reach food sources have a higher chance of being
selected to leave offspring. Thus, its good genetic information, consisting of the
initial weights of both the action and the reinforcement modules, is more likely
to proliferate, hence its self-supervising or self-teaching ability. It is this ability
that has made future evolved self-supervised agents better at teaching them-
selves in order to develop more effective movement in MiniWorld. This process
repeats, as what has given advantage during lifetime of the self-taught agent is
preserved and promoted by the evolutionary process. This can be considered the
interaction between learning and evolution.

4.2 Social Learning vs Self-teaching

We can see that in all maps, EVO+Self-taught also outperforms both EVO+SL
and EVO+SL+IL in terms of both average and best fitness. The difference is
bigger in the harder map B than in map A.
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Fig. 6. Fitness Comparison in Map A.

One interesting behaviour that can be observed here that EVO+SL alone
failed to eat anything in map B. Social learning is a form of information-
parasitism, and cannot produce new information about the environment. Im-
portantly, because there is no individual learning permitted, what social learn-
ers can learn is just what the evolutionary process has provided to them. More
specifically, as of the second generation, social learners learn from the best agent
of the preceding generation and with no agent performing well, there is nothing
useful to learn.

Even when coupled with self-learning, social learning produces poorer re-
sults than self-learning alone in all maps. What is presented in Figure 7 shows
that EVO+SL+IL can produce good enough behaviour (agents can find food),
but not as good as EVO+Self-taught – without the presence of social learning.
This means the employment of social learning here is not promoting, but rather
reducing the power of self-learning.

There are several factors contributing to what we can call the discouraging-
effect of social learning. First, unlike previous studies as mentioned in Section 2,
here there is no pre-defined optimal solution in MiniWorld. Thus, social learning
here cannot simply copy a known optimal solution.
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Fig. 7. Fitness Comparison in Map B.

Secondly, through the supervisory-based social learning process, the student
has to develop its own policy based on the previous sensory-motor experience of
its teacher as off-line training-samples. The experience of the teacher can make
more sense if the student would be likely to face the same experience in its own
world like what it has learned from the teacher. However, the nature of the multi-
agent in MiniWorld is that the sensory-motor experience of an agent depends
on not only its own actions, but also on those of others which might change the
world the agent is experiencing. What the student is going to experience depends
on what other agents in the same world are doing which can be different from
what the teacher and the other agents were doing in the teacher’s world. This
creates a variety of dynamics dependent on space and time. This is what can
make the world the student agent is experiencing dynamically different from the
world the supervisor has experienced. Social learning, or cultural learning, from
any previous generation is more likely to produce outdated information, thus
discouraging effect as we have seen. Approximating an action network based on
outdated information, even from the best teacher, is not promising.

One more factor which can be added is the fact that an agent in MiniWorld
has little knowledge about its environment.
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5 Conclusion

We have investigated the effect of different forms of learning (social and individ-
ual learning) on evolving self-taught neural networks in a situated multi-agent
system in which knowledge of the environmental state is dynamic and cannot
be completely accessed by the agent. Experimental results have shown that the
combination of self-teaching and evolution is most effective in evolving intelligent
agents as the agent develops its own policy based on its evolved self-teaching ca-
pability. When self-teaching is powerful enough, social learning even when being
used selectively reduces the power of self-teaching.

This work continues to consolidate the power of hybrid algorithms by com-
bining the metaphor of evolution and learning. Learning has been again shown
to facilitate evolution in developing intelligent behaviour, even when the good
behaviour is unknown and dynamic over time and space. Previous studies have
shown the power of the combination of both social and individual learning in
evolutionary dynamic optimisation [13], [14]. While this finding does not concord
with that of some previous studies, we note that the experiments undertaken in
this work implement a more complex environment and hence, are likely to be
more generalisable to “harder” real world environments.

Indeed, what can be extracted here is that if a learner is good at self-teaching,
self-learning can sometimes result in a better outcome than learning from exter-
nal supervisory signals.

Another philosophical point here is that a constructive approach towards so-
cial learning via the synthesis of artificial agents can yield important insights
into mechanisms that can inform biologists, psychologists and Artificial Intelli-
gence researchers by fleshing out theory. From the computational side, another
contribution is the use of an evolved self-taught neural network. This provides a
framework for building intelligent autonomous adaptive systems in the environ-
ment without engineered rewards and where the state of this environment is only
partially observable [24]. The evolved ability to teach oneself produces a form
of autonomous intelligence, without any kind of external supervision. Building
adaptive autonomous multi-agent system is potentially a promising way to reach
general intelligence. In future work, both weights and topology could be evolved
rather than assuming a fixed architecture. MiniWorld can also be extended into
more complex environmental settings by incorporating for example, food & poi-
son, and via the inclusion of obstacles which would add further complexity to
the learning task, potentially forcing a stronger learning / evolutionary response
from agents.
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