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Abstract. Evolution and learning are two different ways in which the
organism can adapt their behaviour to cope with problems posed by
the environment. The second type of adaptation occurs when individu-
als exhibit plasticity in response to environmental conditions that may
strengthen their survival. Individuals seek a behaviour that increases fit-
ness. Therefore, it is plausible and rational for the individual to have
some learning capabilities to prepare for the uncertain future, some sort
of prediction or plastic abilities in different environments. Learning has
been shown to benefit the evolutionary process through the Baldwin
Effect, enhancing the adaptivity of the evolving population. In nature,
when the environment changes too quickly that the slower evolution-
ary process cannot equip enough information for the population to sur-
vive, having the ability to learn during the lifetime is necessary to keep
pace with the changing environment. This paper investigates the effect
of learning on evolution in evolutionary optimisation. An instance of
dynamic optimisation problems is proposed to test the theory. Exper-
imental results show that learning has a significant impact on guiding
evolutionary search in the dynamic landscapes. Indications for future
work on dynamic optimisation are also presented.
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1 Introduction

For many biological organisms, adaptation is necessary for survival and reproduc-
tion in an uncertain environment. There are two important kinds of adaptation
that should be distinguished. The first is a change at the genetic level of a pop-
ulation, in which organisms reproduce selectively subject to mechanisms, like
mutation or sexual recombination, which maintain inter-individual variability.
This is usually modeled in terms of biological evolution, which causes changes in
the population from one generation to the next. The second adaptation mecha-
nism, on the other hand, is the phenotypic change at the individual level. This
can be called lifetime-adaptation which changes the phenotypic behaviour of the
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organism during its lifetime. Plausibly, lifetime adaptation happens at a quicker
pace than the evolutionary process which takes place through the generational
timescale, preparing the organism for rapid uncertain environments.

There exists an intriguing idea, called the Baldwin Effect, saying how learn-
ing interacts with and influences the evolutionary process, enhancing the adap-
tivity and performance of the population. Hinton and Nowlan (henceforth H&N)
presented a classic paper around 1987 [6] to demonstrate an instance of the Bald-
win Effect in a computer simulation. Their initial success motivated a number
of further studies [1,9,11], to name but a few.

The initial success of H&N motivated several further studies in evolving
neural networks, Artificial Life and Evolutionary Robotics, such as [1,9,11], to
show how learning can enhance the evolutionary search. On the other side, it is
pretty surprising that the interaction between learning and evolution has been
rarely studied and employed in the field of Evolutionary Computation (EC),
despite the fact that there exists not a small number of dynamic problems in the
literature [4]. This might be due to the reason that some people in EC tend to
go too far to regard evolution as learning based on the belief that evolutionary
algorithms can be used to solve machine learning problems [3].

In the scope of this paper we are not going to take part in the debate on
whether evolution is learning or not. We treat learning and evolution separately
as they are in nature, in order to make use of the idea that learning can enhance
the evolutionary process to cope with dynamic environments. The main aim of
this paper is to investigate the effect learning might have on the evolutionary
process when dealing with rapid changing environments. We combine evolution
and learning, and propose a dynamic optimisation problem to see how they
behave. In the remainder of this paper, we briefly present research on learning
and evolution. We in turn describe the experiments we use in this paper. Results
are analysed and discussed, then the conclusion and some future directions are
proposed.

2 The Baldwin Effect, Learning, and Evolution

The orthodox view of evolution is that changes due to learning during life are
not inherited and, more generally, that learning does not influence evolution.
The basis for such a view is the physical separation between the germ cell line
and the somatic cell line. Changes due to learning concern somatic cells whereas
evolution is restricted to the germ cells. Since the two types of cells are physically
separated, it is not possible for changes in the somatic cells to have a direct
influence on evolution. On the other hand, Baldwin [2], Waddington [12], and
several others [6,9] have claimed that there is an interaction between learning
and evolution and, more specifically, that learning can have an influence on
evolution. This is called The Baldwin effect.

In 1987, the British Cognitive Scientist Geoffrey Hinton and his colleague
Kevin Nowlan at CMU presented a classic paper [6] to demonstrate an instance of
the Baldwin effect in a computer simulation. Hinton and Nowlan used a Genetic
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Algorithm to evolve a population in an extreme landscape called Needle-in-a-
haystack, showing that learning can help evolution to search for the solution
when evolution alone fails to do so. An interesting idea can be extracted from
their work is that in stead of genetically fixing the genotype, it is wiser to let
just a portion of the genotype be genetically fixed, and the other be plastic that
allows for changes through learning. It is these plastic individuals that promote
the evolutionary process to search for the optimal solution, although the H&N
landscape is static.

The model developed by Hinton and Nowlan, though simple, is interesting,
opening up the trend followed by a number of studies investigating the inter-
action between learning and evolution. There has been several papers studying
the Baldwin effect in the NK-fitness landscape [7]. Some notable studies include
the work by Giles Mayley [10], and some others like [5]. Their results, again,
demonstrated that the Baldwin Effect does occur, and learning helps evolution-
ary search overcome the difficulty of a rugged fitness landscape. (Please refer to
[9] for more literature review of the Baldwin Effect in the computer).

Evolutionary Algorithms (EAs) have been claimed a potential technique to
solve dynamic optimisation problems [4]. EAs are a family of algorithms based on
biological evolution metaphor. A number of parameter tweaking and operators
have been proposed in the literature to enhance evolutionary search when dealing
with dynamic optimisation. Though these engineering techniques show some
good results in some way, relying on the evolutionary metaphor to cope with
dynamic environments is not the optimal way if the optimal solution changes
so fast that it takes many more generations for evolution alone to encode the
environmental information back to the gene-like pool. Here we propose another
view of dealing with dynamic environment, combining the metaphor of evolution
and learning to cope with hard environmental dynamics.

3 Experimental Design

In this section we present the problem domain and the experimental settings we
use to investigate our hypothesis.

3.1 The Dynamic String Match Problem

The chosen problem domain is the String Match problem, in which we have to
match the target string. The String Match domain is not a rare problem, and
it can be seen in a wide range of contexts, such as in Immune Systems (both
natural and artificial), in Antivirus or Intrusion Detection systems. All these
systems need some sort of string matching mechanism to match their dictionaries
to an incoming signal to see if that signal is abnormal or not. In the scope of this
paper, we propose a simple instance of the String Match problem, in which the
target string contains only binary characters (0 or 1). The target string changes
over time forming a dynamic problem. For simplicity, we restrict the length of
the target string to 20.
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Without loss of generality, suppose we have to match the original string
111...11 (20 ones). The target will change based on two parameters: the fre-
quency and magnitude of change. The first parameter tells us after many gen-
erations the target will move to another point in the landscape, while the latter
helps determine the likelihood of change for each element of the target. Assume
that at a generation g the target is all-one (20 bits of one), frequency = 10
and magnitude = 0.1 (10%). This informs us that after 10 generations or at
generation g + 10 the target t = 111...1 (20 bits of 1) is likely to be changed.
The magnitude of 0.1 tells us that there are, on average, 20 × 10% = 2 bits in
the target that are likely to be modified. For each bit in the target sequence,
a random number is generated and then compared with the magnitude: if the
random value is less than 0.1, the current bit is mutated to its subtraction from
1 (1 becomes 0, and vice versa). Suppose the new target at generation g + 10 is
t1 = 001...1 (two first bits are changed).

3.2 Experimental Setup

In this section, we present two experimental setups used in our paper as follows:

Experimental Setup I: Evolution Only
The first setup evolves a population of individuals without learning capabilities.
This is the canonical Genetic Algorithms. Every individual has the genome of
20 bits randomly initialised. The genotype-phenotype mapping is one-to-one.
The fitness of an individual is calculated as the proportion of matched charac-
ters between the individual and the target over the number of characters (the
length of the target string). Mathematically, the fitness of an individual xi (with
phenotype pi) is computed as one of the following two ways:

f(xi) =
Number of matched characters

Length of the target string
= 1 − dist(pi, target)

length(target)
(1)

with dist(pi, target) is the hamming distance between the phenotype pi and the
target. Based on this fitness function, an individual with higher proportion of
matching has a higher fitness; and the higher the fitness value, the better the
individual. The optimal individual has the fitness of 1, whereas the worst possible
fitness value is 0.

At each generation, two individuals are selected from the population as par-
ents to produce one child. The newly born child is mutated based on a small
probability, then being added into a new population. This process repeats until
the new population is filled up and replaces the old population of parents, i.e.
generational replacement without elitism.

Experimental Setup II: Evolving Learning Individuals
In this simulation, we allow lifetime learning, in addition to evolutionary algo-
rithm, to update the phenotype of the individual. To allow for lifetime learning



168 N. Le et al.

we used the same encoding scheme as in [6,8,9]: Instead of being fully speci-
fied, the genotype now is composed of three alleles ‘0’, ‘1’, and ‘?’. The allele ‘?’
allows for lifetime learning (or plasticity). Each agent will have 1000 rounds of
learning during its lifetime. On each round, an individual agent is allowed to do
individual learning by changing its allele ‘?’ to either ‘0’ or ‘1’ as the expressed
value. Thus, the behaviour of an individual agent is partly specified by its genetic
composition, and partly by what it learns in the course of its lifetime.

When an individual learns, it updates its phenotypic behaviour, and hence
its fitness. However, instead of being implemented as a blind random search as
in previous work [6,8,9], we devise a new learning algorithm as a hill-climbing
process. The learning algorithm adopted by every individual is presented as
Algorithm 1 below.

Algorithm 1. Learning
1: function Learning(ind)
2: best fitness = ind.fitness
3: best phenotype = ind.phenotype
4: for i ∈ range(1000) do
5: Flip all question marks to get a new phenotype
6: ind.fitness = compute fitness(ind.phenotype)
7: if ind.fitness > best fitness then
8: best fitness = ind.fitness
9: best phenotype = ind.phenotype
10: end if
11: end for
12: ind.fitness = best fitness
13: ind.phenotype = best phenotype
14: end function

The above algorithm is relatively self-explanatory. When an individual
expresses a new phenotypic behaviour, it checks if the new behaviour is more
adaptive than the current before deciding to replace the current phenotype by
the new one. This process helps each agent keeps its best behaviour as the current
phenotype.

Please note that, unlike the so-called memetic algorithm and Lamarckian
Evolution, learning in our experiments only happens at the phenotypic level,
what an individual learns does not change its genotype. The recombination oper-
ators work on the genotypic level, so children may inherit question marks from
their parents.

After lifetime learning, the population goes through the evolutionary process
in the same way as the previous experimental setup. We use the same parameter
setting for two experimental setups for a fair comparison. The parameter setting
is summarised in Table 1 below.

We run our experiments through 16 different combinations of frequency and
magnitude. It can be understood that the lower the frequency value, the faster
the target will change; the bigger the value of magnitude, the bigger the change
of the target. The environment becomes more dynamic or harder to cope with by
faster changing and bigger magnitude of change, and vice versa. We also compare
the two populations when the environment is static, the target is kept stable over
generations. It is interesting that in this sense our problem becomes the canonical
one-max problem – the trivial problem solvable by Genetic Algorithms.
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Table 1. Parameter setting

Parameter Value

Original target 111...1 (20 bits of 1s)

Genome length 20

Replacement Generational

Generations 51

Elitism No

Population size 100

Selection Fitness-Proportionate selection

Reproduction Sexual reproduction

Mutation rate 0.05

Fitness function Equation 1

Maximal learning trials 1000

Frequency 2, 5, 10, 20

Magnitude 0.05, 0.1, 0.2, 0.5

4 Results and Analysis

In this section we present the comparison between the two experimental setups,
evolving populations with and without learning, in terms of both best fitness and
average fitness of the population. All results are averaged over 30 independent
runs. The learning population is plotted in green, while the population without
learning in red.

4.1 When the Environment is Static

As noted above, our problem becomes onemax -like (as the initial target string is
comprised of all ones) when the environment is static – a simple genetic algorithm
has been shown to find the correct solution after generations. It can be seen in
Fig. 1 that the learning population shows some advantage over initial generations.
Over time, the difference between the two populations are smaller and smaller,
and becomes zero at the end of the run.

A similar trend can be observed in Fig. 2 for average fitness. The population
of learning individuals has some initial advantage over the other in terms of
average fitness. Over generations, however, the two populational average fitness
are relatively converged.

One plausible explanation for this behaviour is that when the environment is
stable, the problem is easy enough (the one-max in this case) so that evolution is
sufficient to encode the information of the environment for the population (can
find the solution) over time. Therefore, adding learning does not bring much
more advantage to the population in terms of both best fitness and average
fitness.
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Fig. 1. Best fitness comparison when the environment is static

Fig. 2. Average fitness comparison when the environment is static

4.2 When the Environment Changes

The main point of our hypothesis is learning shows benefit over evolution alone
when the environment changes. We investigate and demonstrate the effect of
learning on evolution when the environment becomes harder to be tackled by
the evolving populations. All results are grouped together, sharing the same label
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Fig. 3. Best fitness comparison when the environment changes

for x-axis and y-axis as well as the annotation. Each row and column shows the
increasing level of difficulty of the problem from left to right and from top to
bottom.

It is simply seen in Figs. 3 and 4 that there is a drop in both the best fitness
and the average fitness of all settings at the generation when the environment
begins to change. This is understandable because when the environment changes,
a number of adaptive behaviors from previous generations are no longer fit in
the current generation, reducing performance of the population.

A global trend can be observed is that the difference between the population
with and without learning becomes bigger, with respect to both best and average
fitness, when the environment becomes harder over time in the direction of both
frequency and magnitude of change.
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Fig. 4. Average fitness comparison when the environment changes

Specifically, first we look at the best fitness of the population as a measure-
ment of how well each simulation performs. When the frequency of change is 20,
the environment changes at a slow rate between generations. In this case, the two
populations behave relatively similar in the first 2 instances of the magnitude,
and show some divergence at the end of the run when the volumes of change are
0.2 and 0.5 – with %20 and 50% of the target being changed. Looking at the
minimum magnitude of change at 0.05, there is little difference between the two
populations, even when the environment changes after every 2 generations.

The magnitude of change shows more effects on the performance of the pop-
ulation. When the magnitude of change is bigger (0.2, and especially 0.5 in our
experiment), the learning population shows a better performance than the pop-
ulation without learning. This is even clearer when the rate of change between
generations is faster.
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It can be explained here that when the environment slightly changes, the
evolutionary process sill has time to encode new information to keep the pop-
ulation on track over generations (the same clue as the previous section when
the environment is static). However, when the environment becomes harder to
tackle, the target changes at a sufficiently big level, the evolutionary process
looses information about the environment. Therefore, evolution alone cannot
track the environment very well because it takes a few to many generations to
find a sufficiently good region of the landscape (through genetic operators only
and natural selection) to direct the population to. Conversely, in the learning
population, individuals are equipped with some sort of learning capability dur-
ing their lifetime. This means that when the environment changes, they can
learn to change their behaviour towards the target solution, apart from some
sort of initial behaviour created by evolution. Moreover, it is evolution to create
learning capabilities for individuals (plastic allele ‘?’). Individuals that can learn
better behaviour showing more learning capabilities, hence having better fitness
values, are favoured by the selection process, leaving more offspring. These off-
spring inherit both innate behaviour and some sort of learning capabilities from
their parent, having more chance to learn during their lifetime, moving their
phenotype closer to the target. Learning equips the individual with the capabil-
ity to track the target, even when the target changes a certain amount, keeping
the population on track.

A similar trend can be observed when comparing the average fitness of the two
populations and the explanation is the same as above. The difference between the
two evolving populations is a bit clearer in terms of average fitness, even when
the environment changes slightly, compared to that of the best fitness. It can
be explained, again, by the effect of learning capabilities when the environment
changes. Without learning, individuals born with the ‘wrong ’ setting will have
low fitness until the end of the generation. With learning abilities, every individ-
uals in the learning population have more chance to update their behaviour to
match with the new target, increasing their fitness, hence the average fitness of
the whole population. This applies for the whole population, thus the difference
in average fitness is a bit clearer between the two evolving populations, with and
without learning.

5 Conclusion

In this paper, we have set out to understand the role of learning in evolving
populations under different environmental dynamics. For the specific problem
(the binary string match problem) and parameter settings, learning has been
shown to be beneficial, and more beneficial when there is a bigger change in
the environment which happens at a quicker pace. When the environment is
stable and easy enough for evolution to cope with, adding learning shows little
advantage. Learning is only more advantageous when the environment becomes
harder, and approaches the level of difficulty that evolution alone cannot tackle.
This observation is the same as shown in previous work [8,9].
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In the scope of this paper, we have mainly discussed the adaptive advan-
tage of learning in dynamic environments. The evolution of learning can also
been extracted from our results and analyses on the frequency of learners. It is
suggested to investigate the question as to how learning evolves more deeply in
future work. An easy way to do this is to try different parameters to control the
initial proportion of plastic allele (the question mark) in learning population to
see how the frequency of plastic changes over different settings.

We admit ourselves that the problem instance used in this paper is quite sim-
ple. Future work will investigate the method and verify the findings in this paper
on different types of problems and landscapes in dynamic optimisation domains,
and compare the evolving learning method with some well-known working meth-
ods [4]. Even in this simple problem instance, we suggest more deeply theoretical
proof on how much learning contributes to the evolving population.

More interestingly, learning can be classified into two types. The first is social
learning, or learning from others, e.g. imitation learning. The second is asocial
(or individual) learning – learning by directly interact with the environment, e.g.
trial-and-error. The form of learning used in this paper is an instance of asocial
learning when individuals sample the environment themselves, trying different
combinations of bits by flipping question marks. A learning strategy (or learning
rule) is a combination of social and asocial learning in a strategic (probabilistic)
way. A learning rule has been shown to be more beneficial than both social and
asocial learning alone in several work in the literature, such as [8]. Future work
will investigate this.

Acknowledgments. This research is funded by the Science Foundation Ireland under
Grant No. 13/IA/1850.

References

1. Ackley, D., Littman, M.: Interactions between learning and evolution. In: Langton,
C.G., Taylor, C., Farmer, C.D., Rasmussen, S. (eds.) Artificial Life II, SFI Studies
in the Sciences of Complexity, vol. X, pp. 487–509. Addison-Wesley, Reading (1992)

2. Baldwin, J.M.: A new factor in evolution. Am. Nat. 30(354), 441–451 (1896)
3. Brabazon, A., O’Neill, M., McGarraghy, S.: Natural Computing Algorithms, 1st

edn. Springer, Heidelberg (2015)
4. Branke, J.: Evolutionary Optimization in Dynamic Environments. Springer, US

(2002)
5. Bull, L.: On the baldwin effect. Artif. Life 5(3), 241–246 (1999). https://doi.org/

10.1162/106454699568764
6. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Syst. 1,

495–502 (1987)
7. Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes

and its application to maturation of the immune response. J. Theor. Biol. 141(2),
211–245 (1989). https://doi.org/10.1016/s0022-5193(89)80019-0

8. Le, N.: Adaptive advantage of learning strategies: A study through dynamic land-
scape. In: Parallel Problem Solving from Nature – PPSN XV. Springer Interna-
tional Publishing (forthcoming)

https://doi.org/10.1162/106454699568764
https://doi.org/10.1162/106454699568764
https://doi.org/10.1016/s0022-5193(89)80019-0


How the “Baldwin Effect” Can Guide Evolution in Dynamic Environments 175

9. Le, N.: The baldwin effect reconsidered through the prism of social learning. In:
IEEE Congress on Evolutionary Computation, CEC 2018. IEEE Press (8–13 July
forthcoming)

10. Mayley, G.: Guiding or hiding: explorations into the effects of learning on the rate
of evolution. In: In Proceedings of the Fourth European Conference on Artificial
Life, pp. 135–144. MIT Press (1997)

11. Nolfi, S., Parisi, D., Elman, J.L.: Learning and evolution in neural networks. Adapt.
Behav. 3(1), 5–28 (1994)

12. Waddington, C.H.: Canalization of development and the inheritance of acquired
characters. Nature 150(3811), 563–565 (1942)


	How the ``Baldwin Effect'' Can Guide Evolution in Dynamic Environments
	1 Introduction
	2 The Baldwin Effect, Learning, and Evolution
	3 Experimental Design
	3.1 The Dynamic String Match Problem
	3.2 Experimental Setup

	4 Results and Analysis
	4.1 When the Environment is Static
	4.2 When the Environment Changes

	5 Conclusion
	References




