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Abstract

Modularity, and the ability to exploit it, has been noted as an important open issue in

the field of Genetic Programming (GP). This thesis examines modularity in the context of

one area of GP, a grammar-based form of GP called Grammatical Evolution (GE). Very

little work has been done in GE to examine how modularity can be incorporated and used

to improve GE’s search performance, leaving many open research questions. All of these

open research questions can be considered as answering a portion of one the following two

questions: “How should modules be made available to individuals during evolution?” and

“How should modules be selected from the population?”

The first set of examinations provided by this thesis explores how modules should

be incorporated into GE’s grammar once they are discovered. Settings for the number of

generations between grammar modifications, how many modules are added to the grammar,

and the manner in which the grammar is modified are tested. The results of these tests

show that certain parameter settings perform better than others, but no approach was

significantly better than standard GE on three out of four of the benchmark problems used

due to the disruption in the population caused by modifying GE’s grammar. This lead to

the creation of the genotype repair operator which ensures that grammar modifications do

not change individuals’ phenotypes. The inclusion of the genotype repair operator leads

to an improvement in performance when adding modules to GE’s grammar, but does not

give a significant increase in performance on most of the benchmark problems tested.

Next, different methods for identifying modules are implemented, and their performance

is compared against each other and standard GE. These comparisons considered numerous

parameters for the module identification methods such as which individuals modules are

taken from, how many fitness evaluations are used to estimate a module’s contribution to

an individual, and how much selection pressure should be used when selecting candidate

modules. The results of these comparisons show that there is no single-best combination of



these parameters; however, approaches which used less fitness evaluations during the mod-

ule identification step tended to outperform those which did not. Finally, an examination

into the characteristics and usage of the modules discovered by the various module identi-

fication approaches is presented. This study showed that the best methods for identifying

modules find modules within certain size and fitness diversity ranges. It also demonstrates

the best approaches for identifying modules are able to more easily replace older modules

with newer modules.
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Introduction and Background

1



Chapter 1

Introduction

This thesis examines the effects of incorporating and exploiting modularity in Grammatical

Evolution (GE) [33, 114]. GE is one of many evolutionary algorithms (EAs), which can

be broadly defined as population-based optimization algorithms. They use evolutionary

operators inspired by those seen in biological evolution to generate, recombine, select,

and mutate individuals to better solve a given problem. One popular EA is Genetic

Programming (GP) [24, 73], which represents individuals as syntax trees. The aspect of

GP that interests many researchers is its ability to evolve executable computer programs.

GE is a logical extension to GP, as it is a grammar-based form of GP. In GE, individuals

are represented as integer or binary arrays which go through a mapping process using a

user-defined context-free grammar. The details of the GE algorithm are given in Chapter 2.

For many years, the idea of modularity has been studied in numerous different contexts.

The concept of modularity in EAs originates from many areas of the biological world [11,

56, 84, 144, 163]. In the area of evolutionary algorithms (EAs) modularity has been shown

to improve performance on appropriate problems [43, 51, 59, 74, 124]. Researchers in the

field of GP have been particularly inspired by the benefits exhibited by modular biological

systems (More rigorous coverage of research in this area is provided in Chapter 3). While
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modularity has received much attention in the context of GP, it is still considered an open

issue in the field [117]. GE, has not been the focus of nearly as many studies. Modularity

in the context of GE refers to identifying beneficial sub-solutions from individuals. Ideally,

these sub-solutions are able to be reused in the population to create better individuals.

This thesis fills some of the gaps in terms of how modules should be discovered and used,

as well as the effects of the incorporation of these modules in GE’s population.

There are three main characteristics of modularity that make it appealing in the eyes

of GP researchers. The first being that incorporating modularity into an EA facilitates

decomposing a large problem in smaller, more easily solvable, sub-problems. The second

characteristic is hierarchy. The advantage of hierarchy comes from decomposing a problem

and solving the sub-problems on their own. EAs are able to use these partial solutions in

conjunction with each other or with other primitive elements in an accretive manner to solve

the whole problem. The third characteristic is the reuse of modules. Being able to identify

useful components of a system and preserve them for further use can save an EA much

work in terms of building a complete solution to a problem. However, the introduction

of these features also adds more questions left to researchers to answer: how should a

given problem be decomposed, which modules and primitives should be coupled together

to create more complex modules, and how should modules be used during evolution?

In addition to the questions raised by problem decomposition, hierarchy, and use of

modules in a modular system, there are many additional parameters that must be consid-

ered when extending an EA to incorporate some form of modularity. These parameters can

be considered in one broad question: How should modularity be incorporated into an EA?

In order to answer this question, most researchers develop methods to explicitly identify

modules and make them available to the evolving solutions to a problem. A large body

of work touches these areas (See Chapter 3), but, as one would expect, there is no single,

best performing approach to modularity in GP or GE. The following chapters of this thesis
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1.1. PROBLEM DEFINITION

examine how modules should be made available to individuals during evolution (Part II)

and how modules should be identified (Part III).

1.1 Problem Definition

This thesis presents an analysis of various methods for identifying modules and making

them available for use during evolutionary runs of GE. There are many design choices a

user must make when developing such methods, and each of these decisions comes with

certain consequences. The most obvious of these choices is how a module should be defined.

In the experiments carried out for this thesis, a module is defined as “an encapsulated sub-

derivation tree containing more than one primitive or preexisting module, or a combination

of primitives and modules.” Another decision that must be made is which individuals in

the population should be allowed to contribute modules. Limiting the individuals searched

may restrict the quantity and quality of modules that can be found. On the other hand,

identifying modules from the entire population may be computationally expensive and re-

veal many neutral or detrimental modules. Such decisions have the potential to drastically

alter GE’s performance and must be carefully considered. This section outlines the most

important of these design choices and how they related to GE.

1.1.1 Identifying Beneficial Modules

One of the most crucial aspects of modular evolutionary systems are how the modules

are identified. Garibay and Wu [45] show that encapsulating modules and incorporating

them into the evolving population increases the total search space. In the same work [45],

they also point out that, using a genetic algorithm (GA) [61], encapsulating a bad module

increases the average hamming distance to a solution while encapsulating a good module

decreases the hamming distance to a solution. Even though the research of Garibay and
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1.1. PROBLEM DEFINITION

Wu [45] focuses on GAs, this lesson can be applied to other EAs, such as GE. How modules

are identified is arguably the most influential factor in determining if good or bad modules

will be introduced into the population. Questions that a user must ask themselves while

designing methods for identifying modules include, but are not limited to:

• From which individuals should modules be identified?

• Should candidate modules be evaluated based on a fitness-based measure, a usage-

based measure, or a composite of the two?

• How should the fitness and/or usage be measured?

• What is an appropriate weighting for the different components in a composite mea-

sure?

Despite the large quantity of work in modularity and GP (See Chapter 3), there is no

definitive answer to these questions.

1.1.2 Using Modules During Evolution

After a selection of modules has been identified, they must be made accessible by the

population of an EA. Similar to identifying modules, there are many possibilities for in-

corporating modules into individuals during evolution with their own set of effects. Some

of the questions developers must answer when determining how modules should be incor-

porated into an evolving population include:

• How many modules should be made available to the population at once?

• Should new modules be discovered and added at a constant time step or when a

feature of the population (fitness diversity, phenotypic diversity, change in fitness

over time, etc.) reaches a specified value?
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1.2. AIM OF THESIS

• In what manner should new modules be made available to individuals?

Like the problem of how to identify modules (Section 1.1.1), there is no definitive answer

to these questions.

1.2 Aim of Thesis

This thesis aims to tackle some of the most important questions regarding how modules

should be identified and used, and analyze how different parameters for these functionalities

enhance or detract from the performance of GE.

1.2.1 Research Questions

In order to accomplish the aim of this thesis, the following questions are asked:

Module Identification

Research Question 1: Should modules be identified using a fitness-based or a usage-

based approach?

Research Question 2: How much computational power is reasonable to use in identify-

ing modules?

Research Question 3: What are the characteristics of the modules themselves that makes

them useful?

Research Question 4: Are modules discovered by various identification methods used

differently by evolution?
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1.2. AIM OF THESIS

Module Usage

Research Question 5: How should modules be made available to GE’s population during

evolution?

Research Question 6: Does updating the set of modules available to individuals more

or less frequently change the performance of GE?

Research Question 7: Does the number of modules made available to GE during evo-

lution affect GE’s performance?

1.2.2 Objectives of Thesis

To answer the research questions posed in Section 1.2.1, multiple objectives are presented:

1. a survey of past research covering modularity and GP and GE;

2. implementing operations for identifying modules and incorporating them into an

evolutionary run using GEVA [109]

3. understand how the frequency and manner in which modules are added to GE’s

grammar alters performance

4. understand the benefits and drawbacks of various methods for identifying modules

5. analyzing the characteristics of the modules discovered by different methods of iden-

tification

6. examining if modules are used (in)frequently or by (un)fit individuals during evolu-

tion.
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1.3 Contributions

Many of the contributions provided by this thesis have been published. These publications

are enumerated on Page viii. The main contributions of this work are listed by order of

appearance in this thesis here:

Literature Review: An extensive review of approaches to modularity in GP is conducted

in Chapter 3. This review covers definitions and applications of modules and mod-

ularity, (Section 3.2) and categorizes the various methods based on the approach

incorporating modularity (Section 3.3). These methods are also categorized in tables

outlining how they identify (Table 3.1) and make modules available to individuals

(Table 3.2) during evolution.

Development of new module identification methods: Previous work in modularity in GP

has presented numerous methods for module identification (Section 3.3). This thesis

presents two novel methods for identifying modules in GE, which are also applicable

to GP (One is first introduced in Section 4.1, but more detailed information about

these algorithms is give in Chapter 6). These methods describe two ways to estimate

the fitness contribution of a module, are parameterizable, and require no additional

domain knowledge of the user, outside the original fitness function specification.

Comparison of module identification approaches: This thesis also offers a fair comparison

of how various module identification operators compare with each other in terms of

performance in GE (Chapter 6). Many parameters are examined and suggestions for

which ones are reasonable and why is also discussed.

Analysis of module characteristics: While there has been much previous work showing

how incorporating modularity into GP or GE alters the search performance of these

algorithms, comparatively little has been done to show where these changes, or lack
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thereof, come from. Another contribution of this thesis is the analysis of the char-

acteristics of the modules which are discovered (Sections 7.2 - 7.3.2). This analysis

compares the characteristics of modules discovered by the various module identifi-

cation approaches in order to see which features of modules are correlated with the

better performing approaches.

Analysis of module usage during evolution: Similar to the analysis of module charac-

teristics, very little research examines how often modules are used and the fitness of

individuals that use these modules. The final contribution of this thesis is the analysis

of how many individuals in the population use a given module and the average fitness

of individuals using a module (Section 7.4).

Analysis of modifying GE’s grammar: In Chapter 4, variations on adding modules to

GE’s grammar are examined. The manner in which GE’s grammar is modified (Sec-

tion 4.4.1) and how frequently it is modified (Section 4.4.2) may be detrimental to

GE’s performance. The work presented in Chapter 4 gives suggestions for how to

modify GE’s grammar in a manner which causes the least amount of disruption to

GE’s performance.

Genotype repair operator: The process of modifying GE’s grammar was shown to have

a negative impact on GE’s performance in Chapter 4. A genotype repair operator has

been developed to remedy this effect (Chapter 5). As an added bonus, the genotype

repair operator is not exclusively tied to adding modules to GE’s grammar. It may

also be used in conjunction with any operator with changes GE’s grammar in order

to prevent individuals’ genotype-to-phenotype mapping from changing.

Publication of the work presented in this thesis: Each of the experimental chapters in this

thesis is based on a corresponding publication. These works, in order of publication,

are listed here:

• J. M. Swafford, M. O’Neill, M. Nicolau, and A. Brabazon. Exploring grammatical
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modification with modules in grammatical evolution. In S. Silva, J. A. Foster,

M. Nicolau, P. Machado, and M. Giacobini, editors, EuroGP, volume 6621 of

Lecture Notes in Computer Science, pages 310–321. Springer, 2011 (Chapter 4),

• J. M. Swafford, E. Hemberg, M. O’Neill, M. Nicolau, and A. Brabazon. A

non-destructive grammar modification approach to modularity in grammatical

evolution. In Proceedings of the 13th annual conference on Genetic and evolu-

tionary computation, GECCO ’11, pages 1411–1418, Dublin, Ireland, 2011. ACM

(Chapter 5),

• J. M. Swafford, M. Nicolau, E. Hemberg, M. O’Neill, and A. Brabazon. Com-

paring methods for module identification in grammatical evolution. In T. Soule

and J. H. Moore, editors, Genetic and Evolutionary Computation Conference,

GECCO ’12, Philadelphia, PA, USA, July 7-11, 2012, pages 823–830. ACM,

2012 (Chapter 6),

• J. M. Swafford, E. Hemberg, M. O’Neill, and A. Brabazon. Analyzing module us-

age in grammatical evolution. In C. A. C. Coello, V. Cutello, K. Deb, S. Forrest,

G. Nicosia, and M. Pavone, editors, Proceedings of the 12th Int. Conf. on Par-

allel Problem Solving From Nature, volume 7491 of Lecture Notes in Computer

Science. Springer, 2012 (Chapter 7).

1.4 Assumptions

Due to broad nature of problems and areas of study to which modularity can be applied

or is inherently present, a number of assumptions must be considered. Firstly, there are

numerous definitions and descriptions of modularity and what constitutes a module. In

this thesis, a module is defined as an encapsulated sub-derivation tree from a GE
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individual. There are many variations on how modules can be represented and what

limits can be placed on module size and content. These variations will be discussed further

in Chapter 3, but only standard GE, GE with Automatically Defined Functions (ADFs)[59,

113] and the approaches for identifying modules defined in Chapters 4 and 6 are examined.

The addition of ADFs is a standard approach to modularity in GE and GP and is a sensible

benchmark for gauging the performance of new approaches for identifying modules in GE

and GP. The experimental results presented in Chapters 4 - 7 lay a foundation for possible

future studies on modularity in GE by covering one possible module representation and

numerous parameters which must be considered for any module identification operation.

With any EA, there are many parameters which can be tuned to improve its search

performance. For the work presented in Chapters 4-7 only a single set of parameters

(crossover rate, mutation rate, elite size, etc.) was used for the standard GE algorithm.

No attempt was made to optimize these parameters. There are also many parameters which

are introduced by the incorporation of modules into GE. An attempt was made to explore

as many of these parameters as possible, however, there are still many permutations of

these parameters which were left unexplored due to time restrictions. The settings tested

in the experimental chapters of this thesis are considered sensible. For each parameter

a small sweep of values was performed. Many of the values examined in these sweeps

showed minimal, or no, change in performance when compared to other values. In order to

present the reader with a more reasonable amount of data only parameters that exhibited

differences from each other are discussed. Additional improvements in performance could

be gained by optimizing these parameters.

There is a vast amount of literature covering modularity in a number of disciplines,

e.g., biology and product design. Even though the idea of modularity in those areas is

somewhat relevant to modularity in GP and GE, a great deal of this literature is omitted

or mentioned only briefly. This was done to prevent the unnecessary bloat of the literature
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review presented in Chapter 3.

1.5 Thesis Structure

The goal of this thesis is to examine methods for identifying modules and how those

modules can be incorporated into an evolving population in GE. Through the studies

presented in this work, insight into appropriate methods for incorporating modularity into

GE is gained. The research carried out for this thesis is divided into four parts.

The first part of this thesis is Part I, which consists of three chapters. Chapter 1 briefly

introduces modularity and the problems associated with integrating modularity into an EA.

It also outlines the aims, research questions, objectives, contributions, and assumptions of

this thesis. Next, Chapter 2 discusses the GE algorithm in terms of how individuals are

represented, how a typical set of GE operators function, and some of the application areas

and implementations of GE. The final chapter in Part I is Chapter 3. It presents some of

the definitions of modularity and modules, a selection of application areas of modularity,

and a literature review of the many approaches to modularity in GP research.

Part II of this thesis is split into two chapters. Chapter 4 introduces new methods for

identifying modules. It then compares various methods adding modules to GE’s grammar

during an evolutionary run. It also compares variations for how frequently modules are

added to GE’s grammar and how many modules are added to GE’s grammar per grammar

modification step. The second chapter of Part II is Chapter 5. This chapter introduces

the genotype repair operator which is used to ensure the addition of modules into GE’s

grammar does not present any adverse effects in terms of the fitness of the population.

Next, Part III is comprised of two chapters covering the definition and analysis of

additional methods for identifying modules in GE and an analysis of the characteristics and

features of the modules themselves. First, Chapter 6 defines four methods for identifying
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modules in GE. It then covers various parameters and variations of these operators in an

attempt to improve their performance and understand what features are most desirable in

a module identification method. Chapter 7 goes on to analyze the features of the modules

themselves. It reports how different module identification methods find modules of various

size, content, and meaning. It also explains how modules discovered by different module

identification methods are used more or less frequently and in better or worse individuals.

Finally, the last part of this thesis, Part IV, contains a single chapter. Chapter 8

presents a summary of the work carried out and the conclusions taken from the experiments

and analysis performed in Parts II and III. It also describes a number of questions raised

from this research and opportunities for future work in module identification and usage.
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Chapter 2

The Grammatical Evolution

Algorithm

Before delving into the experimental work of this thesis, the inner workings of the GE

algorithm must be understood. This chapter details how GE creates solutions to problems

and how these solutions are evolved over time. It also illustrates some of the differences

between GP and GE.

2.1 Grammatical Evolution Overview

GE [33, 114] is a form of grammar-guided genetic programming [92]. Its functionality is

similar to standard genetic programming, and in some cases is even identical. Like GP

(and other EAs), it creates a population of individuals which is evolved in an attempt

to solve a given problem by information exchanging, variation, selection, evaluation, and

replacement operations. An example of this evolutionary cycle can be seen in Figure 2.1.
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2.2. GE’S GENOTYPE-TO-PHENOTYPE MAPPING

Initialization Evaluation

Is a solution found
or max. number of
cycles/evaluations
reached?

Terminate

Selection

Crossover

Mutation

Figure 2.1: The evolutionary cycle

2.1.1 Differences Between GE and GP

What sets GE apart from standard GP is the linear representation of its individuals. While

standard GP represents individuals as syntax trees created by user-defined function and

terminal sets, GE represents individuals as linear arrays of binary numbers or integers1, also

known as chromosomes. A typical GE implementation uses a context-free grammar (CFG),

usually in Backus-Naur Form (BNF), to map individuals’ chromosomes to a phenotype

which may be evaluated. To illustrate the differences between individuals in GE and GP

Figure 2.2 shows examples of how individuals of individuals from both. However, it is

also possible to represent individuals in GE as tree structures as well. This is explained in

Section 2.2.

2.2 GE’s Genotype-to-Phenotype Mapping

One of the large differences between GE and a standard implementation of GP is the

mapping process that GE uses to create each individual’s phenotype. Recalling the example

individuals from Figure 2.2, note that the GP individual encodes its phenotypic information

directly into its syntax tree, but the GE individual only contains integers. The mapping

1The implementation used for all the experimental work in this thesis uses integer arrays.

15



2.2. GE’S GENOTYPE-TO-PHENOTYPE MAPPING

F = +,−, ∗, /
T = X,Y

(a) GP Function and
Terminal Set

<exp> ::= <op><exp><exp> | <var>

<var> ::= X | Y
<op> ::= + | − | ∗ | /

(b) GE Grammar in BNF

+

X ∗

X Y

(c) GP Individual

2 4 9 24 42 78 31 52 63 11
(d) GE Individual

Figure 2.2: The difference between GP and GE individuals. Figures 2.2(a) and 2.2(c) show the
function set and a possible tree for a GP individual. Figures 2.2(b) and 2.2(d) show a possible
grammar and genotype for a GE individual. Both individuals create the expression X +X ∗ Y
(or +X ∗XY which is the prefix notation of the former).

process creates an individual’s phenotype by combining the grammar and individual’s

integer array. An example of the mapping process will now be given using the grammar

and genotype in Figures 2.2(b) and 2.2(d). First, the grammar’s start symbol must be

identified, which must always be a non-terminal and in this case is <exp>, and is used

as the current phenotype of the individual. Next, the first element (elements in GE’s

chromosome are often referred to as codons) in the chromosome, the number 2, is taken.

To determine how the phenotype is expanded, the following equation is used:

codon value mod number of productions = production index.

The rule starting with <exp> is

<exp> ::= <op><exp><exp> | <var>,

which has 2 productions, and 2%2 = 0. This means the production in the 0th index will be

used to replace the current non-terminal. So, <exp> will be replaced with <op><exp><exp>.
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<exp>

<exp>

<var>

X

24%2 = 0

9%2 = 1

2%2 = 0

<op>

+

4%2 = 0

<exp>

<exp>

<var>

X

52%2 = 0

31%2 = 1

42%2 = 0

<op>

∗

78%4 = 2

<exp>

<var>

Y

11%2 = 1

63%2 = 1

Figure 2.3: An example derivation tree using the grammar and chromosome from Figures 2.2(b)
and 2.2(d). The labels on each edge show how the following node was chosen.

GE’s mapping process always uses the left-most non-terminal, making <op> the current

non-terminal to expand. The <op> non-terminal has 4 possible productions. So the next

integer in the chromosome is used in the following rule: 4%2 = 0. Once again, the

0th production is used to replace <op> making the individual’s phenotype +<exp><exp>.

The mapping process will continue in this manner until there are no more codons left in

the chromosome or until there are no more non-terminal symbols left in the phenotype.

Using the example chromosome and grammar, the individual maps out to the following

phenotype: + X ∗ X Y which is simply the prefix notation of X + X ∗ Y . Using this

mapping process, it is also possible to create a tree structure (GE individuals represented

as trees are often called derivation trees). The derivation tree of the individual derived

above can be seen in Figure 2.3. In the example here, all the codons in the chromosome

are used, but a situation may arise where not all the codons are used or that more codons

are required than exist in the chromosome.
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Wrapping and Invalid Individuals

During the mapping process, it is possible that every codon in the chromosome will not be

used. Such codons are simply ignored. Crossover and/or mutation events may later create

the need for the additional codons, and any extra codons at the end of an individual can

help satisfy this need.

If more codons are required than exist, there are two options. The first is marking the

individual as invalid and assigning it the worst possible fitness value. The second option is

to allow wrapping of the chromosome. When wrapping is enabled, the user first specifies a

maximum number of wrapping events. Then, when the mapping process hits the end of a

chromosome but requires more codons, it wraps back to the beginning of the chromosome

and continues with the first codon. If the maximum number of wraps is reached, the

individual is marked as invalid and given the worst possible fitness.

When individuals are flagged as invalid, a number of possibilities arise for how to handle

them. One is simply doing nothing and waiting for evolution to replace the individual due

to its poor fitness. Another is replacing the invalid individual with one of its parents. A

third possibility is replacing the invalid individual with a newly created individual. A final

approach to handling invalid individuals would be to implement some form of a repair

algorithm to modify invalid individuals’ genotypes such that they are no longer invalid. In

the experiments carried out in this thesis, replace invalid individuals with new individuals

created using the same initialization method as the initial population.

2.3 GE Control Flow

The control flow of GE is similar to that of standard GP. First, a population of individuals

is initialized and evaluated. Next, the evolutionary loop begins. Individuals are selected

to swap information with each other and some individuals may also be mutated. The
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modified individuals are then evaluated and given a fitness value. If some termination

criteria has not been reached (usually an optimal solution, a given number of evolutionary

cycles, or a given number of fitness evaluations) the population is updated with some of

the newly created and evaluated individuals. Then, the evolutionary cycle moves to the

selection step. An example of this can be found in Figure 2.1. The details of the phases of

GE’s evolutionary cycle are given below.

1. Initialization is the means by which new individuals are created. This may be done

by randomly generating chromosomes or by generating chromosomes which map to

individuals with derivation trees of certain depths. Initialization algorithms may be

borrowed from GA and/or GP approaches.

2. Selection is the method of picking which individuals will be allowed to exchange

information with one another. Most common are the roulette wheel and tournament

selection methods. With the roulette wheel, individuals are selected proportionally

based on their fitness. Tournament selection first needs a tournament size. It then

randomly picks individuals equal to the tournament size. Out of the individuals

picked, the one with the best fitness is allowed to participate in a crossover event.

3. Crossover allows individuals to swap information with each other. Because individ-

uals in GE are integer arrays, but can also be represented as derivation trees, GA and

GP methods of crossover may be used. An example of GE’s standard single point

crossover can be found in Figure 2.4.
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Parent A: 1 5 9 67 32 89

Parent B: 4 15 90 5 3 72

Child A 1 5 9 3 72

Child B 4 15 90 5 67 32 89

Crossover Points

Figure 2.4: Single point crossover in GE

4. Mutation allows for random modifications to individuals. Like crossover, these

operations can be borrowed from both GAs and GP. Most commonly used are the

integer-flip (from GAs) and subtree (from GP) mutations. An example of GE’s

standard integer flip mutation can be found in Figure 2.5.

1 5 9 67 32 89

Individual Before:

1 5 9 51 32 89

Individual After:

Mutation Point

Figure 2.5: Integer-flip mutation in GE

5. Replacement is the mechanism for incorporating newly created and/or modified

individuals back into the population. GE uses either the generational or steady state

approach. Under the generational approach, the entire population is replaced with

individuals created via crossover and mutation. Using the steady state approach, only

individuals which improve on the population’s fitness are allowed into the population.

2.4 Examinations and Extensions

Since its development, there have been many examinations into how GE is able to achieve

its level of performance. There have also been numerous extensions which have been
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implemented to enhance the performance of GE. Some of the first research in this area

explored features of individuals such as genotype lengths, the amount of invalid individ-

uals, and how many individuals had “wrapping” genotypes [112]. The functionality and

performance of GE’s standard one-point crossover as well additional crossover operators

has been examined [54, 115, 120, 122]. Further investigations into GE involve the gram-

mar used for the genotype-to-phenotype mapping process. Nicolau [103] examines how the

complexity of the grammar used by GE can be reduced and may lead to improvements

in performance. Similarly, Harper [53] examines different combinations of grammars and

initialization schemes, showing that using the “wrong” combination of grammar and ini-

tialization method lead to a decrease in GE’s performance. More research related to the

genotype-to-phenotype mapping process is that of Fagan et al. [40, 41]. In their work, they

investigate variations of the genotype-to-phenotype mapping process. These investigations

show that the πGE genotype-to-phenotype mapping process presents advantages over the

standard GE genotype-to-phenotype map. Another vein of research carried out by Fagan

et al. [38, 39] shows that allowing evolution to alter the mutation rate of individuals may

be beneficial when compared to GE’s standard static mutation rate. More recent work

looking at the behavior of GE is that of O’Neill et al. [111], who examine the behavior of

GE in dynamic environments. They show that using modular varying goals in GE may

lead to a “speed up” in evolution. In addition to the examinations of GE’s performance,

a number of extensions to the GE algorithm have been implemented. One of the first

of these extensions is meta-grammar GE (mgGE) [121, 58]. This form of GE uses two

grammars. First, a universal grammar specifies the productions for a second, solution

grammar. The solution grammar is then used by the population to create programs which

are evaluated by the fitness function. An additional extension of GE is tree-adjunct GE

(TAGE) [97, 98, 99, 100]. This form of GE uses a tree-adjunct grammar instead of the

standard CFG to create individuals and generally exhibits an increase in performance over

21



2.5. APPLICATIONS OF GE

Table 2.1: Implementations of GE

Software Title Language URL

ECJ - Evolutionary Computation Java http://cs.gmu.edu/~eclab/projects/ecj/
in Java

GEVA - GE in jaVA Java http://ncra.ucd.ie/Site/GEVA.html

JCLEC - Java Class Library Java http://jclec.sourceforge.net/
for Evolutionary Computation

jGE - Java GE Java http://pages.bangor.ac.uk/~eep201/jge/

libGE C++ http://bds.ul.ie/libGE/

ponyGE Python http://code.google.com/p/ponyge/

PyNeurGen - Python Neural Python http://pyneurgen.sourceforge.net/
Genetics Hybrid

DRP - Directed Ruby Programming Ruby http://drp.rubyforge.org/

GERET - GE Ruby Exploratory Ruby http://geret.org
Toolkit

standard GE.

2.5 Applications of GE

This section briefly describes some attempts at using GE to solve problems from a number

of disciplines. The variety of problems on which GE has been used speaks for its versa-

tility in problem solving. One popular trend is applying GE to problems in the finance

domain [13]. Biological problems have also been tackled by GE. It has been used to capture

protein structure by Escuela et al.[37] and also to classify fetal heart rate monitoring data

by Georgoulas [47]. GE has also been used to aid in plagiarism detection [21].

The area of design has also been explored. Hemberg and O’Reilly [60] use GE to evolve

digital surfaces and O’Neill et al. [110] use GE to evolve shelters. Fractal curves have also

been evolved using GE [119]. Also along the lines of design, Murphy uses GE to optimize

horse gait animation [101]. Evolutionary music has also seen some attention from GE

researchers. Reddin et al. [130] evolved elevator music. Shao et al. [146] compose and

evolve music using by making GE interactive.

Drchal and Šnorek [36] use GE to optimize both weights and topologies of neural
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networks. Cullen [27] uses a hybrid of GE and Evolutionary Meta Compilation[26] to

successfully evolve digital circuits. Şen and Clark [25] and Wilson and Kaur [172] use GE

to evolve intrusion detection on two different types of systems.

The domain of video game controllers has also been examined by GE practitioners.

Galván et al. use GE to evolve Java code to play the Ms. Pac-Man game [85, 86]. It has

also been used to evolve behavior trees to play one variant of the Super Mario game by

Perez et al.[125].

Source code for GE may be obtained from a number of places. Table 2.1 gives some

implementations of GE and their relevant information.

2.6 Summary

This chapter outlines the GE algorithm and how it most notably differs from standard GP.

More specifically, it covers how individuals are represented and modified by evolutionary

operators in GE. It later covers some of the problem areas to which GE has been applied

and various implementations of GE. In the following chapter a history of approaches to

modularity in GP and GE is presented.

23



Chapter 3

A Background of Modularity in

Genetic Programming

Before moving to the experimental chapters of this thesis, an understanding of how mod-

ularity can be defined is needed. It is also important to have an understanding of previous

work in modularity and GP. This chapter covers these topics by first reviewing the ori-

gins (Section 3.1) and definitions of modularity and modules give by previous researchers

in Section 3.2. Section 3.2.1 also covers different application areas of modularity. Next,

Section 3.3 presents a survey of approaches to modularity in GP. Finally, Section 3.4 sum-

marizes the gaps in GP modularity literature and how the remainder of this thesis addresses

those gaps.

3.1 Origins of Modularity

Before examining how modules and modularity can be defined, this section gives a brief

history of how modularity came into use by EC practitioners. The pioneering work of

Wallace [169] and Darwin [28] propose that species in nature are able to evolve and adapt
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to their environment through natural selection. Borrowing from these principles, it is also

possible to evolve computer programs to solve problems [61, 73, 48]. However, the natural

evolution discussed by Darwin [28] and Wallace [169] took place over many years, which is

an unrealistic time frame for solving many computer science problems. Wagner [162] dis-

cusses that in order to more efficiently harness the power of evolution, computer scientists

have become more interested in what aspects of evolution encourages a faster adaptation in

members of the evolving population. How quickly the population is able to adapt to solve

a given problem can be thought of as “evolvability.” Altenberg [6] defines an Evolvability

Theorem which can be summarized as the probability a population generates individuals

fitter than the current best fit individual1. This can also be thought of as individuals im-

proving in an accretive or stepwise manner. In order for this type of adaptation to take

place, individuals must be able to improve without, or only minimally, sacrificing previ-

ously discovered, beneficial information. The concept of modularity comes into play here.

By enabling some form of modularity, it is possible to protect parts of individuals’ geno-

types that encode a specific functionality from disruption due to mutation or crossover

operations.

1Wagner [162] gives a more detailed definition of Altenberg’s Evolvability Theorem: the probability
that a population generates individuals fitter than any existing is

F (wmax)
= a

{

R (wmax) + β̄u (wmax) + Cov
[

βjk (wmax) ,
wjwk

w2

]}

where a is the maximal rate at which new genotypes are generated by mutation and/or recombination.
R (wmax) is the probability that a random sampling of genotypes yields a genotype with larger than the
currently best, β̄u (wmax) is the average search bias, the probability that the mutation and/or recombi-
nation of the given genotype produces better genotypes, and Cov

[

βjk (wmax) ,
wjwk

w2

]

is the covariance
between the current fitness of genotypes and the probability to produce betters ones by mutation and/or
recombination.
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3.2. DEFINING MODULES AND MODULARITY

3.2 Defining Modules and Modularity

Modularity is an abstract concept that involves a problem or object being decomposable

into elements which are able to operate independently. However, in the real world, the

decomposition of problems into completely independent sub-problems is unrealistic in most

cases. However any problem is divided, the different components will interact with each

other at least to a small degree. It is also possible that some problems are unable to be

subdivided and decomposed into more manageable pieces. Because of this, Simon [148]

suggests that problems should instead be referred to as nearly decomposable. He goes on to

give two examples of this decomposition in the form of parables about two watchmakers and

opening a lock on a safe. The following is a paraphrasing of Simon’s [148] two watchmaker

parable.

Hora and Tempus are two watchmakers who craft exquisite watches and con-

stantly receive phone calls with orders for more watches. Hora profits greatly

and his business succeeds, however Tempus is unable to keep up with the de-

mand for his watches and his business fails. Both watchmakers use 1000 parts

in each watch. The difference between the watchmakers is their watchmaking

technique. The method Tempus uses to build his watches requires every piece to

be in place before he can set a watch down. If interrupted, the watch falls apart

and he must start assembling from the beginning. If his phone is constantly

ringing, he is frequently interrupted and must restart building his watches. Hora

developed a method where his watch may be assembled in a hierarchical man-

ner. At the lowest level of the hierarchy are sub-assemblies of parts comprised

of 10 parts each. Once 10 of these sub-assemblies have been completed, the can

be combined into a larger sub-assembly, and 10 of the latter sub-assemblies can

be combined to create the entire watch. Before and sub-assembly is completed,
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if parts or put down they will fall apart. However, a completed sub-assembly

will remain together if left alone. If Hora is interrupted while working on a

sub-assembly of a watch, only the progress on that sub-assembly is lost.

The moral this parable is that the more decomposable or “modular” approach to build-

ing watches is preferable because it allows for a type of checkpointing while building a

watch. Hora puts together small amounts of pieces to create self-contained assemblies of

the watch. They do not rely on any of the other (sub)assemblies to hold their form. By

creating a number of the initial sub-assemblies and treating each one as a single element

instead of a group of elements, Hora is able to solve small pieces of the watch making prob-

lem at a time. After solving the smaller pieces of the problem, he can use the combined

pieces to create larger assemblies. Now, a summary of Simon’s [148] safe lock example is

given.

Imagine a safe with 10 dials where each dial has 100 settings. This means there

are 10010 different combinations for the safe. Assuming one would on average

need to attempt half of the possible combinations before finding the solution, 50

billion billion combinations would need to be attempted. However, if the safe

had a defect and each dial made a clicking noise when it was set to the correct

combination, the number of combinations to search would be greatly reduced

to 10 × 50 = 500. This reduces the problem from being practically impossible

to being fairly easily solved.

In the safe lock example, Simon shows how it may be possible to modify a problem

such that it can be decomposed into more easily solvable sub-problems. By modifying

the safe in the example, he shows that decomposing the problem into 10 sub-problems the

combinatorial complexity of the problem as a whole decreases. Once a single sub-problem is

solved, it can be left alone, and focus can be shifted to other, unsolved sub-problems. This

type of approach to problem solving can be referred to as “selection by components” [148],
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where each “component” can be considered a module.

While Simon [148] explains modularity in a more general sense, there has also been

much effort given to the definition of modularity in EAs. It is common for researchers [29,

30, 31, 32, 134, 135, 136, 137, 139, 140] to consider finding modules in GP the same as

identifying building blocks.2 Using this definition, modules must be low-order schemata

of above-average fitness. However, it is possible to discover modules that are neutral or

even detrimental to the population. Because a building block must improve a solution’s

performance, it is important to understand that a module is not necessarily a building

block. Modules may indeed be harmful or neutral, which violates the definition of a

building block. Garibay et al. [42, 43, 44, 45] show that the search space increases when

identifying modules, regardless of the quality of the modules discovered. They show that

the increased search space may be overcome if the discovered modules are sufficiently useful.

After this discussion of how modules may be defined, it is important to recognize that

modules may be considered as one or both of the following:

1. Modules may be an entity with more internal connections than external connections.

By thinking of modules in this way the human brain (or the brain of any other crea-

ture) can be considered a module. The brain is extremely interconnected, especially

when compared to the number of connections it makes to the rest of the body.

2. Or, modules may be an entity which is repeatedly used in a larger entity. To help

illustrate this view of modules, consider the floors of a skyscraper. If each floor of

a skyscraper is a module, it is easy to see how repeatedly placing identical floors on

top of each other is able to create the building as a whole.

It is important to note that these understandings of modules are not exclusive of each

other. The human feet illustrate this. Human feet each have many components such as

2More information on building blocks and schema can be found in the work of Holland [61] and Gold-
berg [48].
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bones, tendons, muscles, and, in the majority of cases, five toes per foot. The high level

connections between these components allow the foot to be considered a module because

it has more internal connections than external. In addition to being highly interconnected,

humans generally have two feet which are mirrors of each other. In the case of human feet,

two mirror-identical, highly interconnected elements are used as part of a larger entity, the

body. In Section 3.3, numerous approaches for incorporating modules into EC systems

are presented. It is important to realize that the modules discussed in these approaches

may be viewed under either or both of the classifications mentioned here. It should also

be emphasized that modules in the context of GE are encapsulated sub-derivation trees

containing more than one primitive or preexisting module, or a combination of primitives

and modules.

3.2.1 Applications of Modularity

Modularity is not a concept that is important only in GP systems. It has been shown to

be useful in a variety of areas of computer science. This section outlines some of these

areas and popular work in those areas.

Software Engineering

One of the most obvious applications of modularity for a computer scientist is in program-

ming. It is commonly understood that any large software engineering project should be

broken into separate packages, files, classes, and functions. Even smaller programming

undertakings should at least be divided into separate functions. Similar to modularity in

biological systems, modularity in programming preserves strong linkages between function-

ally similar pieces of code. Meyer [94] lists a number of reasons why software should be

implemented in a modular fashion. Of those, some of the most familiar to GP practitioners

will be reusability and robustness. These two features of modular software design enforce
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P1

C1

C2
C3

C4

P2

C5

C6 C7

C8

Figure 3.1: This figure shows two software packages (P1 and P2) each with a number of classes
(C1-C8) inside them. The classes within each respective package are used by each other (denoted
by solid lines). It is also possible for a class to interact with classes from a different package
(denoted by a dashed line).

the benefit of code reuse that is much-discussed with examining modularity in GP. An

example of a modular software system can be seen in Figure 3.1.

Neural Networks

Modularity has also been shown to be beneficial in the realm of artificial neural networks

(ANNs) [141]. Some related work in modular neural networks has been done by Gruau [49]

who uses a GA to create sub-networks which may be used as modules in a larger neural

network. In later work, Gruau [50] they alter the GA to use a form of Automatically Defined

Functions (ADFs) which encode sub-neural networks that can be reused by other neural

networks. Modularity has also been examined more recently in the HyperNEAT [154]

algorithm. Clune et al. [22] show that adding modularity to HyperNEAT improves its

performance on a simplified version of the Retina Problem, but even with modularity it

is still unable to perform well on the complete Retina Problem [161]. Verbancsics and

Stanley [161] also extend HyperNEAT to create modular neural networks but are able to

significantly increase the performance of HyperNEAT on the Retina Problem.
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Robot Behavior

Another area that has seen the benefits of incorporating modularity is robotics. Early work

Calabretta et al.[18, 19, 20] use a combination of a GA, a neural network, and modules to

evolve a robot controller which clears garbage from an arena. Other work training robots

comes from Olmer et al. [104] and Saunders et al. [143] who decompose their respective

problems and into more easily solvable sub-tasks.

Design

Evolutionary design researchers have also shown that modularity is beneficial when using

EC methods for their various design tasks [82, 83]. Hornby [64] shows that enabling

modularity, hierarchy, and regularity improve the scalability of evolutionary design systems.

Hornby et al. [63] also show that using a representation which enables modularity, hierarchy,

and regularity is able to evolve more scalable designs for 3D robots. The importance of

modularity is also discussed in the context of designing commercial products (lamps in this

particular example) [65].

3.3 Modularity in Genetic Programming

Modularity has been a popular topic for GP research since the early work of Koza’s Au-

tomatically Defined Functions (ADFs) [74] and Angeline and Pollack’s Genetic Library

Builder (GLiB) [9]. In GP, incorporating modularity into an existing system can be ac-

complished in numerous ways. Modules may be extracted from solutions already discovered

by evolution or may evolve on their own. How this is done depends on the aims of the

developer and the representation they choose for their GP system. Methods like this typi-

cally use modularity as an afterthought or an extension of a GP system. Finding modules

in this way can be considered taking a “top-down” approach to modularity. However, it
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is also possible to represent solutions by encoding them in an explicitly modular fashion.

Contrary to the “top-down” approach, enabling modularity in this way can be thought of

as a “bottom-up” approach. Figure 3.2 illustrate how primitives, modules, and solutions

can be created in the top-down and bottom-up approaches. This section presents how

researchers have approached modularity using these kinds of methods. Due to the fact

that there are so many methods and slight variations of these methods, Tables 3.1 and 3.2

list these approaches and how they discover and make modules available to evolution.

It is important to note that the approaches listed in Sections 3.3.1 - 3.3.3 all focus on

discovering modules or generating individuals in a modular fashion, but there are other

veins of modularity research in GP which are more theoretical or do not focus on the dis-

covery of modules. One such work is that of Woodward [173], where he shows that the size

of a solution in GP is independent of the function set when modularity is permitted. The

significance of this is that modules are able to remove the bias of the function set. Another

such body of work comes from Krawiec and Wieloch [78, 77], who examine functional

modularity. They use the term functional modularity to describe modules whose seman-

tics fulfill requirements of some subgoal of a problem. Based on their results, Krawiec and

Wieloch propose that functional modularity may provide better scalability on certain prob-

lem classes. In more recent work Krawiec [75] explores the semantics and modularity of

programming tasks. He shows that there exists large variations of semantic characteristics

among programming tasks and that this variation affects the modularity of the problem.

He also concludes that many real-world programming tasks may be inherently modular,

not just benchmark problems constructed with a modular design in mind.

3.3.1 Automatically Defined Modules

This section presents some of the earliest and most popular methods for automatically

defining modules in GP. The approaches discussed here incorporate modules into GP sys-
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Primitive Space Bottom-Up
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Figure 3.2: This figure demonstrates the top-down and bottom-up nature of how modules may
be identified or created. Modules may be created by combining primitives from a problem which
can then, in turn be used in solutions. Modules may also be identified by looking at solutions
and determining which primitives function together as a module.

tems largely based on Koza’s ADFs [74]. Many of these approaches use pre-defined numbers

of modules which can be evolved by crossover and mutation operations. Some of the work

in this section begins to examine more explicit methods of module identification, but the

majority of those methods are presented in Section 3.3.2.

Automatically Defined Functions

One of the earliest and most influential examples of modularity in GP are Koza’s ADFs [74].

In standard GP, the representation of an individual changes from a single tree to a tree

divided into a results producing branch (RPB) and branches defining ADFs. ADFs are

simply parameterizable subtrees created from the original GP function and terminal set.

The function and terminal sets for the RPB are extended by adding calls for any ADFs.

It is also possible for a user to allow ADFs to call each other, but care should be taken

to ensure that ADF calls do not create an infinite loop. An example of a GP individual

with ADFs and the same individual without ADFs is given in Figure 3.3. They can also
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(a) A GP individual with ADFs
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(b) The GP individual from Fig-
ure 3.3(a) with ADFs converted
into a standard GP individual

Figure 3.3: This figure shows an example GP individual using ADFs (Figure 3.3(a)) and how
that individual would look without ADFs (Figure 3.3(b)). In Figure 3.3(a), ADF 1 takes a single
parameter, p1, and returns the result of adding that parameter to x. ADF 2 takes no parameters
and calls ADF 1 with the parameter x. The RPB uses a number of functions and terminal
symbols as well as both ADFs.

be evolved along with individuals using crossover and mutation operations. The benefit of

ADFs is that they facilitate the reuse of information and functions. When ADFs are able

to call each other, new information can be discovered in a hierarchical fashion. However,

mutation and crossover operations may alter an ADF in a way that reduces the fitness of

an individual or individuals. In his much-cited book discussing ADFs, Koza [74] shows how

GP using ADFs is able to outperform standard GP on a number of benchmark problems

of sufficient difficulty.

As ADFs are one of the oldest forms of modularity in GP, they have been analyzed,

extended, and applied to a number of different benchmark problems. Koza [72] goes on

to extend ADFs with numerous architecture altering operations to create, delete, and

duplicate ADF arguments or ADFs themselves. He shows how his architecture altering
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operations are able to solve a wide variety of benchmark problems. An early vein of work

by Bruce [15, 16] applies GP with ADFs to the problem of generating object-oriented

programs. Bruce [17] later went on to use ADFs with a stack-based form of GP [126] on

the Lawn Mower problem.3 He showed that ADFs are able to significantly improve the

performance of his implementation of stack-based GP. Jassadapakorn [66] also experiments

with ADFs, but instead of allowing a fixed number of ADFs, individuals can have anywhere

from 0 − 16 ADFs. Brock [14] uses ADFs across multiple runs. In his work, Brock [14]

attempts to solve Even Parity problems of increasing difficulty. He begins by attempting

the Even 4 Parity problem. When an individual solves it, that individual’s ADFs are

saved and added to the function set of the RPBs and ADFs of another run to solve a more

difficult Even Parity problem. He shows that saving ADFs of good individuals and seeding

them into new evolutionary runs greatly reduces the number of fitness evaluations needed

to solve the Even Parity problems compared to GP with standard ADFs. O’Reilly [118]

examines ADFs by applying GP with ADFs to Even Parity Problems. She extends a

simulated annealing [131] algorithm by adding ADF functionality. Then, she compares the

results of using standard GP, GP with ADFs, simulated annealing, and simulated annealing

with ADFs. The results of this work showed that using simulated annealing with ADFs

was superior as Even Parity problem instances became more difficult. One common trait

about research outlined here is that there is no standard functionality to evolve the ADFs

themselves. For most of the work mentioned, the basic mutation and crossover operations

are used. Operators to alter ADFs are sometimes defined, but when and how the ADFs are

changed is random. Because ADFs have the potential to be very influential in individuals,

simply allowing evolution to change them via mutation and crossover events may be sub-

optimal. It may be possible to develop a method to optimize ADFs and further improve

GP’s search potential.

3Descriptions of the Lawn Mower, Even Parity, Santa Fe Ant Trail, Symbolic Regression, and other
common GP benchmark problems can be found in Koza [74].
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One body of work by Ahluwalia and Fogarty [5] tries to optimize ADFs before they

are used by individuals. They accomplish this by creating a sub-population for each of

two ADFs available to the main individuals. The populations for the main individuals and

ADFs are only allowed to exchange information with members of their own population.

References to ADFs are pointed to the best ADF at each generation. Later, Ahluwalia

et al. [4] experiment with various ADF selection strategies showing that selecting ADFs

based on the fitness assigned to them during the evolution of the sub-population and

linking ADFs both an individual in the main population and to another ADF are the best

performing methods. Ahluwalia and Bull [2] go on to coevolve ADFs which are used as

preprocessors for a k -nearest neighbor algorithm. Ahluwalia and Bull [1] further explored

ADFs in GP by creating what they termed evolution-defined functions (EDFs). The EDF

approach allows an unlimited amount of ADFs to be created using compress and expand

operations based on Angeline and Pollack’s [9] Genetic Library Builder (GLiB) (GLiB is

described in more detail in Section 3.3.2). Ahluwalia and Bull [1, 3] show that EDFs

outperform a number of other approaches on a 20-bit Multiplexer problem a selection of

classification problems.

In a similar fashion to the EDF approach, Jonyer and Himes [67] developed Subdue

ADFs (SADFs). The SADF method sends a percentage of the most fit individuals to the

Subdue system [23]. The most frequently occurring subtrees are returned, and one of these

subtrees is converted into an ADF. Once an ADF is created, its definition is added to some

of the worst performing individuals and all occurrences of the subtree from which the ADF

was created are replaced with references to the ADF. Although they do not present any

comparisons of performance against other GP approaches, Jonyer and Himes give insight

into the how the parameters of their SADF approach should be considered.
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Higher-Order Functions and Lambda Abstraction

In other work, Yu [174] adds additional functionality to CFG GP by enabling higher-order

functions and lambda abstraction. By doing this, individuals are able to generate and

use recursive programs with no danger of not terminating. This approach was tested on

a variety of Even Parity problems with the goal of evolving solutions that are capable of

solving any size of Even Parity problem. Yu [174] accomplishes this by evolving solutions

for the Even 2 Parity and Even 3 Parity instances and showing that there are solutions

generated by these instances which can solve any size of Even Parity problem. She also

shows that GP with higher-order functions and lambda abstractions are more efficient at

find solutions than standard GP and GP with ADFs.

ADFs in GE

In addition to the ADFs implemented in GP, ADFs have also been implemented in GE.

O’Neill and Ryan [113] first implemented ADFs in GE by adding ADF definitions into

GE’s grammar. Implementing ADFs in this manner allows the genotypes of the individu-

als to determine each ADF definition and usage in their respective individuals. They show

that GE with ADFs is able to solve more instances of the Santa Fe Ant Trail problem

in fewer generations than standard GE. Hemberg et al. [59, 57] similarly extend GE by

incorporating ADF definitions into GE’s grammar. However, contrary to the single ADF

O’Neill and Ryan [113] encode into GE’s grammar, Hemberg et al.[59, 57] allow for po-

tentially unlimited ADFs to be defined by individuals’ genotypes. They show that, once

again, GE using ADFs is able to significantly outperform standard GE on the Santa Fe

Ant Trail, as well as the Los Altos and San Mateo Ant Trail problems. On the other hand,

Hemberg et al. [59, 57] also show that GE with ADFs showed no significant improvement

in performance on a number of Symbolic Regression instances. Harper and Blair [55, 52]

also extend GE with what they call Dynamically Defined Functions (DDFs). DDFs have
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a similar function to Hemberg et al.’s [59, 57] GE with ADFs in that DDFs allow GE

individuals’ genotypes to determine the quantity and definition of ADFs present in each

individual. In his exploration of DDFs [55, 52], Harper uses Koza’s Minesweeper prob-

lem [74] and shows that GE with DDFs is able to solve more instances of the problem than

GE with ADFs and standard GE. Rodrigues and Pozo [133] also used a grammar-guided

form of GP combined with ADFs and show that using ADFs gives a performance increase

over standard grammar-guided GP on Even 3, 4, and 5 Parity problems.

Macros and Tags

Two additional forms of modularity that are similar to ADFs have also been developed. The

first of these to be discussed are automatically defined macros (ADMs) [149]. Spector [149]

defines a macro as “operator that performs source code transformations.” In the setup

described by Spector [149], macros are used in place of ADFs on instances of the Lawn

Mower, Dirt-Sensing, Obstacle-Avoiding Robot, andWumpus World problems. The second

form of modularity is the use of tags [62]. In GP, tags are a mechanism for naming, or

assigning an address to, a block of genetic code. Once a portion of code has been tagged,

the entire block may be used by calling that tag. Spector et al. [152] use tags with the

PushGP [150, 153] system, as well as standard, tree-based GP [151]. When using PushGP,

Spector et al. [152] show that tags are able to significantly improve PushGP’s performance.

They also show that the same improvements in performance are not always seen with tags

in tree-based GP [151].

3.3.2 Explicitly Discovered Modules

ADFs have been a popular vein of modularity research in GP, but there are also many

other ways to incorporate modules into various GP systems. The methods presented in

this section add modules to their respective forms of GP by developing operators specifically
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to handle the identification, usage, and/or deletion of modules.

Tree-based Modularity

One of the first and most cited methods for identifying modules comes from Angeline and

Pollack’s GLiB [9, 8]. In this approach, a roulette selection is used to pick an individual

from the population to contribute a module. Then a random subtree from this individual

is compressed to a user-defined depth, and a new function is created using the compressed

subtree. Any branches of the subtree below the given depth are turned into parameters.

Angeline and Pollack [10] also experiment with GLiB by evolving Tic Tac Toe and Tower of

Hanoi players, but they state that GLiB does not add any benefits in terms of performance

to these problems. Kinnear [71], however, compares two GP with ADFs to GLiB and finds

no significant differences in performance.

A similar approach is Rosca and Ballard’s adaptive representation [134, 135, 136]. Rosca

and Ballard [134, 135, 136] create modules out of small subtrees that have been created in

the current generation by crossover and mutation operations. Once modules are discovered,

the function set used to create individuals is extended with the modules. Then, a user-

defined number of the least fit individuals are replaced with randomly generated individuals

from the newly extended function set. Rosca and Ballard [136, 135, 134] show that their AR

method finds less complex solutions to a number of Even Parity problems in less generations

than standard GP and GP with ADFs. In later work, Rosca and Ballard [134, 137, 139, 140]

extend the AR framework and create the Adaptive Representation through Learning (ARL)

approach. The ARL method differs from AR in that ARL only makes modules from

individuals that have a better fitness than their least fit parent. From these individuals,

only the most activated subtrees within a user-defined depth limit are used as modules.

Once these subtrees have been identified, a random selection of their terminal symbols are

converted to parameters. In order to maintain a reasonable number of modules, the average
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fitness of individuals using each module over a fixed number of generations is kept for each

module. When needed, modules with the worst fitness values are replaced by newly created

modules. Rosca and Ballard show that ARL outperforms a random, simulated annealing,

GP, and GP with ADFs on evolving Pac-Man controllers [137, 139, 140].

A later form of module encapsulation is tested by Roberts et al. [132]. They perform

a number of independent GP runs and use individuals from the best run for subtree en-

capsulation. Each of the subtrees created during evolution are evaluated on their own.

The fitness returned by this evaluation and the subtree is stored in a subtree database.

After a user-defined number of runs are completed, the subtree database from the best

run is analyzed and subtrees which have the same fitness are grouped together. A user-

specified amount of the most frequent subtrees from the fitness groups are encapsulated

into terminal symbols and added to the terminal set used in later GP runs. This process

is repeated until the termination criteria is reached. Roberts et al.[132] report that on a

target detection task, their approach for subtree encapsulation finds better solutions faster

than standard GP and is often able to reduce the false alarm rate by up to 75%.

Majeed and Ryan [88] also propose another method for identifying modules. They iden-

tify modules by calculating their contribution to the fitness of an individual by replacing

the subtree with the identity function of the module’s parent node [89]. This is done in

the final generation of a run and only individuals with fitness better than the mean fitness

of the population are used to contribute modules. Only a limited number of modules can

be kept, so Majeed and Ryan [88] define a fitness function for modules based on their pre-

viously calculated contribution, how many times they appear in the population, and how

many times instances of that module were taken from individuals. If there are more mod-

ules in the repository than the size limit, modules with the worst fitness are removed until

the repository is within its size limit. Once the module repository has been created, a new

GP run is started and modules are mutated into individuals. Majeed and Ryan [88] show
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that mutating modules into individuals based on their fitness and randomly outperforms

standard GP on the x4 + x3 + x2 + x Symbolic Regression problem.

Grammar-based Modularity

Another method for identifying modules is Whigham’s work on inductive grammar bias [170,

171]. In this work, Whigham uses a grammar-based form of GP to evolve solutions to the 6

multiplexer problem. In his grammar bias method the most fit individual in the population

is used to find a useful sub-derivation tree. From that individual, one the deepest terminal

symbol is chosen and propagated up the tree to the next production with at least one ad-

ditional terminal or non-terminal symbol at the same level. Next, the altered production

is added to the CFG used to generate individuals. Whigham [170, 171] also allows entire

sub-derivation trees to be encapsulated and added to the grammar. After the grammar

has been modified, productions are picked based on how often they are used in the pop-

ulation. The results of this work show that biasing the grammar led to the probability of

a run finding a solution to increase from 22% to 66%. While is it never stated as such,

Whigham’s work [170, 171] can be thought of as discovering modules in grammar-based

GP and incorporating them into the evolving population through the grammar.

More work in modularity and grammar-based GP has been carried out by Georgiou and

Teahan [46]. They define one method for discovering modules in GE called Constituent

GE (CGE). CGE discovers modules by randomly created small genotypic elements and

evaluating them on a user-defined sub-set of the fitness function used during the actual

evolution of the main population. This is similar to the work of Roberts et al. [132] and

Majeed and Ryan [88] in that a preliminary run is performed to identify module before

they are actually used to evolve complete solutions to the given problem. The phenotypes

of the most fit genotypes are added to a grammar that will be used for the evolution of

the population. Georgiou and Teahan [46] show that CGE is more effective at solving the
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popular Santa Fe Ant Trail benchmark problem as well as the Los Altos Hill [73] and the

Hampton Court Maze [160] problems than standard GE using two different grammars.

Linear GP Modularity

More work identifying modules has been carried out by Li et al. [79]. In their work,

modules are discovered for the linear form of GP, Prefix Gene Expression Programming

(P-GEP) [80]. In this work, Li et al. [79] look for low-complexity, frequently occurring,

sub-structures in the elite individuals in the population when a new best-of-population

individual is found. A user-defined limit is used to control how many of the frequently

occurring sub-structures are compressed and made available to the population as modules.

The elite individuals are then updated by replacing occurrences of the expanded modules

with the compressed versions. Modules in individuals which are no longer among the

most frequently used are expanded to their original form. Li et al. [79] show that their

P-GEP with modules performs at a similar level to standard P-GEP. In further work, Li et

al. [81] extend their work by introducing “loose modules.” These modules only encapsulate

genes that encode functions in P-GEP and leave any parameters to these functions up to

evolution. The mechanism for determining which loose modules are kept or expanded is the

same as in Li et al. [79]. Li et al. [81] show that for Koza’a two box problem [74], P-GEP

with loose modules performs better than GP, GP with ADFs, and standard P-GEP.

Parent et al. [123] also incorporate modularity into a form of linear GP, which they call

compressed GA (cGA). Before any evolutionary operations are performed on the popula-

tion, modules are identified by compressing adjacent elements of the genotype into a single

element. The most frequent of these compressed elements are stored in a dictionary. Next,

a percentage of the population is selected by roulette selection, and if any of the expanded

forms of modules in the dictionary exist in the selected individuals, they are replaced by

the compressed form of the appropriate module. Once individuals are compressed, selec-
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tion, crossover, and mutation operations are performed on the population. Before they

are evaluated, each compressed individual is decompressed, replacing all the compressed

genotypic elements with their original forms. The cGA’s performance is compared to two

common GA problems, OneMax and SEQ, where cGA outperformed a GA on OneMax

but performed poorly on the SEQ problem. The cGA was also used on three GP problems

(Even 5 Parity, x4 + x3 + x2 + x Symbolic Regression, and cos(x) + sin(x) Symbolic Re-

gression) and a data compression problem. On the GP problems, Parent et al. [123] report

that cGA performs better then standard GA on all the GP problems examined.

Graph-based GP Modularity

The final approach in this section adds modularity to the popular form of graph-based

GP, Cartesian GP (CGP) [95]. Walker and Miller [164] do so by adding a compress

operation to encapsulate sub-graphs from the most fit individual at each generation into

modules. These modules are then added to a module list, making them available to all

the individuals in the population. Modules may also be removed from the module list by

an expand operator. This extension of CGP is called embedded CGP (ECGP). Discovery

and deletion of modules in this manner was inspired by Angeline [9, 8]. ECGP has been

shown to solve numerous problem more efficiently than GP, GP with ADFs, and standard

CGP [167, 168, 166, 165]. Kaufman and Platzner [68] experiment with module creation

techniques for ECGP based on the age of nodes (old nodes are made into modules) and the

groups of nodes that form cones. Their results show that age-based and conical modules

reduce the computational effort needed to solve a variety of Even Parity, Multiplexer, and

classifiers for electromyographic signals. A description of the electromyographic signals

classification problem is given in Kaufman and Platzner [68].
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3.3.3 Modular Representation

The previous two sections (Sections 3.3.1 and 3.3.2) present a variety of methods that

have been implemented to discover and use modules in GP. These methods require users

to explore a variety of methods and parameters for how modules should be identified,

deleted, altered, and made available to individuals during evolution. The trade-off for the

work that goes into determining these parameters is that these approaches to modularity

offer the benefit of being compatible with many GP representations. This section presents

alternative methods for introducing modularity into a GP system: designing a GP system

which is inherently modular.

Run-Transferable Libraries

The first modular representation to discuss comes from Run Transferable Libraries (RTLs) [69,

70, 142]. When using RTLs, an individual is represented as a tree, but instead of a typical

GP representation where each node in the tree contains a function or terminal symbol, tree

nodes contain a floating point value (a tag) and an arity value. In a separate library, tree

segments are stored based on their arity. When a tree is determining which functions and

terminals to use, nodes look in the section of the tree segment library that corresponds

with the arity value. The tag is used to determine which function or terminal is assigned

to the tree node. The tags of tree segments in libraries can also be mutated by adding

random numbers to them. Tree segments in the library may also be crossed over. Using

this setup, a run of GP is performed. Over the course of this run, the library of tree

segments is updated based on the frequency of use of each segment over time. During an

initial run, the library is trained. When that run has finished, the trained library is used

on a new problem. Keijzer [69, 70, 142], show that RTLs are able to solve Even 4 and 5

Parity and Lawn Mower problems more efficiently than GP with ADFs.
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Hierarchical GP

Another modular GP representation is Banzhaf et al.’s hierarchical GP (hGP) [12]. In

hGP, an individual has modules local to only that individual (like ADFs). Modules are

hierarchical in the sense that they are comprised of a mix of standard GP nodes and

additional modules, which in turn are comprised of GP nodes and even more modules. The

maximum depth of the hierarchy of modules is user-defined. Banzhaf et al. [12] employ a

modified version of the ARL [137, 140, 139, 134] method for identifying modules. In their

setup, Banzhaf et al. [12] also reduce the likelihood of modules being altered by crossover

and mutation operations the deeper they are in the module hierarchy. They show that

hGP outperforms a four Symbolic Regression problems and the Even 7 Parity problem.

Dynamic Library GP

An approach similar to hGP [12] is Dynamic Lattice GP (DLGP) [129]. Individuals in

DLGP are comprised of subroutines from a hierarchy of layers each with a number of

sub-populations. Sub-populations in each layer evolve independent of each other and are

able to use subroutines from any sub-population at a lower level in the hierarchy. The

individuals in each population use the standard GP crossover and mutation operations but

are also given additional mutation operators. DLGP uses a weighted function measuring

how subroutines are used in main individuals and fit those individuals are to determine a

fitness value for each subroutine. Racine et al. [129] also discuss possible selection schemes

for evolving the various populations. No experimental results are presented in this work.

Shared Grammar Evolution

Another modular representation is the shared-grammar approach introduced by Luerssen

and Powers [87]. In their work, Luerssen and Powers [87] define a new approach called

Shared Grammar Evolution (SGE). In SGE, individuals are defined by a unique, deter-
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ministic grammar called an i-grammar. Each i-grammar is specified using productions

from a p-grammar which is created from the union all the productions in each individual’s

i-grammar and the productions specified in a user-defined population axiom. A mutation

operation is employed to create new productions in the i-grammars in the population. Af-

ter individuals have been mutated, they are evaluated and the productions present only

in the worst individuals are removed from the p-grammar and/or population axiom. Any

newly created productions which are not removed due to their presence in only the worst

individuals are added to the p-grammar for further use in the population. Luerssen and

Powers [87] show that SGE outperforms standard GP on the binomial-3 ((x + 1)3) Sym-

bolic Regression and Santa Fe Ant Trail problems. They also state that SGE outperforms

Cartesian GP, and standard GE on the Santa Fe Ant Trail. However, on the 6-Multiplexer

problem SGE is not as competitive and is outperformed by standard GP, GP using tree-

adjoining grammars, and GP using a CFG.

Table 3.1: This table outlines the approaches to modularity discussed in Section 3.3 and how
they implement methods for identifying modules.

Approach

Module
Accep-
tance

Criteria

Where
Modules are

Selected

When
Modules are

Selected

Evolvable/
Parameter-

ized

Module
Size

GLiB [9, 8, 10, 7] Random Roulette
Every
generation

Yes (branches
exceed depth)

Random
within
depth

AR [136, 134]
Standard
fitness
function

Subtrees
created from
crossover and

mutation

Every
generation

Both
Random
within
depth

ARL [140, 134, 140, 138, 137]
Most

activated
subtrees

Most fit
offspring with
fitness better
than its least
fit parent

Every
generation

Both
Random in
depth (3–5)

ADFs [74] NA NA NA Yes
Same as
RPB

ADFX [66] NA NA NA Yes
Same as
RPB

Ahluwalia [5, 4, 2] NA NA NA Both
Same depth

as
individuals
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Module identification methods continued . . .

EDFs [1, 3] NA NA NA Both
Same depth

as
individuals

DDFs [55] NA NA NA Yes
Same depth
as RPB

ADMs [149] NA NA NA Both
Same as
RPB

SADF [67]
Frequency

based
Most fit

individuals
Every

generation
Parameterized Unlimited

Tags [152, 151] None Any individual Anytime Evolvable Unlimited

Majeed [88]

Hybrid
utility/

frequency
function

Individuals
with fitness
greater than
pop. mean

End of an
initial run

No None

RTLs [69, 70, 142] Library NA Fixed step Evolvable None

Roberts et al. [132]
Frequency

of
semantics

Everywhere
Between GP

runs
No Unlimited

ECGP [166] Random Anywhere Anytime Both Unlimited

Whigham [170]
Based on
depth

Most fit
individual

Anytime Parameterized
Grammar-
bound

Rodrigues [133] NA NA NA Both
Same as
RPB

Hemberg [57, 59, 113] NA NA NA Evolvable
Same depth
as RPB

Li [79]
Frequency-

based
Elites (top 4
individuals)

Anytime No
Complexity

of 1

hGP [12]

Replace
module
with

random
subtrees

Most fit
offspring with
fitness better
than its least
fit parent

Every
generation

Both
Random in
depth (3–5)

ADATE [105, 108, 106, 107]
Pop.
fitness
based

Created from
primitives/
existing
functions

Anytime Yes No

DLGP [129]

Weighted
function of
usage and
fitness

statistics

NA NA Both NA

cGA [123]

Unique
substring
of given
length

Roulette
selection of
individuals

every
generation

No
User-
defined
length

SGE [87] NA NA NA Evolvable Unlimited

Yu [174] NA NA NA Both Unlimited

47



3.3. MODULARITY IN GENETIC PROGRAMMING

Table 3.2: This table outlines the approaches to modularity discussed in Section 3.3 and how
they use/make available to the population modules they’ve found.

Approach
Module

Representation

How
Modules

Are Incor-
porated
into the

Population

How
Modules

Are Stored

Maximum
Number

of
Modules

Module
Replacement

GLiB [9, 8, 10, 7] LISP function
Seeding/
crossover

Library/
added to

primitive set
Unlimited

Removed
when not

used in pop.

AR [136, 134] LISP function
Seeding/
crossover

Function set Unlimited None

ARL [140, 134, 140, 138, 137] LISP function
Seeding/
crossover

Function set Unlimited None

ADFs [74] LISP function Initialized
Local to
individual

Multiple
of pop.
size

NA

ADFX [66] LISP function Initialized
Local to
individual

0–16 per
individual

NA

Ahluwalia [5, 4, 2] LISP function

Initialized,
fitness, and
random
selection

Per-ADF
sub-

populations
2

Fitness-
based

EDFs [1, 3] LISP function
Initialized
and fitness
selection

Per-EDF
sub-

populations
2/unlimited

Compress/
expand

operators

DDFs [55]
Function
defined by
mapping

Initialized
Local to
individual

Unlimited NA

ADMs [149] LISP function Initialized
Local to
individual

Multiple
of pop.
size

NA

SADF [67]
Parameterized

function
Seeded Library Unlimited None

Tags [152]
Instructions
are tagged

Call to
tagged

instructions

In tag data
structure

Unlimited
Untag

Instruction

Majeed and Ryan [88] Subtree Mutation
Module data
structure

Population
size

None

RTLs [69, 70, 142] Subtree

Library
elements
make

individuals

Library
Pop. size
(500)

Frequency-
based

Roberts et al.[132]
Encapsulated

subtree

Initialization,
crossover,
mutation

Function set
User-
defined
value

Frequency of
semantics

ECGP [166]
Compressed

linear
genotype

Mutation Library Unlimited
Random
expand
operator

Whigham [170]
CFG

production
Seeding/
mutation

In CFG Unlimited None
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Module usage methods continued . . .

Rodrigues [133]
Function
defined by
mapping

Initialized
Local to
individual

Function
of pop.
size

NA

Hemberg [59, 57] and O’Neill [113]

ADF
definitions are
defined in a
CFG and by
evolution

ADFs can be
crossed over
and mutated

In CFG
Function
of pop.
size

NA

Li [79]
Compressed
phenotype

Seeded Module table 5
Frequency-

based

hGP [12]
Encapsulated

function

Seeded,
Crossover,
Mutation

Local to
individuals

1 per
individual

Based on
parent’s
fitness

ADATE [105, 108, 106, 107] ML function
Seeding/
crossover

Stored in
individuals

Unlimited
Based on
utility in

pop.

DLGP [129] subtree
Individuals
are build
from them

In sub-
populations

Function
of

hierarchy
depth,

number of
pops., and
pop. sizes

Based on
fitness

cGA [123]
Compressed
genotype
elements

Randomly
seeded into a
fraction of

the
population

Module
dictionary

User-
defined

Modules are
decom-

pressed at
the end of a
generation

SGE [87]
Productions in
a grammar

Individuals
are made
using the
grammar

with modules

In a
grammar

Unlimited

Productions
used

exclusively
in worst

individuals
are removed

Yu [174]

Lambda
abstraction/
Higher-order

function

Initialized
Local to
individual

Unlimited NA

3.4 Research Gaps

While enabling and exploiting modularity in GP has been the subject of much research,

there are still many openings to be filled by future research. In particular, the study

of modularity in GE has been sparsely visited. Focusing on only GE-related work, the

majority of it has been the addition of a form of ADF by modifying GE’s grammar [113,

59, 55]. One piece of research has been carried out that modifies GE’s grammar with

explicitly discovered modules [46], but this is only done before the actual evolution of
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the population. There are numerous gaps in the research around exploring methods for

modifying GE’s grammar with modules during evolution. This thesis fills some of these

gaps by exploring different methods and parameters for incorporating modules into GE’s

grammar and the effects these methods have on the fitness of the population.

Returning to the broader scope of GP, there are still many openings in modularity

related research. Many different approaches for discovering modules have been developed

over the years, some with more success than others. Despite all of this existing work, there

has been minimal work examining the features of modules that make them valuable or how

they are used by the population. This thesis covers some of these openings by defining

new module identification operators, exploring some of the most influential parameters

that impact their performance, and investigating the characteristics of modules discovered

by these operators and how the modules are used by the population during evolution.

3.5 Summary

This chapter reviews all the relevant research of modularity in GP. From the work presented

above, it can be seen that modularity has been identified as an important issue since

shortly after GP gained popularity. There have been numerous attempts at developing

modular GP systems or incorporating modularity into a pre-existing GP system. Modular

approaches have been developed for standard GP and many additional forms of GP, such

as linear, graph-based, and grammar-based. However, little work has been undertaken in

terms of incorporating modularity into GE, aside from the addition of GP-style ADFs. The

remainder of this thesis first examines how modules can be incorporated into GE and then

how different methods for identifying modules in GE. It should also be restated (originally

stated in Section 1.1) that in the following chapters of this thesis, a module is defined as

“an encapsulated sub-derivation tree containing more than one primitive or preexisting
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module, or a combination of primitives and modules.”
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Part II

Grammar Modification: Making

Modules Available to the Population
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Chapter 4

Initial Module Identification and

Grammar Modification

This chapter describes the initial method used to identify and add modules to GE’s gram-

mar. It examines two methods for adding modules to the grammar, and a variety of

parameters concerning how many modules should be kept and how often they should be

identified. The effects of adding modules to the grammar are also explored. Recalling the

research questions outlined in Section 1.2.1, this chapter answers questions 1.2.1 - 1.2.1.

The work presented in this chapter more deeply examines work published by Swafford et

al. [159].

There have been numerous implementations for identifying and using modules, as de-

scribed in Chapter 3. A commonality between each of these is that after modules have been

identified, they are made available to the individuals in the evolving population. There are

many approaches that can be taken to accomplish this, but the most appropriate depends

on how modules are stored after their discovery and how it is intended that they should

be used by the population. For example, most approaches to modularity discover modules

during an evolutionary run in anticipation that they may be used to enhance performance
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of that run. One exception to this is Keijzer et al.’s Run Transferable Libraries [69], which

use modules discovered in completed evolutionary runs to seed subsequent trials. The

work undertaken in this thesis is implemented under the former, expecting modules to

be valuable during a single run. Many canonical GP approaches simply add modules as

extra components of the representation used for creating individuals [34, 134, 170]. When

modules are added to the function set of a GP system, they will only be introduced into

the population by mutation events or a special operator that seeds individuals with the

newly discovered modules. Using GE’s standard Integer Flip mutation and Single Point

crossover, it is possible to incorporate modules into the population without any additional

operations. After examining various methods previously used to make modules available to

the population, simply adding them to GE’s grammar appears to be a sensible approach.

This is because it is both easy to implement and past research in modularity for grammar-

based GP adds modules to the function set from which solutions are created [170]. The

remainder of this chapter focuses on how modules can be added to GE’s grammar and the

different effects these changes to the grammar have on the population.

4.1 Discovering Modules

The first step in altering GE’s grammar with modules is identifying the modules them-

selves. The focus of this chapter is not how modules are discovered, but rather, how the

incorporation of them into GE’s grammar changes different aspects of the population. For

this reason, only one method for identifying modules is used in this chapter. The approach

for finding modules used in this chapter is novel and was implemented for the purpose of

this research. It was strongly inspired by the work of Majeed and Ryan [88, 89]. Additional

methods for finding modules are the focus of Chapter 6

When finding suitable modules, a parent individual for the module must be picked
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first. Once a suitable parent has been selected, a portion of that individual must be chosen

as a candidate module and evaluated to determine if it should be made available to the

population. The algorithm for this process is given in Algorithm 4.1. The experiments

presented here use an iterative approach where each individual, I, in the population is

given the opportunity to contribute a module.1 The next step in the module identification

process is picking a candidate module from the parent and evaluating it. To do this, a

random node on the parent individual’s derivation tree is picked as a candidate module,

λ. A copy of I, I ′ is made and λ is then replaced by n (a user-picked integer) randomly

generated sub-derivation trees of the same depth as λ. After each replacement, the parent

individual, I ′, is re-evaluated and the difference between the fitness of I and the fitness

of I ′ is calculated and recorded. If ρ of the recorded differences are greater than 0 for

ρ ∈ N and 0 < ρ ≤ n (ρ is user-defined), then λ is saved. The mean of the stored

updated fitness values is used as the module’s fitness. At this point it should be noted

that the fitness of modules is maximized, as opposed to the fitness of individuals, which is

minimized. If an existing module has the same sub-derivation tree as λ, λ is discarded.

Once every individual has been given the chance to contribute a module, the identified

modules are sorted by their fitness values. The best κ, κ ∈ N and 0 < κ ≤ population size

modules are kept, where κ is also user-defined. The interval at which modules are identified,

τ , is a user-specified integer representing how many generations must pass before modules

are identified and added to GE’s grammar. The values for κ and τ can be very important.

The κ value sets a limit as to how many modules may be kept in total. This effectively

sets an upper limit on how much the grammar may be changed at one time. The τ value

is similar in that it sets a limit for how often the grammar is able to change.

1A roulette selection for the parents was tested in preliminary experiments, but the results showed no
difference in performance.
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Algorithm 4.1 The mutation module identification algorithm

M = new list()
for Individual I in Population do
If = get fitness(I)
λ = get random sub derivation tree(I)
λd = get depth(λ)
iλ = index of sub derivation tree in individual(I, λ)
fitness diffs = new array of size(n)

i = 1
while i ≤ n do
I ′ = copy of(I)
randi = create random sub derivation tree with depth(λd)
replace sub derivation tree at index(I ′, randi, iλ)
I ′f = get fitness(I ′)
fitness diffs[i] = If − I ′f
i++

better count = 0
for ∆f in fitness diffs do
if ∆f < 0 then
better count++

keep candidate = true
if better count < round(ρ× n) then
keep candidate = false

for Module µ in M do
if get sub derivation tree(µ) == λ then
keep candidate = false

if keep candidate then
λf = mean(fitness diffs)
M .save as module(λ)
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4.2 Grammar Modification by Modules

After modules have been identified, they must be made available for the population to use.

This is done by simply adding the modules to the appropriate rules in the grammar. Two

methods have been developed to do this.

The first of these methods takes discovered modules and adds them as productions

directly to rules in the grammar depending on which rules’ left-hand-symbols match the

modules’ root nodes. The following example explains this process in more detail. First,

consider the simple grammar in Figure 4.1, an individual producible by that grammar (Fig-

ure 4.2(a)), and a module selected from that individual (Figure 4.2(b)). This module is

incorporated into the grammar by taking the module’s phenotype (move move) and making

it a production of the rule matching the module’s root symbol. Since the module’s root sym-

bol is <acts>, the module will be added to the rule: <acts> ::= <act> | <act> <acts>.

The updated rule is now: <acts> ::= <act> | <act> <acts> | <mod_0>, and a new rule

is created: <mod_0> ::= move move. For the purpose of better illustrating the differences

between modifying the grammar in this manner and an additional approach that will be

described later, a second module is also added to the <acts> rule: <mod_1>. An extra rule

is also added to the grammar for this module <mod_1> ::= move left move.

The complete grammar with this modification is shown in Figure 4.3. Given the nature

of the phenotype to genotype mapping in GE, it is quite obvious that modifying the

grammar in this manner has the potential to be extremely destructive. When a new

production is added to any rule in the grammar, it is likely that individuals using that

rule will no longer map to the same phenotype. This probability that a rule retains its

original mapping decreases even further as more modules are added to that rule. Consider

an individual that uses the grammar in Figure 4.1 and mapping of said individual begins

with the <acts> non-terminal and picks the <act> non-terminal. If a single module is added
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<acts> ::= <act>

| <act> <acts>

<act> ::= move

| left

| right

Figure 4.1: A sample grammar for the Lawn
mower problem

move

<acts>

<acts>

left <act> <acts>

<act>move

<act>

(a) A sample individual

<acts>

<act> <acts>

<act>move

move
(b) A sample
module

Figure 4.2: A sample individual producible
by the grammar in Figure 4.1 and a sample
module from that individual.

<acts> ::= <act>

| <act> <acts>

| <mod_0>

| <mod_1>

<act> ::= move

| left

| right

<mod_0> ::= move move

<mod_1> ::= move left move

Figure 4.3: A sample grammar with an
added module. The module has been added
directly to the rule corresponding to the
symbol of its root node

<acts> ::= <act>

| <act> <acts>

| <acts_mod_lib>

<act> ::= move

| left

| right

<acts_mod_lib> ::= <mod_0>

| <mod_1>

<mod_0> ::= move move

<mod_1> ::= move left move

Figure 4.4: The same grammar as in Fig-
ure 4.3 except using module libraries to add
the module to the grammar

to the <acts> rule in the grammar, there is only a 1
3 chance that the <act> non-terminal

will be picked during subsequent mappings. As more modules are added to this rule, the

chances of the mapping producing the same phenotype will be greatly reduced.

An alternative method was also used to modify the grammars. In this approach, module

library non-terminals were added to the grammar instead of adding the module directly.

Again, consider the initial grammar (Figure 4.1), individual (Figure 4.2(a)), and module

(Figure 4.2(b)). Using the module library method, a new non-terminal will be added to
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the rule matching the module’s root node:

<acts> ::= <act> | <act> <acts> | <acts_mod_lib>.

Next, a module library rule is created to hold the module production:

<acts_mod_lib> ::= <mod_0> | <mod_1>. If multiple modules are discovered with the

same root node symbol, they are all added to the same module library rule. Addi-

tional rules are created for the actual module phenotypes: <mod_0> ::= move move and

<mod_1> ::= move left move. The grammar modified in this way can be seen in Fig-

ure 4.4. The original grammar when using and not using modules libraries is always the

same. For example, on the Lawn Mower problem the grammar in Figure 4.1 would be

the base grammar before modules are added, with or without module libraries. By using

the module library non-terminals, the addition and subtraction of modules is localized to

those library non-terminals. This should have the effect of less disruption to the individuals

when the grammar is being modified and they are remapped. Figures 4.1, 4.2, 4.3, and 4.4

show how the grammar used in the Lawn Mower problem may be modified both using and

not using modules libraries. Because changing GE’s grammar means each individual’s

genotype-to-phenotype mapping may have changed, each individual must be remapped to

use the new grammar. An example of this is given in Figure 4.5. The repercussions of this

remapping will be discussed in Section 4.4.

4.3 Experimental Design

To understand how the grammar modification methods impact search in GE, the experi-

mental setup compares the following:

1. the differences between modifying the GE’s grammar using (UL) and not using (NL)

module libraries;

2. the effects of modifying the grammar more or less frequently (τ5, τ10, and τ20);
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Grammar

<acts> ::= <act>
| <act> <acts>

<act> ::= move
| left
| right

3 5 4 12 right move

Chromosome Phenotype

Before Remap:

<acts> ::= <act>
| <act> <acts>
| <acts_mod_lib>

<act> ::= move
| left
| right

<acts_mod_lib> ::= <mod_0>
| <mod_1>

<mod_0> ::= move move
<mod_1> ::= move left move

3 5 4 12 rightAfter Remap:

Figure 4.5: This figure shows how modifying GE’s grammar may alter the phenotype of an
individual

3. and the performance of these approaches against standard GE.

Table 4.1 shows the standard parameters for all evolutionary runs unless otherwise noted.

For the following experiments, modules are not allowed to contain a single terminal or a

single module. Modules must be comprised of multiple terminal symbols, a combination

of terminals and pre-existing modules, or multiple modules. Figure 4.6 illustrates how

the module identification, module replacement, and grammar modification operations are

added to GE’s evolutionary loop.

These variations of GE are tested on four typical benchmark problem types for GP:

the Santa Fe Ant Trail, Even 7 Parity, x5 − 2x3 + x Symbolic Regression, and 8× 8 Lawn

Mower problems. Fitness is minimized for each of these benchmark problems. Each of

these problems is used here because it has been shown to benefit from modularity [59, 74,

127, 165].
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Initialization

Identify modules this genera-
tion? (generation % τ == 0)

Module Identification

Standard evolutionary ops.
(Selection, Crossover,
Mutation, etc...)

Module Replacement

Grammar Modification

Evolution finished?

Done

Yes
No

YesNo

Figure 4.6: The evolutionary cycle with module identification and grammar modification

Table 4.1: Experimental setup for all evolutionary runs unless otherwise noted

Parameter Value
Runs 50
Fitness Evaluations 100000
Population 500
Selection Tournament (Size 5)
Wrapping None
Crossover Single Point (90%)
Mutation Int Flip (1%)
Elites 50
Initialization Ramped Half and Half
Replacement Generational
Max. Derivation Tree Size 25 (Lawn Mower - 100)
κ 5, 20, All
ρ 75% of n
n 50 (number of evaluations per candidate module)
τ 5, 10, 20
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Another characteristic of the module identification approaches is in regards to the

time overhead for identifying modules and modifying the grammar more or less frequently.

When looking for new modules, each individual is re-evaluated 50 times to estimate the

fitness contribution of a candidate module (recall Section 4.1). After the new modules are

added to the grammar, each individual must be re-evaluated again. For the experiments

carried out in this chapter, each module identification and grammar modification uses at

most 25500 additional fitness evaluations. While it is possible for the different variants to

use fewer, they tend to use between 19000 and 24500 on average. This alone raises issues

concerning how many fitness evaluations are used to identify modules. These issues are

addressed in Chapter 6.

4.4 Results and Discussion

This section identifies and explains the effects of different variations for modifying GE’s

grammar. Primarily, the effects of using and not using module libraries in the grammar,

how frequently the grammar is modified, and how many modules are used when the gram-

mar is changed. These are all analyzed together because modifications to one of these

features will impact the others. Because there are a number of variations for collecting

and using modules, the effects of these are compared and contrasted against each other

before comparing them to a typical GE setup. Table 4.2 lists the abbreviations used to

differentiate the various approaches examined in this section.

4.4.1 Module Libraries

The first variations to be discussed are the manner in which the grammar is enhanced with

modules. Recall from Section 4.2 that modules may be added to GE’s grammar in one of

two ways: using modules libraries or not using module libraries. The comparisons here use
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Table 4.2: List of abbreviations that represent different variations of the approaches used in the
following experiments

Abbreviation Meaning
NL Approach does not use module libraries
UL Approach uses module libraries
κ-5 Approach uses κ = 5
κ-20 Approach uses κ = 20
κ-All Approach keeps all modules discovered
τ -5 Approach uses τ = 5
τ -10 Approach uses τ = 10
τ -20 Approach uses τ = 20

τ = 5. When modules are identified, three values for κ are examined: 5, 20, and keeping all

the modules identified. Also, approaches using (UL) and not using (NL) module libraries

to add modules to GE’s grammar are given. As each of the problems under examination

exhibit different characteristics with these parameters, results and discussion of each will

be given in turn.

Santa Fe Ant Trail

The first problem for discussion is the performance of the best grammar modification

variation on the Santa Fe Ant Trail in Figure 4.7. The most notable characteristic of this

graph occurs at 30000 fitness evaluations. At this point modules have been identified, added

to GE’s grammar, and the individuals have been remapped to use the new grammar. What

this shows is the immediate, negative impact of modifying the grammar and remapping

each individual using the new grammar. Some of the variants in Figure 4.7 also exhibit

interesting behavior. One of the most noticeable differences is the performance of the worst

setup compared to the best setup. For this problem, the combination of not using module

libraries and keeping every module identified (the κ-ALL NL approach) had the worst

fitness when it reached the fitness evaluation limit. Once modules are identified and added

to GE’s grammar, the average best fitness of this approach takes a drastic reduction in
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Figure 4.7: This figure shows the average best fitness and standard error for the Santa Fe Ant
Trail problem.

fitness. From this change in fitness, the population is never able to recover. The cause

for this is that many modules are being added directly to their respective rules in the

grammar, making it difficult for GE to produce individuals which use modules and also

the original terminal set. In one run of this setup, 155 modules were discovered and added

to the grammar on the first module identification and grammar modification step. The

Santa Fe Ant Trail grammar is given in Figure 4.8. Out of these 155, 87 were added to the

<code> rule, 26 were added to the <line> rule, and 42 were added to the <opcode> rule.

After this first grammar modification, in the best case, the genotype-to-phenotype mapping

process has a 1
13 chance to create new information. Any future modules discovered will only

further decrease this probability. By the end of the trials, the average best fitness is still

much worse than it was pre-grammar modification. Contrary to this, the best performing

approaches: κ-5 UL, κ-20 UL, and κ-5 NL are each able to overcome the initial spike
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<code> ::= <line>

| <code> <line>

<line> ::= <condition>

| <op>

<condition> ::= if(food_ahead){ <opcode> }else{ <opcode> }

<opcode> ::= <op>

| <opcode> <op>

<op> ::= left

| right

| move

Figure 4.8: Standard Santa Fe Ant Trail grammar

in fitness and continue improving until the end of their trials.

Even 7 Parity

The next problem to examine is the Even 7 Parity. Like the Santa Fe Ant Trail, the Even

7 Parity problem (Figure 4.9) shows a significant change in fitness after the grammar has

been changed. After the grammar modification is complete, none of the approaches to

adding modules to the grammar are able to recover. Unlike the Santa Fe Ant Trail, the

fitness of the best individuals is never as good as it was before the grammar was first

modified. However, similar to the Santa Fe Ant Trail, the best performing approaches on

the Even 7 Parity used module libraries while the worst performing ones did not. At the

end of the runs, the distance between the best and worst performing variants were not as

pronounced as was shown in the Santa Fe Ant Trail experiments. This suggests that using

module libraries on the Even 7 Parity problem gives benefit over not using the libraries.

But none of the approaches to modularity are able to reach their pre-grammar modification

level of fitness.

x5 − 2x2 + x Symbolic Regression

Next in line for analysis is the x5 − 2x2 + x Symbolic Regression problem. A graph of the

average best fitness of individuals attempting to solve this problem is given in Figure 4.10.
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Figure 4.9: This figure shows the average best fitness and standard error for the Even 7 Parity
problem.

Unlike the previous two problems, some variants of modifying GE’s grammar are not so

destructive that they prevent individuals from overcoming the spike in fitness that occurs

when modules are first added to the grammar. In fact, the two best approaches come close

to improving and do improve on the best fitness found before the grammar was modified.

This suggests that using module libraries is more beneficial than not on this problem.

8× 8 Lawn Mower

The final problem to examine it the 8 × 8 Lawn Mower problem. Like the Symbolic

Regression and Even Parity problems, the two best performing approaches use module

libraries. Unlike the previous problems, four out of six of the approaches to modifying the

grammar are able to continually make large improvements in performance after the initial

grammar modification. These results indicate that even the more destructive grammar
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Figure 4.10: This figure shows the average best fitness and standard error for the x5 − 2x2 + x
Symbolic Regression problem.

modification methods offer some benefit to individuals attempting to solve this problem.

Across most of the problems examined, by the end of the evolutionary runs, the NL

approaches perform worse than the UL ones. The most likely reason for this is that

the NL approaches make creating new information with the grammar difficult. Consider

the grammar in Figure 4.12, which was used in the Symbolic Regression problem. In its

current form, the grammar allows for new information to be created easily by expanding the

<op> <expr> <expr> production in the rule with <expr> as the left-hand-symbol (LHS).

When expanding the <expr> non-terminal, there is a 50% (12) chance the first production

will be picked and more information may be created. When the grammar is modified

without module libraries numerous additional productions may be added to the rule with

<expr> as its LHS. If only 5 modules are added to that rule, the probability of creating new

information drops to approximately 14% ( 17). In the current experimental setup, either 5
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Figure 4.11: This figure shows the average best fitness and standard error for the 8 × 8 Lawn
Mower problem.

or up to 500 modules may be added to that single production. With the addition of larger

numbers of productions to the rule, the odds of actually creating new information drops

drastically and the genetic operators are more likely to reuse different combinations of the

modules identified. However, when module libraries are used, only one production is added

to the original rule. Once again considering the rule with <expr> as its LHS, instead of

repeatedly adding a production for each module to that rule, only one is added and a new

rule is created to store the modules. With this approach, the probability of still being able

to create new information never decreases below 33.3̄%. This explains the particularly

poor performance of the variation which does not use module libraries and keeps every

module identified. There may be so many modules added to the grammar, the probability

of not using a module is very small. These results suggest that the NL approach has the

potential to do more harm than good on the problems examined.
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<expr> ::= <op> <expr> <expr>
| <var>

<op> ::= +
| -
| *
| /

<var> ::= X
| 1

Figure 4.12: Grammar for the x5 − 2x3 + x symbolic regression problem.

Additional features of the graphs in Figures 4.7 - 4.11 that deserve attention are the

large gaps between data points from approximately 2500 fitness evaluations to 30000 fitness

evaluations. This gap represents fitness evaluations that are used for module identification

instead of evolution of the main population. This feature will be called a MIG, or module

identification gap. Examples of large MIGs are given in Figure 4.13. After the initial gap,

some approaches have longer, shorter, or non-existent MIGs. Good examples of different

sized MIGs can be seen in Figure 4.11. In this figure, the κ-5 UL method has large MIGs

meaning evolution spends many fitness evaluations identifying modules. Opposite to this,

κ-All NL has very small gaps between data points after the first MIG, meaning that very

few or no fitness evaluations are being spent identifying modules.

The final notable feature of Figures 4.7 - 4.11 is the change in the fitness of the pop-

ulation after the first time modules are identified, when compared to the change in the

population’s fitness after each of the subsequent module identification steps. When mod-

ules are first identified, the addition of the new modules into GE’s grammar causes new

rules and productions to be added to the grammar. This initial change to the grammar is

the largest and causes the most individuals to change. During each of the following module

identification and grammar modification steps, the change to the grammar is less severe.

Fewer modules may leave and/or enter the grammar, meaning that when individuals are

remapped, they are more likely to remain unchanged.
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MIG

Figure 4.13: This figure shows examples of large MIGs, where many fitness evaluations are
required to identify modules

4.4.2 Identification Frequency

The next item for discussion is the frequency with which the grammar is modified. After

the initial grammar modification, a number of observations can be made. The first is the

consistent way in which the fitness of the population is affected between the different se-

tups when the grammar is modified at different intervals. The best fitness of runs where

the grammar is modified every 5 or 10 generations is usually worse than runs where the

grammar is only modified every 20 generations. One reason approaches with longer gaps

between modifying the grammar tend to perform better rests in the fact that modifying

the grammar and remapping the individuals to use the new grammar has the tendency

to be very destructive to the population’s performance. Giving the population more time

before the first grammar modification allows for the development of individuals with more

fit sub-derivation trees which would make more useful modules. This can be thought of
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Figure 4.14: This figure shows how many individuals change (4.14(a)) and, on average, how much
they change (4.14(b)) when the grammar is modified. Figure 4.14(b) measures phenotype change
using the Levenshtein distance between an individual’s phenotype before and after the grammar
has changed and the individual has been remapped. The data in this graph comes from the Santa
Fe Ant Trail, but the data is similar for all problems.

as the population going through a “shock” when the grammar is modified. This shock

generally has a negative impact on the fitness of all the individuals, and the population

needs time to recover in order for the best fitness to continually improve. Figure 4.14(a)

shows how many individuals were different after the each of the grammar modification and

remapping occurrences. After the first grammar modification, between 450 and 500 (out

of a population size of 500) individuals had different phenotypes than before. Changing

so many of the individuals in this way is similar to starting evolution from the beginning

with an altered function set. The data in Figure 4.14(a) shows that approaches allowing

more time between subsequent grammar modifications causes fewer individuals to be have

different phenotypes after they have been remapped. This also reflects similarly in Fig-

ure 4.14(b), where modifying the grammar more often causes a larger average change in

the phenotypes of individuals when the grammar is changed and they are remapped.
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For each of the problems in Figure 4.15, the worst performing approaches modify GE’s

grammar every 5 generations, where the best performing approaches only modify the gram-

mar every 10 or 20 generations. While there is no single best parameter for how often the

grammar should be modified, the data presented here indicates that two things should be

taken into consideration:

1. There should be a sufficient number of generations between grammar modification

occurrences so evolution is able to recover from the previous change in representation;

2. Evolution should also be allowed enough generations after the population has re-

covered to find uses for the new features of the grammar in order to make more fit

individuals.

4.4.3 Comparison with Standard GE

After identifying the most promising approaches to enhancing GE’s grammar with modules,

a comparison is made to determine how they fare against standard GE. The results of this

comparison can be seen in Figure 4.16. For these experiments each of the approaches

to modularity identifies modules and adds them to GE’s grammar every 20 generations

(τ = 20). When the grammar is modified, module libraries are used. As is evident in

all the problems except the 8 × 8 Lawn Mower problem, approaches to modifying the

grammar are not able to achieve the same performance as standard GE. When examining

the performance difference between approaches which modify the grammar and those which

do not, there are some very noticeable features. The first to point out is that modifying

the grammar may cause a drastic loss in performance, but on some problems, evolution is

able to recover from the shock of the modified representation. The best example of this is

x5 − 2x3 + x Symbolic Regression problem in Figure 4.16(d). At generation 20 modules

are identified and added to the grammar. When the population is remapped with the new
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(d) 8× 8 Lawn Mower

Figure 4.15: These graphs show the average best fitness and standard error for the Santa Fe Ant
Trail (Figure 4.15(a)), Even 7 Parity (Figure 4.15(b)), 8× 8 Lawn Mower (Figure 4.15(d)), and
x5−2x3+x Symbolic Regression (Figure 4.15(c)). The τ -5, τ -10, and τ -20 in the legends indicate
steps of 5, 10, and 20 generations between module identification and grammar modification.
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4.4. RESULTS AND DISCUSSION

Table 4.3: This table shows the resulting p-value from performing a Wilcoxon rank-sum test on
the best fitness values of GE and GE with varying numbers of modules added to its grammar after
100000 fitness evaluations. A P-value < 0.05 is considered significant. An asterisk (*) denotes
an approach that significantly outperforms standard GE. These results were calculated using the
Wilcoxon rank-sum test provided by the R programming language [128].

Santa Fe Ant Trail
κ-5 κ-20 κ-All

GE 9.37× 10−5 1.56× 10−5 7.66× 10−4

Even 7 Parity
κ-5 κ-20 κ-All

GE 7.45× 10−9 3.09× 10−7 2.14× 10−7

x5 − 2x3 + x Symbolic Regression
κ-5 κ-20 κ-All

GE 6.20× 10−9 9.73× 10−9 3.56× 10−9

8× 8 Lawn Mower
κ-5 κ-20 κ-All

GE 4.29× 10−4* 3.50× 10−1 1.06× 10−6

grammar, there is a drastic change in fitness; it gets much worse. However, in under 10

generations, fitness is able to recover and continue making similar progress to a standard

GE run. The same happens again in generation 40. This suggests that evolution is able

to overcome the disruption caused by remapping the population with a new grammar.

Despite evolution making somewhat of a recovery after the loss of fitness caused by the

changing grammar, standard GE outperforms each of the approaches for adding modules to

GE’s grammar. Table 4.3 shows the results of performing Wilcoxon rank-sum tests on GE

and the approaches to modularity in Figure 4.16. In the case of the Even 7 Parity problem

(Figure 4.16(b)), this is not so much the case. There are large disturbances in fitness when

the grammar is modified, and evolution is able to somewhat recover, but it never recovers

enough to improve on or even match GE’s performance. Another interesting problem is

the Santa Fe Ant Trail in Figure 4.16(a). When the grammar is modified in generation 20,

fitness only improves a miniscule amount for the rest of the run. This suggests that the

change in the population’s grammar causes search to become stuck in a local optima for
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relatively long periods during evolution. The final and most encouraging results comes from

Figure 4.16(c), the 8× 8 Lawn Mower problem. This is the sole problem that was able to

perform even slightly better than standard GE and used a shorter interval between module

identification and grammar modification (5 generations). While standard GE made small

progress from approximately generation 30 on, using modules to encapsulate information

and enhancing the grammar with those modules, allowed evolution make more progress

towards solving the problem.

4.5 Summary

This chapter introduces a basic method of identifying modules and examines a variety

of parameters involved in incorporating them back into an evolving population. Using

these methods some benefits and drawbacks can be seen. The first lesson to be taken

from this chapter is that simply identifying good information and using that to modify

GE’s grammar mid-evolutionary run will not necessarily benefit search. In most cases, it

hurts evolutionary progress. However, for one of the benchmark problems being examined,

modifying the grammar to make good information more easily available actually enhanced

performance. Is is also clear from the results shown here that for any significant progress

to be made, a non-destructive method of incorporating modules into the grammar must be

identified. Three of the questions proposed in Section 1.2.1 are answered in this chapter:

Research Question 5 - How should modules be made available to GE’s population during

evolution? When adding modules directly to GE’s grammar, module library produc-

tions allow modules to be used by the population without lessening the possibility of

individuals using productions from the original grammar.

Research Question 6 - Does updating the set of modules available to individuals more or

less frequently change the performance of GE? On each of the benchmark problems
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(d) x5 − 2x3 + x Symbolic Regression

Figure 4.16: These graphs show the average best fitness and standard error across 50 trials of
the Santa Fe Ant Trail (Figure 4.16(a)), Even 7 Parity (Figure 4.16(b)), 8 × 8 Lawn Mower
(Figure 4.16(c)), and x5 − 2x3 + x Symbolic Regression (Figure 4.16(d)). The GE in the legends
represent standard GE with no enhancements.
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tested in this chapter, at least two of the best three approaches used the largest

time interval (τ = 20) for the number of generations between module identification.

This suggests that longer time periods between module identification and grammar

modification allow evolution more time to make use of the new grammar.

Research Question 7 - Does the number of modules made available to GE during evolution

affect GE’s performance? On three of the four benchmark problems, the middle value

(κ = 20) of how many modules should be made available to GE’s grammar at a time

gave the best average fitness values. These results suggest a balance is needed in terms

of allowing too many or too few modules into the grammar at once.

The next chapter describes a remedy for the destructive nature of modifying GE’s

grammar without accounting for the changes that may occur in the individuals’ phenotypes,

a genotype repair operation. It then compares the performance of the genotype repair

against the approach taken here and against standard GE. This chapter also raises questions

about how appropriate the approach to identifying modules described here is. Additional

means for identifying modules are discussed in Chapter 6.
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Chapter 5

Genotype Repair

After the introduction to module identification and grammar modification in Chapter 4, it

is clear that there are certain parameters for how often and how many modules are added

to the grammar which can be detrimental to GE’s performance. For example, modifying

GE’s grammar too frequently or with too many modules can cause a large loss in fitness.

Chapter 4 also shows that the method in which modules are added to the grammar (using

and not using module libraries) is also important to consider. After the first grammar

modification, a loss in fitness occurred on each of the benchmark problems. On three of

the four benchmark problems tested, evolution either never or only slightly improves on

the fitness it reached before the initial grammar modification. This chapter describes two

extensions to remedy the detrimental behavior shown in the Chapter 4: genotype repair

and module expansion mechanisms. It then shows that after the same number of fitness

evaluations, GE’s fitness is able to improve over that of the remap method when using

the approaches described here. The experiments presented in this chapter are based on,

and extend, those published by Swafford et al.[156].

The remainder of this chapter introduces and examines the performance of two new op-

erations, which function as extensions of the grammar modification approaches described

78



5.1. GENOTYPE REPAIR AND MODULE EXPANSION

in Chapter 4. In the following sections of this chapter, a remap approach is mentioned.

This approach refers to modifying GE’s grammar and remapping each individual using the

new grammar. Evidence from the previous experimentation in Chapter 4 has shown that

simply adding modules to GE’s grammar during an evolutionary run using the remap

method damages the population’s fitness. This is due to GE’s genotype-to-phenotype

mapping process. When any rule in the grammar has productions added or subtracted

from it, the probability of that rule retaining its previous mapping is low (Section 4.4

gives an explanation of how changing GE’s grammar alters this probability). This means

that after the grammar changes, many individuals will not map as they previously did.

The data presented in Chapter 4 shows how the process of modifying GE’s grammar and

remapping individuals causes many individuals to immediately change their phenotypes.

This change in the individuals’ phenotypes changes the population’s fitness in that almost

every individual becomes significantly less fit after the change. To remedy this, a genotype

repair function and a module expansion function are added to the grammar modifica-

tion operation. The following sections describe these extensions and how they enable GE

to continue with evolution without the loss in performance caused by using the remap

approach. These extensions allow evolution to use modules at its own pace and show

significant improvements in fitness when compared to the remap method.

5.1 Genotype Repair and Module Expansion

To alleviate the loss of fitness brought on by grammar modification a genotype the novel

repair operation is introduced. The repair operation ensures each individual maintains

its phenotype after the grammar has changed and the genotype-to-phenotype mapping is

performed again. This is done by iterating the individual’s chromosome and modifying each

necessary codon such that during the mapping process it picks the production it picked
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5.1. GENOTYPE REPAIR AND MODULE EXPANSION

Algorithm 5.1 The genotype repair algorithm for ensuring that an individual maintains
its original phenotype after GE’s grammar has changed. For this algorithm to function
correctly, every production and rule in the previous grammar used by the population must
also be present in the updated grammar.

G = get original grammar()
Gnew = add modules to grammar(M , G)

for Individual I in Population do
Gold = I.get grammar()
I ′ = copy of(I)
I ′.set grammar(Gnew)
Γ = I.get chromosome()
Γ′ = I ′.get chromosome()

i, j = 0
for i = 0 ; i < length of coding region(Γ); i++ do
prodold = production picked by(Γ, i, Gold)
prodnew = production picked by(Γ′, j, Gnew)

if prodold ! = prodnew then
Γ′ = update codon to pick production(Γ′, j, Gnew, prodold)
j = update codon index(Γ′, Gnew, j, Γ, Gold, i, prodold)

before the grammar was modified. Figure 5.1 shows an example of how this repair method

functions, and pseudocode for the algorithm is given in Algorithm 5.1. In Algorithm 5.1, the

production picked by() function determines which production in the grammar is picked

by the given codon. The update codon to pick production()method modifies the codon

at index j in the chromosome to pick the appropriate production. In some cases of grammar

modification, deterministic rules, which use no codons, become non-deterministic. When

this happens, any needed additional codons are inserted into the chromosome to allow

the individual to finish the genotype-to-phenotype mapping correctly. The final method,

update codon index(), updates the chromosome index counter to ensure that the repair

process continues after any inserted codons.

However, the genotype repair operation has a problem. If individuals use a module that
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Grammar

<acts> ::= <act>
| <act> <acts>

<act> ::= move
| left
| right

3 5 4 12 right move

Chromosome Phenotype

Before remap:

<acts> ::= <act>
| <act> <acts>
| <acts_mod_lib>

<act> ::= move
| left
| right

<acts_mod_lib> ::= <mod_0>
<mod_0> ::= move move

3 5 4 12 rightAfter remap:

<acts> ::= <act>
| <act> <acts>
| <acts_mod_lib>

<act> ::= move
| left
| right

<acts_mod_lib> ::= <mod_0>
<mod_0> ::= move move

7 5 6 12 right moveAfter repair:

Codons change

Figure 5.1: This figure shows a grammar, chromosome, and phenotype for an individual before the
grammar is modified, after a module has been added to the grammar and the remap approach
has been applied, and after the repair extension fixes the individual’s genotype.

has been removed from the grammar, the repair method will be unable to ensure that

those individuals will retain their original phenotypes. Two solutions for this problem are

explored. The first is simply adding modules back into the grammar while individuals are

still using them. This approach is easy to implement, but it also presents a new conflict.

A module, or modules, has been removed from GE’s grammar because more beneficial

modules have been discovered and will take its place. But some individuals may still be

using this “unfit” or “outdated” module. There could be any number of individuals using

this module, and it may be better to remove it from the grammar. After multiple module

identifications, a minority of individuals can potentially keep many modules in the grammar
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that may be useless. This is the default approach when using the repair operation. A

novel alternative to leaving outdated modules in the grammar is replacing them with the

full sub-derivation tree from which they were created. This replacement is referred to

as the expand extension. The implementation of this operation is more difficult than

leaving old modules in GE’s grammar, but ensures that each individual can go through the

genotype repair process without a problem and modules deemed unnecessary or outdated

by the module replacement criteria are still removed from the population. An example of

the expand process is given in Figure 5.2. Both of these methods are also able to save

fitness evaluations in comparison to the remap method as the individuals’ phenotypes do

not change after the grammar has been modified and do not require additional mapping

and re-evaluation.

There also exist alternatives to the expand operator which could be implemented. One

such alternative, similar to Koza’s work with architecture altering operations [72], could

replace codons that map to modules that have been removed from GE’s grammar with new

codons that map to modules which currently exist in the grammar. Another alternative,

inspired by Majeed and Ryan [88] in their work identifying modules, would be to replace

codons which map to deleted modules with codons that will map to the identity function

of first operator which would take the deleted module as an argument. However, both of

these alternatives have a side effect in common; individuals operated on by these alternative

methods may still map to a different phenotype than they did before the grammar was

changed, which was suggested as undesirable by the results given in Chapter 4.

5.2 Experimental Design

The experiments carried out in this chapter enable a better understanding how the remap

approach from Chapter 4 performs in relation to the repair and expandmethods described
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<acts> ::= <act>
| <act> <acts>
| <acts_mod_lib>

<act> ::= move
| left
| right

<acts_mod_lib> ::= <mod_1>
<mod_1> ::= move move move

(a) Grammar with original module

<acts> ::= <act>
| <act> <acts>
| <acts_mod_lib>

<act> ::= move
| left
| right

<acts_mod_lib> ::= <mod_2>
<mod_2> ::= left move left

(b) Grammar with mod 1 replaced by mod 2

<acts>

<act>

move

<acts>

<act>

move

<acts>

<act>

move

7 15 22 42 12 33

(c) An example module and its
chromosome

<acts>

<act>

left

<acts>

<acts mod lib>

<modID 1>

move move move

9 31 23 17

(d) Individual using the
module

<acts>

<act>

left

<acts>

<act>

move

<acts>

<act>

move

<acts>

<act>

move

9 31 25 7 15 22 42 12 33

(e) Individual with the expanded mod-
ule

Figure 5.2: This figure shows how modules are expanded once they have been removed from
the grammar and are still in use by individuals. Figure 5.2(a) shows the grammar for the Lawn
Mower problem with one module added to it. Figure 5.2(b) shows the same grammar but with
the initial module replaced with a newer one. Figure 5.2(c) shows the sub-derivation tree and
chromosome that produces the module in Figure 5.2(a). An individual created using the grammar
in Figure 5.2(a) that uses the module is given in Figure 5.2(d). Figure 5.2(e) shows the same
individual from Figure 5.2(d), after its grammar has changed (Figure 5.2(b)) and it has gone
through the expand process.
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Table 5.1: Experimental setup for all evolutionary runs. These are the same parameters used in
Chapter 4. The parameters for κ and τ are used due to the experimental results from Chapter 4.

Parameter Value
Independent Runs 50
Fitness Evaluations 100000
Population 500
Selection Tournament (Size 5)
Wrapping None
Crossover Single Point (90%)
Mutation Int Flip (1%)
Elites 50
Initialization Ramped Half and Half
Replacement Generational
Max. Derivation Tree Size 25 (Lawn Mower - 100)
κ 20
ρ 75% of n
n 50
τ 20

above. Table 5.1 shows the experimental parameters used in these experiments. The results

from Chapter 4, indicate that using module libraries is the most suitable method for adding

modules to the grammar. It also suggests that the values of τ (module identification,

replacement, and grammar modification interval) and κ (number of modules to keep after

replacement) in Table 5.1 are also reasonable. As in Chapter 4, the Even 7 Parity, Santa

Fe Ant Trail, 8× 8 Lawn Mower, and x5− 2x3+x Symbolic Regression problems are used.

5.3 Results and Discussion

This section presents and analyses the performance of the repair and expand approaches

for modifying GE’s grammar in comparison to the previously examined remap method.

The first comparisons are given in Section 5.3.1 and concern the effects each method has

on the fitness of the evolving population. Next, Section 5.3.2 examines how many of the

discovered modules are used by the remap , repair , and expand methods. Finally, in
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Section 5.3.3 the performance of all three approaches for handling modules added to GE’s

grammar are compared to standard GE.

5.3.1 Genotype Repair and Module Expansion Results

The first comparison to make is the performance differences between the remap, repair,

and expand approaches. The average best fitness for these methods on the four benchmark

problems is given in Figure 5.3. The most notable difference between these approaches is

the lack of a fitness spike in the repair and expand lines. For each of the benchmark

problems in Figure 5.3, the repair and expand methods improve fitness after modules

have been discovered. It should also be noted that each of the approaches used the same

50 random number generator seeds for their trials. This means that the same modules are

being discovered by each method at the first module identification step and the deviation in

the shapes of their fitness plots is caused by how the modules are being used by evolution in

the proceeding generations. Even when the remap data shows improvement when modules

are discovered, the repair and expand approaches show greater improvement.

The data showing the repair and expand outperforming the remap approach on the

Even 7 Parity (Figure 5.3(a)) and 8 × 8 Lawn Mower (Figure 5.3(d)) problems is fairly

conclusive about the utility of the extensions introduced earlier in this chapter. However,

the data for the x5 − 2x3 + x Symbolic Regression (Figure 5.3(c)) and Santa Fe Ant

Trail (Figure 5.3(b)) are not as convincing. For this reason, Wilcoxon rank-sum tests are

performed on the best fitness values at the end of each run for each combination of the

remap, repair, and expand variants. The results of these tests are given in Table 5.2.

These comparisons show that the repair and expand extensions significantly outperform

(p-value < 0.05) the remap approach on each of the benchmark problems examined.

The data in Table 5.2 also shows that there is no significant difference in performance

between the repair and expand approaches on any of the problems except the 8×8 Lawn
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(c) x5 − 2x3 + x Symbolic Regression
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(d) 8× 8 Lawn Mower

Figure 5.3: This figure shows the average best fitness of the remap, repair, and expand ap-
proaches to grammar modification on the Even 7 Parity (Figure 5.3(a)), Santa Fe Ant Trail
(Figure 5.3(b)), x5 − 2x3 + x Symbolic Regression (Figure 5.3(c)), and 8× 8 Lawn Mower (Fig-
ure 5.3(d)) problems.
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Table 5.2: This table reports the p-value of Wilcoxon rank-sum tests performed on the average
best fitness values of each approach after 100000 fitness evaluations. The p-values reported are
calculated with a confidence interval of 0.05. Values marked with an asterisk (*) are significant.

Remap Repair Expand

Santa Fe Ant Trail
Remap 0.013* 0.036*
Repair 0.013* 0.780

Even 7 Parity
Remap 5.808× 10−7* 1.708× 10−6*
Repair 5.808× 10−7* 0.991

x5 − 2x3 + x Symbolic
Regression

Remap 0.001* 0.005*
Repair 0.001* 0.706

8× 8 Lawn Mower
Remap 7.8× 10−10* 7.8× 10−10*
Repair 7.8× 10−10* 0.047*

Mower problem, where the expand extension outperforms the other approaches. The only

difference between the repair and expand methods that can account for this deviation in

performance is a direct side-effect of the expand operation. After individuals have been

expanded, they may have much larger derivation trees, making it possible for evolution to

create bigger and/or better modules in future module identification steps.

5.3.2 Module Usage

If modules are being identified and not used, the search space is increased with no perfor-

mance gain, and the computational effort used to discover modules is wasted. This section

describes how the various methods for making modules available to the population and

handling their removal from GE’s grammar impact how modules are used. For the fol-

lowing analysis, only modules that appear in 1% or more of individuals in the population

(with a population size of 500 individuals) are considered.

On the Santa Fe Ant Trail problem, the total number of modules used by the remap

method across all 50 runs is 576. Out of these 576 modules, 439 are used only in the

20 generations after they are identified. Pie charts showing these values can be found in

Figure 5.4. The likely reason for this stems from the individuals being remapped as soon
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as the grammar has been modified. This means that many modules will get used as soon

as they are added to GE’s grammar solely for this reason as opposed to evolution using

them at its own pace. In the case of the Santa Fe Ant Trail, 76% of the modules used are

used because of this. Following that, 19% of modules are identified during the first module

identification step and survive module replacement to be present in the population after the

second module identification step. Additionally, only 5% of the modules used are discovered

in the second module identification step. Contrary to this, the repair and expandmethods

divide their module usage more evenly. The repair approach only uses 21% of the modules

after the first and before the second module identification occurrence, with 57% getting

used after the first and second module identification and replacement steps. The remaining

22% of modules are only present after the second module identification step. Module usage

percentages are similar for the expand method. Because the same modules are discovered

at the first module identification step for each of these approaches, the differences in how

the modules get used come from how the modules are integrated into the population.

By allowing mutation and crossover operations to introduce modules into the population,

the population is not shocked all at once by remapping each individual to use the new

grammar. The x5 − 2x2 + x Symbolic Regression problem also shows these same trends.

The remap approach used the least amount of modules and used 64% of those modules

exclusively in the 20 generations after they were identified. Only 9% of the modules used

were discovered in the second module identification step. Figure 5.5 gives this data in a

pie chart.

The repair and expand methods identify more modules (857 and 939 compared to

remap’s 514), and their usage is distributed more evenly through the generations. The

8× 8 Lawn Mower and Even 7 Parity problem show slightly different behaviors. For both

of these problems, remap uses far fewer modules (440 on Even 7 Parity and 561 on 8× 8

Lawn Mower) than the repair and expand approaches which use between 1370 and 1700
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439 (76.2%)

27 (4.7%)

110 (19.1%)

20−40
40−60
20−60

(a) Remap

136 (20.6%)

146 (22.1%)

379 (57.3%)

20−40
40−60
20−60

(b) Repair

153 (22.8%)
156 (23.2%)

362 (53.9%)

20−40
40−60
20−60

(c) Expand

Figure 5.4: This figure shows the module usage for the Santa Fe Ant Trail problem. The black
sections of the pie charts in this figure represent the amount of modules that are only present in
generations 20 - 40. The red sections denote how many modules are only present in generations
40 - 60. The green sections represent how many modules are present from generation 20 to
generation 60.

327 (63.6%)
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20−40
40−60
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Figure 5.5: This figure shows the module usage for the x5−2x2+x Symbolic Regression problem.
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Figure 5.6: This figure shows the module usage for the 8× 8 Lawn Mower problem.
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(c) Expand

Figure 5.7: This figure shows the module usage for the Even 7 Parity problem.

modules for each problem. The data here suggests that a large contributing factor in the

deficit of performance of the remap approach comes from its inability to allow evolution

to use modules. The data for these problems can be found in Figures 5.6 and 5.7.

5.3.3 Comparison with Standard GE

The final comparisons of this chapter show how the remap, repair, and expand ap-

proaches compare to standard GE. The average best fitness of each of these methods over

time can be seen in Figure 5.8. This figure shows that even though the repair and expand

approaches are able to improve over the unfavorable performance of the remap approach,

they are not always able to beat standard GE’s fitness levels. On both the Santa Fe Ant

Trail (Figure 5.8(a)) and the x5 − 2x3 + x Symbolic Regression (Figure 5.8(c)) problems,
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standard GE outperforms all the approaches to modularity examined. This is rather unex-

pected as various approaches to modularity have been shown to improve performance over

these problems in standard GP[74, 165]. However, evidence of this undesirable performance

is not present for each benchmark problem. For the Even 7 Parity problem (Figure 5.8(b)),

the repair and expand approaches have slightly worse average best fitness values, but are

not significantly worse than standard GE. Finally, on the 8×8 Lawn Mower problem, both

the repair and expand methods significantly outperform standard GE and the remap

approach. The most likely reason for repair and expand methods’ good performance on

the Lawn Mower problem is the nature of the problem itself. As modules are able to en-

capsulate multiple mowing instructions into a single production, individuals using modules

are able to cover more area of the lawn and use fewer codons in doing so. Taking this under

consideration, it is easy to see why these extensions of the remap perform so well. While

these results do not show any significant improvement over standard GE on three of the

benchmark problems, there are many factors that may account for this which are out of

the scope of this chapter. Some of these issues include, but are not limited to, deficiencies

in how modules are evaluated, how module parents are selected, and the size of modules.

These are examined in the following chapters of this thesis.

5.4 Summary

This chapter introduces two extensions for the remap approach to adding modules to GE’s

grammar: repair and expand . Both of these extensions show significant improvements in

fitness over the remap approach for all of the benchmark problems examined. Despite the

boost in performance over the remap method for incorporating modules, both the repair

and expand are unable to outperform standard GE on three out of the four benchmark

problems examined. However, the purpose of this and the previous chapter is to identify

91



5.4. SUMMARY
20

30
40

50

Be
st

 F
itn

es
s

50
0

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
1e

+0
5

Fitness Evaluations

Remap
Repair

Expand
GE

(a) Santa Fe Ant Trail

10
20

30
40

50

Be
st

 F
itn

es
s

50
0

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
1e

+0
5

Fitness Evaluations

Remap
Repair

Expand
GE

(b) Even 7 Parity

2
4

6
8

Be
st

 F
itn

es
s

50
0

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
1e

+0
5

Fitness Evaluations

Remap
Repair

Expand
GE

(c) x5 − 2x3 + x Symbolic Regression
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(d) 8× 8 Lawn Mower

Figure 5.8: This figure shows the average best fitness of the remap, repair, and expand,
approaches to incorporating modules into GE’s grammar as well as standard GE.
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Table 5.3: This table give the average best fitness and standard error for each of the benchmark
problems examined in this chapter. The p-value reported is calculated byWilcoxon rank-sum tests
performed on the average best fitness values of each approach after 100000 fitness evaluations.
The p-values are calculated with a confidence interval of 0.05. Values marked with an asterisk
(*) are significant.

Approach Average Best Fitness Standard Error p-value (Compared to GE)

Santa Fe Ant Trail
Remap 27.560 ± 1.711 1.751× 10−4*
Repair 22.300 ± 1.870 0.033*
Expand 23.120 ± 1.832 0.028*
GE 16.180 ± 1.976 NA

Even 7 Parity
Remap 22.340 ± 2.118 2.002× 10−7*
Repair 5.360 ± 1.160 0.309
Expand 5.580 ± 1.245 0.366
GE 3.600 ± 1.185 NA

8× 8 Lawn Mower
Remap 27.826 ± 0.781 0.437
Repair 6.068 ± 0.905 7.8× 10−10*
Expand 3.270 ± 0.790 7.7× 10−10*
GE 29.250 ± 0.163 NA

x5 − 2x3 + x Symbolic Regression
Remap 1.033 ± 0.092 2.034× 10−8*
Repair 0.706 ± 0.079 9.077× 10−4*
Expand 0.730 ± 0.078 3.040× 10−5*
GE 0.364 ± 0.034 NA
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methods for making modules available to GE’s evolving population. A likely possibility for

the less than desirable performance is that the modules being discovered are not “good”

modules. The following chapters will examine different mechanisms for identifying modules

in an attempt to remedy this problem.
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Part III

Module Identification: Methods and

Analysis
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Chapter 6

Examining Methods for Module

Identification

The previous two chapters of this thesis (Chapters 4 and 5) explore adding modules to

GE’s grammar as a mechanism for incorporating them into the evolving population. This

is undertaken because of the importance of making the information encapsulated by mod-

ules available to the population without disrupting the progress it has made thus far.

Specifically, the following three methods for incorporating modules into GE’s grammar are

tested:

1. The remap approach adds modules to GE’s grammar and remaps each individual

in the population to use the updated grammar.

2. The repair approach extends remap and ensures that, no matter how the grammar

changes, all individuals maintain their previous phenotypes by altering their geno-

types. When modules are removed from the grammar but individuals are still using

them, repair adds these modules back to the grammar until they are no longer in

use.
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6.1. MODULE IDENTIFICATION METHODS

3. The expand approach extends repair by replacing occurrences of modules that have

been removed from the grammar with the entire sub-derivation tree the module was

created from.

Chapters 4 and 5 demonstrate that the ability to make modules available to the population

without harming the progress made by the population thus far is crucial but is only one

of the two issues surrounding the exploitation of modularity in GE. The remaining issue

is identifying the modules themselves. This chapter compares four methods for identifying

modules and a variety of parameters for these methods. This chapter also answers ques-

tions 1.2.1 and 1.2.1 from Section 1.2.1. The work presented in this chapter is based on,

and extends, that of Swafford et al.[157].

6.1 Module Identification Methods

In Chapter 4, one novel method for identifying modules is introduced: mutation module

identification (M-ID), however, it would be näıve to assume that one method for module

identification is suitable for all problems. For example, using the M-ID method may not

perform as well on the Santa Fe Ant Trail problem when compared to an alternative

module identification strategy. Simply picking random sub-derivation trees or frequently

used sub-derivation trees may be more appropriate. With this in mind, one additional novel

module identification method, (Insertion Identification) and two simple methods (Random

and Frequency Identification) have been implemented to discover modules that may be

beneficial to the population in different ways:

Mutation Identification (M-ID): For each individual, I, in the population, a node on

its derivation tree is randomly picked. The sub-derivation tree starting with this

node is the candidate module, λ. The fitness of I, If is recorded. Next, the depth

of λ is recorded as λd. Now, a copy of I is created, I ′, and a randomly generated
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sub-derivation tree with a depth equal to λd replaces λ in I ′. The fitness of I ′ after

the replacement is calculated and the difference between If and I ′f is recorded. This

process of creating random sub-derivation trees, replacing λ, and evaluating the newly

created I ′ is repeated n times. To determine if λ should be kept as a module, the

number of recorded fitness differences that are greater than 0 is counted. If this value

is greater than ρ and there are no pre-existing modules with the same sub-derivation

tree as λ, the mean of all the saved fitness differences is assigned as the module’s

fitness, λf, and the module is saved in a module list. Pseudocode for this algorithm

is given in Algorithm 6.1 and an illustration of how the candidate module is replaced

by randomly created sub-derivation trees is given in Figure 6.1.

Individual

Candidate
module (λ)

1 2 n

· · ·

n random sub-derivation trees

Figure 6.1: This figure shows how a candidate module is replaced by n randomly created sub-
derivation trees of the same depth using the M-ID approach.
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Algorithm 6.1 The mutation module identification (M-ID) algorithm. This is the same
algorithm as the M-ID algorithm given in Chapter 4 (Algorithm 4.1). It has been given
again for ease of reference.

M = new list()
for Individual I in Population do
If = get fitness(I)
λ = get random sub derivation tree(I)
λd = get depth(λ)
iλ = index of sub derivation tree in individual(I, λ)
fitness diffs = new array of size(n)

i = 1
while i ≤ n do
I ′ = copy of(I)
randi = create random sub derivation tree with depth(λd)
replace sub derivation tree at index(I ′, randi, iλ)
I ′f = get fitness(I ′)
fitness diffs[i] = If − I ′f
i++

better count = 0
for ∆f in fitness diffs do
if ∆f < 0 then
better count++

keep candidate = true
if better count < round(ρ× n) then
keep candidate = false

for Module µ in M do
if get sub derivation tree(µ) == λ then
keep candidate = false

if keep candidate then
λf = mean(fitness diffs)
M .save as module(λ)
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Insertion Identification (I-ID): For this module identification approach, n test indi-

viduals are generated using the same initialization method as the population. The

fitness of each test individual is calculated and recorded. Next, like the M-ID method,

each individual, I, is iterated and a candidate module, λ, is randomly picked from

I. The depth, λd, and symbol of the root node, λr, of λ are also recorded. Then,

a of copy each test individual is created and a randomly picked sub-derivation tree

with the same depth as λd and the same root node symbol as λr is replaced with λ.

After λ has been inserted into a test individual, it is re-evaluated and the difference

between its original and new fitness values is recorded. If ρ of the stored fitness

difference values for λ are less than 0 and there are no pre-existing modules with the

same sub-derivation tree as λ, the mean of the saved fitness differences is assigned as

the module’s fitness, λf, and the module is saved in a module list. The pseudocode

for this method is given in Algorithm 6.2 and an illustration of how the candidate

module is inserted into randomly created individuals is given in Figure 6.2.
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Algorithm 6.2 The insertion module identification (I-ID) algorithm

M = new list()

i = 0
test individuals = new array of size(n)
test fitness = new array of size(n)
while i < length(text individuals) do
test individuals[i]=(initialize new individual())
test fitness[i]=get fitness(test individuals[i])
i++

for Individual I in Population do
λ = get random sub derivation tree(I)
λd = get depth(λ)
λr = get root node symbol(λ)
fitness diffs = new array of size(n)

j = 0
while j <length(test individuals) do
I ′T = copy of(test individuals[j])
iλ = find node index with depth and symbol(I ′T , λd, λr)
replace sub derivation tree at index(I ′T , λ, iλ)
fitness diffs[j] = test fitness[j] - get fitness(I ′T )
j++

better count = 0
for ∆f in fitness diffs do
if ∆f < 0 then
better count++

if better count >= round(ρ× n) then
keep candidate = false

keep candidate = true
for Module µ in moduleList do
if get sub derivation tree(µ) == λ then
keep candidate = false

if keep candidate then
λfit = mean(fitness diffs)
M .save as module(λ)
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1 2 n

· · ·

n random test individuals

Individual

Candidate
module (λ)

Replaces

Figure 6.2: This figure shows how a candidate modules replaces n sub-derivation trees in the set
of randomly created test individuals in the I-ID approach.
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Frequency Identification (F-ID): This method counts the occurrence of every sub-

derivation tree, σ, in the population, except for single non-terminals. The most

common sub-derivation trees are used as modules and given fitness values based

on their frequency: λf =
# of occurrences
total # of subtrees . Pseudocode for this approach is given in

Algorithm 6.3.

Random Identification (R-ID): This method picks a random sub-derivation tree from

each individual in the population and creates a module out of it. Since no evaluation

of the module occurs, the fitness of the parent individual is used as the module’s

fitness: λf = fitness of parent. This method’s pseudocode is shown in Algorithm 6.4.

While this form of module identification is called “Random Identification,” it has

some non-random aspects that should be noted. Because modules are selected from

individuals, as opposed to being randomly generated, they will contain information

that has been developed over the course of evolution. Because these modules are also

assigned their parent’s fitness value, modules from highly fit individuals will be more

likely to persist in the population than modules from less fit individuals regardless

of their content.
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Algorithm 6.3 The frequency module identification (F-ID) algorithm

subtree map = new map()
for Individual I in Population do
for sub-derivation tree σ in I do
if subtree map.has key(σ) then
σcount = subtree map.get(σ)
σcount++
subtree map.put(σ, σcount)

else
subtree map.put(σ, 1)

Algorithm 6.4 The random module identification (R-ID) algorithm

M = new list()
for Individual I in Population do
λ = get random sub derivation tree(I)
λfit = get fitness(I)
keep candidate = true

for Module µ in moduleList do
if get sub derivation tree(µ) == λ then
keep candidate = false

if keep candidate then
M .save as module(λ)
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Each of these methods was developed with a particular motive. The M-ID approach

samples how the picked sub-derivation tree contributes to the fitness of the individual it

appears in. I-ID estimates how well a sub-derivation tree performs in multiple individuals,

as opposed to only the individual in which it appears. The R-ID method is added as a

control to examine how M-ID, I-ID, and F-ID compare to a random approach. Testing this

set of module identification methods will give insight into what types of approaches perform

best on certain problems. Under each identification approach, once a module is identified,

the phenotype of that module is “locked,” meaning it is not allowed to be modified by

crossover or mutation events. Unlike some of the previously developed approaches to

modularity, such as ADFs, the content of modules are unchangeable. Their evaluation

suggests that their current phenotypes are useful as they are (except with the R-ID method

which performs no evaluation of modules).

6.2 Experimental Setup

The aim of this work is to examine different methods for identifying modules and to es-

tablish which of these different methods are more, or less, beneficial for different problems.

As per the previous experimental chapters (Chapters 4 and 5), these approaches are used

on the Santa Fe Ant Trail, x5 − 2x3 + x Symbolic Regression, Even 7 Parity, and 8 × 8

Lawn Mower problems. After modules have been identified, they are made available to

the population by using the expand method discussed in Chapter 5. All tests for statis-

tical significance that are performed use a Wilcoxon rank-sum test with a 95% confidence

interval.
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Table 6.1: Experimental setup for all evolutionary runs unless otherwise noted. These parameters
are taken from Chapter 5.

Parameter Value
Independent Runs 50
Fitness Evaluations 100000
Population 500
Selection Tournament (Size 5)
Wrapping None
Crossover Single Point (90%)
Mutation Int Flip (1%)
Elites 50
Initialization Ramped Half and Half
Replacement Generational
Max. Derivation Tree Size 25 (Lawn Mower - 100)
κ 20
ρ 75% of n
n 50
τ 20

6.3 Initial Results with Module Identification

The first set of experiments carried out compare GE and the four approaches to modularity

described in Section 6.1. The results from these experiments show that there are large

discrepancies between how many generations each approach completes before the fitness

evaluation limit is reached. In particular, the M-ID and I-ID methods finish approximately

59 and 99 generations respectively before reaching the fitness evaluation limit. This is

due to the number of fitness evaluations used to identify modules instead of evolving the

population. This is a noticeable contrast to F-ID, R-ID, and GE which finish between 190

and 200 generations depending on the problem and approach. There are two sources for

this deviation in the number of generations completed:

1. the number of times each candidate module, λ, is evaluated (n from Chapters 4

and 5) and,

2. the number of individuals that candidate modules are picked from.

106



6.3. INITIAL RESULTS WITH MODULE IDENTIFICATION

Permitting fewer individuals to contribute candidate modules and reducing the number of

fitness evaluations used to identify candidate modules, evolution will have more generations

to use the discovered modules to improve the performance of the population. Even if the

M-ID and I-ID methods are finding better modules than the R-ID and F-ID methods, evo-

lution is not given many generations to work with those modules to create better solutions.

To address the second point above, the individuals of the population from which the most

modules are identified is given. It is possible that each individual contains information that

may be valuable as a module. But the probability of finding good modules in low fitness

individuals is low in comparison to the probability of finding good modules in the most fit

individuals. If individuals that are likely to provide good modules can be identified, focus

can be given to them and the rest of the population can be ignored, saving many fitness

evaluations.

To determine which individuals focus should be given to, the number of modules that

come from different ranked individuals at the module identification steps is plotted. The

graphs are given in Figure 6.3. Each of the plots in Figure 6.3 shows that the most modules

are identified from the highest ranking individuals in the population. This suggests that

the top-ranking individuals are more valuable in terms of contributing modules and focus

can be given to them. Based on the data provided in Figure 6.3, it is estimated that

the most modules are identified from the top 7 − 10% of the population. But this area

of the population is only comprised of elite individuals. For future experiments, the top

15% of the population is used for discovering modules because it allows individuals that

are fit but not preserved through elitism to contribute modules. On all problems except

the Even 7 Parity, there are small peaks in the lower ranks of individuals showing that a

notable number of modules are coming from less fit individuals. One possible explanation

for this may be due to the fitness diversity in the population. As evolution progresses, the

population tends to be less diverse in terms of the fitness values of the individuals. It is
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(a) Santa Fe Ant Trail
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(b) Even 7 Parity
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(c) x5 − 2x3 + x Symbolic Regression
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(d) 8× 8 Lawn Mower

Figure 6.3: These figures show which section of the population contributes modules during the
identification process. The x-axis represents an individual’s rank in the population based on
fitness, 0 being the best and 500 being the worst. The y-axis (height) represents how many
times individuals with a given rank contributed a module over the course of 50 runs. This value
does not take into account the quality of the module discovered. The z-axis (depth) denotes how
many times modules have been identified. The M-ID approach was used for these figures. Module
parent rank data for the R-ID approach is given in Figure A.1 in Appendix A.1.

108



6.3. INITIAL RESULTS WITH MODULE IDENTIFICATION

also possible that the diversity of the population’s fitness will increase over time. However,

the data observed in this thesis shows that an increase in diversity occurs either in early

generations and is followed by a decrease in diversity for the rest of the run, or persists

throughout the run but never reaches a high level of diversity. Figure 6.4 shows how the

diversity of fitness values in a standard GE run change over time on the Santa Fe Ant Trail

problem. In this figure, the diversity of fitness values is measured using entropy1 [145].

As modules are being taken from the top individuals, if they are discovered again in later

individuals, they are rejected since duplicate modules are not kept. However, the least fit

individuals are likely to have been more recently created by crossover and mutation events.

The modules discovered here may be different due to the variety of phenotypes in this area

of the population. This is supported by the movement of this peak in Figure 6.3(d). For

the first module identification step in this figure, the upwards slope of the data begins

around the 150th to 200th ranked individual. However, for the second module identification

step, the upwards motion of the data does not begin until just before the 300th ranked

individual. During the third module identification step, this slope begins still later around

the 310th ranked individual. The data presented in Figure 6.3 only account for the M-ID

method. An interesting characteristic of the I-ID approach is that it rarely discovers any

modules at all. In fact, for most runs it discovers no modules at all. This suggests that the

value of ρ (75% of n) is too strict of a threshold for this particular identification method.

Additional modules may be identified with a decreased ρ value.

After considering which individuals yield the most modules across all problems and

how many modules are being identified, the following was implemented:

1. lower values of ρ for the M-ID and I-ID approaches,

2. selecting modules from the top 15% of individuals for all modules identification ap-

1Entropy is used to measure uncertainty associated with a random variable. Shannon[145] gives the for-
mula for calculating entropy as H(x) = −

∑n
i=1

p (xi) logbp (xi) , where p (xi) is the probability of outcome
xi. Entropy is commonly used to measure uncertainty or volatility.
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Figure 6.4: This figure shows how the diversity of the population’s fitness values changes over
time during standard GE runs. The data is averaged across 50 runs. Diversity is measured using
Shannon entropy [145]. Fitness diversity data for the remaining three benchmark problems is
given in Appendix A.1 in Figure A.2.

proaches,

3. and lower values of n to reduce the number of fitness evaluations used to identify

modules.

A final extension is also implemented based on data from the initial experiments. The

largest improvements in the fitness of the population are made in the first 20 generations.

Modules are only identified every 20 generations, meaning they are not available initially

for evolution to build upon and take advantage of. The final variation identifies modules

from the initial generation, in addition to every 20 generations. The following section

analyzes the results of every permutation of these variations when applied to each of the

original setups discussed in Section 6.1.
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6.4 Effects of Module Identification on Parameters

This section discusses the results of applying the additional variations from Section 6.3 to

the module identification methods. Analysis of the various methods is broken down by the

variations mentioned in Section 6.3.

6.4.1 Reducing Module Selection Pressure

One of the observations made in Section 6.3 is that the I-ID method finds very few modules

in total. The reason for this is that it is difficult to find sub-derivation trees that can

improve the fitness of multiple individuals. Under the I-ID approach, ρ corresponds the

number of individuals that must be improved by a candidate module. Higher values for ρ

mean more difficulty for candidate modules to be accepted for use in GE’s grammar. In

this section, the value for ρ is reduced to facilitate more candidate modules passing their

evaluations and being made available to individuals. Values of ρ = 75%, 50%, and 25%

of n are examined on both the M-ID and I-ID methods on all four benchmark problems

mentioned in Section 6.2. For the experiments carried out in this section, modules are

identified from the entire population and each module is evaluated 50 times (n = 50).

The fitness data gathered and statistical tests on this data is given in Tables A.1 - A.8 in

Appendix A.2.

For all of the problems except the Santa Fe Ant Trail, I-ID finds no modules at all

when ρ = 75% of n (See Figure 6.5). When ρ is reduced to 50% of n, still, very few

modules are identified. On 8 × 8 Lawn Mower and Even 7 Parity problems, no modules

are found. However, with the lowest value of ρ = 25% of n, more modules are discovered

for all problems except Even 7 Parity where no modules are discovered. In the case of

the Even 7 Parity problem, the candidate modules are not passing the required number

of evaluations to become full modules. Unlike the M-ID approach, variations of the I-ID
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method that use a lower value for ρ have better fitness than those that use higher values,

but statistical tests show no significance between these approaches.

The graphs in Figure 6.5 show that the M-ID approach has no issue identifying many

modules during its runs, but having a more strict threshold such as ρ = 75% of n actually

yields better fitness values than the lower values of 50% and 25% of n. Depending on

the benchmark problem and the value of ρ, anywhere from 60 to almost 650 modules are

identified. This suggests that when sufficient numbers of modules are being discovered,

having a more rigorous filter on how many modules pass their evaluation results in better

fitness values. Although, in the data examined there was no statistical significance amongst

the M-ID methods.

The lesson to be taken away from these experiments is that an appropriate balance

must be found for the amount of modules identified. If large numbers of modules are

discovered, many could be “bad” modules. On the other hand, if too few modules are

discovered, evolution is not able to use them to improve its search. To find this balance,

the problem, module identification approach, and threshold for identifying modules must

all be taken into consideration. For the M-ID method, it is able to identify anywhere from

60 to 600 modules. When so many modules are identified, using a more strict threshold for

accepting modules is advantageous. But with the I-ID method, significantly fewer modules

are discovered and a less strict criteria for accepting modules is more reasonable. For these

reasons, all the experiments in the remainder of this chapter use ρ = 75% of n for variations

of the M-ID method and ρ = 25% of n for I-ID approaches.

6.4.2 Reducing Fitness Evaluations

A problem with the M-ID and I-ID methods is that they both require additional fitness

evaluations to identify modules. The drawback of this is that the fitness evaluations used

in the module identification process are subtracted from the number of fitness evaluations
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Figure 6.5: These bar charts show the total number of modules discovered using different module
identification threshold (ρ) values over the course of evolution averaged over 50 runs. Note the
difference in the scale of the y-axis for the different runs. It should also be noted that M-ID and
I-ID discover modules in significantly different manners, and the quantity of modules by the two
approaches can not be fairly compared.
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that may be used for the evolution of the population. While the identified modules may

be beneficial and speed up evolution, sufficient generations are required for evolution to

take advantage of these modules. It would be an improvement for the M-ID and I-ID

methods if fewer fitness evaluations can be used during module discovery. This would

afford evolution more time to work with the existing modules and individuals to further

improve the performance of the population. As was discussed in Section 6.3, identifying

modules from only the top 15% of individuals and reducing the number of evaluations

that is performed on candidate modules (the value for n) can greatly reduce the fitness

evaluation cost of identifying modules. For the experiments carried out to test these

variations, each permutation of identifying modules from the entire population, only the

top 15% of the population, n = 50, n = 25, and n = 10 are used. Based on the data given

in Section 6.4.1, the M-ID approaches in this section use a ρ value of 75% of n and I-ID

approaches use a ρ value of 25% of n. The fitness data gathered and statistical tests on

this data is given in Tables A.9 - A.16 in Appendix A.3.

The first point to discuss is that across all problems the original setup for M-ID and

I-ID of identifying modules from the entire population using a value of 50 for n has a worst

average best fitness than most, if not all, of the other approaches of the same identification

method. One exception to this is the I-ID method on the 8 × 8 Lawn Mower problem.

In this case, I-ID methods taking modules only from the best individuals are the worst

performing approaches. On the 8× 8 Lawn Mower and x5 − 2x3 + x Symbolic Regression

problems, both the M-ID and I-ID approaches are outperformed significantly by at least one

variation that uses fewer fitness evaluations. On the Santa Fe Ant Trail problem, methods

which use less fitness evaluations are able to significantly outperform the original M-ID

setup. There are approaches with better fitness values than the original I-ID method, but

the results are not significant. There are methods which use less fitness evaluations that

are able to outperform the original M-ID and I-ID approaches on Even 7 Parity problem in
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a statistically significant manner. These results present a good case for limiting the fitness

evaluations used to discover modules. It shows the previous used value n = 50 as excessive

in its use of fitness evaluations and smaller values of n (25 and 10 in this case) are more

appropriate.

An additional observation worth mentioning is that there appears to be no trend in the

performance of approaches which identify modules from the entire population compared to

approaches which only identify modules from the most fit 15% of individuals. The collected

data shows that the performance of these variations is problem dependent and may vary

even within the problems themselves. For example, on the Santa Fe Ant Trail problem,

the best performing approach to modularity is I-ID searching the top 15% of individuals

and using n = 10. However, the second through fourth best performing approaches to

modularity use the entire population to identify modules. Then, the fifth best uses on

the top 15% of the population. The lack of a constant best approach is seen in all the

benchmark problems and suggests that under the M-ID, R-ID, I-ID, and F-ID approaches,

using the entire population or using just a portion of it for module parents is not significant.

The data examined in this section does not conclusively show that any one combination

of a.) reducing the number of evaluations each module undergoes (the value for n) and

b.) searching only the best individuals for modules performs best on any of the problems

examined. It does, however, show that searching the entire population for modules and

evaluating each module 50 times is more generally more harmful than good. Based on

the results gathered from the experiments performed for this section, the combination of

identifying modules from the entire population and using n = 50 will be omitted from

further sections in this chapter.
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6.4.3 Initial Generation Identification

The final variation to identifying modules mentioned in Section 6.3 is identifying them

after the initial generation of individuals has been evaluated. This has been proposed as

an additional extension to each of the module identification methods because it allows

the population to work with modules from an early stage in evolution. In the benchmark

problems examined in this thesis, GE’s performance improves in the largest intervals during

the first 20 to 40 generations. After this point, the progress of evolution slows down. By

making modules available at the earliest stages of evolution, the population may learn

how to best exploit the modules and improve its performance over that of standard GE.

The results reported in this section cover the M-ID, I-ID, R-ID, and F-ID methods. Each

combination of identifying module from the entire and top 15% of the population and

n = 10, 25, and 50 are used. As was done in Section 6.4.2, the value of ρ for the I-ID

approach is 25% of n and 75% for the M-ID approach. The exception to this is variations

identifying modules from the entire population or using n = 50. Results discussed in

Section 6.4.2 show this combination of parameters to be one of the consistently worst

performing approaches across all the benchmark problems examined. The data discussed

in this section can be found in Tables A.17 - A.24 in Appendix A.4.

The results of identifying modules after the initial generation show that the fitness

of many of these approaches improves over the corresponding approach that does not

identify modules in the first generation. This is improvement in fitness is particularly

prevalent in the Santa Fe Ant Trail and Even 7 Parity problems. However, there is a

danger to identifying modules an additional time. For the M-ID and I-ID approaches, this

extra module identification will expend more fitness evaluations discovering modules. The

benefit of making modules available to the population in the early generations of evolution

may be overshadowed by the loss of fitness evaluations that would otherwise be used in the

evolution of the population. Returning to the issue of using fitness evaluations to identify
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modules, at least one of the top 5 performing approaches to modularity is a variation of the

R-ID or F-ID methods, and for every problem except the 8× 8 Lawn Mower, at least one

of the R-ID or F-ID methods identifies modules after the initial generation. These results

suggest that the extra module identification occurrence at the beginning of evolution is

especially useful when used with methods that use no fitness evaluations to find modules.

6.4.4 Comparison to Standard GE

Thus far, Sections 6.4.1, 6.4.2, and 6.4.3 examine various parameters that can be used with

the module identification approaches defined in Section 6.1. The analysis given in these

sections compares the various parameters for module identification against each other and

discusses how said approaches alter GE’s fitness. However, it does not address one of

the most important performance comparisons: how do the various approaches compare to

standard GE? This section covers this topic. GE with ADFs is also added as an additional

benchmark for comparing how the methods for module identification described in this

chapter perform in relation to an already established method for incorporating modularity

into GE.

Due to the many variations examined in the preceding sections and the large quan-

tity of data gathered, only the top 5 approaches for module identification, bottom 5 ap-

proaches for module identification, standard GE and GE with ADFs are discussed here.

Tables 6.2, 6.3, 6.5, and 6.4 present the results of Wilcoxon rank-sum test comparing each

of these approaches (The complete set of data for all approaches, not just the top and

bottom five, can be found in Appendix A.5 in Tables A.25 - A.32.). In these tables at

least one of the approaches to modularity defined in Section 6.1 achieves a statistically

significant improvement in fitness over standard GE for each problem. Only on the Santa

Fe Ant Trail and x5 − 2x3 + x Symbolic Regression are one of the M-ID, I-ID, R-ID, or

F-ID approaches able to significantly outperform GE with ADFs. One interesting observa-
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Table 6.2: This table shows the 5 best and worst methods for identifying modules based on their
average best fitness at the end of 50 independent runs on the Santa Fe Ant Trail problem. Red
cells indicate a significant difference between approaches based on a Wilcoxon rank-sum test with
a confidence interval of 95%. Rows and columns with TP in their labels denote approaches where
modules are identified only from the top 15% of the population. Rows and columns with AP in
their labels mark methods in which modules are identified from the entire population. The G1
in row and column labels means modules are identified after the initial generation.
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tion about these results is that the same approach to modularity and parameters for that

approach are never the best performing on more than one problem. This speaks for the

problem dependence of the various methods for identifying modules and the parameters

they use. Another trend in these tables is that approaches which perform significantly

better than standard GE often use as few as possible additional fitness evaluations to dis-

cover modules. The 8 × 8 Lawn Mower problem is an exception to this, where the M-ID

methods significantly outperform all other approaches. However, GE with ADFs is able

to solve many more instances of the 8× 8 Lawn Mower problem than any other approach

examined.
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Table 6.3: This table shows the 5 best and worst methods for identifying modules based on their
average best fitness at the end of 50 independent runs on the Even 7 Parity problem.
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Table 6.4: This table shows the 5 best and worst methods for identifying modules based on their
average best fitness at the end of 50 independent runs on the x5 − 2x3 + x Symbolic Regression
problem.
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Based on the data collected in these experiments, it can be stated that each of the

methods for identifying modules introduced in this chapter is able to significantly improve

the performance of standard GE when used with certain parameters on an appropriate

problem. However, identifying which module identification method and parameters should

be used can be a long and painstaking task. The results presented in this section suggest

that a “less is more” approach to using fitness evaluations for module discovery is generally

a wise idea, and making modules available to the population from an early generation is

also useful.
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Table 6.5: This table shows the 5 best and worst methods for identifying modules based on their
average best fitness at the end of 50 independent runs on the 8× 8 Lawn Mower problem.
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6.5 Summary

This chapter defines and examines four methods for identifying modules in GE and com-

pares them to standard GE and GE with ADFs. The different approaches are tested on

four different benchmark problems, and various parameters for the module identification

operations are examined. Specifically, the individuals modules are taken from, how many

times candidate modules are evaluated, how strict the module evaluation process is, and

if modules are useful in the initial generations are analyzed. The data collected in this

chapter shows that each of these settings can play an important role in how the various

approaches to module identification perform. Most importantly the following should be

considered:

• How rigorous the “passing” criteria for candidate modules is should be tailored to

the module identification approach;

• Fitness evaluations are precious to the progress of evolution and as few as possible

should be spent identifying modules;

• Evolution benefits from being able to use modules in early generations.

Depending on how these parameters are tuned and the undertaken problem, at least

one of the approaches to modularity is able to significantly outperform standard GE.

An unexpected result is that the random and frequency-based approaches to discovering

modules are usually the best performing when compared to the fitness-based approaches

to finding modules. This speaks towards the difficulty of defining a problem-independent

method capable of identifying useful modules. The good performance of the R-ID and

F-ID on most of the problems examined in this chapter shows that identifying and making

modules available to the population can be beneficial. However, more examination is

needed to understand the characteristics of the modules that are being identified and used
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to improve GE’s search.

These points can be related to two of the questions presented in Section 1.2.1:

Research Question 1 - Should modules be identified using a fitness-based or a usage-based

approach? The data shown in Sections 6.4 show that both fitness-based (M-ID and

I-ID) and frequency-based (F-ID) approaches to identifying modules can yield better

fitness values than standard GE. But the approach that gives a statistically significant

improvement over standard GE varies from problem to problem. As an example, only

one F-ID approach outperforms standard GE on the Santa Fe Ant Trail problem, but

every M-ID variation outperforms standard GE and every F-ID variation on the 8× 8

Lawn Mower problem. These results suggest that there is no single approach that

can be applied to common GP and GE benchmark problems and achieve a significant

improvement in fitness over standard GE.

Research Question 2 - How much computational power is reasonable to use in identifying

modules? The results from the experiments carried out in Section 6.4 show that using

as few additional fitness evaluations to evaluate modules as possible should always

be a goal. But, it is also possible to sacrifice some fitness evaluations for the sake of

discovering modules and still show some improvement in fitness. The R-ID and F-ID

methods, which use no additional fitness evaluations to identify modules, are typically

among the top-performing approaches. However, the one variation which added fitness

evaluations and tended to show improvements in fitness was identifying modules in

the first generation of evolution.

This chapter also presents a number of questions. The most interesting questions

concern the kinds of modules that are being discovered by the various module identification

methods and how they are used by the population. Do the various methods identify

modules that encode large or small amounts of phenotypic information? Are modules used

often by highly fit or unfit individuals? Does the quality of an individual that yields a
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module affect how that module is used? These questions will be examined in Chapter 7.

More questions arise from the work discussed in this chapter, but are out of the scope of

this thesis. The most notable being: is there some way to combine aspects of the various

module identification approaches defined in Section 6.1 to make a hybrid approach capable

exploiting the benefits of each method?
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Chapter 7

An Analysis of Modules

In Chapter 6, four methods of discovering modules are defined and examined with a variety

of parameters. Chapter 6 explores different values for the following parameters:

• how many evaluations are performed on each module,

• how many evaluations a module must pass,

• what area of the population should contribute modules,

• and if modules should be identified from the initial population.

Two of the four module identification methods find modules based on estimates of how

much they contribute to an individual’s fitness (M-ID) and how much they contribute to

multiple individuals’ fitness (I-ID). The other two methods for module identification select

modules randomly (R-ID) and based on their frequency of occurrence in the population

(F-ID). The results of these experiments showed that there was always at least one module

identification method capable of significantly outperforming standard GE on four different

benchmark problems. However, an unexpected outcome of the previous chapter is that

the R-ID and F-ID approaches were the only methods for identifying modules that con-

stantly outperformed standard GE across all the problems. This chapter will examine the
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modules found by the various module identification methods to determine what character-

istics modules discovered by the best performing approaches exhibit. It also examines how

the modules discovered by the various modules identification approaches are used by the

population. Specifically, this chapter examines the sizes of modules found (Section 7.2),

the phenotypic content of the modules (Section 7.3.1), and the meaning, or semantics,

of the modules (Section 7.3.2). In addition to the characteristics of the modules them-

selves, how frequently modules are used over time and the fitness of individuals that use

them is also examined in Section 7.4. The conclusions from this chapter answer Research

Questions 1.2.1 and 1.2.1, which are proposed in Section 1.2.1.

7.1 Experimental Setup

In order to understand what causes the performance difference between the various ap-

proaches to modularity, the modules themselves are examined. More specifically, this

chapter reports the differences in size, content, semantics, and usage of modules found by

the different module identification methods. This examination will give insight into what

characteristics of modules (size, phenotypic content, and meaning) are desirable, enabling

the design and implementation of more effective module identification operations. The ex-

amination of each characteristic of the modules is performed on all four of the benchmark

problems from Chapter 6: Santa Fe Ant Trail, Even 7 Parity, 8 × 8 Lawn Mower, and

x5 − 2x3 + x Symbolic Regression.

7.2 Module Size

To begin this study of the characteristics of discovered modules, their size is analyzed.

Figures 7.1 - 7.4 shows the average depth of modules discovered by the various mod-
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ule identification setups. By examining the trends (or the lack of trends) exhibited by

the various module identification methods, insight into which sizes of sub-derivation trees

make better modules can be gained. Identifying appropriate sizes for modules will aid in

designing more efficient future module identification methods.

7.2.1 Santa Fe Ant Trail

On the Santa Fe Ant Trail problem (Figure 7.1), there appears to be no trend that dif-

ferentiates the best and worst performing approaches in terms of module size. The best

performing method on this problem is frequency identification (F-ID), identifying modules

in the first generation and only from the top 15% of the population. On average, this setup

discovers modules from sub-derivation trees with depths between five and seven. These

depths are between 65% and 92% of the depth of the derivation trees of their parents.

However, on this problem, many of the approaches that perform poorly discover similar

sized modules. GE with ADFs also generates ADFs which are similar in size to the modules

discovered by the various other module identification approaches.

7.2.2 Even 7 Parity

In Figure 7.2, the modules discovered by the Even 7 Parity problem show a slightly dif-

ferent trend. The best performing approach is F-ID, identifying modules from the entire

population starting in the first generation. This method discovers smaller modules with

depths between three and four. These modules comprise between 35% to 44% of the par-

ent individuals’ total depths. All the F-ID approaches discover similar size modules, but

the R-ID, I-ID, and M-ID methods discover modules with depths between four and eight.

This suggests that for the Even 7 Parity problem, identifying shallower modules is more

beneficial. GE with ADFs sets itself apart from the other approaches by generating ADFs
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Figure 7.1: This figure shows the average depth of modules discovered by the various module
identification setups on the Santa Fe Ant Trail problem. The x-axis on each heatmap represents
the generation at which modules are identified. The y-axis shows the module identification
variations sorted by their end-of-run average best fitness from top to bottom, top being the best
and bottom being the worst. The color of each cell represents the average depth of modules
discovered. The numeric value in each cell is the average ratio of the modules’ depth compared to
their parents. Blank (white) cells denote generations where no new modules are identified. The
color key beneath the heat map represents the depth of modules discovered.
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that are almost exclusively between depths 7 and 8.

7.2.3 x5 − 2x3 + x Symbolic Regression

The only approach able to outperform standard GE on the x5−2x3+x Symbolic Regression

problem is R-ID identifying modules from the entire population. This setup shows an

increase in module size, from depths of four to fourteen, as more module identification

operations occur. The modules identified increase from 72% the depth of their parents’

derivation trees to 98%. This growth in module size suggests that evolution is able to take

advantage of larger and larger modules as the generations progress. Part of this behavior

could be attributed to bloat in the modules. However, there are other approaches to

module identification that begin by identifying small modules and gradually identify larger

modules that perform much worse than R-ID taking modules from entire population.

7.2.4 8× 8 Lawn Mower

A new trend is shown by the 8 × 8 Lawn Mower problem in Figure 7.4. The top four

approaches are all mutation identification (M-ID) methods. Each of these variations begins

by identifying smaller modules, then identifying larger modules, and finally identifying

smaller modules once more. To contrast this, the random (R-ID), insertion (I-ID), and F-

ID methods show different behaviors. Both F-ID and R-ID start by finding small modules

and, at each identification step, find larger modules. The I-ID, on the other hand, identifies

only small modules for the duration of each run. This suggests that on this problem larger

modules are more beneficial in earlier generations, but their utility expires and smaller

modules become more useful. An interesting feature of GE with ADFs is that they are by

far the best performing approach (recall the results from Section 6.4.4), yet they generated

very small ADFs when compared to the modules generated by the best performing M-ID
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Figure 7.2: This figure shows the average depth of modules discovered by the various module
identification setups on the Even 7 Parity problem.
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Figure 7.3: This figure shows the average depth of modules discovered by the various module
identification setups on the x5 − 2x3 + x Symbolic Regression problem.
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methods. This shows that GE with ADFs are able to evolve smaller and more efficient

modules on the Lawn Mower problem. It also suggests that there is a large amount of

bloat in the modules discovered under the M-ID and R-ID methods.

7.2.5 Discussion

This analysis gives some insight into the sizes of modules on four benchmark problems.

What can be seen is that modules of various sizes are more or less beneficial depending on

the problem under examination. While the best approaches for identifying modules tend

to exhibit particular behavior in terms of the sizes of modules discovered, worse-performing

approaches may also show the same behavior. These results also suggest that bloat in the

modules is an issue that should be considered. On both the Even 7 Parity and x5−2x3+x

Symbolic Regression problems, the single-best performing method identifies small modules

for the duration of evolution. Another set of parameters which could be useful is restricting

the size of modules to a certain depth or using a method such as Dignum and Poli’s operator

equalization [35] to manage the size of modules. However, the size of modules discovered

does not tell the complete story. To further understand the information being encapsulated

by modules, Section 7.3 will examine the content of the discovered modules.

7.3 Module Content

To further explore the differences between the various module finding methods, this sec-

tion examines the content of the modules discovered. This study of module content is

approached by first examining the frequencies of different terminal symbols encapsulated

into modules by the module identification operations. Next, the semantics of the modules

is examined. These two examinations will give insight into the variety of modules found

by the identification methods described in Chapter 6.
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Figure 7.4: This figure shows the average depth of modules discovered by the various module
identification setups on the 8× 8 Lawn Mower problem.
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7.3.1 Module Phenotypes

Here, the phenotypic elements that comprise discovered modules are examined. Looking at

which symbols are used more or less often by modules gives another basis for differentiating

the various module identification methods from each other. The benchmark problems used

in this work each have known solutions. Examining which terminal symbols are encapsu-

lated by modules will show if logical amounts of the more “important” symbols are being

discovered as modules. For example, the target for the x5 − 2x3 + x Symbolic Regression

problem uses no division operators and many multiplication operators. However, it may

be the case that some modules encapsulate division operators and few or no multiplication

operators. Comparing the contents of modules in this way will show if some approaches

encapsulate more or less useful module components. In the following sections, the pheno-

typic components of every module ever used in GE’s grammar, in the case of the R-ID,

I-ID, M-ID, and F-ID approaches, and every module created by ADFs are examined.

Santa Fe Ant Trail

The first set of modules to examine are those discovered on the Santa Fe Ant Trail problem

shown in Figure 7.5. This figure shows that there is much similarity in terms of the

proportion of terminal symbols used by modules from each of the identification approaches.

Each module discovery method uses fewer if(food ahead){...}else{...} code blocks

than other terminal symbols. Another feature that all the approaches in Figure 7.5 exhibit

is the large proportion of move instructions encapsulated into modules. However, unlike

all the other identification methods, the top two (F-ID TP G1 and F-ID AP G1 ) have

a slightly more even distribution of move and right instructions. This suggests that the

best approaches still rely heavily on encapsulating move instructions (which is expected

since many move instruction are needed for picking up food) but also use more right

instructions to navigate the ant trail. This also suggests that for the Santa Fe Ant Trail, it
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Figure 7.5: This figure shows the proportion of each terminal symbol the module identification ap-
proaches encapsulate into modules for the Santa Fe Ant Trail problem. Each row in the heatmap
represents a module identification method and each column represents a terminal symbol. Darker
red and orange colored cells denote smaller proportions, and yellow to pale yellow colors indicate
larger proportions. The left, right, and move columns represent their respective any movement
instructions. The food column denotes the if(food ahead){...}-else{...} logic statement.

may be beneficial to force a more even distribution of terminal symbols used in modules,

similar to that of the (F-ID TP G1 and F-ID AP G1 ) approaches.

Even 7 Parity

Next, Figure 7.6 shows the proportion of different terminal symbols used in modules on

the Even 7 Parity problem. This figure shows that the xor and not operations are the

most common among terminal symbols found in modules. For this problem, there does

not appear to be any differences that separate the best performing approaches from the
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Figure 7.6: This figure shows the proportion of each terminal symbol the module identification
approaches encapsulate into modules for the Even 7 Parity problem. Each row in the heatmap
represents a module identification method and each column represents a terminal symbol. Darker
red and orange colored cells denote smaller proportions, and yellow to pale yellow colors indicate
larger proportions.

others in terms of the variety of terminal symbols found in the modules. This suggests

that the key to the best module identification approaches’ success can be found in the size,

meaning, or usage of the modules.

x5 − 2x3 + x Symbolic Regression

On the x5 − 2x3 + x Symbolic Regression problem (Figure 7.7), there are some character-

istics to mention that occur in terms of the proportions of the various terminal symbols

encapsulated by modules from the various module discovery methods. The first feature of

Figure 7.7 to notice is the block of the top performing module identification approaches
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Figure 7.7: This figure shows the proportion of each terminal symbol the module identification
approaches encapsulate into modules for the x5−2x3+x Symbolic Regression problem. Each row
in the heatmap represents a module identification method and each column represents a terminal
symbol. Darker red and orange colored cells denote smaller proportions, and yellow to pale yellow
colors indicate larger proportions.

that use more x symbols than 1s. A reasonable explanation for this comes from the target,

which is primarily composed of x operands and ∗ operators. Another interesting feature of

Figure 7.7 is the amount of − operators found in modules. The best performing approaches

to discovering modules use some − operators but not with the same frequency that they

use ∗ operators. This suggests that the methods for finding modules that perform the best

are able to encapsulate proportions of the terminal symbols which can aid in successfully

reaching the target.
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Figure 7.8: This figure shows the proportion of each terminal symbol the module identification
approaches encapsulate into modules for the 8×8 Lawn Mower problem. Each row in the heatmap
represents a module identification method and each column represents a terminal symbol. Darker
red and orange colored cells denote smaller proportions, and yellow to pale yellow colors indicate
larger proportions.

8× 8 Lawn Mower

Similar to the Even 7 Parity problem in Section 7.3.1, the 8 × 8 Lawn Mower shows no

differences in the proportions of terminal symbols that exist in modules (Figure 7.8. The

most prominent terminal symbol used in modules is the mow symbol, which is unsurprising

as it is the most important in terms of helping the lawn mower cover as much area as

possible and achieving a better fitness value. Again, the differences in performance on this

most likely due to the size, meaning, or usage of the modules.
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Discussion

Examining the proportion of terminal symbols encapsulated by modules may uncover bi-

ases, or lack thereof, that are present in various module identification methods. However,

Figures 7.5 - 7.7 show that there may be slight differences in terms of which terminal sym-

bols are encapsulated as modules, but these differences are not usually large. This means

most of module identification approaches are identifying modules with similar contents,

and the cause of the differences in performance stem from another characteristic(s) of the

modules.

7.3.2 Module Semantics

The next characteristic of modules to analyze is their meaning, or semantics. For the

purpose of this analysis, the semantics of a module is defined as its fitness when evaluated

on the same fitness function as the individuals in the population. Measuring the semantics

of modules in this way gives insight into how potentially useful the discovered modules

are and the diversity of behaviors exhibited by the modules.1 But this is not the sole

method for measuring semantics. Nguyen et al. [102] and McPhee et al. [93] both give

different metrics for evaluating the semantics of sub-trees in GP. More recently, Moraglio

et al. [96] and Krawiec and Pawlak [76] examine the geometry in addition to the semantics

of individuals in GP. It is important to note that modules may have a good semantic value,

but individuals must use them appropriately in order to take advantage of the modules.

However, looking at the modules’ semantics in this way does give a good idea of the

diversity of performance exhibited by the modules. An expected result of this analysis

would show approaches that discover modules with good semantic values when evaluated

1The use of semantics in this way somewhat contrasts the understanding of a module, which is meant to
solve only part of a problem instead of the entire problem. However, for the purpose of this examination,
the use of semantics in this manner is sufficient.
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out of the context of individuals are also the best performing approaches during evolution.

The data used to make Figures 7.9 - 7.12 can be found in Tables B.1 - B.4 in Appendix B.

Santa Fe Ant Trail

For the Santa Fe Ant Trail (Figure 7.9), the best performing approach to modularity (F-ID

TP G1 ) did not discover modules that performed particularly well on average when they

are removed from individuals. However, it did have the second largest standard error of

the average semantics of modules discovered by this method, showing that the modules

discovered by this approach have tend to be more diverse in terms of performance on the

Santa Fe Ant Trail. One trend in the data in this figure is seen in the I-ID approaches. All

the I-ID approaches have similar average semantic values, showing that on this benchmark

problem the I-ID methods tend to identify modules with more similar behavior than mod-

ules discovered by other methods. A final characteristic to discuss concerning Figure 7.9

is the behavior of the ADFs discovered. The ADFs had the largest average semantic value

and smallest standard error of all the approaches examined.

Even 7 Parity

On the Even 7 Parity problem, the best approach is F-ID AP G1. Figure 7.10 shows

that this method identifies modules with relatively large average semantic values. Most

approaches also have a very small standard error. One approach that deserves attention on

this problem is the I-ID TP n-25 approach. This set of parameters only finds one module

throughout the duration of all of its combined runs. But this sole module has a average

semantic value of 0, meaning it solves the Even 7 Parity problem. Similar to the Santa Fe

Ant Trail results (Section 7.3.2), ADFs have one of the largest average semantic values.

They also have the smallest standard error.
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Figure 7.9: This figure shows the average semantic value and standard error of all the modules
ever discovered on the Santa Fe Ant Trail problem. The semantic value is calculated by evaluating
each module on the fitness function as if it was a stand-alone individual.

x5 − 2x3 + x Symbolic Regression

Figure 7.11 shows the average semantic values for module identification methods on the

x5 − 2x3 + x Symbolic Regression problem. On this problem, the best performing module

discovery method (R-ID AP) has one of the largest average semantic values and a low

entropy value. There are also a number of methods for identifying modules with small

average semantic values as well as lower and higher standard errors. On this problem,

ADFs have the largest average semantic value and one of the largest standard errors.
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Figure 7.10: This figure shows the average semantic value and standard error of all the modules
ever discovered on the Even 7 Parity problem. The semantic value is calculated by evaluating
each module on the fitness function as if it was a stand-alone individual.

8× 8 Lawn Mower

The 8 × 8 Lawn Mower problem (Figure 7.12) shows different trends than the previous

problems. Here, Figure 7.12 shows the best performing approaches all identify modules

with small average semantic values with similar standard error values. The exception to this

is the best performing approach, ADFs. It has a significantly larger average semantic value

than the other top-performing approaches. Aside from ADFs, as the module identification

approaches perform worse, the modules identified by those approaches correspondingly

have larger average semantic values.
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Figure 7.11: This figure shows the average semantic value and standard error of all the modules
ever discovered on the x5−2x3+x Symbolic Regression problem. The semantic value is calculated
by evaluating each module on the fitness function as if it was a stand-alone individual. The error
bars on this graph appear skewed due to the log-scale y-axis.

Discussion

The data from the above sections show that on the Santa Fe Ant Trail, Even 7 Parity, and

x5 − 2x3 + x Symbolic Regression problems the average semantic value of modules when

evaluated as stand-alone individuals is not necessarily a good indicator of their utility in

improving GE’s performance. On the other hand, in all cases except for ADFS, modules

found on the 8× 8 Lawn Mower problem may be evaluated on their own to estimate how

useful they may be when made available to the population. ADFs tend to exhibit the

most constant behavior across problems. They consistently have one of the largest average

semantic values and smallest standard error, except on the x5−2x3+x Symbolic Regression

problem, where it has the largest standard error as well as the largest average semantic
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Figure 7.12: This figure shows the average semantic value and standard error of all the modules
ever discovered on the 8×8 Lawn Mower problem. The semantic value is calculated by evaluating
each module on the fitness function as if it was a stand-alone individual.

value.

On the Santa Fe Ant Trail, x5 − 2x3 + x Symbolic Regression, and 8× 8 Lawn Mower

problems, the best performing methods have some of the largest standard errors for the

semantic values exhibited by the modules they discover. These results suggest that when

identifying modules, it may be beneficial to encourage or bias towards discovering modules

that may have a variety of semantics. The exception for this is the Even 7 Parity problem,

where the best performing approach to modularity has one of the smallest standard errors

for the semantic values of the modules.

While the data in this section gives some insight into the how the semantics of modules

may be used, and taking into account the data presented on module size (Section 7.2) and
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phenotypic content (Section 7.3.1), it is clear that the semantics of a module should not be

the only consideration when incorporating a bias for which modules should be considered

for use in the population. Moreover, even if high quality modules are discovered, they must

be used by individuals. The following section examines how the population uses modules

over the course of evolution.

7.4 Module Usage

The previous sections of this chapter (Sections 7.2 and 7.3) discuss characteristics of the

modules themselves. A knowledge of these characteristics may be useful, but it is also

important to understand how modules are used by the population. This is the focus of this

section. More specifically, the percentage of individuals in the population that use a given

module and the average fitness of individuals using that module is examined. Looking at

how modules are used in the population helps to determine if modules are being used in

a “sensible” manner, meaning modules get used by fit, as well as unfit, individuals, and

modules are used by many individuals in the population. To avoid repeatedly discussing

similar and unremarkable results, this section covers only the differences between the best

and worst approaches to identifying modules and compare and contrast how modules dis-

covered by these approaches are used. One expectation of the outcome of this study is to

point out the different usage patterns that exist between the best and worst performing

modular methods. The analysis in this section is based on the work of Swafford et al. [155].

The data below only shows modules that appear in 30% of the population or more in at

least one generation. This is done because there are too many modules in total to look at,

and the most interesting features of the following data comes from the most used modules.

For the remainder of this section, heatmaps are used to present how modules are used

by individuals over the course of their evolutionary runs. In Figures 7.15– 7.20, each row
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of the heatmap represents a module and each column represents a generation. In figures

labeled “Usage,” red or dark orange colored cells mean that few individuals are using a

module at that generation. White or yellow cells mean all or many individuals are using

a module. Gray colored cells denote generations when a module is not used at all. In

figures labeled “Fitness,” the red and dark orange cells indicate that the average fitness of

individuals using modules is a smaller value (small values signify better fitness). The white

and yellow cells mean the average fitness of individuals using a module is large, indicating

a worse fitness. Like the “Usage” heatmaps, gray cells show generations where the module

is not used. The data for these graphs have been normalized between 0 and 1 by dividing

each value by the maximum value in the data set. For all graphs, the black vertical lines

indicate generations in which module identification and replacement takes place. The data

presented in the following sections only shows modules that are used by 10% or more of

the population at any generation.

7.4.1 Description of Heatmap Features

To assist the reader in more quickly recognizing the notable features of the data presented

in Sections 7.4.2 - 7.4.5, a selection of these features are presented here with an explanation

of what that particular feature signifies.

(a) Usage (b) Fitness

Figure 7.13: This figure shows an example of modules being used by a small number of individuals
(Figure 7.13(a)) with a large average fitness (Figure 7.13(b)).

The first of these features is given in Figure 7.13. Here, Figure 7.13(a) shows a block of

modules that are used by a small percentage of individuals. Correspondingly, the yellow and
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white colors of Figure 7.13(b) denote the average fitness of individuals using these modules

is a large value. The black vertical line denotes a generation where module identification

and module replacement occurs. Cells after the black line are gray, meaning the modules

are no longer used by individuals. Combining the information shown by these two slices of

heatmaps, it can be inferred that the block of modules shown is used by a small amount

of individuals with poor fitness values until the modules are no longer available for use in

the population due to the module replacement operation.

The next feature to discuss is shown in Figure 7.14. The red and dark orange cells on

the left of this figure show modules being used by a small percentage of the population.

The transition from the red and orange cells to pale yellow and white cells denote the

modules being used by a larger number of individuals.

Figure 7.14: This figure shows an example of modules being used initially by a small amount of
individuals and over time being used by a large amount of individuals.

7.4.2 Santa Fe Ant Trail

The best approach to identifying modules for the Santa Fe Ant Trail is F-ID TP G1

(Figure 7.15). One of the first characteristics to discuss is the large amount of modules

that are only used by a small percentage of individuals in the population. The large amount

of red cells at the top of Figure 7.15(a) shows that many modules are used by small amounts

of the population for many generations. When considering this in conjunction with the

corresponding cells in Figure 7.15(b), it can be seem that some of the modules, despite

the low frequency of their use, are used by individuals with small fitness values (Recall

that better individuals have smaller fitness values), as well as individuals with large fitness
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values. There are also numerous modules which are initially used by few individuals and as

the generations progress are used by a large percentage of the population. These modules

can be seen in the bottom halves of Figures 7.15(a) and 7.15(b). Another interesting

feature of these figures is that many of the modules discovered in the first generation are

later replaced by modules with much longer lifespans.

(a) Usage (b) Fitness

Figure 7.15: This figure shows the usage of modules in the population (Figure 7.15(a)) and the
average fitness of individuals using modules (Figure 7.15(b)) on the Santa Fe Ant Trail. Modules
are identified using F-ID TP G1 method (the best performing approach on this problem).

The worst performing approach on this problem is M-ID AP G1 n–25, shown in Fig-

ure 7.16. It has similar characteristics as Figure 7.15 in terms of how often modules are

used, how fit the individuals that use them are, and how long they last in the population.

The largest difference between the two approaches is the number of generations completed.

Recall this is discussed in more detail in Chapter 6. The data from these figures suggest

that on the Santa Fe Ant Trail, the difference in the performance of the best and worst
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approaches to modularity is not due to how the modules are used. The most likely sources

of the difference in performance are the parameters that determine how often modules are

identified and how many fitness evaluations are used to discover modules.

(a) Usage (b) Fitness

Figure 7.16: This figure shows the usage of modules in the population (Figure 7.16(a)) and the
average fitness of individuals using modules (Figure 7.16(b)) on the Santa Fe Ant Trail. Modules
are identified using M-ID AP G1 n–25 method (the worst performing approach on this problem).

7.4.3 Even 7 Parity

The best approach to identifying modules on the Even 7 Parity problem (F-ID AP G1 ),

given in Figure 7.17, shows similar characteristics to those seen in the best approach on

the Santa Fe Ant Trail (Section 7.4.2). Many modules identified in the first generation are

replaced at the next module identification/replacement occurrence by modules with longer

lifetimes. There are also numerous modules which are used for many generations only by
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(a) Usage (b) Fitness

Figure 7.17: This figure shows the usage of modules in the population (Figure 7.17(a)) and the
average fitness of individuals using modules (Figure 7.17(b)) on the Even 7 Parity. Modules are
identified using F-ID AP G1 method (the best performing approach on this problem).

a small percentage of the population. The worst approach for identifying modules on the

Even 7 Parity problem is M-ID AP n–25. Modules discovered by this approach show much

of the same behavior as modules found by the best module identification method (F-ID

AP G1 ) for this problem. Like the difference in performance between the best and worst

approaches for finding modules on the Santa Fe Ant Trail problem, the most probable

cause of the differences in performance on the Even 7 Parity problem are the parameters

which determine how often modules are identified.

7.4.4 x5 − 2x3 + x Symbolic Regression

The best performing approach on the x5−2x3+x Symbolic Regression problem, R-ID AP,

can be seen in Figure 7.19. This method for identifying modules cycles modules in and out
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(a) Usage (b) Fitness

Figure 7.18: This figure shows the usage of modules in the population (Figure 7.17(a)) and the
average fitness of individuals using modules (Figure 7.18(b)) on the Even 7 Parity. Modules are
identified using M-ID AP n–25 method (the worst performing approach on this problem).
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(a) Usage (b) Fitness

Figure 7.19: This figure shows the usage of modules in the population (Figure 7.19(a)) and
the average fitness of individuals using modules (Figure 7.19(b)) on the x5 − 2x3 + x Symbolic
Regression. Modules are identified using R-ID AP method (the best performing approach on this
problem).

of the population in a similar manner to the best performing approach to the 8× 8 Lawn

Mower problem Figure 7.21. Using the worst performing module identification approach

given in Figure 7.20, many modules last 60–80 generations. There is very little module

replacement, meaning that once a module is discovered and put into GE’s grammar, it

is unlikely they will be replaced by a new module, suggesting that the M-ID AP G1 n–

25 method is unable to discover quality modules to replace the existing ones. Another

characteristic of the graphs in Figure 7.20 is that many modules only get used by highly fit

individuals. This suggests that crossover and mutation operations are not spreading these

modules to new individuals.
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(a) Usage (b) Fitness

Figure 7.20: This figure shows the usage of modules in the population (Figure 7.20(a)) and
the average fitness of individuals using modules (Figure 7.20(b)) on the x5 − 2x3 + x Symbolic
Regression. Modules are identified using M-ID AP G1 n–25 method (the worst performing
approach on this problem).
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(a) Usage (b) Fitness

Figure 7.21: This figure shows the usage of modules in the population (Figure 7.21(a)) and the
average fitness of individuals using modules (Figure 7.21(b)) on the 8× 8 Lawn Mower. Modules
are identified using M-ID AP n–10 method (the best performing approach on this problem).

7.4.5 8× 8 Lawn Mower

On the 8 × 8 Lawn Mower problem, the best performing module ID method is M-ID AP

n–10. Using this approach, there is a large amount module of turnover (Figure 7.21). Few

modules last longer than the 20 generation module identification step. However, there

begins to be less module replacement in the later generations. The worst performing

approach is I-ID TP G1 n–10 (Figure 7.22). This method exhibits no replacement of

modules at all in the modules graphed. There are two possible causes for this:

1. not many modules are discovered and replacement is never needed,

2. many modules are discovered but the combination of the module replacement oper-

ation and I-ID method is not suitable for this problem.
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(a) Usage (b) Fitness

Figure 7.22: This figure shows the usage of modules in the population (Figure 7.22(a)) and the
average fitness of individuals using modules (Figure 7.22(b)) on the 8× 8 Lawn Mower. Modules
are identified using I-ID TP G1 n–10 method (the worst performing approach on this problem).

Is it likely that the relatively poor performance of this module identification approach is a

results from the lack of module replacement or discovery.

7.4.6 Discussion

The analysis of module usage does not tell much about what makes the modules themselves

good or bad, but it gives insight into desirable behaviors for modules to exhibit in the

population. After examining the behavior of the best performing approaches for identifying

modules, one conclusion is that there should be a reasonable amount of replacement of the

modules made available to the population. When some portion of the modules is replaced,

evolution is finding more information in the population that is currently, and may be

155



7.5. SUMMARY

in the future, valuable as a module. It is also important for modules to be propagated

throughout the individuals as well. If modules are not used, they are unable to serve their

purpose of improving search performance. A further study, out of the scope of this thesis,

to investigate the effects of crossover and mutation on module propagation may prove

valuable to understand how modules are spread through the population. The differences

between module usage in the Santa Fe Ant Trail and Even 7 Parity problems and the

8 × 8 Lawn Mower and x5 − 2x3 + x Symbolic Regression problems also shows problem

dependence in terms of how modules can best be used.

7.5 Summary

This chapter analyzes the size, contents, semantics, and usage of modules on four bench-

mark problems. First, the characteristics of modules, such as depth, phenotypic contents,

and semantics, discovered by the various module identification methods are examined.

Next, the usage of modules discovered by the best and worst approach for finding modules

on each problem is discussed by showing how modules are used by different percentages of

the population over time as well as the average fitness of individuals that use them.

The results of the analysis presented in this chapter can be related to two questions

proposed in Section 1.2.1:

Research Question 3 - What are the characteristics of the modules themselves that makes

them useful? At the various stages in evolution, a particular size of module is likely

to be more helpful than others. This size may vary across problems. A mechanism to

discover modules of the appropriate size at a given generation may be beneficial. All

of the approaches for identifying modules under examination find relatively similar

proportions of the terminal symbols that comprise modules. However, specifically on

the x5 − 2x3 + x Symbolic Regression problem (Section 7.3.1), modules may often
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contain symbols that are not very useful. This raises the issue of bloat in the sense

that the modules being found may not be particularly useful. Studying the semantics

of the discovered modules revealed that ensuring modules adhere to a certain fitness

distribution in terms of their behavior may be a valuable feature to add to the module

replacement operation.

Research Question 4 - Are modules discovered by various identification methods used

differently by evolution? Looking at how modules are used in the population shows

that the best approaches on two of the benchmark problems are able to easily replace

modules. This suggests that the ability to replace old modules with newer and more

useful modules is important for improving GE’s performance. The worst perform-

ing approaches to discovering modules often had difficulty discovering and replacing

existing modules.

The results of these studies point towards a number of features that should be taken

into consideration when designing a module identification operation. The experiments

carried out for this work placed no restrictions on the size, contents, or semantics of

modules. Based on the results shown in this chapter, the development of future module

identification methods should attempt to determine what sizes, contents, and semantic

values of modules are useful and use this information to identify new modules with even

greater utility. Another conclusion from the results presented in this chapter show that it

is sometimes difficult for old modules to be replaced with newer modules. A potentially

beneficial vein for future work could be to ensure that a reasonable amount of modules are

being replaced with newer modules. Old modules could be removed based on how many

individuals use then, the fitness of individuals using them, the number of generations they

have been available for use, or any combination of these values.
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Chapter 8

Conclusions and Questions Raised

After examining various methods for incorporating modules into GE’s evolving population

and different approaches for identifying modules, this chapter presents the conclusions

of this thesis. First, a summary of the conclusions taken from this work is given in Sec-

tion 8.1. Next, Section 8.2 covers the limitations of this thesis. Finally, Section 8.3 presents

opportunities for future work based on the findings of this research.

8.1 Summary of Thesis

The aim of this thesis is to determine the most important questions that should be consid-

ered when incorporating modularity into GE. It explores different approaches to modularity

in GE, with the ultimate goal of examining how these approaches alter GE’s performance.

Understanding how the characteristics of the approach to modularity affect GE’s perfor-

mance will allow for the development of more effective mechanisms for integrating modu-

larity into, not just GE, but other EAs as well. To accomplish this goal of understanding

modularity in GE, a number of questions are asked:
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Module Identification

Research Question 1: Should modules be identified using a fitness-based or a usage-

based approach?

Research Question 2: How much computational power is reasonable to use in identify-

ing modules?

Research Question 3: What are the characteristics of the modules themselves that makes

them useful?

Research Question 4: Are modules discovered by various identification methods used

differently by evolution?

Module Usage

Research Question 5: How should modules be made available to GE’s population during

evolution?

Research Question 6: Does updating the set of modules available to individuals more

or less frequently change the performance of GE?

Research Question 7: Does the number of modules made available to GE during evo-

lution affect GE’s performance?

The first experimental chapter of this thesis, Chapter 4, introduces a novel method for

identifying modules. It then compares various methods adding modules to GE’s grammar

during an evolutionary run. It also compares variations for how frequently modules are

added to GE’s grammar and how many modules are added to GE’s grammar per grammar

modification step. The results of Chapter 4 show that modules should be added to GE’s

grammar in a way that causes minimal disturbance in the fitness of the population. It
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also shows that there should be a balance in how often modules should be identified and

how many modules should be added to GE’s grammar when it is modified. Discovering

modules too frequently under the remap approach causes disruptions in performance, uses

computational resources, and does not allow evolution enough time to use the modules

it has previously identified before they are replaced. Adding too many modules to GE’s

grammar dilutes the possibilities for individuals to create new information from the original

grammar or to use previously discovered modules.

The following experimental chapter, Chapter 5, introduces the genotype repair operator

which is used to ensure the addition of modules into GE’s grammar does not present any

adverse effects in terms of the fitness of the population. In addition to the genotype repair

operator, a module expansion operator is also introduced. The results from Chapter 5

show that both the genotype repair and module expansion operations give a performance

increase over the previous method of simply adding modules to GE’s grammar.

Next, Chapter 6 defines four methods for identifying modules in GE. It then cov-

ers various parameters and variations of these operators in an attempt to improve their

performance and understand what features are most desirable in a module identification

method. The particular parameters examined include determining which portion of the

population from which modules should be selected, how many fitness evaluation should be

used to identify modules, the level of rigor of the module identification methods, and if

modules should be identified after the initial generation of evolution. The results of this

chapter show that there is no single-best approach for identifying modules. One general

trend in the results was that the best performing approaches tended to use few or no fitness

evaluations and identified modules after the initial generation.

The final experimental chapter, Chapter 7, goes on to analyze the features of the

modules themselves. It shows how different sizes of modules are discovered at different

generations of evolution and suggests that discovering modules of the appropriate size at
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a given generation may be beneficial. It also reports how all the approaches for identifying

modules find modules with similar contents. A third conclusion from Chapter 7 is that

maintaining a certain distribution of fitness values amongst modules may also be beneficial.

The final result from Chapter 7 shows how modules are spread throughout, added to, and

removed from the population during evolution.

8.1.1 Contributions

Aside from the literature review and compilation of approaches to modularity in GP,

the contributions of this thesis fall under two categories: integrating modules into the

population and identifying modules. The following contributions address the questions

presented earlier in this section.

Module Identification

Development of new module identification methods: To answer Question 8.1, two new

novel module identification operators were developed and presented in Section 6.4.4. A

comparison of the new operators to random and frequency-based module identification

operators shows that operators which use less fitness evaluations tend to perform

better.

Comparison of module identification approaches and their parameters: Section 6.4 an-

swers Question 8.1. In that section, many variations of parameters for the modules

identification methods are examined, showing that any method of reducing the fitness

evaluations needed to identify modules is beneficial. Identifying modules immediately

after the first generation may also be useful.

Analysis of module characteristics: Next, Question 8.1 is answered in Sections 7.2

and 7.3. These sections show that the best performing approaches to module discovery
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find modules within certain size and fitness diversity ranges.

Analysis of module usage during evolution: The final question, Question 8.1, is answered

in Section 7.4. The results of Section 7.4 show that the best approaches for identifying

modules are able to more easily replace older modules with newer modules.

Incorporating Modules into GE

Analysis of methods for modifying GE’s grammar: In order to answer Question 8.1,

an examination of two mechanisms for incorporating modules into GE’s grammar

are examined in Section 4.4.1. This examination shows that using a module library

production in the grammar allows modules to be added to GE’s grammar while still

allowing a reasonable probability for individuals to pick productions from the original

grammar during their genotype-to-phenotype mapping process.

Analysis of the frequency at which the grammar is modified: Question 8.1 is answered in

Section 4.4.2, where it is shown that allowing GE more generations before modifying its

grammar gives a performance increase over modifying the grammar more frequently.

Analysis of the size of grammar modification: The answer to Question 8.1 also comes

from Section 4.4.1. The results in this section show that keeping every module dis-

covered often lead to poor performance compared to keeping a smaller selection of

modules

Genotype repair operator: Although there was no initial research question which the

genotype repair operator addressed, it has been a useful tool in enhancing GE’s per-

formance. This operator ensures modifying GE’s grammar causes no change in the

phenotypes of individuals after the grammar has changed during evolution.
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8.2 Limitations of Thesis

As is mentioned in Chapter 1, the possibilities for work in regards to modularity and GP

and/or GE are vast, and this thesis is only able to cover a limited amount of these avenues

of research.

One of the first limitations is the set of parameters used in the experiments presented

in Chapters 4-7. Varying basic EA parameters such as population size, individual size,

crossover rate, mutation rate, etc., will change what individuals are present in the popula-

tion and what modules can be selected from them. However, only a single set of parameters

was used for these settings. Along these lines, only a single grammar was used for each

benchmark problem. However, Nicolau [103] and Harper [53] show how grammars capable

of expressing the same language, but with different numbers and layouts of terminal and

non-terminal symbols, can have different performance in GE. No attempt was made to use

any grammars other than those given in Chapter 2. This leaves a potential to research of

new grammar designs to be used by GE with modules for future work.

Also mentioned in Chapter 1 was the number of parameters needed by the modularity

methods themselves. An attempt was made to test these values within a reasonable range,

but there are still many variations of these parameters which were unable to be examined.

Making these parameters self-adaptive may prove beneficial in future work. Additionally,

there are many other variations of the operators themselves which were unable to be

examined. In particular, only one module replacement strategy was reported. In previous

work, there has been a number of methods to update the set of modules available for use

during evolution. No attempt was made to examine and compare these approaches to

module replacement method currently in use.

Another limitation is the representation of a module in this thesis. As stated in Chap-

ter 1, for this thesis, the definition of a module is an encapsulated sub-derivation
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tree from a GE individual. Also, in the experiments carried out, modules are non-

parameterized and may not be changed by evolutionary operators. However, there are a

number of definitions of modules and how they are represented and evolved. No attempt

was made to investigate these variations on modules’ representations.

8.3 Opportunities for Future Research

The work presented in this thesis also presents a number of avenues for future work. This

section outlines the most promising veins for new experiments.

One promising set of future experiments is implementing new module replacement op-

erators. Currently, modules are assigned a fitness value upon their creation, and this value

is the basis for which modules may remain available to the population during evolution.

However, this value may not be an accurate representation of the utility of a module in later

generations. There are many possibilities for updating this value based on which and how

many individuals use a module. It is also possible to implement an operator equalization-

like [35, 147] replacement operator where modules are replaced based on how they fit a

size distribution. This could also be altered so modules are forced to fit a distribution of

semantics as well.

Another interesting possibility for future work is the creation of new module identi-

fication operators. This thesis introduces two methods for sampling the semantics of a

candidate module in GE and compares their performance to random and frequency-based

approaches for identifying modules. In the current modularity implementation, only one

of these methods may be used at a time. It may be beneficial to create a hybrid identifi-

cation method that is able to leverage methods for estimating a module’s worth based on

the fitness of individuals in which it appears as well as using the frequency with which a

module appears in the population.
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Looking at how the modules themselves are represented also raises another potential

extension of this work. Restricting modules to static, encapsulated elements is one ap-

proach to looking at modules, but allowing them to be parameterized and/or evolvable

could increase their potential for improving GE’s performance. This could be done using

a number of methods, such as randomly selecting portions of the module to convert to a

parameter or analyzing the population to look for patterns which could be used to deter-

mine which elements of a module should turn into a parameter. Allowing modules to be

parameterized and evolvable would further increase the search space but could offer a more

efficient route to a solution.

A final vein of future research that would prove valuable is applying the approaches to

module identification and usage detailed in this thesis to GP. This could bring the work

carried out in this thesis to a broader audience and allow for easier comparisons against

past approaches to modularity.

166



Bibliography

[1] M. Ahluwalia and L. Bull. Co-evolving functions in genetic programming: Dynamic

ADF creation using GLiB. In V. W. Porto, N. Saravanan, D. Waagen, and A. E.

Eiben, editors, Evolutionary Programming VII: Proceedings of the Seventh Annual

Conference on Evolutionary Programming, volume 1447 of LNCS, pages 809–818,

Mission Valley Marriott, San Diego, California, USA, 25-27 Mar. 1998. Springer-

Verlag.

[2] M. Ahluwalia and L. Bull. Coevolving functions in genetic programming: Classi-

fication using K-nearest-neighbour. In W. Banzhaf, J. Daida, A. E. Eiben, M. H.

Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Ge-

netic and Evolutionary Computation Conference, volume 2, pages 947–952, Orlando,

Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[3] M. Ahluwalia and L. Bull. Coevolving functions in genetic programming. Journal of

Systems Architecture, 47(7):573 – 585, 2001. Evolutionary computing.

[4] M. Ahluwalia, L. Bull, and T. C. Fogarty. Co-evolving functions in genetic program-

ming: A comparison in ADF selection strategies. In J. R. Koza, K. Deb, M. Dorigo,

D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997:

Proceedings of the Second Annual Conference, pages 3–8, Stanford University, CA,

USA, 13-16 July 1997. Morgan Kaufmann.

167



BIBLIOGRAPHY

[5] M. Ahluwalia and T. C. Fogarty. Co-evolving hierarchical programs using genetic

programming. In Proceedings of the First Annual Conference on Genetic Program-

ming, GECCO ’96, pages 419–419, Cambridge, MA, USA, 1996. MIT Press.

[6] L. Altenberg. The evolution of evolvability in genetic programming. Advances in

genetic programming, pages 47–74, 1994.

[7] P. Angeline. Genetic programming and emergent intelligence. Advances in genetic

programming, 1:75–98, 1994.

[8] P. J. Angeline and J. Pollack. Evolutionary module acquisition. In D. Fogel and

W. Atmar, editors, Proceedings of the Second Annual Conference on Evolutionary

Programming, pages 154–163, La Jolla, CA, USA, 25-26 Feb. 1993.

[9] P. J. Angeline and J. B. Pollack. The evolutionary induction of subroutines. In

Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,

pages 236–241, Bloomington, Indiana, USA, 1992. Lawrence Erlbaum.

[10] P. J. Angeline and J. B. Pollack. Coevolving High-Level Representations, pages 55–72.

Addison-Wesley, 1994.

[11] D. Baltimore. Our genome unveiled. Nature, 409(6822):814–816, 02 2001.

[12] W. Banzhaf, D. Banscherus, and P. Dittrich. Hierarchical genetic programming using

local modules. InterJournal Complex Systems, 228, 2000.

[13] A. Brabazon and M. O’Neill. Biologically Inspired Algorithms for Financial Mod-

elling. Springer, 2006.

[14] O. Brock. Evolving reusable subroutines for genetic programming. Artificial Life at

Stanford, pages 11–19, 1994.

168



BIBLIOGRAPHY

[15] W. Bruce. The application of genetic programming to the automatic generation of

object-oriented programs. PhD thesis, Nova Southeastern University, 1995.

[16] W. S. Bruce. Automatic generation of object-oriented programs using genetic pro-

gramming. In Proceedings of the First Annual Conference on Genetic Programming,

GECCO ’96, pages 267–272, Cambridge, MA, USA, 1996. MIT Press.

[17] W. S. Bruce. The lawnmower problem revisited: Stack-based genetic programming

and automatically defined functions. In Genetic Programming 1997: Proceedings of

the Second Annual Conference, pages 52–57. Morgan Kaufmann, 1997.

[18] R. Calabretta, S. Nolfi, D. Parisi, and G. Wagner. A case study of the evolution of

modularity: towards a bridge between evolutionary biology, artificial life, neuro-and

cognitive science. Artificial life six, 6:275, 1998.

[19] R. Calabretta, S. Nolfi, D. Parisi, and G. P. Wagner. Emergence of functional mod-

ularity in robots. From animals to animats, 5:497–504, 1998.

[20] R. Calabretta, S. Nolfi, D. Parisi, and G. P. Wagner. Duplication of modules facili-

tates the evolution of functional specialization. Artificial Life, 6(1):69–84, 2012/08/06

2000.

[21] M. Cebrian, M. Alfonseca, and A. Ortega. Towards the validation of plagiarism

detection tools by means of grammar evolution. Evolutionary Computation, IEEE

Transactions on, 13(3):477 –485, june 2009.

[22] J. Clune, B. E. Beckmann, P. K. McKinley, and C. Ofria. Investigating whether

hyperneat produces modular neural networks. In Proceedings of the 12th annual

conference on Genetic and evolutionary computation, GECCO ’10, pages 635–642,

New York, NY, USA, 2010. ACM.

169



BIBLIOGRAPHY

[23] D. Cook and L. Holder. Graph-based data mining. Intelligent Systems and their

Applications, IEEE, 15(2):32 –41, mar/apr 2000.

[24] N. Cramer. A representation for the adaptive generation of simple sequential pro-

grams. In Proceedings of the First International Conference on Genetic Algorithms,

volume 183, page 187, 1985.
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[41] D. Fagan, M. O’Neill, E. G. López, A. Brabazon, and S. McGarraghy. An analysis

of genotype-phenotype maps in grammatical evolution. In A. I. Esparcia-Alcazar,

A. Ekart, S. Silva, S. Dignum, and A. S. Uyar, editors, Proceedings of the 13th

European Conference on Genetic Programming, EuroGP 2010, volume 6021 of LNCS,

pages 62–73, Istanbul, 7-9 Apr. 2010. Springer.

[42] I. I. Garibay, O. O. Garibay, and A. S. Wu. Effects of module encapsulation in

repetitively modular genotypes on the search space. Genetic and Evolutionary Com-

putation –GECCO 2004, pages 1125–1137, 2004.

[43] O. Garibay, I. Garibay, and A. Wu. The modular genetic algorithm: Exploiting

regularities in the problem space. Computer and Information Sciences - ISCIS 2003,

pages 584–591, 2003.

[44] O. O. Garibay. Analyzing the Effects of Modularity on Search Spaces. PhD thesis,

University of Central Florida, 2008.

[45] O. O. Garibay and A. S. Wu. Analyzing the effects of module encapsulation on search

space bias. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and

evolutionary computation, pages 1234–1241, New York, NY, USA, 2007. ACM.

[46] L. Georgiou and W. J. Teahan. Constituent grammatical evolution. In T. Walsh,

editor, Proceedings of the Twenty-Second International Joint Conference on Artificial

Intelligence, pages 1261–1268, Barcelona, Spain, 16-22 July 2011. AAAI Press.

[47] G. Georgoulas, D. Gavrilis, I. G. Tsoulos, C. Stylios, J. Bernardes, and P. P.

Groumpos. Novel approach for fetal heart rate classification introducing grammatical

evolution. Biomedical Signal Processing and Control, 2(2):69 – 79, 2007.

[48] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, Reading, MA, 1989.

173



BIBLIOGRAPHY

[49] F. Gruau. Genetic synthesis of modular neural networks. In Proceedings of the 5th

International Conference on Genetic Algorithms, pages 318–325, San Francisco, CA,

USA, 1993. Morgan Kaufmann Publishers Inc.

[50] F. Gruau. Automatic definition of modular neural networks. Adaptive Behavior,

3(2):151–183, Sept. 1994.

[51] G. R. Harik and D. E. Goldberg. Learning linkage. In R. K. Belew and M. D. Vose,

editors, Proceedings of the 4zh Workshop on Foundations of Genetic Algorithms,

pages 247–262, San Francisco, Aug. 5 1997. Morgan Kaufman.

[52] R. Harper. Enhancing Grammatical Evolution. PhD thesis, The University of New

South Wales, 2009.

[53] R. Harper. Ge, explosive grammars and the lasting legacy of bad initialisation. In

Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1 –8, july 2010.

[54] R. Harper and A. Blair. A structure preserving crossover in grammatical evolution.

In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, volume

Volume 3, pages 2537–2544. IEEE Press, 2005.

[55] R. Harper and A. Blair. Dynamically defined functions in grammatical evolution. In

Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pages 9188–

9195, Vancouver, 6-21 July 2006. IEEE Press.

[56] L. Hartwell, J. Hopfield, S. Leibler, A. Murray, et al. From molecular to modular

cell biology. Nature, 402(6761):47–52, 1999.

[57] E. Hemberg. An Exploration of Grammars in Grammatical Evolution. PhD thesis,

University College Dublin, 2010.

174



BIBLIOGRAPHY

[58] E. Hemberg, C. Gilligan, M. O’Neill, and A. Brabazon. A grammatical genetic

programming approach to modularity in genetic algorithms. In M. Ebner et al.,

editors, EuroGP 2007: Proceedings of the 10th European Conference on Genetic

Programming, number 4445 in LNCS, Valencia, Spain, 2007. Springer.

[59] E. Hemberg, M. O’Neill, and A. Brabazon. An investigation into automatically de-

fined function representations in grammatical evolution. In R. Matousek and L. Nolle,

editors, 15th International Conference on Soft Computing, Mendel’09, Brno, Czech

Republic, 24-26 June 2009.

[60] M. Hemberg and U.-M. O’Reilly. Extending grammatical evolution to evolve digital

surfaces with Genr8. In M. Keijzer, U.-M. O’Reilly, S. M. Lucas, E. Costa, and

T. Soule, editors, Genetic Programming 7th European Conference, EuroGP 2004,

Proceedings, volume 3003 of LNCS, pages 299–308, Coimbra, Portugal, April 2004.

Springer-Verlag.

[61] J. H. Holland. Adaptation in natural and artificial systems. The University of Michi-

gan Press, Ann Arbor, 1975.

[62] J. H. Holland. Hidden Order: How Adaptation Builds Complexity. Perseus Books,

1995.

[63] G. Hornby, H. Lipson, and J. Pollack. Generative representations for the automated

design of modular physical robots. Robotics and Automation, IEEE Transactions on,

19(4):703 – 719, aug. 2003.

[64] G. S. Hornby. Measuring, enabling and comparing modularity, regularity and hier-

archy in evolutionary design. In H.-G. Beyer and U.-M. O. et al., editors, GECCO

2005: Proceedings of the 2005 conference on Genetic and evolutionary computation,

volume 2, pages 1729–1736, Washington DC, USA, 25-29 June 2005. ACM Press.

175



BIBLIOGRAPHY

[65] C.-C. Huang and A. Kusiak. Modularity in design of products and systems. Sys-

tems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,

28(1):66–77, Jan 1998.

[66] C. Jassadapakorn and P. Chongstitvatana. Reduction of computational effort in

genetic programming by subroutines. Chulalongkorn University, Bangkok, Thailand,

1998.

[67] I. Jonyer and A. Himes. Improving modularity in genetic programming using graph-

based data mining. In G. C. J. Sutcliffe and R. G. Goebel, editors, Proceedings of

the Nineteenth International Florida Artificial Intelligence Research Society Confer-

ence, pages 556–561, Melbourne Beach, Florida, USA, May 11-13 2006. American

Association for Artificial Intelligence.

[68] P. Kaufmann and M. Platzner. Advanced techniques for the creation and propagation

of modules in cartesian genetic programming. In GECCO ’08: Proceedings of the

10th annual conference on Genetic and evolutionary computation, pages 1219–1226,

New York, NY, USA, 2008. ACM.

[69] M. Keijzer, C. Ryan, and M. Cattolico. Run transferable libraries —learning func-

tional bias in problem domains. Genetic and Evolutionary Computation –GECCO

2004, pages 531–542, 2004.

[70] M. Keijzer, C. Ryan, G. Murphy, and M. Cattolico. Undirected training of run

transferable libraries. Genetic Programming, pages 361–370, 2005.

[71] K. Kinnear Jr. Alternatives in automatic function definition: A comparison of per-

formance. Advances in Genetic Programming, pages 119–141, 1994.

[72] J. Koza. Genetic programming III: darwinian invention and problem solving. Morgan

Kaufmann Pub, 1999.

176



BIBLIOGRAPHY

[73] J. R. Koza. Genetic Programming: on the Programming of Computers by Means of

Natural Selection. MIT Press, 1992.

[74] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.

MIT Press, Cambridge, MA, USA, 1994.

[75] K. Krawiec. On relationships between semantic diversity, complexity and modularity

of programming tasks. In T. Soule and J. H. Moore, editors, Genetic and Evolutionary

Computation Conference, GECCO ’12, Philadelphia, PA, USA, July 7-11, 2012,

pages 783–790. ACM, 2012.

[76] K. Krawiec and T. Pawlak. Locally geometric semantic crossover. In T. Soule,

A. Auger, J. Moore, D. Pelta, C. Solnon, M. Preuss, A. Dorin, Y.-S. Ong, C. Blum,

D. L. Silva, F. Neumann, T. Yu, A. Ekart, W. Browne, T. Kovacs, M.-L. Wong,

C. Pizzuti, J. Rowe, T. Friedrich, G. Squillero, N. Bredeche, S. Smith, A. Motsinger-

Rei, J. Lozano, M. Pelikan, S. Meyer-Nienber, C. Igel, G. Hornby, R. Doursat,

S. Gustafson, G. Olague, S. Yoo, J. Clark, G. Ochoa, G. Pappa, F. Lobo, D. Tau-

ritz, J. Branke, and K. Deb, editors, GECCO Companion ’12: Proceedings of the

fourteenth international conference on Genetic and evolutionary computation con-

ference companion, pages 1487–1488, Philadelphia, Pennsylvania, USA, 7-11 July

2012. ACM.

[77] K. Krawiec and B. Wieloch. Analysis of semantic modularity for genetic program-

ming. Foundations of Computing and Decision Sciences, 34(4):265–285, 2009.

[78] K. Krawiec and B. Wieloch. Functional modularity for genetic programming. In

GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolutionary

computation, pages 995–1002, New York, NY, USA, 2009. ACM.

177



BIBLIOGRAPHY

[79] X. Li, C. Zhou, W. Xiao, and P. Nelson. Direct evolution of hierarchical solutions

with self-emergent substructures. In Machine Learning and Applications, 2005. Pro-

ceedings. Fourth International Conference on, page 6 pp., December 2005.

[80] X. Li, C. Zhou, W. Xiao, and P. C. Nelson. Prefix gene expression programming. In

F. Rothlauf, editor, Late breaking paper at Genetic and Evolutionary Computation

Conference (GECCO’2005), Washington, D.C., USA, 25-29 June 2005.

[81] X. Li, C. Zhou, W. Xiao, and P. C. Nelson. Introducing emergent loose modules into

the learning process of a linear genetic programming system. Machine Learning and

Applications, Fourth International Conference on, 0:219–224, 2006.

[82] H. Lipson, J. B. Pollack, and N. P. Suh. Promoting modularity in evolutionary design.

In Proceedings of DETC’01: 2001 ASME Design Engineering Technical Conferences,

2001.

[83] H. Lipson, J. B. Pollack, and N. P. Suh. On the origin of modular variation. Evolution,

56(8):1549–1556, 2002.

[84] O. Litvin, H. C. Causton, B.-J. Chen, and D. Pe’er. Modularity and interactions in

the genetics of gene expression. Proceedings of the National Academy of Sciences,

106(16):6441–6446, 2009.
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M. Ebner, A. Ekárt, A. Esparcia-Alcázar, C. K. Goh, J. J. M. Guervós, F. Neri,

M. Preuss, J. Togelius, and G. N. Yannakakis, editors, EvoApplications (1), volume

6024 of Lecture Notes in Computer Science, pages 161–170. Springer, 2010.

[87] M. Luerssen and D. Powers. Evolving encapsulated programs as shared grammars.

Genetic Programming and Evolvable Machines, 9(3):203–228, 09 2008.

[88] H. Majeed and C. Ryan. Context-aware mutation: a modular, context aware mu-

tation operator for genetic programming. In GECCO ’07: Proceedings of the 9th

annual conference on Genetic and evolutionary computation, pages 1651–1658, New

York, NY, USA, 2007. ACM.

[89] H. Majeed, C. Ryan, and R. M. Atif Azad. Evaluating gp schema in context. In Pro-

ceedings of the 2005 conference on Genetic and evolutionary computation, GECCO

’05, pages 1773–1774, New York, NY, USA, 2005. ACM.

[90] J. McDermott, J. Byrne, J. M. Swafford, M. Hemberg, C. McNally, E. Shotton,

E. Hemberg, M. Fenton, and M. O’Neill. String-rewriting grammars for evolutionary

architectural design. Environment and Planning B: Planning and Design, 39(4):713–

731, 2012.

[91] J. McDermott, J. Byrne, J. M. Swafford, M. O’Neill, and A. Brabazon. Higher-order

functions in aesthetic EC encodings. In CEC 2010. Proceedings of the 12th IEEE

Conference on Evolutionary Computation, Jul 2010.

[92] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill. Grammar-

based genetic programming: a survey. Genetic Programming and Evolvable Ma-

chines, 11(3/4):365–396, Sept. 2010. Tenth Anniversary Issue: Progress in Genetic

Programming and Evolvable Machines.

179



BIBLIOGRAPHY

[93] N. F. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks in genetic pro-

gramming. In Proceedings of the 11th European conference on Genetic programming,

EuroGP’08, pages 134–145, Berlin, Heidelberg, 2008. Springer-Verlag.

[94] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.

[95] J. F. Miller and P. Thomson. Cartesian genetic programming. In R. Poli, W. Banzhaf,

W. B. Langdon, J. Miller, P. Nordin, and T. C. Fogarty, editors, Proceedings of the

Third European Conference on Genetic Programming (EuroGP-2000), volume 1802

of LNCS, pages 121–132, Edinburgh, Scotland, 2000. Springer Verlag.

[96] A. Moraglio, K. Krawiec, and C. G. Johnson. Geometric semantic genetic pro-

gramming. In C. A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and

M. Pavone, editors, Parallel Problem Solving from Nature, PPSN XII (part 1), vol-

ume 7491 of Lecture Notes in Computer Science, pages 21–31, Taormina, Italy, Sep

2012. Springer.

[97] E. Murphy. Examining grammars and grammatical evolution in dynamic environ-

ments. In Proceedings of the 13th annual conference companion on Genetic and

evolutionary computation, GECCO ’11, pages 779–782, Dublin, Ireland, 2011. ACM.

[98] E. Murphy, M. O’Neill, and A. Brabazon. A comparison of ge and tage in dynamic

environments. In Proceedings of the 13th annual conference on Genetic and evo-

lutionary computation, GECCO ’11, pages 1387–1394, New York, NY, USA, 2011.

ACM.

[99] E. Murphy, M. O’Neill, and A. Brabazon. Examining mutation landscapes in gram-

mar based genetic programming. In S. Silva, J. A. Foster, M. Nicolau, M. Giacobini,

and P. Machado, editors, Proceedings of the 14th European Conference on Genetic

180



BIBLIOGRAPHY

Programming, EuroGP 2011, volume 6621 of LNCS, pages 130–141, Turin, Italy,

27-29 Apr. 2011. Springer Verlag. Best paper.
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Module Identification (Chapter 6)

A.1 Initial Results with Module Identification
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(c) x5 − 2x3 + x Symbolic Regression
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Figure A.1: These figures show which section of the population contributes modules during the
identification process. The x-axis represents an individual’s rank in the population based on
fitness, 1 being the best and 500 being the worst. The y-axis (height) represents how many times
individuals with a given rank contributed a module over the course of 50 runs. This value does
not take into account the quality of the module discovered. The z-axis (depth) denotes how many
times modules have been identified. The R-ID approach was used for these figures.
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Figure A.2: These figures show how the diversity of the population’s fitness values changes over
time during standard GE runs. The data is averaged across 50 runs. Diversity is measured using
Shannon entropy [145]
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A.2. REDUCING MODULE SELECTION PRESSURE

A.2 Reducing Module Selection Pressure

Table A.1: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the Santa Fe Ant Trail problem after 100000 fitness evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
I-ID ρ-50 17.220 13.630 1.928 7
I-ID ρ-25 18.860 13.391 1.894 9
I-ID ρ-75 19.900 13.142 1.859 6

M-ID ρ-75 23.120 12.953 1.832 5
M-ID ρ-50 23.340 12.920 1.827 5
M-ID ρ-25 23.360 12.912 1.826 5

Table A.2: This table reports the p-value of Wilcoxon rank-sum tests performed on the average
best fitness values of each approach after 100000 fitness evaluations on the Santa Fe Ant Trail
problem. The p-values reported are calculated with a confidence interval of 0.05. Values marked
with an asterisk (*) are significant.

I-ID ρ-50 I-ID ρ-25 I-ID ρ-75 M-ID ρ-75 M-ID ρ-50 M-ID ρ-25
I-ID ρ-50 0.593 0.240 0.017* 0.023* 0.010*
I-ID ρ-25 0.593 0.663 0.109 0.062 0.125
I-ID ρ-75 0.240 0.663 0.196 0.206 0.093

M-ID ρ-75 0.017* 0.109 0.196 0.844 0.918
M-ID ρ-50 0.023* 0.062 0.206 0.844 0.918
M-ID ρ-25 0.010* 0.123 0.093 0.918 0.918
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Table A.3: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the Even 7 Parity problem after 100000 fitness evaluations.

Approach Best Fitness Std. Dev. Std. Err. Number Solved
M-ID ρ-75 5.260 8.710 1.232 34
M-ID ρ-50 5.320 8.759 1.239 34
M-ID ρ-25 5.880 8.859 1.253 32
I-ID ρ-75 6.440 9.752 1.379 30
I-ID ρ-50 6.440 9.752 1.379 30
I-ID ρ-25 6.440 9.752 1.379 30

Table A.4: This table reports the p-value of Wilcoxon rank-sum tests performed on the average
best fitness values of each approach after 100000 fitness evaluations on the Even 7 Parity problem.
The p-values reported are calculated with a confidence interval of 0.05. Values marked with an
asterisk (*) are significant.

M-ID ρ-75 M-ID ρ-50 M-ID ρ-25 I-ID ρ-75 I-ID ρ-50 I-ID ρ-25
M-ID ρ-75 1.000 0.696 0.522 0.501 0.500
M-ID ρ-50 1.000 0.922 0.500 0.551 0.413
M-ID ρ-25 0.686 0.922 0.637 0.641 0.535
I-ID ρ-75 0.522 0.500 0.637 0.891 0.964
I-ID ρ-50 0.501 0.551 0.641 0.891 0.981
I-ID ρ-25 0.500 0.413 0.535 0.964 0.981

Table A.5: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the x5 − 2x3 + x Symbolic Regression problem after 100000 fitness
evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
I-ID ρ-75 0.510 0.407 0.058 4
I-ID ρ-25 0.511 0.347 0.049 4
I-ID ρ-50 0.544 0.445 0.063 4

M-ID ρ-75 0.704 0.530 0.075 2
M-ID ρ-25 0.720 0.603 0.085 5
M-ID ρ-50 0.785 0.633 0.090 5
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Table A.6: This table reports the p-value of Wilcoxon rank-sum tests performed on the average
best fitness values of each approach after 100000 fitness evaluations on the x5− 2x3+x Symbolic
Regression problem. The p-values reported are calculated with a confidence interval of 0.05.
Values marked with an asterisk (*) are significant.

I-ID ρ-75 I-ID ρ-25 I-ID ρ-50 M-ID ρ-75 M-ID ρ-25 M-ID ρ-50
I-ID ρ-75 0.903 0.636 0.005* 0.030* 0.017*
I-ID ρ-25 0.903 0.750 0.071 0.074 0.010*
I-ID ρ-50 0.636 0.750 0.144 0.041* 0.032*

M-ID ρ-75 0.005* 0.071 0.144 0.882 0.592
M-ID ρ-25 0.030* 0.074 0.041 0.882 0.627
M-ID ρ-50 0.017* 0.010* 0.032* 0.592 0.627

Table A.7: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the 8× 8 Lawn Mower problem after 100000 fitness evaluations.

BestFit StdDev. StdErr. NumSolved
M-ID ρ-75 3.27018 5.58502 0.78984 12.00000
M-ID ρ-50 3.27018 5.58502 0.78984 12.00000
M-ID ρ-25 3.27018 5.58502 0.78984 12.00000
I-ID ρ-25 28.41600 1.10774 0.15666 0.00000
I-ID ρ-75 29.23800 1.11041 0.15704 0.00000
I-ID ρ-50 29.23800 1.11041 0.15704 0.00000

Table A.8: This table reports the p-value of Wilcoxon rank-sum tests performed on the average
best fitness values of each approach after 100000 fitness evaluations on the 8 × 8 Lawn Mower
problem. The p-values reported are calculated with a confidence interval of 0.05. Values marked
with an asterisk (*) are significant.

M-ID ρ-75 M-ID ρ-50 M-ID ρ-25 I-ID ρ-25 I-ID ρ-75 I-ID ρ-50
M-ID ρ-75 0.979 0.704 7.8× 10−10* 7.7× 10−10* 7.8× 10−10*
M-ID ρ-50 0.979 0.894 7.8× 10−10* 7.7× 10−10* 7.7× 10−10*
M-ID ρ-25 0.704 0.894 7.7× 10−10* 7.7× 10−10* 7.7× 10−10*
I-ID ρ-25 7.8× 10−10* 7.8× 10−10* 7.7× 10−10* 0.005 0.009
I-ID ρ-75 7.7× 10−10* 7.7× 10−10* 7.7× 10−10* 0.005 0.941
I-ID ρ-50 7.8× 10−10* 7.7× 10−10* 7.7× 10−10* 0.009 0.941
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A.3 Reducing Fitness Evaluations

Table A.9: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the Santa Fe Ant Trail problem after 100000 fitness evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
I-ID TP n-25 15.720 13.240 1.872 9
I-ID TP n-50 16.380 13.041 1.844 9

F-ID AP 16.760 13.283 1.878 12
R-ID AP 17.240 12.934 1.829 12

I-ID AP n-10 18.100 13.287 1.879 9
M-ID AP n-10 18.300 13.452 1.902 12
I-ID AP n-25 18.300 13.474 1.906 11
I-ID AP n-50 18.860 13.391 1.894 9

M-ID TP n-25 19.220 13.196 1.866 8
M-ID TP n-10 19.260 14.294 2.021 9

F-ID TP 19.700 12.960 1.833 8
I-ID TP n-10 19.800 12.513 1.779 6

M-ID AP n-25 19.940 13.707 1.939 6
M-ID TP n-50 20.060 13.856 1.959 7

R-ID TP 21.300 12.918 1.827 7
M-ID AP n-50 23.120 12.953 1.832 5
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Table A.10: This table reports the p-value of Wilcoxon rank-sum tests performed on the average best fitness values of each approach
after 100000 fitness evaluations on the Santa Fe Ant Trail problem. The p-values reported are calculated with a confidence interval
of 0.05. Values marked with an asterisk (*) are significant.

I-ID TP n-25 I-ID TP n-50 F-ID AP R-ID AP I-ID AP n-10 M-ID AP n-10 I-ID AP n-25 I-ID AP n-50

I-ID TP n-25 0.779 0.789 0.698 0.290 0.149 0.231 0.130

I-ID TP n-50 0.779 0.896 0.883 0.395 0.429 0.382 0.350

F-ID AP 0.789 0.896 0.748 0.558 0.562 0.582 0.403

R-ID AP 0.698 0.883 0.748 0.748 0.628 0.684 0.596

I-ID AP n-10 0.290 0.395 0.558 0.748 0.992 1.000 0.813

M-ID AP n-10 0.149 0.429 0.562 0.628 0.992 0.969 0.806

I-ID AP n-25 0.231 0.382 0.582 0.684 1.000 0.969 0.779

I-ID AP n-50 0.130 0.350 0.403 0.596 0.813 0.806 0.779

M-ID TP n-25 0.141 0.302 0.367 0.343 0.735 0.747 0.695 0.866

M-ID TP n-10 0.230 0.148 0.266 0.318 0.611 0.696 0.701 0.924

F-ID TP 0.161 0.135 0.309 0.359 0.488 0.704 0.559 0.546

I-ID TP n-10 0.119 0.240 0.211 0.382 0.515 0.404 0.479 0.686

M-ID AP n-25 0.119 0.133 0.186 0.274 0.491 0.406 0.420 0.611

M-ID TP n-50 0.107 0.165 0.210 0.274 0.495 0.612 0.192 0.412

R-ID TP 4.431 × 10
−2

* 3.823 × 10
−2

* 8.794 × 10
−2

4.540 × 10
−2

* 0.148 0.209 0.269 0.440

M-ID AP n-50 2.820 × 10
−3

* 8.529 × 10
−3

* 9.959 × 10
−3

* 3.616 × 10
−2

* 0.117 4.528 × 10
−2

* 3.998 × 10
−2

* 0.109

M-ID TP n-25 M-ID TP n-10 F-ID TP I-ID TP n-10 M-ID AP n-25 M-ID TP n-50 R-ID TP M-ID AP n-50

I-ID TP n-25 0.141 0.230 0.161 0.119 0.119 0.107 4.431 × 10
−2

* 2.820 × 10
−3

*

I-ID TP n-50 0.302 0.148 0.135 0.240 0.133 0.165 3.823 × 10
−2

* 8.529 × 10
−3

*

F-ID AP 0.367 0.266 0.309 0.211 0.186 0.210 8.794 × 10
−2

9.959 × 10
−3

*

R-ID AP 0.343 0.318 0.359 0.382 0.274 0.274 4.540 × 10
−2

* 3.616 × 10
−2

*

I-ID AP n-10 0.735 0.611 0.488 0.515 0.491 0.495 0.148 0.117

M-ID AP n-10 0.747 0.696 0.704 0.404 0.406 0.612 0.209 4.528 × 10
−2

*

I-ID AP n-25 0.695 0.701 0.559 0.479 0.420 0.192 0.269 3.998 × 10
−2

*

I-ID AP n-50 0.866 0.924 0.546 0.686 0.611 0.412 0.440 0.109

M-ID TP n-25 0.928 0.789 0.814 0.641 0.526 0.335 0.151

M-ID TP n-10 0.928 0.937 0.879 0.731 0.825 0.461 0.123

F-ID TP 0.789 0.937 0.979 0.886 0.922 0.535 0.153

I-ID TP n-10 0.814 0.879 0.979 0.947 0.932 0.443 0.193

M-ID AP n-25 0.641 0.731 0.886 0.947 0.982 0.567 0.236

M-ID TP n-50 0.526 0.825 0.922 0.932 0.982 0.634 0.307

R-ID TP 0.335 0.461 0.535 0.443 0.567 0.634 0.545

M-ID AP n-50 0.151 0.123 0.153 0.193 0.236 0.307 0.545
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Table A.11: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the Even 7 Parity problem after 100000 fitness evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
R-ID AP 1.820 4.839 0.684 42

I-ID TP n-10 2.160 5.991 0.847 42
F-ID TP 2.320 6.619 0.936 42
F-ID AP 2.640 6.382 0.903 42
R-ID TP 2.680 6.757 0.956 40

M-ID TP n-10 3.180 6.766 0.957 38
M-ID TP n-25 3.320 6.885 0.974 37
I-ID TP n-50 3.620 6.978 0.987 36
I-ID TP n-25 3.660 7.580 1.072 37

M-ID TP n-50 3.660 7.927 1.121 36
I-ID AP n-10 3.980 8.312 1.175 37

M-ID AP n-10 4.580 8.157 1.154 34
M-ID AP n-25 4.680 8.353 1.181 34
M-ID AP n-50 5.260 8.710 1.232 34
I-ID AP n-25 5.480 8.683 1.228 33
I-ID AP n-50 6.440 9.752 1.379 30
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Table A.12: This table reports the p-value of Wilcoxon rank-sum tests performed on the average best fitness values of each approach
after 100000 fitness evaluations on the Even 7 Parity problem. The p-values reported are calculated with a confidence interval of
0.05. Values marked with an asterisk (*) are significant.

R-ID AP I-ID TP n-10 F-ID TP F-ID AP R-ID TP M-ID TP n-10 M-ID TP n-25 I-ID TP n-50
R-ID AP 0.865 0.856 0.426 0.660 0.297 0.227 0.177

I-ID TP n-10 0.865 1.000 0.622 0.551 0.400 0.355 0.234
F-ID TP 0.856 1.000 0.622 0.740 0.437 0.383 0.250
F-ID AP 0.426 0.622 0.622 1.000 0.831 0.711 0.684
R-ID TP 0.660 0.551 0.740 1.000 0.657 0.614 0.410

M-ID TP n-10 0.297 0.400 0.437 0.831 0.657 0.931 0.613
M-ID TP n-25 0.227 0.355 0.383 0.711 0.614 0.931 0.819
I-ID TP n-50 0.177 0.234 0.250 0.684 0.410 0.613 0.819
I-ID TP n-25 0.139 0.137 0.302 0.680 0.419 0.807 0.726 0.943

M-ID TP n-50 0.204 0.184 0.330 0.546 0.359 0.964 0.988 0.796
I-ID AP n-10 0.130 0.267 0.285 0.465 0.331 0.795 0.764 0.963

M-ID AP n-10 6.130× 10−2 0.171 8.513× 10−2 0.204 0.166 0.439 0.316 0.709
M-ID AP n-25 1.243× 10−2* 0.102 0.102 0.248 0.171 0.265 0.394 0.620
M-ID AP n-50 2.249× 10−2* 2.450× 10−2* 6.718× 10−2 4.244× 10−2* 5.496× 10−2 0.216 0.213 0.295
I-ID AP n-25 1.004× 10−2* 2.288× 10−2* 4.233× 10−2* 4.451× 10−2* 9.812× 10−2 9.865× 10−2 0.172 0.293
I-ID AP n-50 6.457× 10−3* 8.494× 10−3* 1.570× 10−2* 3.969× 10−2* 1.452× 10−2* 6.233× 10−2 9.177× 10−2 0.146

I-ID TP n-25 M-ID TP n-50 I-ID AP n-10 M-ID AP n-10 M-ID AP n-25 M-ID AP n-50 I-ID AP n-25 I-ID AP n-50
R-ID AP 0.139 0.204 0.130 6.130× 10−2 1.243× 10−2* 2.249× 10−2* 1.004× 10−2* 6.457× 10−3*

I-ID TP n-10 0.137 0.184 0.267 0.171 0.102 2.450× 10−2* 2.288× 10−2* 8.494× 10−3*
F-ID TP 0.302 0.330 0.285 8.513× 10−2 0.102 6.718× 10−2 4.233× 10−2* 1.570× 10−2*
F-ID AP 0.680 0.546 0.465 0.204 0.248 4.244× 10−2* 4.451× 10−2* 3.969× 10−2*
R-ID TP 0.419 0.359 0.331 0.166 0.171 5.496× 10−2 9.812× 10−2 1.452× 10−2*

M-ID TP n-10 0.807 0.964 0.795 0.439 0.265 0.216 9.865× 10−2 6.233× 10−2

M-ID TP n-25 0.726 0.988 0.764 0.316 0.394 0.213 0.172 9.177× 10−2

I-ID TP n-50 0.943 0.796 0.963 0.709 0.620 0.295 0.293 0.146
I-ID TP n-25 0.845 0.939 0.417 0.528 0.331 0.170 9.911× 10−2

M-ID TP n-50 0.845 0.819 0.489 0.399 0.240 0.234 8.932× 10−2

I-ID AP n-10 0.939 0.819 0.586 0.586 0.388 0.374 0.160
M-ID AP n-10 0.417 0.489 0.586 0.952 0.692 0.499 0.321
M-ID AP n-25 0.528 0.399 0.586 0.952 0.676 0.613 0.343
M-ID AP n-50 0.331 0.240 0.388 0.692 0.676 0.794 0.500
I-ID AP n-25 0.170 0.234 0.374 0.499 0.613 0.794 0.606
I-ID AP n-50 9.911× 10−2 8.932× 10−2 0.160 0.321 0.343 0.500 0.606
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Table A.13: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the x5 − 2x3 + x Symbolic Regression problem after 100000 fitness
evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
R-ID AP 0.284 0.459 0.065 13
F-ID AP 0.349 0.511 0.072 14
F-ID TP 0.410 0.504 0.071 12

I-ID TP n-25 0.417 0.446 0.063 13
I-ID TP n-10 0.429 0.453 0.064 11
I-ID AP n-10 0.479 0.483 0.068 13

R-ID TP 0.481 0.568 0.080 10
I-ID TP n-50 0.488 0.500 0.071 11
I-ID AP n-50 0.511 0.347 0.049 4

M-ID AP n-10 0.541 0.604 0.085 15
I-ID AP n-25 0.542 0.501 0.071 9

M-ID AP n-25 0.565 0.586 0.083 10
M-ID TP n-25 0.591 0.609 0.086 9
M-ID TP n-50 0.640 0.616 0.087 7
M-ID TP n-10 0.657 0.654 0.093 9
M-ID AP n-50 0.704 0.530 0.075 2
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Table A.14: This table reports the p-value of Wilcoxon rank-sum tests performed on the average best fitness values of each approach
after 100000 fitness evaluations on the x5 − 2x3 + x Symbolic Regression problem. The p-values reported are calculated with a
confidence interval of 0.05. Values marked with an asterisk (*) are significant.

R-ID AP F-ID AP F-ID TP I-ID TP n-25 I-ID TP n-10 I-ID AP n-10 R-ID TP I-ID TP n-50
R-ID AP 0.493 0.107 9.208× 10−2 4.118× 10−2* 1.383× 10−2* 4.675× 10−2* 2.105× 10−2*
F-ID AP 0.493 0.244 0.406 0.107 6.943× 10−2 0.180 0.276
F-ID TP 0.107 0.244 0.851 0.985 0.388 0.612 0.348

I-ID TP n-25 9.208× 10−2 0.406 0.851 0.946 0.348 0.567 0.296
I-ID TP n-10 4.118× 10−2* 0.107 0.985 0.946 0.968 0.743 0.672
I-ID AP n-10 1.383× 10−2* 6.943× 10−2 0.388 0.348 0.968 0.657 0.765

R-ID TP 4.675× 10−2* 0.180 0.612 0.567 0.743 0.657 0.802
I-ID TP n-50 2.105× 10−2* 0.276 0.348 0.296 0.672 0.765 0.802
I-ID AP n-50 8.088× 10−4* 5.025× 10−3* 4.465× 10−2* 6.030× 10−2 6.867× 10−2 0.125 9.557× 10−2 0.524

M-ID AP n-10 4.782× 10−2* 1.782× 10−2* 0.313 0.320 0.372 0.866 0.691 0.893
I-ID AP n-25 2.295× 10−3* 3.083× 10−2* 9.489× 10−2 0.200 0.153 0.652 0.183 0.800

M-ID AP n-25 1.224× 10−2* 1.874× 10−2* 0.122 9.762× 10−2 0.115 0.148 0.211 0.599
M-ID TP n-25 4.821× 10−3* 8.646× 10−3* 6.382× 10−2 7.266× 10−2 0.372 0.469 0.320 0.330
M-ID TP n-50 4.924× 10−4* 1.082× 10−2* 4.503× 10−2* 6.807× 10−2 4.944× 10−2* 0.194 5.596× 10−2 0.385
M-ID TP n-10 3.041× 10−3* 1.720× 10−2* 3.626× 10−2* 5.595× 10−2 0.145 0.172 0.193 0.255
M-ID AP n-50 2.138× 10−6* 1.633× 10−4* 1.373× 10−3* 4.335× 10−4* 2.874× 10−5* 3.316× 10−3* 3.339× 10−3* 1.049× 10−2*

I-ID AP n-50 M-ID AP n-10 I-ID AP n-25 M-ID AP n-25 M-ID TP n-25 M-ID TP n-50 M-ID TP n-10 M-ID AP n-50
R-ID AP 8.088× 10−4* 4.782× 10−2* 2.295× 10−3* 1.224× 10−2* 4.821× 10−3* 4.924× 10−4* 3.041× 10−3* 2.138× 10−6*
F-ID AP 5.025× 10−3* 1.782× 10−2* 3.083× 10−2* 1.874× 10−2* 8.646× 10−3* 1.082× 10−2* 1.720× 10−2* 1.633× 10−4*
F-ID TP 4.465× 10−2* 0.313 9.489× 10−2 0.122 6.382× 10−2 4.503× 10−2* 3.626× 10−2* 1.373× 10−3*

I-ID TP n-25 6.030× 10−2 0.320 0.200 9.762× 10−2 7.266× 10−2 6.807× 10−2 5.595× 10−2 4.335× 10−4*
I-ID TP n-10 6.867× 10−2 0.372 0.153 0.115 0.372 4.944× 10−2* 0.145 2.874× 10−5*
I-ID AP n-10 0.125 0.866 0.652 0.148 0.469 0.194 0.172 3.316× 10−3*

R-ID TP 9.557× 10−2 0.691 0.183 0.211 0.320 5.596× 10−2 0.193 3.339× 10−3*
I-ID TP n-50 0.524 0.893 0.800 0.599 0.330 0.385 0.255 1.049× 10−2*
I-ID AP n-50 0.676 0.943 0.564 0.717 0.841 0.521 7.134× 10−2

M-ID AP n-10 0.676 0.762 0.882 0.885 0.415 0.798 4.447× 10−2*
I-ID AP n-25 0.943 0.762 0.963 0.908 0.866 0.913 8.535× 10−2

M-ID AP n-25 0.564 0.882 0.963 0.735 0.521 0.554 8.201× 10−2

M-ID TP n-25 0.717 0.885 0.908 0.735 0.689 0.901 6.889× 10−2

M-ID TP n-50 0.841 0.415 0.866 0.521 0.689 0.866 0.127
M-ID TP n-10 0.521 0.798 0.913 0.554 0.901 0.866 7.944× 10−2

M-ID AP n-50 7.134× 10−2 4.447× 10−2* 8.535× 10−2 8.201× 10−2 6.889× 10−2 0.127 7.944× 10−2
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Table A.15: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the 8× 8 Lawn Mower problem after 100000 fitness evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
M-ID AP n-10 0.224 1.584 0.224 19

R-ID AP 0.462 2.287 0.323 20
M-ID TP n-10 0.464 2.299 0.325 21
M-ID AP n-25 0.492 2.435 0.344 19
M-ID TP n-50 0.506 2.510 0.355 17
M-ID TP n-25 1.188 3.608 0.510 21

R-ID TP 1.736 4.354 0.616 24
M-ID AP n-50 3.270 5.585 0.790 12

F-ID TP 5.966 6.894 0.975 15
F-ID AP 9.634 6.510 0.921 3

I-ID AP n-10 28.288 1.323 0.187 0
I-ID AP n-50 28.416 1.108 0.157 0
I-ID AP n-25 28.532 1.426 0.202 0
I-ID TP n-10 28.556 1.332 0.188 0
I-ID TP n-50 28.718 1.229 0.174 0
I-ID TP n-25 28.914 1.403 0.198 0
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Table A.16: This table reports the p-value of Wilcoxon rank-sum tests performed on the average best fitness values of each approach
after 100000 fitness evaluations on the 8× 8 Lawn Mower problem. The p-values reported are calculated with a confidence interval
of 0.05. Values marked with an asterisk (*) are significant.

M-ID AP n-10 R-ID AP M-ID TP n-10 M-ID AP n-25 M-ID TP n-50 M-ID TP n-25 R-ID TP M-ID AP n-50
M-ID AP n-10 0.596 0.380 0.732 0.839 0.370 0.389 4.675× 10−4*

R-ID AP 0.596 0.705 0.431 0.290 0.964 0.658 5.771× 10−3*
M-ID TP n-10 0.380 0.705 0.391 0.401 0.414 0.402 4.367× 10−3*
M-ID AP n-25 0.732 0.431 0.391 0.694 0.406 0.426 4.438× 10−4*
M-ID TP n-50 0.839 0.289 0.403 0.694 0.305 0.398 1.635× 10−3*
M-ID TP n-25 0.370 0.964 0.414 0.406 0.305 0.757 7.178× 10−3*

R-ID TP 0.389 0.658 0.402 0.426 0.398 0.757 3.545× 10−2*
M-ID AP n-50 4.674× 10−4* 5.771× 10−3* 4.367× 10−3* 4.438× 10−4* 1.635× 10−3* 7.178× 10−3* 3.545× 10−2*

F-ID TP 3.599× 10−5* 3.028× 10−4* 6.065× 10−5* 2.712× 10−4* 1.293× 10−5* 9.708× 10−6* 3.237× 10−4* 3.020× 10−2*
F-ID AP 1.140× 10−8* 9.083× 10−8* 1.205× 10−8* 7.244× 10−8* 2.421× 10−8* 1.466× 10−8* 1.816× 10−7* 3.272× 10−5*

I-ID AP n-10 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10*
I-ID AP n-50 7.700× 10−10* 7.700× 10−10* 7.700× 10−10* 7.700× 10−10* 7.700× 10−10* 7.700× 10−10* 7.600× 10−10* 7.800× 10−10*
I-ID AP n-25 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.700× 10−10* 7.800× 10−10*
I-ID TP n-10 7.800× 10−10* 7.800× 10−10* 7.700× 10−10* 7.700× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10*
I-ID TP n-50 7.700× 10−10* 7.800× 10−10* 7.700× 10−10* 7.700× 10−10* 7.700× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10*
I-ID TP n-25 7.800× 10−10* 7.700× 10−10* 7.800× 10−10* 7.700× 10−10* 7.700× 10−10* 7.700× 10−10* 7.700× 10−10* 7.800× 10−10*

F-ID TP F-ID AP I-ID AP n-10 I-ID AP n-50 I-ID AP n-25 I-ID TP n-10 I-ID TP n-50 I-ID TP n-25
M-ID AP n-10 3.600× 10−5* 1.140× 10−8* 7.800× 10−10* 7.700× 10−10* 7.800× 10−10* 7.800× 10−10* 7.700× 10−10* 7.800× 10−10*

R-ID AP 3.028× 10−4* 9.083× 10−8* 7.800× 10−10* 7.700× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.700× 10−10*
M-ID TP n-10 6.065× 10−5* 1.205× 10−8* 7.800× 10−10* 7.700× 10−10* 7.800× 10−10* 7.700× 10−10* 7.700× 10−10* 7.800× 10−10*
M-ID AP n-25 2.712× 10−4* 7.244× 10−8* 7.800× 10−10* 7.700× 10−10* 7.800× 10−10* 7.700× 10−10* 7.700× 10−10* 7.700× 10−10*
M-ID TP n-50 1.293× 10−5* 2.421× 10−8* 7.800× 10−10* 7.700× 10−10* 7.800× 10−10* 7.800× 10−10* 7.700× 10−10* 7.700× 10−10*
M-ID TP n-25 9.708× 10−6* 1.466× 10−8* 7.800× 10−10* 7.700× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.700× 10−10*

R-ID TP 3.237× 10−4* 1.816× 10−7* 7.800× 10−10* 7.600× 10−10* 7.700× 10−10* 7.800× 10−10* 7.800× 10−10* 7.700× 10−10*
M-ID AP n-50 3.020× 10−2* 3.272× 10−5* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10*

F-ID TP 2.221× 10−3* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10*
F-ID AP 2.221× 10−3* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10* 7.800× 10−10*

I-ID AP n-10 7.800× 10−10* 7.800× 10−10* 0.515 0.487 0.434 7.045× 10−2 3.452× 10−2*
I-ID AP n-50 7.800× 10−10* 7.800× 10−10* 0.515 0.764 0.674 0.263 8.444× 10−2

I-ID AP n-25 7.800× 10−10* 7.800× 10−10* 0.487 0.764 0.891 0.518 0.312
I-ID TP n-10 7.800× 10−10* 7.800× 10−10* 0.434 0.674 0.891 0.616 0.224
I-ID TP n-50 7.800× 10−10* 7.800× 10−10* 7.045× 10−2 0.263 0.518 0.616 0.433
I-ID TP n-25 7.800× 10−10* 7.800× 10−10* 3.452× 10−2* 8.444× 10−2 0.312 0.224 0.433
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A.4 Initial Generation Identification

Table A.17: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the Santa Fe Ant Trail problem after 100000 fitness evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
F-ID TP G1 9.520 12.011 1.699 18
F-ID AP G1 11.480 13.278 1.878 21
R-ID TP G1 15.420 13.527 1.913 13
I-ID TP n-25 15.720 13.240 1.872 9

I-ID AP G1 n-10 15.820 14.951 2.114 10
I-ID AP G1 n-25 16.360 14.525 2.054 10

I-ID TP n-50 16.380 13.041 1.844 9
F-ID AP 16.760 13.283 1.878 12
R-ID AP 17.240 12.934 1.829 12

M-ID TP G1 n-50 17.340 14.662 2.073 12
M-ID TP G1 n-25 17.580 13.256 1.875 7
M-ID TP G1 n-10 17.840 12.921 1.827 11
M-ID AP G1 n-10 17.900 13.347 1.888 8

I-ID AP n-10 18.100 13.287 1.879 9
M-ID AP n-10 18.300 13.452 1.902 12
I-ID AP n-25 18.300 13.474 1.906 11
R-ID AP G1 18.600 12.779 1.807 8

I-ID TP G1 n-25 18.980 13.202 1.867 5
I-ID TP G1 n-10 19.140 13.398 1.895 6

M-ID TP n-25 19.220 13.196 1.866 8
M-ID TP n-10 19.260 14.294 2.021 9

I-ID TP G1 n-50 19.680 12.306 1.740 5
F-ID TP 19.700 12.960 1.833 8

I-ID TP n-10 19.800 12.51285 1.770 6
M-ID AP n-25 19.940 13.70745 1.939 6
M-ID TP n-50 20.060 13.85554 1.959 7

R-ID TP 21.300 12.91771 1.827 7
M-ID AP G1 n-25 21.320 14.764 2.088 7
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Table A.18: This table reports the p-value of Wilcoxon rank-sum tests performed on the
best fitness values of each approach after 100000 fitness evaluations on the Santa Fe An
problem. The p-values reported are calculated with a confidence interval of 0.05. Values
with an asterisk (*) are significant.

F-ID TP G1 F-ID AP G1 R-ID TP G1 I-ID TP n-25 I-ID AP G1 n-10

F-ID TP G1 0.472 4.052 × 10
−2

* 1.659 × 10
−2

* 1.864 × 10
−2

*

F-ID AP G1 0.472 7.572 × 10
−2

0.137 0.181

R-ID TP G1 4.052 × 10
−2

* 7.572 × 10
−2

0.845 0.799

I-ID TP n-25 1.659 × 10
−2

* 0.137 0.845 0.991

I-ID AP G1 n-10 1.864 × 10
−2

* 0.181 0.799 0.991

I-ID AP G1 n-25 3.307 × 10
−2

* 2.807 × 10
−2

* 0.784 0.891 0.886

I-ID TP n-50 9.065 × 10
−3

* 7.263 × 10
−2

0.763 0.779 0.723

F-ID AP 7.638 × 10
−3

* 8.108 × 10
−2

0.593 0.789 0.633

R-ID AP 5.060 × 10
−3

* 2.351 × 10
−2

* 0.439 0.698 0.582

M-ID TP G1 n-50 6.410 × 10
−3

* 5.081 × 10
−2

0.564 0.604 0.579

M-ID TP G1 n-25 2.339 × 10
−3

* 7.660 × 10
−3

* 0.409 0.512 0.654

M-ID TP G1 n-10 1.396 × 10
−3

* 2.465 × 10
−2

* 0.337 0.465 0.455

M-ID AP G1 n-10 1.803 × 10
−3

* 2.390 × 10
−2

* 0.286 0.421 0.531

I-ID AP n-10 1.151 × 10
−3

* 1.667 × 10
−2

* 0.307 0.290 0.370

M-ID AP n-10 4.518 × 10
−3

* 1.470 × 10
−2

* 0.202 0.149 0.429

I-ID AP n-25 1.220 × 10
−3

* 1.021 × 10
−2

* 0.289 0.231 0.518

R-ID AP G1 1.761 × 10
−3

* 5.455 × 10
−3

* 0.183 0.264 0.259

I-ID TP G1 n-25 3.229 × 10
−4

* 7.406 × 10
−3

* 0.194 0.137 0.179

I-ID TP G1 n-10 1.766 × 10
−4

* 6.503 × 10
−3

* 7.025 × 10
−2

0.186 0.320

M-ID TP n-25 7.051 × 10
−4

* 6.402 × 10
−3

* 0.179 0.141 0.239

M-ID TP n-10 1.070 × 10
−3

* 1.626 × 10
−2

* 0.184 0.230 0.131

I-ID TP G1 n-50 1.227 × 10
−5

* 5.263 × 10
−3

* 0.122 0.182 0.162

F-ID TP 3.034 × 10
−4

* 1.504 × 10
−2

* 6.469 × 10
−2

0.161 0.218

I-ID TP n-10 6.909 × 10
−4

* 3.518 × 10
−3

* 0.110 0.119 0.299

M-ID AP n-25 1.354 × 10
−5

* 2.687 × 10
−3

* 8.256 × 10
−2

0.119 0.184

M-ID TP n-50 2.511 × 10
−4

* 3.337 × 10
−3

* 5.812 × 10
−2

0.107 0.168

R-ID TP 5.633 × 10
−5

* 1.044 × 10
−3

* 3.042 × 10
−2

* 4.431 × 10
−2

* 4.380 × 10
−2

*

M-ID AP G1 n-25 6.475 × 10
−5

* 3.347 × 10
−3

* 3.540 × 10
−2

* 3.490 × 10
−2

* 7.625 × 10
−2

I-ID AP G1 n-25 I-ID TP n-50 F-ID AP R-ID AP M-ID TP G1 n-50

F-ID TP G1 3.307 × 10
−2

* 9.065 × 10
−3

* 7.638 × 10
−3

* 5.060 × 10
−3

* 6.410 × 10
−3

*

F-ID AP G1 2.807 × 10
−2

* 7.263 × 10
−2

8.108 × 10
−2

2.351 × 10
−2

* 5.081 × 10
−2

R-ID TP G1 0.784 0.763 0.593 0.439 0.564

I-ID TP n-25 0.891 0.779 0.789 0.698 0.604

I-ID AP G1 n-10 0.886 0.723 0.633 0.582 0.579

I-ID AP G1 n-25 0.952 0.804 0.611 0.731

I-ID TP n-50 0.952 0.896 0.883 0.693

F-ID AP 0.804 0.896 0.748 1.000

R-ID AP 0.611 0.883 0.748 0.996

M-ID TP G1 n-50 0.731 0.693 1.000 0.996

M-ID TP G1 n-25 0.667 0.569 0.893 0.901 0.958

M-ID TP G1 n-10 0.481 0.638 0.658 0.806 0.881

M-ID AP G1 n-10 0.608 0.562 0.644 0.662 0.834

I-ID AP n-10 0.550 0.395 0.558 0.748 0.698

M-ID AP n-10 0.498 0.429 0.562 0.628 0.522

I-ID AP n-25 0.388 0.382 0.582 0.684 0.639

R-ID AP G1 0.418 0.377 0.436 0.899 0.435

I-ID TP G1 n-25 0.440 0.290 0.403 0.496 0.608

I-ID TP G1 n-10 0.253 0.155 0.472 0.471 0.662

M-ID TP n-25 0.207 0.302 0.367 0.343 0.508
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Santa Fe Ant Trail Wilcoxon rank-sun test results continued.

M-ID TP n-10 0.317 0.148 0.266 0.318 0.382

I-ID TP G1 n-50 0.313 0.130 0.297 0.322 0.462

F-ID TP 0.253 0.135 0.309 0.359 0.360

I-ID TP n-10 0.273 0.240 0.211 0.382 0.395

M-ID AP n-25 0.156 0.133 0.186 0.274 0.340

M-ID TP n-50 7.797 × 10
−2

0.165 0.210 0.274 0.424

R-ID TP 8.795 × 10
−2

3.823 × 10
−2

* 8.794 × 10
−2

4.540 × 10
−2

* 0.229

M-ID AP G1 n-25 7.011 × 10
−2

6.002 × 10
−2

0.105 0.194 0.168

M-ID TP G1 n-25 M-ID TP G1 n-10 M-ID AP G1 n-10 I-ID AP n-10 M-ID AP n-10

F-ID TP G1 2.339 × 10
−3

* 1.396 × 10
−3

* 1.803 × 10
−3

* 1.151 × 10
−3

* 4.518 × 10
−3

*

F-ID AP G1 7.660 × 10
−3

* 2.465 × 10
−2

* 2.390 × 10
−2

* 1.667 × 10
−2

* 1.470 × 10
−2

*

R-ID TP G1 0.409 0.337 0.286 0.307 0.202

I-ID TP n-25 0.512 0.465 0.421 0.290 0.149

I-ID AP G1 n-10 0.654 0.455 0.531 0.370 0.429

I-ID AP G1 n-25 0.667 0.481 0.608 0.550 0.498

I-ID TP n-50 0.569 0.638 0.562 0.395 0.429

F-ID AP 0.893 0.658 0.644 0.558 0.562

R-ID AP 0.901 0.806 0.662 0.748 0.628

M-ID TP G1 n-50 0.958 0.881 0.834 0.698 0.522

M-ID TP G1 n-25 0.906 0.770 0.750 0.715

M-ID TP G1 n-10 0.906 0.939 0.856 0.875

M-ID AP G1 n-10 0.770 0.939 0.902 0.992

I-ID AP n-10 0.750 0.856 0.902 0.992

M-ID AP n-10 0.715 0.875 0.992 0.992

I-ID AP n-25 0.996 1.000 1.000 1.000 0.969

R-ID AP G1 0.548 0.797 0.839 0.973 0.861

I-ID TP G1 n-25 0.564 0.777 0.704 0.750 0.791

I-ID TP G1 n-10 0.522 0.312 0.648 0.727 0.804

M-ID TP n-25 0.458 0.530 0.607 0.735 0.747

M-ID TP n-10 0.597 0.529 0.708 0.611 0.696

I-ID TP G1 n-50 0.401 0.488 0.633 0.508 0.641

F-ID TP 0.440 0.460 0.473 0.488 0.704

I-ID TP n-10 0.294 0.409 0.484 0.515 0.404

M-ID AP n-25 0.114 0.299 0.372 0.491 0.406

M-ID TP n-50 0.355 0.351 0.505 0.495 0.612

R-ID TP 6.316 × 10
−2

4.159 × 10
−2

* 0.191 0.148 0.209

M-ID AP G1 n-25 0.218 0.145 0.242 0.352 0.336

I-ID AP n-25 R-ID AP G1 I-ID TP G1 n-25 I-ID TP G1 n-10 M-ID TP n-25

F-ID TP G1 1.220 × 10
−3

* 1.761 × 10
−3

* 3.229 × 10
−4

* 1.766 × 10
−4

* 7.051 × 10
−4

*

F-ID AP G1 1.021 × 10
−2

* 5.455 × 10
−3

* 7.406 × 10
−3

* 6.503 × 10
−3

* 6.402 × 10
−3

*

R-ID TP G1 0.289 0.183 0.194 7.025 × 10
−2

0.179

I-ID TP n-25 0.231 0.264 0.137 0.186 0.141

I-ID AP G1 n-10 0.518 0.259 0.179 0.320 0.239

I-ID AP G1 n-25 0.388 0.418 0.440 0.253 0.207

I-ID TP n-50 0.382 0.377 0.290 0.155 0.302

F-ID AP 0.582 0.436 0.403 0.472 0.367

R-ID AP 0.684 0.899 0.496 0.471 0.343

M-ID TP G1 n-50 0.639 0.435 0.608 0.662 0.508

M-ID TP G1 n-25 0.996 0.548 0.564 0.522 0.458

M-ID TP G1 n-10 1.000 0.797 0.777 0.312 0.530

M-ID AP G1 n-10 1.000 0.839 0.704 0.648 0.607

I-ID AP n-10 1.000 0.973 0.750 0.727 0.735

M-ID AP n-10 0.969 0.861 0.791 0.804 0.747

I-ID AP n-25 0.794 0.932 0.538 0.695
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R-ID AP G1 0.794 0.955 0.913 0.858

I-ID TP G1 n-25 0.932 0.955 0.987 0.960

I-ID TP G1 n-10 0.538 0.913 0.987 0.739

M-ID TP n-25 0.695 0.858 0.960 0.739

M-ID TP n-10 0.701 0.799 0.918 0.862 0.928

I-ID TP G1 n-50 0.487 0.672 0.548 0.812 0.913

F-ID TP 0.559 0.750 0.691 0.750 0.789

I-ID TP n-10 0.479 0.805 0.696 0.772 0.814

M-ID AP n-25 0.420 0.636 0.605 0.739 0.641

M-ID TP n-50 0.192 0.449 0.604 0.773 0.526

R-ID TP 0.269 0.178 0.322 0.478 0.335

M-ID AP G1 n-25 0.234 0.269 0.415 0.385 0.381

M-ID TP n-10 I-ID TP G1 n-50 F-ID TP I-ID TP n-10 M-ID AP n-25

F-ID TP G1 1.070 × 10
−3

* 1.227 × 10
−5

* 3.034 × 10
−4

* 6.909 × 10
−4

* 1.354 × 10
−5

*

F-ID AP G1 1.626 × 10
−2

* 5.263 × 10
−3

* 1.504 × 10
−2

* 3.518 × 10
−3

* 2.687 × 10
−3

*

R-ID TP G1 0.184 0.122 6.469 × 10
−2

0.110 8.256 × 10
−2

I-ID TP n-25 0.230 0.182 0.161 0.119 0.119

I-ID AP G1 n-10 0.131 0.162 0.218 0.299 0.184

I-ID AP G1 n-25 0.317 0.313 0.253 0.273 0.156

I-ID TP n-50 0.148 0.130 0.135 0.240 0.133

F-ID AP 0.266 0.297 0.309 0.211 0.186

R-ID AP 0.318 0.322 0.359 0.382 0.274

M-ID TP G1 n-50 0.382 0.462 0.360 0.395 0.340

M-ID TP G1 n-25 0.597 0.401 0.440 0.294 0.114

M-ID TP G1 n-10 0.529 0.488 0.460 0.409 0.299

M-ID AP G1 n-10 0.708 0.633 0.473 0.484 0.372

I-ID AP n-10 0.611 0.508 0.488 0.515 0.491

M-ID AP n-10 0.696 0.641 0.704 0.404 0.406

I-ID AP n-25 0.701 0.487 0.559 0.479 0.420

R-ID AP G1 0.799 0.672 0.750 0.805 0.636

I-ID TP G1 n-25 0.918 0.548 0.691 0.696 0.605

I-ID TP G1 n-10 0.862 0.812 0.750 0.772 0.739

M-ID TP n-25 0.928 0.913 0.789 0.814 0.641

M-ID TP n-10 0.894 0.937 0.879 0.731

I-ID TP G1 n-50 0.894 0.585 0.898 0.800

F-ID TP 0.937 0.585 0.979 0.886

I-ID TP n-10 0.879 0.898 0.979 0.947

M-ID AP n-25 0.731 0.800 0.886 0.947

M-ID TP n-50 0.825 0.978 0.922 0.932 0.982

R-ID TP 0.461 0.459 0.535 0.443 0.567

M-ID AP G1 n-25 0.448 0.546 0.481 0.629 0.380

M-ID TP n-50 R-ID TP M-ID AP G1 n-25

F-ID TP G1 2.511 × 10
−4

* 5.633 × 10
−5

* 6.475 × 10
−5

*

F-ID AP G1 3.337 × 10
−3

* 1.044 × 10
−3

* 3.347 × 10
−3

*

R-ID TP G1 5.812 × 10
−2

3.042 × 10
−2

* 3.540 × 10
−2

*

I-ID TP n-25 0.107 4.431 × 10
−2

* 3.490 × 10
−2

*

I-ID AP G1 n-10 0.168 4.380 × 10
−2

* 7.625 × 10
−2

I-ID AP G1 n-25 7.797 × 10
−2

8.795 × 10
−2

7.011 × 10
−2

I-ID TP n-50 0.165 3.823 × 10
−2

* 6.002 × 10
−2

F-ID AP 0.210 8.794 × 10
−2

0.105

R-ID AP 0.274 4.540 × 10
−2

* 0.194

M-ID TP G1 n-50 0.424 0.229 0.168

M-ID TP G1 n-25 0.355 6.316 × 10
−2

0.218

M-ID TP G1 n-10 0.351 4.159 × 10
−2

* 0.145
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Santa Fe Ant Trail Wilcoxon rank-sun test results continued.

M-ID AP G1 n-10 0.505 0.191 0.242

I-ID AP n-10 0.495 0.148 0.352

M-ID AP n-10 0.612 0.209 0.336

I-ID AP n-25 0.192 0.269 0.234

R-ID AP G1 0.449 0.178 0.269

I-ID TP G1 n-25 0.604 0.322 0.415

I-ID TP G1 n-10 0.773 0.478 0.385

M-ID TP n-25 0.526 0.335 0.381

M-ID TP n-10 0.825 0.461 0.448

I-ID TP G1 n-50 0.978 0.459 0.546

F-ID TP 0.922 0.535 0.481

I-ID TP n-10 0.932 0.443 0.629

M-ID AP n-25 0.982 0.567 0.380

M-ID TP n-50 0.634 0.573

R-ID TP 0.634 0.781

M-ID AP G1 n-25 0.573 0.781
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Table A.19: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the Even 7 Parity problem after 100000 fitness evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
F-ID AP G1 0.480 2.082 0.294 47

I-ID TP G1 n-50 0.640 2.724 0.385 47
F-ID TP G1 0.720 2.990 0.423 47
R-ID AP G1 0.880 2.715 0.384 45

M-ID TP G1 n-10 1.040 3.664 0.518 45
M-ID TP G1 n-25 1.460 3.871 0.548 42
I-ID TP G1 n-25 1.600 6.465 0.914 46

M-ID TP G1 n-50 1.760 5.723 0.809 44
I-ID AP G1 n-10 1.760 5.947 0.841 44

R-ID AP 1.820 4.839 0.684 42
R-ID TP G1 2.000 6.168 0.872 44

M-ID AP G1 n-10 2.140 5.292 0.748 41
I-ID TP n-10 2.160 5.991 0.847 42

F-ID TP 2.320 6.619 0.936 42
M-ID AP G1 n-25 2.420 6.101 0.863 42

F-ID AP 2.640 6.382 0.903 42
R-ID TP 2.680 6.757 0.956 40

I-ID AP G1 n-25 2.760 6.675 0.944 41
I-ID TP G1 n-10 2.780 6.287 0.889 39

M-ID TP n-10 3.180 6.766 0.957 38
M-ID TP n-25 3.320 6.885 0.974 37
I-ID TP n-50 3.620 6.978 0.987 36
I-ID TP n-25 3.660 7.580 1.072 37

M-ID TP n-50 3.660 7.927 1.121 36
I-ID AP n-10 3.980 8.312 1.175 37

M-ID AP n-10 4.580 8.157 1.154 34
M-ID AP n-25 4.680 8.353 1.181 34
I-ID AP n-25 5.480 8.683 1.228 33
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Table A.20: This table reports the p-value of Wilcoxon rank-sum tests performed on the av
best fitness values of each approach after 100000 fitness evaluations on the Even 7 Parity problem.
The p-values reported are calculated with a confidence interval of 0.05. Values marked with
asterisk (*) are significant.

F-ID AP G1 I-ID TP G1 n-50 F-ID TP G1 R-ID AP G1 M-ID TP G1 n-10

F-ID AP G1 0.832 0.673 0.395 0.352

I-ID TP G1 n-50 0.832 1.000 0.714 0.606

F-ID TP G1 0.673 1.000 1.000 0.670

R-ID AP G1 0.395 0.714 1.000 0.903

M-ID TP G1 n-10 0.352 0.606 0.670 0.903

M-ID TP G1 n-25 0.153 0.303 0.284 0.548 0.554

I-ID TP G1 n-25 0.443 0.396 0.670 0.903 0.905

M-ID TP G1 n-50 0.172 0.202 0.259 0.440 0.574

I-ID AP G1 n-10 0.234 0.291 0.349 0.587 0.609

R-ID AP 0.109 0.181 0.262 0.308 0.346

R-ID TP G1 7.636 × 10
−2

0.184 0.185 0.189 0.500

M-ID AP G1 n-10 6.371 × 10
−2

0.132 0.108 0.227 0.324

I-ID TP n-10 7.479 × 10
−2

0.166 0.196 0.246 0.401

F-ID TP 8.924 × 10
−2

0.151 0.210 0.270 0.342

M-ID AP G1 n-25 3.977 × 10
−2

* 5.627 × 10
−2

7.913 × 10
−2

0.123 0.141

F-ID AP 1.207 × 10
−2

* 5.851 × 10
−2

6.685 × 10
−2

6.767 × 10
−2

0.134

R-ID TP 4.580 × 10
−2

* 8.570 × 10
−2

0.107 0.138 0.190

I-ID AP G1 n-25 2.579 × 10
−2

* 1.353 × 10
−2

* 7.585 × 10
−2

5.639 × 10
−2

0.145

I-ID TP G1 n-10 2.012 × 10
−2

* 2.601 × 10
−2

* 6.711 × 10
−2

6.028 × 10
−2

9.990 × 10
−2

M-ID TP n-10 1.229 × 10
−2

* 2.615 × 10
−2

* 2.090 × 10
−2

* 3.744 × 10
−2

* 6.967 × 10
−2

M-ID TP n-25 9.604 × 10
−3

* 2.425 × 10
−2

* 2.960 × 10
−2

* 2.946 × 10
−2

* 5.790 × 10
−2

I-ID TP n-50 5.432 × 10
−3

* 1.161 × 10
−2

* 1.016 × 10
−2

* 1.526 × 10
−2

* 4.126 × 10
−2

*

I-ID TP n-25 5.038 × 10
−3

* 1.860 × 10
−2

* 1.499 × 10
−2

* 2.077 × 10
−2

* 1.576 × 10
−2

*

M-ID TP n-50 1.107 × 10
−2

* 1.103 × 10
−2

* 8.059 × 10
−3

* 4.410 × 10
−2

* 5.034 × 10
−2

I-ID AP n-10 6.877 × 10
−3

* 1.434 × 10
−2

* 1.814 × 10
−2

* 2.738 × 10
−2

* 3.684 × 10
−2

*

M-ID AP n-10 1.984 × 10
−3

* 2.749 × 10
−3

* 1.239 × 10
−3

* 5.795 × 10
−3

* 1.847 × 10
−2

*

M-ID AP n-25 7.835 × 10
−4

* 4.754 × 10
−3

* 5.622 × 10
−3

* 5.306 × 10
−3

* 8.307 × 10
−3

*

I-ID AP n-25 4.910 × 10
−4

* 3.931 × 10
−4

* 5.906 × 10
−4

* 1.028 × 10
−3

* 1.230 × 10
−3

*

M-ID TP G1 n-25 I-ID TP G1 n-25 M-ID TP G1 n-50 I-ID AP G1 n-10 R-ID AP

F-ID AP G1 0.153 0.443 0.172 0.234 0.109

I-ID TP G1 n-50 0.303 0.396 0.202 0.291 0.181

F-ID TP G1 0.284 0.670 0.259 0.349 0.262

R-ID AP G1 0.548 0.903 0.440 0.587 0.308

M-ID TP G1 n-10 0.554 0.905 0.574 0.609 0.346

M-ID TP G1 n-25 0.723 0.972 0.916 0.711

I-ID TP G1 n-25 0.723 0.758 0.837 0.646

M-ID TP G1 n-50 0.972 0.758 0.937 0.925

I-ID AP G1 n-10 0.916 0.837 0.937 0.777

R-ID AP 0.711 0.646 0.925 0.777

R-ID TP G1 0.725 0.681 0.781 0.783 0.844

M-ID AP G1 n-10 0.528 0.481 0.623 0.592 0.836

I-ID TP n-10 0.431 0.475 0.753 0.674 0.865

F-ID TP 0.551 0.501 0.725 0.636 0.856

M-ID AP G1 n-25 0.295 0.474 0.503 0.488 0.508

F-ID AP 0.319 0.284 0.455 0.401 0.426

R-ID TP 0.419 0.381 0.314 0.378 0.660

I-ID AP G1 n-25 0.252 0.269 0.194 0.347 0.484

I-ID TP G1 n-10 0.200 0.198 0.311 0.298 0.420

M-ID TP n-10 0.204 0.131 0.234 0.218 0.297
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M-ID TP n-25 5.772 × 10
−2

0.129 0.184 9.298 × 10
−2

0.227

I-ID TP n-50 8.936 × 10
−2

6.729 × 10
−2

0.184 0.116 0.177

I-ID TP n-25 9.607 × 10
−2

0.103 0.161 6.447 × 10
−2

0.139

M-ID TP n-50 0.158 8.225 × 10
−2

0.184 9.263 × 10
−2

0.204

I-ID AP n-10 8.651 × 10
−2

9.671 × 10
−2

0.111 0.112 0.130

M-ID AP n-10 7.934 × 10
−3

* 4.197 × 10
−2

* 3.214 × 10
−2

* 3.576 × 10
−2

* 6.130 × 10
−2

M-ID AP n-25 1.310 × 10
−2

* 3.793 × 10
−2

* 4.964 × 10
−2

* 4.731 × 10
−2

* 1.243 × 10
−2

*

I-ID AP n-25 8.320 × 10
−3

* 2.192 × 10
−2

* 1.564 × 10
−2

* 1.359 × 10
−2

* 1.004 × 10
−2

*

R-ID TP G1 M-ID AP G1 n-10 I-ID TP n-10 F-ID TP M-ID AP G1 n-25

F-ID AP G1 7.636 × 10
−2

6.371 × 10
−2

7.479 × 10
−2

8.924 × 10
−2

3.977 × 10
−2

*

I-ID TP G1 n-50 0.184 0.132 0.166 0.151 5.627 × 10
−2

F-ID TP G1 0.185 0.108 0.196 0.210 7.913 × 10
−2

R-ID AP G1 0.189 0.227 0.246 0.270 0.123

M-ID TP G1 n-10 0.500 0.324 0.401 0.342 0.141

M-ID TP G1 n-25 0.725 0.528 0.431 0.551 0.295

I-ID TP G1 n-25 0.681 0.481 0.475 0.501 0.474

M-ID TP G1 n-50 0.781 0.623 0.753 0.725 0.503

I-ID AP G1 n-10 0.783 0.592 0.674 0.636 0.488

R-ID AP 0.844 0.836 0.865 0.856 0.508

R-ID TP G1 0.863 1.000 0.950 0.758

M-ID AP G1 n-10 0.863 0.955 0.864 0.796

I-ID TP n-10 1.000 0.955 1.000 0.776

F-ID TP 0.950 0.864 1.000 0.864

M-ID AP G1 n-25 0.758 0.796 0.776 0.864

F-ID AP 0.752 0.641 0.622 0.622 0.917

R-ID TP 0.614 0.831 0.551 0.740 0.981

I-ID AP G1 n-25 0.590 0.568 0.550 0.640 0.695

I-ID TP G1 n-10 0.755 0.568 0.521 0.515 0.754

M-ID TP n-10 0.324 0.367 0.400 0.437 0.526

M-ID TP n-25 0.275 0.327 0.355 0.383 0.492

I-ID TP n-50 0.196 0.168 0.234 0.250 0.347

I-ID TP n-25 0.380 0.358 0.137 0.302 0.547

M-ID TP n-50 0.285 0.211 0.184 0.330 0.456

I-ID AP n-10 0.182 0.227 0.267 0.285 0.373

M-ID AP n-10 0.116 9.023 × 10
−2

0.171 8.513 × 10
−2

0.168

M-ID AP n-25 8.080 × 10
−2

7.302 × 10
−2

0.102 0.102 0.117

I-ID AP n-25 3.481 × 10
−2

* 2.400 × 10
−2

* 2.288 × 10
−2

* 4.233 × 10
−2

* 3.205 × 10
−2

*

F-ID AP R-ID TP I-ID AP G1 n-25 I-ID TP G1 n-10 M-ID TP n-10

F-ID AP G1 1.207 × 10
−2

* 4.580 × 10
−2

* 2.579 × 10
−2

* 2.012 × 10
−2

* 1.229 × 10
−2

*

I-ID TP G1 n-50 5.851 × 10
−2

8.570 × 10
−2

1.353 × 10
−2

* 2.601 × 10
−2

* 2.615 × 10
−2

*

F-ID TP G1 6.685 × 10
−2

0.107 7.585 × 10
−2

6.711 × 10
−2

2.090 × 10
−2

*

R-ID AP G1 6.767 × 10
−2

0.138 5.639 × 10
−2

6.028 × 10
−2

3.744 × 10
−2

*

M-ID TP G1 n-10 0.134 0.190 0.145 9.990 × 10
−2

6.967 × 10
−2

M-ID TP G1 n-25 0.319 0.419 0.252 0.200 0.204

I-ID TP G1 n-25 0.284 0.381 0.269 0.198 0.131

M-ID TP G1 n-50 0.455 0.314 0.194 0.311 0.234

I-ID AP G1 n-10 0.401 0.378 0.347 0.298 0.218

R-ID AP 0.426 0.660 0.484 0.420 0.297

R-ID TP G1 0.752 0.614 0.590 0.755 0.324

M-ID AP G1 n-10 0.641 0.831 0.568 0.568 0.367

I-ID TP n-10 0.622 0.551 0.550 0.521 0.400

F-ID TP 0.622 0.740 0.640 0.515 0.437

M-ID AP G1 n-25 0.917 0.981 0.695 0.754 0.526

F-ID AP 1.000 0.975 0.981 0.831
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Even 7 Parity Wilcoxon rank-sun test results continued.

R-ID TP 1.000 0.955 0.777 0.657

I-ID AP G1 n-25 0.975 0.955 0.981 0.887

I-ID TP G1 n-10 0.981 0.777 0.981 0.762

M-ID TP n-10 0.831 0.657 0.887 0.762

M-ID TP n-25 0.711 0.614 0.745 0.626 0.931

I-ID TP n-50 0.684 0.410 0.517 0.473 0.613

I-ID TP n-25 0.680 0.419 0.726 0.668 0.807

M-ID TP n-50 0.546 0.359 0.485 0.625 0.964

I-ID AP n-10 0.465 0.331 0.467 0.513 0.795

M-ID AP n-10 0.204 0.166 0.285 0.315 0.439

M-ID AP n-25 0.248 0.171 0.296 0.280 0.265

I-ID AP n-25 4.451 × 10
−2

* 9.812 × 10
−2

0.106 8.085 × 10
−2

9.865 × 10
−2

M-ID TP n-25 I-ID TP n-50 I-ID TP n-25 M-ID TP n-50 I-ID AP n-10

F-ID AP G1 9.604 × 10
−3

* 5.432 × 10
−3

* 5.038 × 10
−3

* 1.107 × 10
−2

* 6.877 × 10
−3

*

I-ID TP G1 n-50 2.425 × 10
−2

* 1.161 × 10
−2

* 1.860 × 10
−2

* 1.103 × 10
−2

* 1.434 × 10
−2

*

F-ID TP G1 2.960 × 10
−2

* 1.016 × 10
−2

* 1.499 × 10
−2

* 8.059 × 10
−3

* 1.814 × 10
−2

*

R-ID AP G1 2.946 × 10
−2

* 1.526 × 10
−2

* 2.077 × 10
−2

* 4.410 × 10
−2

* 2.738 × 10
−2

*

M-ID TP G1 n-10 5.790 × 10
−2

4.126 × 10
−2

* 1.576 × 10
−2

* 5.034 × 10
−2

3.684 × 10
−2

*

M-ID TP G1 n-25 5.772 × 10
−2

8.936 × 10
−2

9.607 × 10
−2

0.158 8.651 × 10
−2

I-ID TP G1 n-25 0.129 6.729 × 10
−2

0.103 8.225 × 10
−2

9.671 × 10
−2

M-ID TP G1 n-50 0.184 0.184 0.161 0.184 0.111

I-ID AP G1 n-10 9.298 × 10
−2

0.116 6.447 × 10
−2

9.263 × 10
−2

0.112

R-ID AP 0.227 0.177 0.139 0.204 0.130

R-ID TP G1 0.275 0.196 0.380 0.285 0.182

M-ID AP G1 n-10 0.327 0.168 0.358 0.211 0.227

I-ID TP n-10 0.355 0.234 0.137 0.184 0.267

F-ID TP 0.383 0.250 0.302 0.330 0.285

M-ID AP G1 n-25 0.492 0.347 0.547 0.456 0.373

F-ID AP 0.711 0.684 0.680 0.546 0.465

R-ID TP 0.614 0.410 0.419 0.359 0.331

I-ID AP G1 n-25 0.745 0.517 0.726 0.485 0.467

I-ID TP G1 n-10 0.626 0.473 0.668 0.625 0.513

M-ID TP n-10 0.931 0.613 0.807 0.964 0.795

M-ID TP n-25 0.819 0.726 0.988 0.764

I-ID TP n-50 0.819 0.943 0.796 0.963

I-ID TP n-25 0.726 0.943 0.845 0.939

M-ID TP n-50 0.988 0.796 0.845 0.819

I-ID AP n-10 0.764 0.963 0.939 0.819

M-ID AP n-10 0.316 0.709 0.417 0.489 0.586

M-ID AP n-25 0.394 0.620 0.528 0.399 0.586

I-ID AP n-25 0.172 0.293 0.170 0.234 0.374

M-ID AP n-10 M-ID AP n-25 I-ID AP n-25

F-ID AP G1 1.984 × 10
−3

* 7.835 × 10
−4

* 4.910 × 10
−4

*

I-ID TP G1 n-50 2.749 × 10
−3

* 4.754 × 10
−3

* 3.931 × 10
−4

*

F-ID TP G1 1.239 × 10
−3

* 5.622 × 10
−3

* 5.906 × 10
−4

*

R-ID AP G1 5.795 × 10
−3

* 5.306 × 10
−3

* 1.028 × 10
−3

*

M-ID TP G1 n-10 1.847 × 10
−2

* 8.307 × 10
−3

* 1.230 × 10
−3

*

M-ID TP G1 n-25 7.934 × 10
−3

* 1.310 × 10
−2

* 8.320 × 10
−3

*

I-ID TP G1 n-25 4.197 × 10
−2

* 3.793 × 10
−2

* 2.192 × 10
−2

*

M-ID TP G1 n-50 3.214 × 10
−2

* 4.964 × 10
−2

* 1.564 × 10
−2

*

I-ID AP G1 n-10 3.576 × 10
−2

* 4.731 × 10
−2

* 1.359 × 10
−2

*

R-ID AP 6.130 × 10
−2

1.243 × 10
−2

* 1.004 × 10
−2

*

R-ID TP G1 0.116 8.080 × 10
−2

3.481 × 10
−2

*

M-ID AP G1 n-10 9.023 × 10
−2

7.302 × 10
−2

2.400 × 10
−2

*
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Even 7 Parity Wilcoxon rank-sun test results continued.

I-ID TP n-10 0.171 0.102 2.288 × 10
−2

*

F-ID TP 8.513 × 10
−2

0.102 4.233 × 10
−2

*

M-ID AP G1 n-25 0.168 0.117 3.205 × 10
−2

*

F-ID AP 0.204 0.248 4.451 × 10
−2

*

R-ID TP 0.166 0.171 9.812 × 10
−2

I-ID AP G1 n-25 0.285 0.296 0.106

I-ID TP G1 n-10 0.315 0.280 8.085 × 10
−2

M-ID TP n-10 0.439 0.265 9.865 × 10
−2

M-ID TP n-25 0.316 0.394 0.172

I-ID TP n-50 0.709 0.620 0.293

I-ID TP n-25 0.417 0.528 0.170

M-ID TP n-50 0.489 0.399 0.234

I-ID AP n-10 0.586 0.586 0.374

M-ID AP n-10 0.952 0.499

M-ID AP n-25 0.952 0.613

I-ID AP n-25 0.499 0.613
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Table A.21: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the x5 − 2x3 + x Symbolic Regression problem after 100000 fitness
evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
R-ID AP 0.284 0.459 0.065 13

R-ID TP G1 0.293 0.433 0.061 13
F-ID AP 0.349 0.511 0.072 14
F-ID TP 0.410 0.504 0.071 12

I-ID TP n-25 0.417 0.446 0.063 13
F-ID TP G1 0.425 0.494 0.070 8
I-ID TP n-10 0.429 0.453 0.064 11

I-ID TP G1 n-50 0.471 0.375 0.053 8
F-ID AP G1 0.473 0.474 0.067 5
I-ID AP n-10 0.479 0.483 0.068 13

R-ID TP 0.481 0.568 0.080 10
R-ID AP G1 0.483 0.681 0.096 12
I-ID TP n-50 0.488 0.500 0.071 11

M-ID TP G1 n-10 0.509 0.485 0.069 9
M-ID TP G1 n-25 0.534 0.506 0.072 4
I-ID TP G1 n-25 0.538 0.453 0.064 7
I-ID AP G1 n-25 0.540 0.448 0.063 6

M-ID AP n-10 0.541 0.604 0.085 15
I-ID AP n-25 0.542 0.501 0.071 9

M-ID AP n-25 0.565 0.586 0.083 10
M-ID TP G1 n-50 0.588 0.591 0.084 10

M-ID TP n-25 0.591 0.609 0.086 9
I-ID TP G1 n-10 0.620 0.546 0.077 5
I-ID AP G1 n-10 0.627 0.587 0.083 6

M-ID TP n-50 0.640 0.616 0.087 7
M-ID TP n-10 0.657 0.654 0.093 9

M-ID AP G1 n-10 0.721 0.629 0.089 5
M-ID AP G1 n-25 0.937 0.640 0.090 1
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Table A.22: This table reports the p-value of Wilcoxon rank-sum tests performed
best fitness values of each approach after 100000 fitness evaluations on the Even 7
The p-values reported are calculated with a confidence interval of 0.05. Values
asterisk (*) are significant.

R-ID AP R-ID TP G1 F-ID AP F-ID TP I-ID TP n-25

R-ID AP 0.900 0.493 0.107 9.208 × 10
−2

R-ID TP G1 0.900 0.931 0.235 7.412 × 10
−2

F-ID AP 0.493 0.931 0.244 0.406

F-ID TP 0.107 0.235 0.244 0.851

I-ID TP n-25 9.208 × 10
−2

7.412 × 10
−2

0.406 0.851

F-ID TP G1 3.211 × 10
−2

* 0.215 0.179 0.640 0.969

I-ID TP n-10 4.118 × 10
−2

* 5.784 × 10
−2

0.107 0.985 0.946

I-ID TP G1 n-50 1.613 × 10
−3

* 1.097 × 10
−2

* 3.827 × 10
−2

* 0.108 0.246

F-ID AP G1 9.410 × 10
−3

* 1.941 × 10
−2

* 2.441 × 10
−2

* 0.133 0.271

I-ID AP n-10 1.383 × 10
−2

* 9.301 × 10
−2

6.943 × 10
−2

0.388 0.348

R-ID TP 4.675 × 10
−2

* 1.310 × 10
−2

* 0.180 0.612 0.567

R-ID AP G1 0.208 0.395 0.662 0.892 0.585

I-ID TP n-50 2.105 × 10
−2

* 3.410 × 10
−2

* 0.276 0.348 0.296

M-ID TP G1 n-10 2.007 × 10
−3

* 4.042 × 10
−3

* 1.966 × 10
−2

* 0.113 0.275

M-ID TP G1 n-25 1.291 × 10
−3

* 5.463 × 10
−4

* 2.480 × 10
−2

* 7.413 × 10
−2

4.502 × 10
−2

*

I-ID TP G1 n-25 5.684 × 10
−4

* 3.352 × 10
−4

* 5.178 × 10
−3

* 4.501 × 10
−2

* 0.129

I-ID AP G1 n-25 2.795 × 10
−5

* 1.030 × 10
−3

* 1.328 × 10
−3

* 4.651 × 10
−3

* 4.291 × 10
−2

*

M-ID AP n-10 4.782 × 10
−2

* 6.579 × 10
−3

* 1.782 × 10
−2

* 0.313 0.320

I-ID AP n-25 2.295 × 10
−3

* 2.113 × 10
−3

* 3.083 × 10
−2

* 9.489 × 10
−2

0.200

M-ID AP n-25 1.224 × 10
−2

* 6.482 × 10
−3

* 1.874 × 10
−2

* 0.122 9.762 × 10
−2

M-ID TP G1 n-50 1.912 × 10
−3

* 3.853 × 10
−3

* 5.911 × 10
−2

6.449 × 10
−2

0.106

M-ID TP n-25 4.821 × 10
−3

* 1.374 × 10
−3

* 8.646 × 10
−3

* 6.382 × 10
−2

7.266 × 10
−2

I-ID TP G1 n-10 5.022 × 10
−5

* 7.153 × 10
−4

* 2.453 × 10
−3

* 5.600 × 10
−3

* 1.134 × 10
−2

*

I-ID AP G1 n-10 1.001 × 10
−4

* 1.028 × 10
−3

* 2.637 × 10
−3

* 1.401 × 10
−2

* 1.898 × 10
−2

*

M-ID TP n-50 4.924 × 10
−4

* 4.456 × 10
−4

* 1.082 × 10
−2

* 4.503 × 10
−2

* 6.807 × 10
−2

M-ID TP n-10 3.041 × 10
−3

* 4.713 × 10
−4

* 1.720 × 10
−2

* 3.626 × 10
−2

* 5.595 × 10
−2

M-ID AP G1 n-10 6.363 × 10
−5

* 1.936 × 10
−5

* 3.000 × 10
−4

* 1.482 × 10
−3

* 2.639 × 10
−2

*

M-ID AP G1 n-25 2.660 × 10
−6

* 4.811 × 10
−7

* 1.980 × 10
−5

* 2.853 × 10
−5

* 1.544 × 10
−6

*

F-ID TP G1 I-ID TP n-10 I-ID TP G1 n-50 F-ID AP G1 I-ID AP n-10

R-ID AP 3.211 × 10
−2

* 4.118 × 10
−2

* 1.613 × 10
−3

* 9.410 × 10
−3

* 1.383 × 10
−2

*

R-ID TP G1 0.215 5.784 × 10
−2

1.097 × 10
−2

* 1.941 × 10
−2

* 9.301 × 10
−2

F-ID AP 0.179 0.107 3.827 × 10
−2

* 2.441 × 10
−2

* 6.943 × 10
−2

F-ID TP 0.640 0.985 0.108 0.133 0.388

I-ID TP n-25 0.969 0.946 0.246 0.271 0.348

F-ID TP G1 0.772 0.111 0.385 0.598

I-ID TP n-10 0.772 0.283 0.398 0.968

I-ID TP G1 n-50 0.111 0.283 0.900 0.345

F-ID AP G1 0.385 0.398 0.900 1.000

I-ID AP n-10 0.598 0.968 0.345 1.000

R-ID TP 0.931 0.743 0.354 0.724 0.657

R-ID AP G1 0.889 0.996 0.155 0.382 0.499

I-ID TP n-50 0.315 0.672 0.996 0.877 0.765

M-ID TP G1 n-10 0.299 0.438 1.000 0.728 0.597

M-ID TP G1 n-25 5.875 × 10
−2

7.827 × 10
−2

0.427 0.441 0.322

I-ID TP G1 n-25 0.119 6.009 × 10
−2

0.663 0.330 0.278

I-ID AP G1 n-25 1.440 × 10
−2

* 4.212 × 10
−2

* 0.598 0.181 0.260

M-ID AP n-10 0.489 0.372 0.720 0.841 0.866

I-ID AP n-25 7.497 × 10
−2

0.153 0.743 0.532 0.652

M-ID AP n-25 9.970 × 10
−2

0.115 0.412 0.548 0.148
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x5 − 2x3 + x Symbolic Regression Wilcoxon rank-sun test results continued.

M-ID TP G1 n-50 0.236 0.113 0.505 0.294 0.238

M-ID TP n-25 0.255 0.372 0.531 0.553 0.469

I-ID TP G1 n-10 4.720 × 10
−2

* 2.707 × 10
−2

* 0.106 0.128 2.637 × 10
−2

*

I-ID AP G1 n-10 9.273 × 10
−2

4.249 × 10
−2

* 0.341 8.985 × 10
−2

4.163 × 10
−2

*

M-ID TP n-50 7.730 × 10
−2

4.944 × 10
−2

* 0.648 0.231 0.194

M-ID TP n-10 3.534 × 10
−2

* 0.145 0.294 0.249 0.172

M-ID AP G1 n-10 7.074 × 10
−3

* 2.695 × 10
−3

* 0.116 4.311 × 10
−2

* 1.649 × 10
−2

*

M-ID AP G1 n-25 1.124 × 10
−5

* 4.076 × 10
−5

* 9.650 × 10
−6

* 1.147 × 10
−4

* 6.092 × 10
−5

*

R-ID TP R-ID AP G1 I-ID TP n-50 M-ID TP G1 n-10 M-ID TP G1 n-25

R-ID AP 4.675 × 10
−2

* 0.208 2.105 × 10
−2

* 2.007 × 10
−3

* 1.291 × 10
−3

*

R-ID TP G1 1.310 × 10
−2

* 0.395 3.410 × 10
−2

* 4.042 × 10
−3

* 5.463 × 10
−4

*

F-ID AP 0.180 0.662 0.276 1.966 × 10
−2

* 2.480 × 10
−2

*

F-ID TP 0.612 0.892 0.348 0.113 7.413 × 10
−2

I-ID TP n-25 0.567 0.585 0.296 0.275 4.502 × 10
−2

*

F-ID TP G1 0.931 0.889 0.315 0.299 5.875 × 10
−2

I-ID TP n-10 0.743 0.996 0.672 0.438 7.827 × 10
−2

I-ID TP G1 n-50 0.354 0.155 0.996 1.000 0.427

F-ID AP G1 0.724 0.382 0.877 0.728 0.441

I-ID AP n-10 0.657 0.499 0.765 0.597 0.322

R-ID TP 0.667 0.802 0.462 0.233

R-ID AP G1 0.667 0.537 0.263 0.137

I-ID TP n-50 0.802 0.537 0.950 0.527

M-ID TP G1 n-10 0.462 0.263 0.950 0.303

M-ID TP G1 n-25 0.233 0.137 0.527 0.303

I-ID TP G1 n-25 4.664 × 10
−2

* 9.056 × 10
−2

0.479 0.581 0.789

I-ID AP G1 n-25 0.125 0.101 7.806 × 10
−2

0.317 0.509

M-ID AP n-10 0.691 0.415 0.893 0.758 0.313

I-ID AP n-25 0.183 0.118 0.800 0.489 0.980

M-ID AP n-25 0.211 0.149 0.599 0.787 0.858

M-ID TP G1 n-50 0.357 0.111 0.571 0.281 0.779

M-ID TP n-25 0.320 0.306 0.330 0.839 0.717

I-ID TP G1 n-10 6.216 × 10
−2

3.618 × 10
−2

* 0.259 0.248 0.313

I-ID AP G1 n-10 1.402 × 10
−2

* 8.747 × 10
−2

0.210 0.125 0.257

M-ID TP n-50 5.596 × 10
−2

9.178 × 10
−2

0.385 0.431 0.835

M-ID TP n-10 0.193 0.122 0.255 0.505 0.674

M-ID AP G1 n-10 8.635 × 10
−3

* 1.991 × 10
−2

* 0.103 4.833 × 10
−2

* 0.174

M-ID AP G1 n-25 1.689 × 10
−5

* 3.049 × 10
−4

* 5.840 × 10
−5

* 3.342 × 10
−5

* 7.052 × 10
−4

*

I-ID TP G1 n-25 I-ID AP G1 n-25 M-ID AP n-10 I-ID AP n-25 M-ID AP n-25

R-ID AP 5.684 × 10
−4

* 2.795 × 10
−5

* 4.782 × 10
−2

* 2.295 × 10
−3

* 1.224 × 10
−2

*

R-ID TP G1 3.352 × 10
−4

* 1.030 × 10
−3

* 6.579 × 10
−3

* 2.113 × 10
−3

* 6.482 × 10
−3

*

F-ID AP 5.178 × 10
−3

* 1.328 × 10
−3

* 1.782 × 10
−2

* 3.083 × 10
−2

* 1.874 × 10
−2

*

F-ID TP 4.501 × 10
−2

* 4.651 × 10
−3

* 0.313 9.489 × 10
−2

0.122

I-ID TP n-25 0.129 4.291 × 10
−2

* 0.320 0.200 9.762 × 10
−2

F-ID TP G1 0.119 1.440 × 10
−2

* 0.489 7.497 × 10
−2

9.970 × 10
−2

I-ID TP n-10 6.009 × 10
−2

4.212 × 10
−2

* 0.372 0.153 0.115

I-ID TP G1 n-50 0.663 0.598 0.720 0.743 0.412

F-ID AP G1 0.330 0.181 0.841 0.532 0.548

I-ID AP n-10 0.278 0.260 0.866 0.652 0.148

R-ID TP 4.664 × 10
−2

* 0.125 0.691 0.183 0.211

R-ID AP G1 9.056 × 10
−2

0.101 0.415 0.118 0.149

I-ID TP n-50 0.479 7.806 × 10
−2

0.893 0.800 0.599

M-ID TP G1 n-10 0.581 0.317 0.758 0.489 0.787

M-ID TP G1 n-25 0.789 0.509 0.313 0.980 0.858

I-ID TP G1 n-25 0.926 0.605 0.365 0.662
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x5 − 2x3 + x Symbolic Regression Wilcoxon rank-sun test results continued.

I-ID AP G1 n-25 0.926 0.735 1.000 0.555

M-ID AP n-10 0.605 0.735 0.762 0.882

I-ID AP n-25 0.365 1.000 0.762 0.963

M-ID AP n-25 0.662 0.555 0.882 0.963

M-ID TP G1 n-50 0.813 0.848 0.255 0.685 0.694

M-ID TP n-25 0.717 0.601 0.885 0.908 0.735

I-ID TP G1 n-10 0.680 0.454 0.317 0.515 0.295

I-ID AP G1 n-10 0.406 0.650 6.643 × 10
−2

0.454 0.532

M-ID TP n-50 0.591 0.858 0.415 0.866 0.521

M-ID TP n-10 0.909 0.671 0.798 0.913 0.554

M-ID AP G1 n-10 0.731 0.198 4.292 × 10
−2

* 0.292 9.469 × 10
−2

M-ID AP G1 n-25 3.314 × 10
−5

* 9.557 × 10
−4

* 2.233 × 10
−3

* 2.897 × 10
−5

* 1.044 × 10
−3

*

M-ID TP G1 n-50 M-ID TP n-25 I-ID TP G1 n-10 I-ID AP G1 n-10 M-ID TP n-50

R-ID AP 1.912 × 10
−3

* 4.821 × 10
−3

* 5.022 × 10
−5

* 1.001 × 10
−4

* 4.924 × 10
−4

*

R-ID TP G1 3.853 × 10
−3

* 1.374 × 10
−3

* 7.153 × 10
−4

* 1.028 × 10
−3

* 4.456 × 10
−4

*

F-ID AP 5.911 × 10
−2

8.646 × 10
−3

* 2.453 × 10
−3

* 2.637 × 10
−3

* 1.082 × 10
−2

*

F-ID TP 6.449 × 10
−2

6.382 × 10
−2

5.600 × 10
−3

* 1.401 × 10
−2

* 4.503 × 10
−2

*

I-ID TP n-25 0.106 7.266 × 10
−2

1.134 × 10
−2

* 1.898 × 10
−2

* 6.807 × 10
−2

F-ID TP G1 0.236 0.255 4.720 × 10
−2

* 9.273 × 10
−2

7.730 × 10
−2

I-ID TP n-10 0.113 0.372 2.707 × 10
−2

* 4.249 × 10
−2

* 4.944 × 10
−2

*

I-ID TP G1 n-50 0.505 0.531 0.106 0.341 0.648

F-ID AP G1 0.294 0.553 0.128 8.985 × 10
−2

0.231

I-ID AP n-10 0.238 0.469 2.637 × 10
−2

* 4.163 × 10
−2

* 0.194

R-ID TP 0.357 0.320 6.216 × 10
−2

1.402 × 10
−2

* 5.596 × 10
−2

R-ID AP G1 0.111 0.306 3.618 × 10
−2

* 8.747 × 10
−2

9.178 × 10
−2

I-ID TP n-50 0.571 0.330 0.259 0.210 0.385

M-ID TP G1 n-10 0.281 0.839 0.248 0.125 0.431

M-ID TP G1 n-25 0.779 0.717 0.313 0.257 0.835

I-ID TP G1 n-25 0.813 0.717 0.680 0.406 0.591

I-ID AP G1 n-25 0.848 0.601 0.454 0.650 0.858

M-ID AP n-10 0.255 0.885 0.317 6.643 × 10
−2

0.415

I-ID AP n-25 0.685 0.908 0.515 0.454 0.866

M-ID AP n-25 0.694 0.735 0.295 0.532 0.521

M-ID TP G1 n-50 0.823 0.552 0.719 0.858

M-ID TP n-25 0.823 0.225 0.471 0.689

I-ID TP G1 n-10 0.552 0.225 0.796 0.637

I-ID AP G1 n-10 0.719 0.471 0.796 0.992

M-ID TP n-50 0.858 0.689 0.637 0.992

M-ID TP n-10 0.477 0.901 0.426 0.739 0.866

M-ID AP G1 n-10 0.310 0.197 0.525 0.633 0.835

M-ID AP G1 n-25 4.335 × 10
−3

* 7.511 × 10
−5

* 4.414 × 10
−3

* 6.948 × 10
−3

* 4.565 × 10
−3

*

M-ID TP n-10 M-ID AP G1 n-10 M-ID AP G1 n-25

R-ID AP 3.041 × 10
−3

* 6.363 × 10
−5

* 2.660 × 10
−6

*

R-ID TP G1 4.713 × 10
−4

* 1.936 × 10
−5

* 4.811 × 10
−7

*

F-ID AP 1.720 × 10
−2

* 3.000 × 10
−4

* 1.980 × 10
−5

*

F-ID TP 3.626 × 10
−2

* 1.482 × 10
−3

* 2.853 × 10
−5

*

I-ID TP n-25 5.595 × 10
−2

2.639 × 10
−2

* 1.544 × 10
−6

*

F-ID TP G1 3.534 × 10
−2

* 7.074 × 10
−3

* 1.124 × 10
−5

*

I-ID TP n-10 0.145 2.695 × 10
−3

* 4.076 × 10
−5

*

I-ID TP G1 n-50 0.294 0.116 9.650 × 10
−6

*

F-ID AP G1 0.249 4.311 × 10
−2

* 1.147 × 10
−4

*

I-ID AP n-10 0.172 1.649 × 10
−2

* 6.092 × 10
−5

*

R-ID TP 0.193 8.635 × 10
−3

* 1.689 × 10
−5

*

R-ID AP G1 0.122 1.991 × 10
−2

* 3.049 × 10
−4

*
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x5 − 2x3 + x Symbolic Regression Wilcoxon rank-sun test results continued.

I-ID TP n-50 0.255 0.103 5.840 × 10
−5

*

M-ID TP G1 n-10 0.505 4.833 × 10
−2

* 3.342 × 10
−5

*

M-ID TP G1 n-25 0.674 0.174 7.052 × 10
−4

*

I-ID TP G1 n-25 0.909 0.731 3.314 × 10
−5

*

I-ID AP G1 n-25 0.671 0.198 9.557 × 10
−4

*

M-ID AP n-10 0.798 4.292 × 10
−2

* 2.233 × 10
−3

*

I-ID AP n-25 0.913 0.292 2.897 × 10
−5

*

M-ID AP n-25 0.554 9.469 × 10
−2

1.044 × 10
−3

*

M-ID TP G1 n-50 0.477 0.310 4.335 × 10
−3

*

M-ID TP n-25 0.901 0.197 7.511 × 10
−5

*

I-ID TP G1 n-10 0.426 0.525 4.414 × 10
−3

*

I-ID AP G1 n-10 0.739 0.633 6.948 × 10
−3

*

M-ID TP n-50 0.866 0.835 4.565 × 10
−3

*

M-ID TP n-10 0.420 1.113 × 10
−2

*

M-ID AP G1 n-10 0.420 2.353 × 10
−2

*

M-ID AP G1 n-25 1.113 × 10
−2

* 2.353 × 10
−2

*
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Table A.23: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the 8× 8 Lawn Mower problem after 100000 fitness evaluations.

Best Fitness Std. Dev. Std. Err. Number Solved
M-ID AP n-10 0.224 1.58389 0.22400 19

M-ID TP G1 n-50 0.230 1.62632 0.23000 21
M-ID TP G1 n-25 0.238 1.68290 0.23800 24
M-ID AP G1 n-10 0.260 1.83846 0.26000 18

R-ID AP 0.462 2.287 0.323 20
M-ID TP n-10 0.464 2.299 0.325 21
M-ID AP n-25 0.492 2.435 0.344 19

M-ID TP G1 n-10 0.492 2.435 0.344 22
M-ID TP n-50 0.506 2.510 0.355 17
M-ID TP n-25 1.188 3.608 0.510 21

M-ID AP G1 n-25 1.212 3.674 0.520 14
R-ID TP G1 1.318 3.999 0.566 21
R-ID AP G1 1.376 4.219 0.597 17

R-ID TP 1.736 4.354 0.616 24
F-ID TP 5.966 6.894 0.975 15
F-ID AP 9.634 6.510 0.921 3

F-ID TP G1 10.672 6.339 0.896 2
F-ID AP G1 14.886 4.421 0.625 1
I-ID AP n-10 28.288 1.323 0.187 0

I-ID AP G1 n-10 28.422 1.485 0.210 0
I-ID AP n-25 28.532 1.426 0.202 0
I-ID TP n-10 28.556 1.332 0.188 0

I-ID AP G1 n-25 28.700 1.232 0.174 0
I-ID TP n-50 28.718 1.229 0.174 0

I-ID TP G1 n-25 28.860 1.114 0.158 0
I-ID TP n-25 28.914 1.403 0.198 0

I-ID TP G1 n-50 28.928 1.127 0.159 0
I-ID TP G1 n-10 28.940 1.167 0.165 0
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Table A.24: This table reports the p-value of Wilcoxon rank-sum tests performed on the
best fitness values of each approach after 100000 fitness evaluations on the Even 7 Parity
The p-values reported are calculated with a confidence interval of 0.05. Values marked
asterisk (*) are significant.

M-ID AP n-10 M-ID TP G1 n-50 M-ID TP G1 n-25 M-ID AP G1 n-10 R-ID AP

M-ID AP n-10 0.817 0.188 0.634 0.596

M-ID TP G1 n-50 0.817 0.584 0.984 0.289

M-ID TP G1 n-25 0.188 0.584 0.289 0.198

M-ID AP G1 n-10 0.634 0.984 0.289 0.248

R-ID AP 0.596 0.289 0.198 0.248

M-ID TP n-10 0.380 0.185 0.159 0.393 0.705

M-ID AP n-25 0.732 0.633 0.369 0.918 0.431

M-ID TP G1 n-10 0.528 0.468 0.143 0.261 0.861

M-ID TP n-50 0.839 0.826 0.328 0.879 0.289

M-ID TP n-25 0.370 0.237 2.356 × 10
−2

* 0.221 0.964

M-ID AP G1 n-25 0.201 0.302 3.002 × 10
−2

* 0.174 0.581

R-ID TP G1 0.608 0.416 0.184 0.665 0.665

R-ID AP G1 0.165 8.360 × 10
−2

2.036 × 10
−2

* 0.114 0.659

R-ID TP 0.389 7.589 × 10
−2

5.750 × 10
−2

0.346 0.658

F-ID TP 3.599 × 10
−5

* 1.094 × 10
−5

* 1.285 × 10
−5

* 5.107 × 10
−6

* 3.028 × 10
−4

*

F-ID AP 1.140 × 10
−8

* 3.280 × 10
−9

* 4.910 × 10
−9

* 1.252 × 10
−8

* 9.083 × 10
−8

*

F-ID TP G1 9.520 × 10
−9

* 6.210 × 10
−9

* 4.700 × 10
−9

* 1.741 × 10
−8

* 1.952 × 10
−8

*

F-ID AP G1 1.300 × 10
−9

* 8.500 × 10
−10

* 1.220 × 10
−9

* 1.300 × 10
−9

* 1.220 × 10
−9

*

I-ID AP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID TP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-25 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID TP n-50 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID TP G1 n-25 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-25 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-50 7.700 × 10
−10

* 7.600 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-10 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP n-10 M-ID AP n-25 M-ID TP G1 n-10 M-ID TP n-50 M-ID TP n-25

M-ID AP n-10 0.380 0.732 0.528 0.839 0.370

M-ID TP G1 n-50 0.185 0.633 0.468 0.826 0.237

M-ID TP G1 n-25 0.159 0.369 0.143 0.328 2.356 × 10
−2

*

M-ID AP G1 n-10 0.393 0.918 0.261 0.879 0.221

R-ID AP 0.705 0.431 0.861 0.289 0.964

M-ID TP n-10 0.391 0.995 0.403 0.414

M-ID AP n-25 0.391 0.785 0.694 0.406

M-ID TP G1 n-10 0.995 0.785 0.520 0.974

M-ID TP n-50 0.403 0.694 0.520 0.305

M-ID TP n-25 0.414 0.406 0.974 0.305

M-ID AP G1 n-25 0.647 0.514 0.942 0.305 0.874

R-ID TP G1 0.861 0.855 0.880 0.768 0.890

R-ID AP G1 0.303 6.054 × 10
−2

0.305 5.716 × 10
−2

0.590

R-ID TP 0.402 0.426 0.516 0.398 0.757

F-ID TP 6.065 × 10
−5

* 2.712 × 10
−4

* 4.414 × 10
−5

* 1.293 × 10
−5

* 9.708 × 10
−6

*

F-ID AP 1.205 × 10
−8

* 7.244 × 10
−8

* 5.468 × 10
−8

* 2.421 × 10
−8

* 1.466 × 10
−8

*

F-ID TP G1 5.550 × 10
−9

* 3.212 × 10
−8

* 8.400 × 10
−9

* 4.480 × 10
−9

* 9.370 × 10
−9

*

F-ID AP G1 9.300 × 10
−10

* 1.220 × 10
−9

* 8.500 × 10
−10

* 1.140 × 10
−9

* 1.470 × 10
−9

*

I-ID AP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID TP n-10 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*
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8× 8 Lawn Mower Wilcoxon rank-sun test results continued.

I-ID AP G1 n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-50 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID TP G1 n-25 7.600 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-25 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-50 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.600 × 10
−10

*

I-ID TP G1 n-10 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID AP G1 n-25 R-ID TP G1 R-ID AP G1 R-ID TP F-ID TP

M-ID AP n-10 0.201 0.608 0.165 0.389 3.599 × 10
−5

*

M-ID TP G1 n-50 0.302 0.416 8.360 × 10
−2

7.589 × 10
−2

1.094 × 10
−5

*

M-ID TP G1 n-25 3.002 × 10
−2

* 0.184 2.036 × 10
−2

* 5.750 × 10
−2

1.285 × 10
−5

*

M-ID AP G1 n-10 0.174 0.665 0.114 0.346 5.107 × 10
−6

*

R-ID AP 0.581 0.665 0.659 0.658 3.028 × 10
−4

*

M-ID TP n-10 0.647 0.861 0.303 0.402 6.065 × 10
−5

*

M-ID AP n-25 0.514 0.855 6.054 × 10
−2

0.426 2.712 × 10
−4

*

M-ID TP G1 n-10 0.942 0.880 0.305 0.516 4.414 × 10
−5

*

M-ID TP n-50 0.305 0.768 5.716 × 10
−2

0.398 1.293 × 10
−5

*

M-ID TP n-25 0.874 0.890 0.590 0.757 9.708 × 10
−6

*

M-ID AP G1 n-25 0.958 0.495 0.933 2.167 × 10
−4

*

R-ID TP G1 0.958 9.717 × 10
−2

0.668 4.797 × 10
−4

*

R-ID AP G1 0.495 9.717 × 10
−2

0.737 3.328 × 10
−3

*

R-ID TP 0.933 0.668 0.737 3.237 × 10
−4

*

F-ID TP 2.167 × 10
−4

* 4.797 × 10
−4

* 3.328 × 10
−3

* 3.237 × 10
−4

*

F-ID AP 2.846 × 10
−8

* 5.983 × 10
−8

* 3.291 × 10
−6

* 1.816 × 10
−7

* 2.221 × 10
−3

*

F-ID TP G1 2.164 × 10
−8

* 9.350 × 10
−8

* 3.336 × 10
−7

* 3.620 × 10
−8

* 2.221 × 10
−3

*

F-ID AP G1 1.420 × 10
−9

* 1.560 × 10
−9

* 1.190 × 10
−9

* 1.710 × 10
−9

* 2.844 × 10
−7

*

I-ID AP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID TP n-10 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-25 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-50 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID TP G1 n-25 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID TP n-25 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID TP G1 n-50 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-10 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

F-ID AP F-ID TP G1 F-ID AP G1 I-ID AP n-10 I-ID AP G1 n-10

M-ID AP n-10 1.140 × 10
−8

* 9.520 × 10
−9

* 1.300 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

M-ID TP G1 n-50 3.280 × 10
−9

* 6.210 × 10
−9

* 8.500 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

M-ID TP G1 n-25 4.910 × 10
−9

* 4.700 × 10
−9

* 1.220 × 10
−9

* 7.700 × 10
−10

* 7.800 × 10
−10

*

M-ID AP G1 n-10 1.252 × 10
−8

* 1.741 × 10
−8

* 1.300 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

R-ID AP 9.083 × 10
−8

* 1.952 × 10
−8

* 1.220 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

M-ID TP n-10 1.205 × 10
−8

* 5.550 × 10
−9

* 9.300 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

M-ID AP n-25 7.244 × 10
−8

* 3.212 × 10
−8

* 1.220 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

M-ID TP G1 n-10 5.468 × 10
−8

* 8.400 × 10
−9

* 8.500 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

M-ID TP n-50 2.421 × 10
−8

* 4.480 × 10
−9

* 1.140 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

M-ID TP n-25 1.466 × 10
−8

* 9.370 × 10
−9

* 1.470 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

M-ID AP G1 n-25 2.846 × 10
−8

* 2.164 × 10
−8

* 1.420 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

R-ID TP G1 5.983 × 10
−8

* 9.350 × 10
−8

* 1.560 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

R-ID AP G1 3.291 × 10
−6

* 3.336 × 10
−7

* 1.190 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

R-ID TP 1.816 × 10
−7

* 3.620 × 10
−8

* 1.710 × 10
−9

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID TP 2.221 × 10
−3

* 2.221 × 10
−3

* 2.844 × 10
−7

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID AP 0.235 1.477 × 10
−4

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID TP G1 0.235 1.802 × 10
−4

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID AP G1 1.477 × 10
−4

* 1.802 × 10
−4

* 7.800 × 10
−10

* 7.800 × 10
−10

*
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8× 8 Lawn Mower Wilcoxon rank-sun test results continued.

I-ID AP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 0.778

I-ID AP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 0.778

I-ID AP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 0.487 0.849

I-ID TP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 0.434 0.659

I-ID AP G1 n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 0.191 0.543

I-ID TP n-50 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.045 × 10
−2

0.240

I-ID TP G1 n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 5.165 × 10
−2

0.177

I-ID TP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 3.452 × 10
−2

* 0.172

I-ID TP G1 n-50 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 2.172 × 10
−2

* 9.959 × 10
−2

I-ID TP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 1.613 × 10
−2

* 0.110

I-ID AP n-25 I-ID TP n-10 I-ID AP G1 n-25 I-ID TP n-50 I-ID TP G1 n-25

M-ID AP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP G1 n-50 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP G1 n-25 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

M-ID AP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

R-ID AP 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

M-ID TP n-10 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

M-ID AP n-25 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP G1 n-10 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

M-ID TP n-50 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

M-ID AP G1 n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

R-ID TP G1 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

R-ID AP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

R-ID TP 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

F-ID TP 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID AP 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID TP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID AP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-10 0.487 0.434 0.191 7.045 × 10
−2

5.165 × 10
−2

I-ID AP G1 n-10 0.849 0.659 0.543 0.240 0.177

I-ID AP n-25 0.891 0.470 0.518 0.332

I-ID TP n-10 0.891 0.750 0.616 0.320

I-ID AP G1 n-25 0.470 0.750 0.887 0.451

I-ID TP n-50 0.518 0.616 0.887 1.000

I-ID TP G1 n-25 0.332 0.320 0.451 1.000

I-ID TP n-25 0.312 0.224 0.263 0.433 0.611

I-ID TP G1 n-50 0.312 0.173 0.664 0.567 0.689

I-ID TP G1 n-10 0.109 0.279 0.363 0.521 0.533

I-ID TP n-25 I-ID TP G1 n-50 I-ID TP G1 n-10

M-ID AP n-10 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP G1 n-50 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

*

M-ID TP G1 n-25 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

*

M-ID AP G1 n-10 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

R-ID AP 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP n-10 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID AP n-25 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP G1 n-10 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP n-50 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

*

M-ID TP n-25 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

*

M-ID AP G1 n-25 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

R-ID TP G1 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

R-ID AP G1 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

R-ID TP 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*
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8× 8 Lawn Mower Wilcoxon rank-sun test results continued.

F-ID TP 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

F-ID AP 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID TP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID AP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-10 3.452 × 10
−2

* 2.172 × 10
−2

* 1.613 × 10
−2

*

I-ID AP G1 n-10 0.172 9.959 × 10
−2

0.110

I-ID AP n-25 0.312 0.312 0.109

I-ID TP n-10 0.224 0.173 0.279

I-ID AP G1 n-25 0.263 0.664 0.363

I-ID TP n-50 0.433 0.567 0.521

I-ID TP G1 n-25 0.611 0.689 0.533

I-ID TP n-25 0.627 0.861

I-ID TP G1 n-50 0.627 0.890

I-ID TP G1 n-10 0.861 0.890
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A.5 Comparison to Standard GE

Table A.25: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the Santa Fe Ant Trail problem after 100000 fitness evaluations of
each approach to identifying modules, GE, and GE with ADFs.

Best Fitness Std. Dev. Std. Err. Number Solved
F-ID TP G1 9.520 12.011 1.699 18
F-ID AP G1 11.480 13.278 1.878 21
R-ID TP G1 15.420 13.527 1.913 13
I-ID TP n-25 15.720 13.240 1.872 9

I-ID AP G1 n-10 15.820 14.951 2.114 10
GE 16.180 13.970 1.976 10

I-ID AP G1 n-25 16.360 14.525 2.054 10
I-ID TP n-50 16.380 13.041 1.844 9

F-ID AP 16.760 13.283 1.878 12
ADF 17.160 13.219 1.870 9

R-ID AP 17.240 12.934 1.829 12
M-ID TP G1 n-50 17.340 14.662 2.073 12
M-ID TP G1 n-25 17.580 13.256 1.875 7
M-ID TP G1 n-10 17.840 12.921 1.827 11
M-ID AP G1 n-10 17.900 13.347 1.888 8

I-ID AP n-10 18.100 13.287 1.879 9
M-ID AP n-10 18.300 13.452 1.902 12
I-ID AP n-25 18.300 13.474 1.906 11
R-ID AP G1 18.600 12.779 1.807 8

I-ID TP G1 n-25 18.980 13.202 1.867 5
I-ID TP G1 n-10 19.140 13.398 1.895 6

M-ID TP n-25 19.220 13.196 1.866 8
M-ID TP n-10 19.260 14.294 2.021 9

I-ID TP G1 n-50 19.680 12.306 1.740 5
F-ID TP 19.700 12.960 1.833 8

I-ID TP n-10 19.800 12.51285 1.770 6
M-ID AP n-25 19.940 13.70745 1.939 6
M-ID TP n-50 20.060 13.85554 1.959 7

R-ID TP 21.300 12.91771 1.827 7
M-ID AP G1 n-25 21.320 14.764 2.088 7

228



A.5. COMPARISON TO STANDARD GE

Table A.26: This table reports the p-value of Wilcoxon rank-sum tests performed on the
best fitness values of each approach to identifying modules, GE, and GE with ADFs after
fitness evaluations on the Santa Fe Ant Trail problem. The p-values reported are calculated
a confidence interval of 0.05. Values marked with an asterisk (*) are significant.

F-ID TP G1 F-ID AP G1 R-ID TP G1 I-ID TP n-25 I-ID AP G1 n-10

F-ID TP G1 0.472 4.052 × 10
−2

* 1.659 × 10
−2

* 1.864 × 10
−2

*

F-ID AP G1 0.472 7.572 × 10
−2

0.137 0.181

R-ID TP G1 4.052 × 10
−2

* 7.572 × 10
−2

0.845 0.799

I-ID TP n-25 1.659 × 10
−2

* 0.137 0.845 0.991

I-ID AP G1 n-10 1.864 × 10
−2

* 0.181 0.799 0.991

GE 1.620 × 10
−2

* 6.109 × 10
−2

0.773 0.820 0.898

I-ID AP G1 n-25 3.307 × 10
−2

* 2.807 × 10
−2

* 0.784 0.891 0.886

I-ID TP n-50 9.065 × 10
−3

* 7.263 × 10
−2

0.763 0.779 0.723

F-ID AP 7.638 × 10
−3

* 8.108 × 10
−2

0.593 0.789 0.633

ADF 8.015 × 10
−3

* 5.078 × 10
−2

0.545 0.659 0.693

R-ID AP 5.060 × 10
−3

* 2.351 × 10
−2

* 0.439 0.698 0.582

M-ID TP G1 n-50 6.410 × 10
−3

* 5.081 × 10
−2

0.564 0.604 0.579

M-ID TP G1 n-25 2.339 × 10
−3

* 7.660 × 10
−3

* 0.409 0.512 0.654

M-ID TP G1 n-10 1.396 × 10
−3

* 2.465 × 10
−2

* 0.337 0.465 0.455

M-ID AP G1 n-10 1.803 × 10
−3

* 2.390 × 10
−2

* 0.286 0.421 0.531

I-ID AP n-10 1.151 × 10
−3

* 1.667 × 10
−2

* 0.307 0.290 0.370

M-ID AP n-10 4.518 × 10
−3

* 1.470 × 10
−2

* 0.202 0.149 0.429

I-ID AP n-25 1.220 × 10
−3

* 1.021 × 10
−2

* 0.289 0.231 0.518

R-ID AP G1 1.761 × 10
−3

* 5.455 × 10
−3

* 0.183 0.264 0.259

I-ID TP G1 n-25 3.229 × 10
−4

* 7.406 × 10
−3

* 0.194 0.137 0.179

I-ID TP G1 n-10 1.766 × 10
−4

* 6.503 × 10
−3

* 7.025 × 10
−2

0.186 0.320

M-ID TP n-25 7.051 × 10
−4

* 6.402 × 10
−3

* 0.179 0.141 0.239

M-ID TP n-10 1.070 × 10
−3

* 1.626 × 10
−2

* 0.184 0.230 0.131

I-ID TP G1 n-50 1.227 × 10
−5

* 5.263 × 10
−3

* 0.122 0.182 0.162

F-ID TP 3.034 × 10
−4

* 1.504 × 10
−2

* 6.469 × 10
−2

0.161 0.218

I-ID TP n-10 6.909 × 10
−4

* 3.518 × 10
−3

* 0.110 0.119 0.299

M-ID AP n-25 1.354 × 10
−5

* 2.687 × 10
−3

* 8.256 × 10
−2

0.119 0.184

M-ID TP n-50 2.511 × 10
−4

* 3.337 × 10
−3

* 5.812 × 10
−2

0.107 0.168

R-ID TP 5.633 × 10
−5

* 1.044 × 10
−3

* 3.042 × 10
−2

* 4.431 × 10
−2

* 4.380 × 10
−2

*

M-ID AP G1 n-25 6.475 × 10
−5

* 3.347 × 10
−3

* 3.540 × 10
−2

* 3.490 × 10
−2

* 7.625 × 10
−2

GE I-ID AP G1 n-25 I-ID TP n-50 F-ID AP ADF

F-ID TP G1 1.620 × 10
−2

* 3.307 × 10
−2

* 9.065 × 10
−3

* 7.638 × 10
−3

* 8.015 × 10
−3

*

F-ID AP G1 6.109 × 10
−2

2.807 × 10
−2

* 7.263 × 10
−2

8.108 × 10
−2

5.078 × 10
−2

R-ID TP G1 0.773 0.784 0.763 0.593 0.545

I-ID TP n-25 0.820 0.891 0.779 0.789 0.659

I-ID AP G1 n-10 0.898 0.886 0.723 0.633 0.693

GE 0.951 0.870 0.879 0.882

I-ID AP G1 n-25 0.951 0.952 0.804 0.678

I-ID TP n-50 0.870 0.952 0.896 0.557

F-ID AP 0.879 0.804 0.896 0.899

ADF 0.882 0.678 0.557 0.899

R-ID AP 0.674 0.611 0.883 0.748 1.000

M-ID TP G1 n-50 0.519 0.731 0.693 1.000 0.982

M-ID TP G1 n-25 0.641 0.667 0.569 0.893 0.992

M-ID TP G1 n-10 0.588 0.481 0.638 0.658 0.695

M-ID AP G1 n-10 0.623 0.608 0.562 0.644 0.735

I-ID AP n-10 0.559 0.550 0.395 0.558 0.785

M-ID AP n-10 0.656 0.498 0.429 0.562 0.591

I-ID AP n-25 0.492 0.388 0.382 0.582 0.595
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Santa Fe Ant Trail Wilcoxon rank-sun test results continued.

R-ID AP G1 0.320 0.418 0.377 0.436 0.533

I-ID TP G1 n-25 0.320 0.440 0.290 0.403 0.505

I-ID TP G1 n-10 0.292 0.253 0.155 0.472 0.462

M-ID TP n-25 0.297 0.207 0.302 0.367 0.580

M-ID TP n-10 0.363 0.317 0.148 0.266 0.275

I-ID TP G1 n-50 0.174 0.313 0.130 0.297 0.354

F-ID TP 0.308 0.253 0.135 0.309 0.325

I-ID TP n-10 0.175 0.273 0.240 0.211 0.272

M-ID AP n-25 0.200 0.156 0.133 0.186 0.373

M-ID TP n-50 0.193 7.797 × 10
−2

0.165 0.210 0.212

R-ID TP 0.104 8.795 × 10
−2

3.823 × 10
−2

* 8.794 × 10
−2

0.160

M-ID AP G1 n-25 6.172 × 10
−2

7.011 × 10
−2

6.002 × 10
−2

0.105 0.133

R-ID AP M-ID TP G1 n-50 M-ID TP G1 n-25 M-ID TP G1 n-10 M-ID AP G1 n-10

F-ID TP G1 5.060 × 10
−3

* 6.410 × 10
−3

* 2.339 × 10
−3

* 1.396 × 10
−3

* 1.803 × 10
−3

*

F-ID AP G1 2.351 × 10
−2

* 5.081 × 10
−2

7.660 × 10
−3

* 2.465 × 10
−2

* 2.390 × 10
−2

*

R-ID TP G1 0.439 0.564 0.409 0.337 0.286

I-ID TP n-25 0.698 0.604 0.512 0.465 0.421

I-ID AP G1 n-10 0.582 0.579 0.654 0.455 0.531

GE 0.674 0.519 0.641 0.588 0.623

I-ID AP G1 n-25 0.611 0.731 0.667 0.481 0.608

I-ID TP n-50 0.883 0.693 0.569 0.638 0.562

F-ID AP 0.748 1.000 0.893 0.658 0.644

ADF 1.000 0.982 0.992 0.695 0.735

R-ID AP 0.996 0.901 0.806 0.662

M-ID TP G1 n-50 0.996 0.958 0.881 0.834

M-ID TP G1 n-25 0.901 0.958 0.906 0.770

M-ID TP G1 n-10 0.806 0.881 0.906 0.939

M-ID AP G1 n-10 0.662 0.834 0.770 0.939

I-ID AP n-10 0.748 0.698 0.750 0.856 0.902

M-ID AP n-10 0.628 0.522 0.715 0.875 0.992

I-ID AP n-25 0.684 0.639 0.996 1.000 1.000

R-ID AP G1 0.899 0.435 0.548 0.797 0.839

I-ID TP G1 n-25 0.496 0.608 0.564 0.777 0.704

I-ID TP G1 n-10 0.471 0.662 0.522 0.312 0.648

M-ID TP n-25 0.343 0.508 0.458 0.530 0.607

M-ID TP n-10 0.318 0.382 0.597 0.529 0.708

I-ID TP G1 n-50 0.322 0.462 0.401 0.488 0.633

F-ID TP 0.359 0.360 0.440 0.460 0.473

I-ID TP n-10 0.382 0.395 0.294 0.409 0.484

M-ID AP n-25 0.274 0.340 0.114 0.299 0.372

M-ID TP n-50 0.274 0.424 0.355 0.351 0.505

R-ID TP 4.540 × 10
−2

* 0.229 6.316 × 10
−2

4.159 × 10
−2

* 0.191

M-ID AP G1 n-25 0.194 0.168 0.218 0.145 0.242

I-ID AP n-10 M-ID AP n-10 I-ID AP n-25 R-ID AP G1 I-ID TP G1 n-25

F-ID TP G1 1.151 × 10
−3

* 4.518 × 10
−3

* 1.220 × 10
−3

* 1.761 × 10
−3

* 3.229 × 10
−4

*

F-ID AP G1 1.667 × 10
−2

* 1.470 × 10
−2

* 1.021 × 10
−2

* 5.455 × 10
−3

* 7.406 × 10
−3

*

R-ID TP G1 0.307 0.202 0.289 0.183 0.194

I-ID TP n-25 0.290 0.149 0.231 0.264 0.137

I-ID AP G1 n-10 0.370 0.429 0.518 0.259 0.179

GE 0.559 0.656 0.492 0.320 0.320

I-ID AP G1 n-25 0.550 0.498 0.388 0.418 0.440

I-ID TP n-50 0.395 0.429 0.382 0.377 0.290

F-ID AP 0.558 0.562 0.582 0.436 0.403

ADF 0.785 0.591 0.595 0.533 0.505
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Santa Fe Ant Trail Wilcoxon rank-sun test results continued.

R-ID AP 0.748 0.628 0.684 0.899 0.496

M-ID TP G1 n-50 0.698 0.522 0.639 0.435 0.608

M-ID TP G1 n-25 0.750 0.715 0.996 0.548 0.564

M-ID TP G1 n-10 0.856 0.875 1.000 0.797 0.777

M-ID AP G1 n-10 0.902 0.992 1.000 0.839 0.704

I-ID AP n-10 0.992 1.000 0.973 0.750

M-ID AP n-10 0.992 0.969 0.861 0.791

I-ID AP n-25 1.000 0.969 0.794 0.932

R-ID AP G1 0.973 0.861 0.794 0.955

I-ID TP G1 n-25 0.750 0.791 0.932 0.955

I-ID TP G1 n-10 0.727 0.804 0.538 0.913 0.987

M-ID TP n-25 0.735 0.747 0.695 0.858 0.960

M-ID TP n-10 0.611 0.696 0.701 0.799 0.918

I-ID TP G1 n-50 0.508 0.641 0.487 0.672 0.548

F-ID TP 0.488 0.704 0.559 0.750 0.691

I-ID TP n-10 0.515 0.404 0.479 0.805 0.696

M-ID AP n-25 0.491 0.406 0.420 0.636 0.605

M-ID TP n-50 0.495 0.612 0.192 0.449 0.604

R-ID TP 0.148 0.209 0.269 0.178 0.322

M-ID AP G1 n-25 0.352 0.336 0.234 0.269 0.415

I-ID TP G1 n-10 M-ID TP n-25 M-ID TP n-10 I-ID TP G1 n-50 F-ID TP

F-ID TP G1 1.766 × 10
−4

* 7.051 × 10
−4

* 1.070 × 10
−3

* 1.227 × 10
−5

* 3.034 × 10
−4

*

F-ID AP G1 6.503 × 10
−3

* 6.402 × 10
−3

* 1.626 × 10
−2

* 5.263 × 10
−3

* 1.504 × 10
−2

*

R-ID TP G1 7.025 × 10
−2

0.179 0.184 0.122 6.469 × 10
−2

I-ID TP n-25 0.186 0.141 0.230 0.182 0.161

I-ID AP G1 n-10 0.320 0.239 0.131 0.162 0.218

GE 0.292 0.297 0.363 0.174 0.308

I-ID AP G1 n-25 0.253 0.207 0.317 0.313 0.253

I-ID TP n-50 0.155 0.302 0.148 0.130 0.135

F-ID AP 0.472 0.367 0.266 0.297 0.309

ADF 0.462 0.580 0.275 0.354 0.325

R-ID AP 0.471 0.343 0.318 0.322 0.359

M-ID TP G1 n-50 0.662 0.508 0.382 0.462 0.360

M-ID TP G1 n-25 0.522 0.458 0.597 0.401 0.440

M-ID TP G1 n-10 0.312 0.530 0.529 0.488 0.460

M-ID AP G1 n-10 0.648 0.607 0.708 0.633 0.473

I-ID AP n-10 0.727 0.735 0.611 0.508 0.488

M-ID AP n-10 0.804 0.747 0.696 0.641 0.704

I-ID AP n-25 0.538 0.695 0.701 0.487 0.559

R-ID AP G1 0.913 0.858 0.799 0.672 0.750

I-ID TP G1 n-25 0.987 0.960 0.918 0.548 0.691

I-ID TP G1 n-10 0.739 0.862 0.812 0.750

M-ID TP n-25 0.739 0.928 0.913 0.789

M-ID TP n-10 0.862 0.928 0.894 0.937

I-ID TP G1 n-50 0.812 0.913 0.894 0.585

F-ID TP 0.750 0.789 0.937 0.585

I-ID TP n-10 0.772 0.814 0.879 0.898 0.979

M-ID AP n-25 0.739 0.641 0.731 0.800 0.886

M-ID TP n-50 0.773 0.526 0.825 0.978 0.922

R-ID TP 0.478 0.335 0.461 0.459 0.535

M-ID AP G1 n-25 0.385 0.381 0.448 0.546 0.481

I-ID TP n-10 M-ID AP n-25 M-ID TP n-50 R-ID TP M-ID AP G1 n-25

F-ID TP G1 6.909 × 10
−4

* 1.354 × 10
−5

* 2.511 × 10
−4

* 5.633 × 10
−5

* 6.475 × 10
−5

*

F-ID AP G1 3.518 × 10
−3

* 2.687 × 10
−3

* 3.337 × 10
−3

* 1.044 × 10
−3

* 3.347 × 10
−3

*
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Santa Fe Ant Trail Wilcoxon rank-sun test results continued.

R-ID TP G1 0.110 8.256 × 10
−2

5.812 × 10
−2

3.042 × 10
−2

* 3.540 × 10
−2

*

I-ID TP n-25 0.119 0.119 0.107 4.431 × 10
−2

* 3.490 × 10
−2

*

I-ID AP G1 n-10 0.299 0.184 0.168 4.380 × 10
−2

* 7.625 × 10
−2

GE 0.175 0.200 0.193 0.104 6.172 × 10
−2

I-ID AP G1 n-25 0.273 0.156 7.797 × 10
−2

8.795 × 10
−2

7.011 × 10
−2

I-ID TP n-50 0.240 0.133 0.165 3.823 × 10
−2

* 6.002 × 10
−2

F-ID AP 0.211 0.186 0.210 8.794 × 10
−2

0.105

ADF 0.272 0.373 0.212 0.160 0.133

R-ID AP 0.382 0.274 0.274 4.540 × 10
−2

* 0.194

M-ID TP G1 n-50 0.395 0.340 0.424 0.229 0.168

M-ID TP G1 n-25 0.294 0.114 0.355 6.316 × 10
−2

0.218

M-ID TP G1 n-10 0.409 0.299 0.351 4.159 × 10
−2

* 0.145

M-ID AP G1 n-10 0.484 0.372 0.505 0.191 0.242

I-ID AP n-10 0.515 0.491 0.495 0.148 0.352

M-ID AP n-10 0.404 0.406 0.612 0.209 0.336

I-ID AP n-25 0.479 0.420 0.192 0.269 0.234

R-ID AP G1 0.805 0.636 0.449 0.178 0.269

I-ID TP G1 n-25 0.696 0.605 0.604 0.322 0.415

I-ID TP G1 n-10 0.772 0.739 0.773 0.478 0.385

M-ID TP n-25 0.814 0.641 0.526 0.335 0.381

M-ID TP n-10 0.879 0.731 0.825 0.461 0.448

I-ID TP G1 n-50 0.898 0.800 0.978 0.459 0.546

F-ID TP 0.979 0.886 0.922 0.535 0.481

I-ID TP n-10 0.947 0.932 0.443 0.629

M-ID AP n-25 0.947 0.982 0.567 0.380

M-ID TP n-50 0.932 0.982 0.634 0.573

R-ID TP 0.443 0.567 0.634 0.781

M-ID AP G1 n-25 0.629 0.380 0.573 0.781
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Table A.27: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the Even 7 Parity problem after 100000 fitness evaluations of each
approach to identifying modules, GE, and GE with ADFs.

Best Fitness Std. Dev. Std. Err. Number Solved
F-ID AP G1 0.480 2.082 0.294 47

I-ID TP G1 n-50 0.640 2.724 0.385 47
F-ID TP G1 0.720 2.990 0.423 47
R-ID AP G1 0.880 2.715 0.384 45

M-ID TP G1 n-10 1.040 3.664 0.518 45
M-ID TP G1 n-25 1.460 3.871 0.548 42
I-ID TP G1 n-25 1.600 6.465 0.914 46

M-ID TP G1 n-50 1.760 5.723 0.809 44
I-ID AP G1 n-10 1.760 5.947 0.841 44

R-ID AP 1.820 4.839 0.684 42
ADF 1.980 6.702 0.948 43

R-ID TP G1 2.000 6.168 0.872 44
M-ID AP G1 n-10 2.140 5.292 0.748 41

I-ID TP n-10 2.160 5.991 0.847 42
F-ID TP 2.320 6.619 0.936 42

M-ID AP G1 n-25 2.420 6.101 0.863 42
F-ID AP 2.640 6.382 0.903 42
R-ID TP 2.680 6.757 0.956 40

I-ID AP G1 n-25 2.760 6.675 0.944 41
I-ID TP G1 n-10 2.780 6.287 0.889 39

M-ID TP n-10 3.180 6.766 0.957 38
M-ID TP n-25 3.320 6.885 0.974 37

GE 3.600 8.381 1.185 40
I-ID TP n-50 3.620 6.978 0.987 36
I-ID TP n-25 3.660 7.580 1.072 37

M-ID TP n-50 3.660 7.927 1.121 36
I-ID AP n-10 3.980 8.312 1.175 37

M-ID AP n-10 4.580 8.157 1.154 34
M-ID AP n-25 4.680 8.353 1.181 34
I-ID AP n-25 5.480 8.683 1.228 33
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Table A.28: This table reports the p-value of Wilcoxon rank-sum tests performed on the av
best fitness values of each approach to identifying modules, GE, and GE with ADFs after 100000
fitness evaluations on the Even 7 Parity problem. The p-values reported are calculated with
confidence interval of 0.05. Values marked with an asterisk (*) are significant.

F-ID AP G1 I-ID TP G1 n-50 F-ID TP G1 R-ID AP G1 M-ID TP G1 n-10

F-ID AP G1 0.832 0.673 0.395 0.352

I-ID TP G1 n-50 0.832 1.000 0.714 0.606

F-ID TP G1 0.673 1.000 1.000 0.670

R-ID AP G1 0.395 0.714 1.000 0.903

M-ID TP G1 n-10 0.352 0.606 0.670 0.903

M-ID TP G1 n-25 0.153 0.303 0.284 0.548 0.554

I-ID TP G1 n-25 0.443 0.396 0.670 0.903 0.905

M-ID TP G1 n-50 0.172 0.202 0.259 0.440 0.574

I-ID AP G1 n-10 0.234 0.291 0.349 0.587 0.609

R-ID AP 0.109 0.181 0.262 0.308 0.346

ADF 0.172 0.307 0.259 0.532 0.593

R-ID TP G1 7.636 × 10
−2

0.184 0.185 0.189 0.500

M-ID AP G1 n-10 6.371 × 10
−2

0.132 0.108 0.227 0.324

I-ID TP n-10 7.479 × 10
−2

0.166 0.196 0.246 0.401

F-ID TP 8.924 × 10
−2

0.151 0.210 0.270 0.342

M-ID AP G1 n-25 3.977 × 10
−2

* 5.627 × 10
−2

7.913 × 10
−2

0.123 0.141

F-ID AP 1.207 × 10
−2

* 5.851 × 10
−2

6.685 × 10
−2

6.767 × 10
−2

0.134

R-ID TP 4.580 × 10
−2

* 8.570 × 10
−2

0.107 0.138 0.190

I-ID AP G1 n-25 2.579 × 10
−2

* 1.353 × 10
−2

* 7.585 × 10
−2

5.639 × 10
−2

0.145

I-ID TP G1 n-10 2.012 × 10
−2

* 2.601 × 10
−2

* 6.711 × 10
−2

6.028 × 10
−2

9.990 × 10
−2

M-ID TP n-10 1.229 × 10
−2

* 2.615 × 10
−2

* 2.090 × 10
−2

* 3.744 × 10
−2

* 6.967 × 10
−2

M-ID TP n-25 9.604 × 10
−3

* 2.425 × 10
−2

* 2.960 × 10
−2

* 2.946 × 10
−2

* 5.790 × 10
−2

GE 1.648 × 10
−2

* 2.738 × 10
−2

* 3.894 × 10
−2

* 4.673 × 10
−2

* 7.787 × 10
−2

I-ID TP n-50 5.432 × 10
−3

* 1.161 × 10
−2

* 1.016 × 10
−2

* 1.526 × 10
−2

* 4.126 × 10
−2

*

I-ID TP n-25 5.038 × 10
−3

* 1.860 × 10
−2

* 1.499 × 10
−2

* 2.077 × 10
−2

* 1.576 × 10
−2

*

M-ID TP n-50 1.107 × 10
−2

* 1.103 × 10
−2

* 8.059 × 10
−3

* 4.410 × 10
−2

* 5.034 × 10
−2

I-ID AP n-10 6.877 × 10
−3

* 1.434 × 10
−2

* 1.814 × 10
−2

* 2.738 × 10
−2

* 3.684 × 10
−2

*

M-ID AP n-10 1.984 × 10
−3

* 2.749 × 10
−3

* 1.239 × 10
−3

* 5.795 × 10
−3

* 1.847 × 10
−2

*

M-ID AP n-25 7.835 × 10
−4

* 4.754 × 10
−3

* 5.622 × 10
−3

* 5.306 × 10
−3

* 8.307 × 10
−3

*

I-ID AP n-25 4.910 × 10
−4

* 3.931 × 10
−4

* 5.906 × 10
−4

* 1.028 × 10
−3

* 1.230 × 10
−3

*

M-ID TP G1 n-25 I-ID TP G1 n-25 M-ID TP G1 n-50 I-ID AP G1 n-10 R-ID AP

F-ID AP G1 0.153 0.443 0.172 0.234 0.109

I-ID TP G1 n-50 0.303 0.396 0.202 0.291 0.181

F-ID TP G1 0.284 0.670 0.259 0.349 0.262

R-ID AP G1 0.548 0.903 0.440 0.587 0.308

M-ID TP G1 n-10 0.554 0.905 0.574 0.609 0.346

M-ID TP G1 n-25 0.723 0.972 0.916 0.711

I-ID TP G1 n-25 0.723 0.758 0.837 0.646

M-ID TP G1 n-50 0.972 0.758 0.937 0.925

I-ID AP G1 n-10 0.916 0.837 0.937 0.777

R-ID AP 0.711 0.646 0.925 0.777

ADF 1.000 0.607 0.813 0.916 0.826

R-ID TP G1 0.725 0.681 0.781 0.783 0.844

M-ID AP G1 n-10 0.528 0.481 0.623 0.592 0.836

I-ID TP n-10 0.431 0.475 0.753 0.674 0.865

F-ID TP 0.551 0.501 0.725 0.636 0.856

M-ID AP G1 n-25 0.295 0.474 0.503 0.488 0.508

F-ID AP 0.319 0.284 0.455 0.401 0.426

R-ID TP 0.419 0.381 0.314 0.378 0.660
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Even 7 Parity Wilcoxon rank-sun test results continued.

I-ID AP G1 n-25 0.252 0.269 0.194 0.347 0.484

I-ID TP G1 n-10 0.200 0.198 0.311 0.298 0.420

M-ID TP n-10 0.204 0.131 0.234 0.218 0.297

M-ID TP n-25 5.772 × 10
−2

0.129 0.184 9.298 × 10
−2

0.227

GE 0.102 0.186 0.221 0.223 0.193

I-ID TP n-50 8.936 × 10
−2

6.729 × 10
−2

0.184 0.116 0.177

I-ID TP n-25 9.607 × 10
−2

0.103 0.161 6.447 × 10
−2

0.139

M-ID TP n-50 0.158 8.225 × 10
−2

0.184 9.263 × 10
−2

0.204

I-ID AP n-10 8.651 × 10
−2

9.671 × 10
−2

0.111 0.112 0.130

M-ID AP n-10 7.934 × 10
−3

* 4.197 × 10
−2

* 3.214 × 10
−2

* 3.576 × 10
−2

* 6.130 × 10
−2

M-ID AP n-25 1.310 × 10
−2

* 3.793 × 10
−2

* 4.964 × 10
−2

* 4.731 × 10
−2

* 1.243 × 10
−2

*

I-ID AP n-25 8.320 × 10
−3

* 2.192 × 10
−2

* 1.564 × 10
−2

* 1.359 × 10
−2

* 1.004 × 10
−2

*

ADF R-ID TP G1 M-ID AP G1 n-10 I-ID TP n-10 F-ID TP

F-ID AP G1 0.172 7.636 × 10
−2

6.371 × 10
−2

7.479 × 10
−2

8.924 × 10
−2

I-ID TP G1 n-50 0.307 0.184 0.132 0.166 0.151

F-ID TP G1 0.259 0.185 0.108 0.196 0.210

R-ID AP G1 0.532 0.189 0.227 0.246 0.270

M-ID TP G1 n-10 0.593 0.500 0.324 0.401 0.342

M-ID TP G1 n-25 1.000 0.725 0.528 0.431 0.551

I-ID TP G1 n-25 0.607 0.681 0.481 0.475 0.501

M-ID TP G1 n-50 0.813 0.781 0.623 0.753 0.725

I-ID AP G1 n-10 0.916 0.783 0.592 0.674 0.636

R-ID AP 0.826 0.844 0.836 0.865 0.856

ADF 0.844 0.589 0.624 0.801

R-ID TP G1 0.844 0.863 1.000 0.950

M-ID AP G1 n-10 0.589 0.863 0.955 0.864

I-ID TP n-10 0.624 1.000 0.955 1.000

F-ID TP 0.801 0.950 0.864 1.000

M-ID AP G1 n-25 0.483 0.758 0.796 0.776 0.864

F-ID AP 0.531 0.752 0.641 0.622 0.622

R-ID TP 0.362 0.614 0.831 0.551 0.740

I-ID AP G1 n-25 0.509 0.590 0.568 0.550 0.640

I-ID TP G1 n-10 0.330 0.755 0.568 0.521 0.515

M-ID TP n-10 0.266 0.324 0.367 0.400 0.437

M-ID TP n-25 0.178 0.275 0.327 0.355 0.383

GE 0.293 0.299 0.371 0.293 0.319

I-ID TP n-50 0.116 0.196 0.168 0.234 0.250

I-ID TP n-25 0.154 0.380 0.358 0.137 0.302

M-ID TP n-50 0.230 0.285 0.211 0.184 0.330

I-ID AP n-10 0.138 0.182 0.227 0.267 0.285

M-ID AP n-10 3.437 × 10
−2

* 0.116 9.023 × 10
−2

0.171 8.513 × 10
−2

M-ID AP n-25 5.429 × 10
−2

8.080 × 10
−2

7.302 × 10
−2

0.102 0.102

I-ID AP n-25 1.667 × 10
−2

* 3.481 × 10
−2

* 2.400 × 10
−2

* 2.288 × 10
−2

* 4.233 × 10
−2

*

M-ID AP G1 n-25 F-ID AP R-ID TP I-ID AP G1 n-25 I-ID TP G1 n-10

F-ID AP G1 3.977 × 10
−2

* 1.207 × 10
−2

* 4.580 × 10
−2

* 2.579 × 10
−2

* 2.012 × 10
−2

*

I-ID TP G1 n-50 5.627 × 10
−2

5.851 × 10
−2

8.570 × 10
−2

1.353 × 10
−2

* 2.601 × 10
−2

*

F-ID TP G1 7.913 × 10
−2

6.685 × 10
−2

0.107 7.585 × 10
−2

6.711 × 10
−2

R-ID AP G1 0.123 6.767 × 10
−2

0.138 5.639 × 10
−2

6.028 × 10
−2

M-ID TP G1 n-10 0.141 0.134 0.190 0.145 9.990 × 10
−2

M-ID TP G1 n-25 0.295 0.319 0.419 0.252 0.200

I-ID TP G1 n-25 0.474 0.284 0.381 0.269 0.198

M-ID TP G1 n-50 0.503 0.455 0.314 0.194 0.311

I-ID AP G1 n-10 0.488 0.401 0.378 0.347 0.298

R-ID AP 0.508 0.426 0.660 0.484 0.420
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Even 7 Parity Wilcoxon rank-sun test results continued.

ADF 0.483 0.531 0.362 0.509 0.330

R-ID TP G1 0.758 0.752 0.614 0.590 0.755

M-ID AP G1 n-10 0.796 0.641 0.831 0.568 0.568

I-ID TP n-10 0.776 0.622 0.551 0.550 0.521

F-ID TP 0.864 0.622 0.740 0.640 0.515

M-ID AP G1 n-25 0.917 0.981 0.695 0.754

F-ID AP 0.917 1.000 0.975 0.981

R-ID TP 0.981 1.000 0.955 0.777

I-ID AP G1 n-25 0.695 0.975 0.955 0.981

I-ID TP G1 n-10 0.754 0.981 0.777 0.981

M-ID TP n-10 0.526 0.831 0.657 0.887 0.762

M-ID TP n-25 0.492 0.711 0.614 0.745 0.626

GE 0.442 0.553 0.694 0.604 0.541

I-ID TP n-50 0.347 0.684 0.410 0.517 0.473

I-ID TP n-25 0.547 0.680 0.419 0.726 0.668

M-ID TP n-50 0.456 0.546 0.359 0.485 0.625

I-ID AP n-10 0.373 0.465 0.331 0.467 0.513

M-ID AP n-10 0.168 0.204 0.166 0.285 0.315

M-ID AP n-25 0.117 0.248 0.171 0.296 0.280

I-ID AP n-25 3.205 × 10
−2

* 4.451 × 10
−2

* 9.812 × 10
−2

0.106 8.085 × 10
−2

M-ID TP n-10 M-ID TP n-25 GE I-ID TP n-50 I-ID TP n-25

F-ID AP G1 1.229 × 10
−2

* 9.604 × 10
−3

* 1.648 × 10
−2

* 5.432 × 10
−3

* 5.038 × 10
−3

*

I-ID TP G1 n-50 2.615 × 10
−2

* 2.425 × 10
−2

* 2.738 × 10
−2

* 1.161 × 10
−2

* 1.860 × 10
−2

*

F-ID TP G1 2.090 × 10
−2

* 2.960 × 10
−2

* 3.894 × 10
−2

* 1.016 × 10
−2

* 1.499 × 10
−2

*

R-ID AP G1 3.744 × 10
−2

* 2.946 × 10
−2

* 4.673 × 10
−2

* 1.526 × 10
−2

* 2.077 × 10
−2

*

M-ID TP G1 n-10 6.967 × 10
−2

5.790 × 10
−2

7.787 × 10
−2

4.126 × 10
−2

* 1.576 × 10
−2

*

M-ID TP G1 n-25 0.204 5.772 × 10
−2

0.102 8.936 × 10
−2

9.607 × 10
−2

I-ID TP G1 n-25 0.131 0.129 0.186 6.729 × 10
−2

0.103

M-ID TP G1 n-50 0.234 0.184 0.221 0.184 0.161

I-ID AP G1 n-10 0.218 9.298 × 10
−2

0.223 0.116 6.447 × 10
−2

R-ID AP 0.297 0.227 0.193 0.177 0.139

ADF 0.266 0.178 0.293 0.116 0.154

R-ID TP G1 0.324 0.275 0.299 0.196 0.380

M-ID AP G1 n-10 0.367 0.327 0.371 0.168 0.358

I-ID TP n-10 0.400 0.355 0.293 0.234 0.137

F-ID TP 0.437 0.383 0.319 0.250 0.302

M-ID AP G1 n-25 0.526 0.492 0.442 0.347 0.547

F-ID AP 0.831 0.711 0.553 0.684 0.680

R-ID TP 0.657 0.614 0.694 0.410 0.419

I-ID AP G1 n-25 0.887 0.745 0.604 0.517 0.726

I-ID TP G1 n-10 0.762 0.626 0.541 0.473 0.668

M-ID TP n-10 0.931 0.807 0.613 0.807

M-ID TP n-25 0.931 0.952 0.819 0.726

GE 0.807 0.952 1.000 0.917

I-ID TP n-50 0.613 0.819 1.000 0.943

I-ID TP n-25 0.807 0.726 0.917 0.943

M-ID TP n-50 0.964 0.988 0.856 0.796 0.845

I-ID AP n-10 0.795 0.764 0.777 0.963 0.939

M-ID AP n-10 0.439 0.316 0.428 0.709 0.417

M-ID AP n-25 0.265 0.394 0.410 0.620 0.528

I-ID AP n-25 9.865 × 10
−2

0.172 0.245 0.293 0.170

M-ID TP n-50 I-ID AP n-10 M-ID AP n-10 M-ID AP n-25 I-ID AP n-25

F-ID AP G1 1.107 × 10
−2

* 6.877 × 10
−3

* 1.984 × 10
−3

* 7.835 × 10
−4

* 4.910 × 10
−4

*

I-ID TP G1 n-50 1.103 × 10
−2

* 1.434 × 10
−2

* 2.749 × 10
−3

* 4.754 × 10
−3

* 3.931 × 10
−4

*
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Even 7 Parity Wilcoxon rank-sun test results continued.

F-ID TP G1 8.059 × 10
−3

* 1.814 × 10
−2

* 1.239 × 10
−3

* 5.622 × 10
−3

* 5.906 × 10
−4

*

R-ID AP G1 4.410 × 10
−2

* 2.738 × 10
−2

* 5.795 × 10
−3

* 5.306 × 10
−3

* 1.028 × 10
−3

*

M-ID TP G1 n-10 5.034 × 10
−2

3.684 × 10
−2

* 1.847 × 10
−2

* 8.307 × 10
−3

* 1.230 × 10
−3

*

M-ID TP G1 n-25 0.158 8.651 × 10
−2

7.934 × 10
−3

* 1.310 × 10
−2

* 8.320 × 10
−3

*

I-ID TP G1 n-25 8.225 × 10
−2

9.671 × 10
−2

4.197 × 10
−2

* 3.793 × 10
−2

* 2.192 × 10
−2

*

M-ID TP G1 n-50 0.184 0.111 3.214 × 10
−2

* 4.964 × 10
−2

* 1.564 × 10
−2

*

I-ID AP G1 n-10 9.263 × 10
−2

0.112 3.576 × 10
−2

* 4.731 × 10
−2

* 1.359 × 10
−2

*

R-ID AP 0.204 0.130 6.130 × 10
−2

1.243 × 10
−2

* 1.004 × 10
−2

*

ADF 0.230 0.138 3.437 × 10
−2

* 5.429 × 10
−2

1.667 × 10
−2

*

R-ID TP G1 0.285 0.182 0.116 8.080 × 10
−2

3.481 × 10
−2

*

M-ID AP G1 n-10 0.211 0.227 9.023 × 10
−2

7.302 × 10
−2

2.400 × 10
−2

*

I-ID TP n-10 0.184 0.267 0.171 0.102 2.288 × 10
−2

*

F-ID TP 0.330 0.285 8.513 × 10
−2

0.102 4.233 × 10
−2

*

M-ID AP G1 n-25 0.456 0.373 0.168 0.117 3.205 × 10
−2

*

F-ID AP 0.546 0.465 0.204 0.248 4.451 × 10
−2

*

R-ID TP 0.359 0.331 0.166 0.171 9.812 × 10
−2

I-ID AP G1 n-25 0.485 0.467 0.285 0.296 0.106

I-ID TP G1 n-10 0.625 0.513 0.315 0.280 8.085 × 10
−2

M-ID TP n-10 0.964 0.795 0.439 0.265 9.865 × 10
−2

M-ID TP n-25 0.988 0.764 0.316 0.394 0.172

GE 0.856 0.777 0.428 0.410 0.245

I-ID TP n-50 0.796 0.963 0.709 0.620 0.293

I-ID TP n-25 0.845 0.939 0.417 0.528 0.170

M-ID TP n-50 0.819 0.489 0.399 0.234

I-ID AP n-10 0.819 0.586 0.586 0.374

M-ID AP n-10 0.489 0.586 0.952 0.499

M-ID AP n-25 0.399 0.586 0.952 0.613

I-ID AP n-25 0.234 0.374 0.499 0.613
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Table A.29: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the x5 − 2x3 + x Symbolic Regression problem after 100000 fitness
evaluations of each approach to identifying modules, GE, and GE with ADFs.

Best Fitness Std. Dev. Std. Err. Number Solved
R-ID AP 0.284 0.459 0.065 13

R-ID TP G1 0.293 0.433 0.061 13
F-ID AP 0.349 0.511 0.072 14

GE 0.364 0.244 0.034 4
F-ID TP 0.410 0.504 0.071 12

I-ID TP n-25 0.417 0.446 0.063 13
F-ID TP G1 0.425 0.494 0.070 8
I-ID TP n-10 0.429 0.453 0.064 11

I-ID TP G1 n-50 0.471 0.375 0.053 8
F-ID AP G1 0.473 0.474 0.067 5
I-ID AP n-10 0.479 0.483 0.068 13

R-ID TP 0.481 0.568 0.080 10
R-ID AP G1 0.483 0.681 0.096 12
I-ID TP n-50 0.488 0.500 0.071 11

M-ID TP G1 n-10 0.509 0.485 0.069 9
ADF 0.512 0.564 0.080 9

M-ID TP G1 n-25 0.534 0.506 0.072 4
I-ID TP G1 n-25 0.538 0.453 0.064 7
I-ID AP G1 n-25 0.540 0.448 0.063 6

M-ID AP n-10 0.541 0.604 0.085 15
I-ID AP n-25 0.542 0.501 0.071 9

M-ID AP n-25 0.565 0.586 0.083 10
M-ID TP G1 n-50 0.588 0.591 0.084 10

M-ID TP n-25 0.591 0.609 0.086 9
I-ID TP G1 n-10 0.620 0.546 0.077 5
I-ID AP G1 n-10 0.627 0.587 0.083 6

M-ID TP n-50 0.640 0.616 0.087 7
M-ID TP n-10 0.657 0.654 0.093 9

M-ID AP G1 n-10 0.721 0.629 0.089 5
M-ID AP G1 n-25 0.937 0.640 0.090 1
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Table A.30: This table reports the p-value of Wilcoxon rank-sum tests performed
best fitness values of each approach to identifying modules, GE, and GE with ADFs
fitness evaluations on the x5 − 2x3 + x Symbolic Regression problem. The p-values
calculated with a confidence interval of 0.05. Values marked with an asterisk (*)

R-ID AP R-ID TP G1 F-ID AP GE F-ID TP

R-ID AP 0.900 0.493 2.512 × 10
−2

* 0.107

R-ID TP G1 0.900 0.931 8.059 × 10
−2

0.235

F-ID AP 0.493 0.931 0.112 0.244

GE 2.512 × 10
−2

* 8.059 × 10
−2

0.112 0.664

F-ID TP 0.107 0.235 0.244 0.664

I-ID TP n-25 9.208 × 10
−2

7.412 × 10
−2

0.406 0.915 0.851

F-ID TP G1 3.211 × 10
−2

* 0.215 0.179 0.958 0.640

I-ID TP n-10 4.118 × 10
−2

* 5.784 × 10
−2

0.107 0.854 0.985

I-ID TP G1 n-50 1.613 × 10
−3

* 1.097 × 10
−2

* 3.827 × 10
−2

* 0.114 0.108

F-ID AP G1 9.410 × 10
−3

* 1.941 × 10
−2

* 2.441 × 10
−2

* 0.286 0.133

I-ID AP n-10 1.383 × 10
−2

* 9.301 × 10
−2

6.943 × 10
−2

0.367 0.388

R-ID TP 4.675 × 10
−2

* 1.310 × 10
−2

* 0.180 0.935 0.612

R-ID AP G1 0.208 0.395 0.662 0.772 0.892

I-ID TP n-50 2.105 × 10
−2

* 3.410 × 10
−2

* 0.276 0.357 0.348

M-ID TP G1 n-10 2.007 × 10
−3

* 4.042 × 10
−3

* 1.966 × 10
−2

* 0.164 0.113

ADF 3.917 × 10
−3

* 2.187 × 10
−2

* 3.662 × 10
−2

* 0.216 8.752 × 10
−2

M-ID TP G1 n-25 1.291 × 10
−3

* 5.463 × 10
−4

* 2.480 × 10
−2

* 7.022 × 10
−2

7.413 × 10
−2

I-ID TP G1 n-25 5.684 × 10
−4

* 3.352 × 10
−4

* 5.178 × 10
−3

* 1.563 × 10
−2

* 4.501 × 10
−2

*

I-ID AP G1 n-25 2.795 × 10
−5

* 1.030 × 10
−3

* 1.328 × 10
−3

* 1.673 × 10
−2

* 4.651 × 10
−3

*

M-ID AP n-10 4.782 × 10
−2

* 6.579 × 10
−3

* 1.782 × 10
−2

* 0.304 0.313

I-ID AP n-25 2.295 × 10
−3

* 2.113 × 10
−3

* 3.083 × 10
−2

* 0.104 9.489 × 10
−2

M-ID AP n-25 1.224 × 10
−2

* 6.482 × 10
−3

* 1.874 × 10
−2

* 0.131 0.122

M-ID TP G1 n-50 1.912 × 10
−3

* 3.853 × 10
−3

* 5.911 × 10
−2

8.033 × 10
−2

6.449 × 10
−2

M-ID TP n-25 4.821 × 10
−3

* 1.374 × 10
−3

* 8.646 × 10
−3

* 0.102 6.382 × 10
−2

I-ID TP G1 n-10 5.022 × 10
−5

* 7.153 × 10
−4

* 2.453 × 10
−3

* 8.645 × 10
−3

* 5.600 × 10
−3

*

I-ID AP G1 n-10 1.001 × 10
−4

* 1.028 × 10
−3

* 2.637 × 10
−3

* 2.300 × 10
−2

* 1.401 × 10
−2

*

M-ID TP n-50 4.924 × 10
−4

* 4.456 × 10
−4

* 1.082 × 10
−2

* 6.266 × 10
−2

4.503 × 10
−2

*

M-ID TP n-10 3.041 × 10
−3

* 4.713 × 10
−4

* 1.720 × 10
−2

* 4.776 × 10
−2

* 3.626 × 10
−2

*

M-ID AP G1 n-10 6.363 × 10
−5

* 1.936 × 10
−5

* 3.000 × 10
−4

* 2.843 × 10
−3

* 1.482 × 10
−3

*

M-ID AP G1 n-25 2.660 × 10
−6

* 4.811 × 10
−7

* 1.980 × 10
−5

* 1.402 × 10
−6

* 2.853 × 10
−5

*

I-ID TP n-25 F-ID TP G1 I-ID TP n-10 I-ID TP G1 n-50 F-ID AP G1

R-ID AP 9.208 × 10
−2

3.211 × 10
−2

* 4.118 × 10
−2

* 1.613 × 10
−3

* 9.410 × 10
−3

*

R-ID TP G1 7.412 × 10
−2

0.215 5.784 × 10
−2

1.097 × 10
−2

* 1.941 × 10
−2

*

F-ID AP 0.406 0.179 0.107 3.827 × 10
−2

* 2.441 × 10
−2

*

GE 0.915 0.958 0.854 0.114 0.286

F-ID TP 0.851 0.640 0.985 0.108 0.133

I-ID TP n-25 0.969 0.946 0.246 0.271

F-ID TP G1 0.969 0.772 0.111 0.385

I-ID TP n-10 0.946 0.772 0.283 0.398

I-ID TP G1 n-50 0.246 0.111 0.283 0.900

F-ID AP G1 0.271 0.385 0.398 0.900

I-ID AP n-10 0.348 0.598 0.968 0.345 1.000

R-ID TP 0.567 0.931 0.743 0.354 0.724

R-ID AP G1 0.585 0.889 0.996 0.155 0.382

I-ID TP n-50 0.296 0.315 0.672 0.996 0.877

M-ID TP G1 n-10 0.275 0.299 0.438 1.000 0.728

ADF 0.330 0.267 0.944 0.870 0.958

M-ID TP G1 n-25 4.502 × 10
−2

* 5.875 × 10
−2

7.827 × 10
−2

0.427 0.441

I-ID TP G1 n-25 0.129 0.119 6.009 × 10
−2

0.663 0.330
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x5 − 2x3 + x Symbolic Regression Wilcoxon rank-sun test results continued.

I-ID AP G1 n-25 4.291 × 10
−2

* 1.440 × 10
−2

* 4.212 × 10
−2

* 0.598 0.181

M-ID AP n-10 0.320 0.489 0.372 0.720 0.841

I-ID AP n-25 0.200 7.497 × 10
−2

0.153 0.743 0.532

M-ID AP n-25 9.762 × 10
−2

9.970 × 10
−2

0.115 0.412 0.548

M-ID TP G1 n-50 0.106 0.236 0.113 0.505 0.294

M-ID TP n-25 7.266 × 10
−2

0.255 0.372 0.531 0.553

I-ID TP G1 n-10 1.134 × 10
−2

* 4.720 × 10
−2

* 2.707 × 10
−2

* 0.106 0.128

I-ID AP G1 n-10 1.898 × 10
−2

* 9.273 × 10
−2

4.249 × 10
−2

* 0.341 8.985 × 10
−2

M-ID TP n-50 6.807 × 10
−2

7.730 × 10
−2

4.944 × 10
−2

* 0.648 0.231

M-ID TP n-10 5.595 × 10
−2

3.534 × 10
−2

* 0.145 0.294 0.249

M-ID AP G1 n-10 2.639 × 10
−2

* 7.074 × 10
−3

* 2.695 × 10
−3

* 0.116 4.311 × 10
−2

*

M-ID AP G1 n-25 1.544 × 10
−6

* 1.124 × 10
−5

* 4.076 × 10
−5

* 9.650 × 10
−6

* 1.147 × 10
−4

*

I-ID AP n-10 R-ID TP R-ID AP G1 I-ID TP n-50 M-ID TP G1 n-10

R-ID AP 1.383 × 10
−2

* 4.675 × 10
−2

* 0.208 2.105 × 10
−2

* 2.007 × 10
−3

*

R-ID TP G1 9.301 × 10
−2

1.310 × 10
−2

* 0.395 3.410 × 10
−2

* 4.042 × 10
−3

*

F-ID AP 6.943 × 10
−2

0.180 0.662 0.276 1.966 × 10
−2

*

GE 0.367 0.935 0.772 0.357 0.164

F-ID TP 0.388 0.612 0.892 0.348 0.113

I-ID TP n-25 0.348 0.567 0.585 0.296 0.275

F-ID TP G1 0.598 0.931 0.889 0.315 0.299

I-ID TP n-10 0.968 0.743 0.996 0.672 0.438

I-ID TP G1 n-50 0.345 0.354 0.155 0.996 1.000

F-ID AP G1 1.000 0.724 0.382 0.877 0.728

I-ID AP n-10 0.657 0.499 0.765 0.597

R-ID TP 0.657 0.667 0.802 0.462

R-ID AP G1 0.499 0.667 0.537 0.263

I-ID TP n-50 0.765 0.802 0.537 0.950

M-ID TP G1 n-10 0.597 0.462 0.263 0.950

ADF 0.889 0.322 0.451 0.889 0.893

M-ID TP G1 n-25 0.322 0.233 0.137 0.527 0.303

I-ID TP G1 n-25 0.278 4.664 × 10
−2

* 9.056 × 10
−2

0.479 0.581

I-ID AP G1 n-25 0.260 0.125 0.101 7.806 × 10
−2

0.317

M-ID AP n-10 0.866 0.691 0.415 0.893 0.758

I-ID AP n-25 0.652 0.183 0.118 0.800 0.489

M-ID AP n-25 0.148 0.211 0.149 0.599 0.787

M-ID TP G1 n-50 0.238 0.357 0.111 0.571 0.281

M-ID TP n-25 0.469 0.320 0.306 0.330 0.839

I-ID TP G1 n-10 2.637 × 10
−2

* 6.216 × 10
−2

3.618 × 10
−2

* 0.259 0.248

I-ID AP G1 n-10 4.163 × 10
−2

* 1.402 × 10
−2

* 8.747 × 10
−2

0.210 0.125

M-ID TP n-50 0.194 5.596 × 10
−2

9.178 × 10
−2

0.385 0.431

M-ID TP n-10 0.172 0.193 0.122 0.255 0.505

M-ID AP G1 n-10 1.649 × 10
−2

* 8.635 × 10
−3

* 1.991 × 10
−2

* 0.103 4.833 × 10
−2

*

M-ID AP G1 n-25 6.092 × 10
−5

* 1.689 × 10
−5

* 3.049 × 10
−4

* 5.840 × 10
−5

* 3.342 × 10
−5

*

ADF M-ID TP G1 n-25 I-ID TP G1 n-25 I-ID AP G1 n-25 M-ID AP n-10

R-ID AP 3.917 × 10
−3

* 1.291 × 10
−3

* 5.684 × 10
−4

* 2.795 × 10
−5

* 4.782 × 10
−2

*

R-ID TP G1 2.187 × 10
−2

* 5.463 × 10
−4

* 3.352 × 10
−4

* 1.030 × 10
−3

* 6.579 × 10
−3

*

F-ID AP 3.662 × 10
−2

* 2.480 × 10
−2

* 5.178 × 10
−3

* 1.328 × 10
−3

* 1.782 × 10
−2

*

GE 0.216 7.022 × 10
−2

1.563 × 10
−2

* 1.673 × 10
−2

* 0.304

F-ID TP 8.752 × 10
−2

7.413 × 10
−2

4.501 × 10
−2

* 4.651 × 10
−3

* 0.313

I-ID TP n-25 0.330 4.502 × 10
−2

* 0.129 4.291 × 10
−2

* 0.320

F-ID TP G1 0.267 5.875 × 10
−2

0.119 1.440 × 10
−2

* 0.489

I-ID TP n-10 0.944 7.827 × 10
−2

6.009 × 10
−2

4.212 × 10
−2

* 0.372

I-ID TP G1 n-50 0.870 0.427 0.663 0.598 0.720

F-ID AP G1 0.958 0.441 0.330 0.181 0.841

240



A.5. COMPARISON TO STANDARD GE

x5 − 2x3 + x Symbolic Regression Wilcoxon rank-sun test results continued.

I-ID AP n-10 0.889 0.322 0.278 0.260 0.866

R-ID TP 0.322 0.233 4.664 × 10
−2

* 0.125 0.691

R-ID AP G1 0.451 0.137 9.056 × 10
−2

0.101 0.415

I-ID TP n-50 0.889 0.527 0.479 7.806 × 10
−2

0.893

M-ID TP G1 n-10 0.893 0.303 0.581 0.317 0.758

ADF 0.701 0.401 0.394 0.780

M-ID TP G1 n-25 0.701 0.789 0.509 0.313

I-ID TP G1 n-25 0.401 0.789 0.926 0.605

I-ID AP G1 n-25 0.394 0.509 0.926 0.735

M-ID AP n-10 0.780 0.313 0.605 0.735

I-ID AP n-25 0.588 0.980 0.365 1.000 0.762

M-ID AP n-25 0.404 0.858 0.662 0.555 0.882

M-ID TP G1 n-50 0.435 0.779 0.813 0.848 0.255

M-ID TP n-25 0.773 0.717 0.717 0.601 0.885

I-ID TP G1 n-10 6.497 × 10
−2

0.313 0.680 0.454 0.317

I-ID AP G1 n-10 0.140 0.257 0.406 0.650 6.643 × 10
−2

M-ID TP n-50 0.240 0.835 0.591 0.858 0.415

M-ID TP n-10 0.111 0.674 0.909 0.671 0.798

M-ID AP G1 n-10 0.120 0.174 0.731 0.198 4.292 × 10
−2

*

M-ID AP G1 n-25 5.432 × 10
−4

* 7.052 × 10
−4

* 3.314 × 10
−5

* 9.557 × 10
−4

* 2.233 × 10
−3

*

I-ID AP n-25 M-ID AP n-25 M-ID TP G1 n-50 M-ID TP n-25 I-ID TP G1 n-10

R-ID AP 2.295 × 10
−3

* 1.224 × 10
−2

* 1.912 × 10
−3

* 4.821 × 10
−3

* 5.022 × 10
−5

*

R-ID TP G1 2.113 × 10
−3

* 6.482 × 10
−3

* 3.853 × 10
−3

* 1.374 × 10
−3

* 7.153 × 10
−4

*

F-ID AP 3.083 × 10
−2

* 1.874 × 10
−2

* 5.911 × 10
−2

8.646 × 10
−3

* 2.453 × 10
−3

*

GE 0.104 0.131 8.033 × 10
−2

0.102 8.645 × 10
−3

*

F-ID TP 9.489 × 10
−2

0.122 6.449 × 10
−2

6.382 × 10
−2

5.600 × 10
−3

*

I-ID TP n-25 0.200 9.762 × 10
−2

0.106 7.266 × 10
−2

1.134 × 10
−2

*

F-ID TP G1 7.497 × 10
−2

9.970 × 10
−2

0.236 0.255 4.720 × 10
−2

*

I-ID TP n-10 0.153 0.115 0.113 0.372 2.707 × 10
−2

*

I-ID TP G1 n-50 0.743 0.412 0.505 0.531 0.106

F-ID AP G1 0.532 0.548 0.294 0.553 0.128

I-ID AP n-10 0.652 0.148 0.238 0.469 2.637 × 10
−2

*

R-ID TP 0.183 0.211 0.357 0.320 6.216 × 10
−2

R-ID AP G1 0.118 0.149 0.111 0.306 3.618 × 10
−2

*

I-ID TP n-50 0.800 0.599 0.571 0.330 0.259

M-ID TP G1 n-10 0.489 0.787 0.281 0.839 0.248

ADF 0.588 0.404 0.435 0.773 6.497 × 10
−2

M-ID TP G1 n-25 0.980 0.858 0.779 0.717 0.313

I-ID TP G1 n-25 0.365 0.662 0.813 0.717 0.680

I-ID AP G1 n-25 1.000 0.555 0.848 0.601 0.454

M-ID AP n-10 0.762 0.882 0.255 0.885 0.317

I-ID AP n-25 0.963 0.685 0.908 0.515

M-ID AP n-25 0.963 0.694 0.735 0.295

M-ID TP G1 n-50 0.685 0.694 0.823 0.552

M-ID TP n-25 0.908 0.735 0.823 0.225

I-ID TP G1 n-10 0.515 0.295 0.552 0.225

I-ID AP G1 n-10 0.454 0.532 0.719 0.471 0.796

M-ID TP n-50 0.866 0.521 0.858 0.689 0.637

M-ID TP n-10 0.913 0.554 0.477 0.901 0.426

M-ID AP G1 n-10 0.292 9.469 × 10
−2

0.310 0.197 0.525

M-ID AP G1 n-25 2.897 × 10
−5

* 1.044 × 10
−3

* 4.335 × 10
−3

* 7.511 × 10
−5

* 4.414 × 10
−3

*

I-ID AP G1 n-10 M-ID TP n-50 M-ID TP n-10 M-ID AP G1 n-10 M-ID AP G1 n-25

R-ID AP 1.001 × 10
−4

* 4.924 × 10
−4

* 3.041 × 10
−3

* 6.363 × 10
−5

* 2.660 × 10
−6

*

R-ID TP G1 1.028 × 10
−3

* 4.456 × 10
−4

* 4.713 × 10
−4

* 1.936 × 10
−5

* 4.811 × 10
−7

*
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x5 − 2x3 + x Symbolic Regression Wilcoxon rank-sun test results continued.

F-ID AP 2.637 × 10
−3

* 1.082 × 10
−2

* 1.720 × 10
−2

* 3.000 × 10
−4

* 1.980 × 10
−5

*

GE 2.300 × 10
−2

* 6.266 × 10
−2

4.776 × 10
−2

* 2.843 × 10
−3

* 1.402 × 10
−6

*

F-ID TP 1.401 × 10
−2

* 4.503 × 10
−2

* 3.626 × 10
−2

* 1.482 × 10
−3

* 2.853 × 10
−5

*

I-ID TP n-25 1.898 × 10
−2

* 6.807 × 10
−2

5.595 × 10
−2

2.639 × 10
−2

* 1.544 × 10
−6

*

F-ID TP G1 9.273 × 10
−2

7.730 × 10
−2

3.534 × 10
−2

* 7.074 × 10
−3

* 1.124 × 10
−5

*

I-ID TP n-10 4.249 × 10
−2

* 4.944 × 10
−2

* 0.145 2.695 × 10
−3

* 4.076 × 10
−5

*

I-ID TP G1 n-50 0.341 0.648 0.294 0.116 9.650 × 10
−6

*

F-ID AP G1 8.985 × 10
−2

0.231 0.249 4.311 × 10
−2

* 1.147 × 10
−4

*

I-ID AP n-10 4.163 × 10
−2

* 0.194 0.172 1.649 × 10
−2

* 6.092 × 10
−5

*

R-ID TP 1.402 × 10
−2

* 5.596 × 10
−2

0.193 8.635 × 10
−3

* 1.689 × 10
−5

*

R-ID AP G1 8.747 × 10
−2

9.178 × 10
−2

0.122 1.991 × 10
−2

* 3.049 × 10
−4

*

I-ID TP n-50 0.210 0.385 0.255 0.103 5.840 × 10
−5

*

M-ID TP G1 n-10 0.125 0.431 0.505 4.833 × 10
−2

* 3.342 × 10
−5

*

ADF 0.140 0.240 0.111 0.120 5.432 × 10
−4

*

M-ID TP G1 n-25 0.257 0.835 0.674 0.174 7.052 × 10
−4

*

I-ID TP G1 n-25 0.406 0.591 0.909 0.731 3.314 × 10
−5

*

I-ID AP G1 n-25 0.650 0.858 0.671 0.198 9.557 × 10
−4

*

M-ID AP n-10 6.643 × 10
−2

0.415 0.798 4.292 × 10
−2

* 2.233 × 10
−3

*

I-ID AP n-25 0.454 0.866 0.913 0.292 2.897 × 10
−5

*

M-ID AP n-25 0.532 0.521 0.554 9.469 × 10
−2

1.044 × 10
−3

*

M-ID TP G1 n-50 0.719 0.858 0.477 0.310 4.335 × 10
−3

*

M-ID TP n-25 0.471 0.689 0.901 0.197 7.511 × 10
−5

*

I-ID TP G1 n-10 0.796 0.637 0.426 0.525 4.414 × 10
−3

*

I-ID AP G1 n-10 0.992 0.739 0.633 6.948 × 10
−3

*

M-ID TP n-50 0.992 0.866 0.835 4.565 × 10
−3

*

M-ID TP n-10 0.739 0.866 0.420 1.113 × 10
−2

*

M-ID AP G1 n-10 0.633 0.835 0.420 2.353 × 10
−2

*

M-ID AP G1 n-25 6.948 × 10
−3

* 4.565 × 10
−3

* 1.113 × 10
−2

* 2.353 × 10
−2

*

242



A.5. COMPARISON TO STANDARD GE

Table A.31: This table shows the average best fitness, standard deviation, standard error, and
number of runs which solved the 8 × 8 Lawn Mower problem after 100000 fitness evaluations of
each approach to identifying modules, GE, and GE with ADFs.

Best Fitness Std. Dev. Std. Err. Number Solved
ADF 1.000×10−5 3.000×10−5 0 47

M-ID AP n-10 0.224 1.58389 0.22400 19
M-ID TP G1 n-50 0.230 1.62632 0.23000 21
M-ID TP G1 n-25 0.238 1.68290 0.23800 24
M-ID AP G1 n-10 0.260 1.83846 0.26000 18

R-ID AP 0.462 2.287 0.323 20
M-ID TP n-10 0.464 2.299 0.325 21
M-ID AP n-25 0.492 2.435 0.344 19

M-ID TP G1 n-10 0.492 2.435 0.344 22
M-ID TP n-50 0.506 2.510 0.355 17
M-ID TP n-25 1.188 3.608 0.510 21

M-ID AP G1 n-25 1.212 3.674 0.520 14
R-ID TP G1 1.318 3.999 0.566 21
R-ID AP G1 1.376 4.219 0.597 17

R-ID TP 1.736 4.354 0.616 24
F-ID TP 5.966 6.894 0.975 15
F-ID AP 9.634 6.510 0.921 3

F-ID TP G1 10.672 6.339 0.896 2
F-ID AP G1 14.886 4.421 0.625 1
I-ID AP n-10 28.288 1.323 0.187 0

I-ID AP G1 n-10 28.422 1.485 0.210 0
I-ID AP n-25 28.532 1.426 0.202 0
I-ID TP n-10 28.556 1.332 0.188 0

I-ID AP G1 n-25 28.700 1.232 0.174 0
I-ID TP n-50 28.718 1.229 0.174 0

I-ID TP G1 n-25 28.860 1.114 0.158 0
I-ID TP n-25 28.914 1.403 0.198 0

I-ID TP G1 n-50 28.928 1.127 0.159 0
I-ID TP G1 n-10 28.940 1.167 0.165 0

GE 29.250 1.155 0.163 0
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Table A.32: This table reports the p-value of Wilcoxon rank-sum tests performed on the
best fitness values of each approach to identifying modules, GE, and GE with ADFs after
fitness evaluations on the 8× 8 Lawn Mower problem. The p-values reported are calculated
a confidence interval of 0.05. Values marked with an asterisk (*) are significant.

ADF M-ID AP n-10 M-ID TP G1 n-50 M-ID TP G1 n-25 M-ID AP G1 n-10

ADF 1.490 × 10
−6

* 1.061 × 10
−5

* 3.992 × 10
−5

* 1.825 × 10
−6

*

M-ID AP n-10 1.490 × 10
−6

* 0.817 0.188 0.634

M-ID TP G1 n-50 1.061 × 10
−5

* 0.817 0.584 0.984

M-ID TP G1 n-25 3.992 × 10
−5

* 0.188 0.584 0.289

M-ID AP G1 n-10 1.825 × 10
−6

* 0.634 0.984 0.289

R-ID AP 2.806 × 10
−6

* 0.596 0.289 0.198 0.248

M-ID TP n-10 5.016 × 10
−6

* 0.380 0.185 0.159 0.393

M-ID AP n-25 1.519 × 10
−6

* 0.732 0.633 0.369 0.918

M-ID TP G1 n-10 7.206 × 10
−6

* 0.528 0.468 0.143 0.261

M-ID TP n-50 1.923 × 10
−6

* 0.839 0.826 0.328 0.879

M-ID TP n-25 6.813 × 10
−6

* 0.370 0.237 2.356 × 10
−2

* 0.221

M-ID AP G1 n-25 2.717 × 10
−7

* 0.201 0.302 3.002 × 10
−2

* 0.174

R-ID TP G1 5.636 × 10
−6

* 0.608 0.416 0.184 0.665

R-ID AP G1 8.834 × 10
−7

* 0.165 8.360 × 10
−2

2.036 × 10
−2

* 0.114

R-ID TP 1.929 × 10
−5

* 0.389 7.589 × 10
−2

5.750 × 10
−2

0.346

F-ID TP 2.569 × 10
−7

* 3.599 × 10
−5

* 1.094 × 10
−5

* 1.285 × 10
−5

* 5.107 × 10
−6

*

F-ID AP 4.000 × 10
−9

* 1.140 × 10
−8

* 3.280 × 10
−9

* 4.910 × 10
−9

* 1.252 × 10
−8

*

F-ID TP G1 1.410 × 10
−9

* 9.520 × 10
−9

* 6.210 × 10
−9

* 4.700 × 10
−9

* 1.741 × 10
−8

*

F-ID AP G1 1.140 × 10
−9

* 1.300 × 10
−9

* 8.500 × 10
−10

* 1.220 × 10
−9

* 1.300 × 10
−9

*

I-ID AP n-10 7.600 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-10 7.600 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-25 7.600 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID TP n-10 7.600 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-25 7.400 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-50 7.400 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID TP G1 n-25 7.000 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-25 7.500 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-50 6.900 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-10 7.300 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

GE 6.100 × 10
−10

* 7.700 × 10
−10

* 7.500 × 10
−10

* 7.500 × 10
−10

* 7.600 × 10
−10

*

R-ID AP M-ID TP n-10 M-ID AP n-25 M-ID TP G1 n-10 M-ID TP n-50

ADF 2.806 × 10
−6

* 5.016 × 10
−6

* 1.519 × 10
−6

* 7.206 × 10
−6

* 1.923 × 10
−6

*

M-ID AP n-10 0.596 0.380 0.732 0.528 0.839

M-ID TP G1 n-50 0.289 0.185 0.633 0.468 0.826

M-ID TP G1 n-25 0.198 0.159 0.369 0.143 0.328

M-ID AP G1 n-10 0.248 0.393 0.918 0.261 0.879

R-ID AP 0.705 0.431 0.861 0.289

M-ID TP n-10 0.705 0.391 0.995 0.403

M-ID AP n-25 0.431 0.391 0.785 0.694

M-ID TP G1 n-10 0.861 0.995 0.785 0.520

M-ID TP n-50 0.289 0.403 0.694 0.520

M-ID TP n-25 0.964 0.414 0.406 0.974 0.305

M-ID AP G1 n-25 0.581 0.647 0.514 0.942 0.305

R-ID TP G1 0.665 0.861 0.855 0.880 0.768

R-ID AP G1 0.659 0.303 6.054 × 10
−2

0.305 5.716 × 10
−2

R-ID TP 0.658 0.402 0.426 0.516 0.398

F-ID TP 3.028 × 10
−4

* 6.065 × 10
−5

* 2.712 × 10
−4

* 4.414 × 10
−5

* 1.293 × 10
−5

*

F-ID AP 9.083 × 10
−8

* 1.205 × 10
−8

* 7.244 × 10
−8

* 5.468 × 10
−8

* 2.421 × 10
−8

*

F-ID TP G1 1.952 × 10
−8

* 5.550 × 10
−9

* 3.212 × 10
−8

* 8.400 × 10
−9

* 4.480 × 10
−9

*
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8× 8 Lawn Mower Wilcoxon rank-sun test results continued.

F-ID AP G1 1.220 × 10
−9

* 9.300 × 10
−10

* 1.220 × 10
−9

* 8.500 × 10
−10

* 1.140 × 10
−9

*

I-ID AP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID TP n-10 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-50 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-25 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-25 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-50 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

I-ID TP G1 n-10 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

GE 7.600 × 10
−10

* 7.500 × 10
−10

* 7.600 × 10
−10

* 7.500 × 10
−10

* 7.600 × 10
−10

*

M-ID TP n-25 M-ID AP G1 n-25 R-ID TP G1 R-ID AP G1 R-ID TP

ADF 6.813 × 10
−6

* 2.717 × 10
−7

* 5.636 × 10
−6

* 8.834 × 10
−7

* 1.929 × 10
−5

*

M-ID AP n-10 0.370 0.201 0.608 0.165 0.389

M-ID TP G1 n-50 0.237 0.302 0.416 8.360 × 10
−2

7.589 × 10
−2

M-ID TP G1 n-25 2.356 × 10
−2

* 3.002 × 10
−2

* 0.184 2.036 × 10
−2

* 5.750 × 10
−2

M-ID AP G1 n-10 0.221 0.174 0.665 0.114 0.346

R-ID AP 0.964 0.581 0.665 0.659 0.658

M-ID TP n-10 0.414 0.647 0.861 0.303 0.402

M-ID AP n-25 0.406 0.514 0.855 6.054 × 10
−2

0.426

M-ID TP G1 n-10 0.974 0.942 0.880 0.305 0.516

M-ID TP n-50 0.305 0.305 0.768 5.716 × 10
−2

0.398

M-ID TP n-25 0.874 0.890 0.590 0.757

M-ID AP G1 n-25 0.874 0.958 0.495 0.933

R-ID TP G1 0.890 0.958 9.717 × 10
−2

0.668

R-ID AP G1 0.590 0.495 9.717 × 10
−2

0.737

R-ID TP 0.757 0.933 0.668 0.737

F-ID TP 9.708 × 10
−6

* 2.167 × 10
−4

* 4.797 × 10
−4

* 3.328 × 10
−3

* 3.237 × 10
−4

*

F-ID AP 1.466 × 10
−8

* 2.846 × 10
−8

* 5.983 × 10
−8

* 3.291 × 10
−6

* 1.816 × 10
−7

*

F-ID TP G1 9.370 × 10
−9

* 2.164 × 10
−8

* 9.350 × 10
−8

* 3.336 × 10
−7

* 3.620 × 10
−8

*

F-ID AP G1 1.470 × 10
−9

* 1.420 × 10
−9

* 1.560 × 10
−9

* 1.190 × 10
−9

* 1.710 × 10
−9

*

I-ID AP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-25 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-50 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

I-ID TP G1 n-25 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP n-25 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-50 7.600 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

I-ID TP G1 n-10 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

GE 7.400 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.600 × 10
−10

* 7.500 × 10
−10

*

F-ID TP F-ID AP F-ID TP G1 F-ID AP G1 I-ID AP n-10

ADF 2.569 × 10
−7

* 4.000 × 10
−9

* 1.410 × 10
−9

* 1.140 × 10
−9

* 7.600 × 10
−10

*

M-ID AP n-10 3.599 × 10
−5

* 1.140 × 10
−8

* 9.520 × 10
−9

* 1.300 × 10
−9

* 7.800 × 10
−10

*

M-ID TP G1 n-50 1.094 × 10
−5

* 3.280 × 10
−9

* 6.210 × 10
−9

* 8.500 × 10
−10

* 7.800 × 10
−10

*

M-ID TP G1 n-25 1.285 × 10
−5

* 4.910 × 10
−9

* 4.700 × 10
−9

* 1.220 × 10
−9

* 7.700 × 10
−10

*

M-ID AP G1 n-10 5.107 × 10
−6

* 1.252 × 10
−8

* 1.741 × 10
−8

* 1.300 × 10
−9

* 7.800 × 10
−10

*

R-ID AP 3.028 × 10
−4

* 9.083 × 10
−8

* 1.952 × 10
−8

* 1.220 × 10
−9

* 7.800 × 10
−10

*

M-ID TP n-10 6.065 × 10
−5

* 1.205 × 10
−8

* 5.550 × 10
−9

* 9.300 × 10
−10

* 7.800 × 10
−10

*

M-ID AP n-25 2.712 × 10
−4

* 7.244 × 10
−8

* 3.212 × 10
−8

* 1.220 × 10
−9

* 7.800 × 10
−10

*

M-ID TP G1 n-10 4.414 × 10
−5

* 5.468 × 10
−8

* 8.400 × 10
−9

* 8.500 × 10
−10

* 7.800 × 10
−10

*

M-ID TP n-50 1.293 × 10
−5

* 2.421 × 10
−8

* 4.480 × 10
−9

* 1.140 × 10
−9

* 7.800 × 10
−10

*
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8× 8 Lawn Mower Wilcoxon rank-sun test results continued.

M-ID TP n-25 9.708 × 10
−6

* 1.466 × 10
−8

* 9.370 × 10
−9

* 1.470 × 10
−9

* 7.800 × 10
−10

*

M-ID AP G1 n-25 2.167 × 10
−4

* 2.846 × 10
−8

* 2.164 × 10
−8

* 1.420 × 10
−9

* 7.800 × 10
−10

*

R-ID TP G1 4.797 × 10
−4

* 5.983 × 10
−8

* 9.350 × 10
−8

* 1.560 × 10
−9

* 7.800 × 10
−10

*

R-ID AP G1 3.328 × 10
−3

* 3.291 × 10
−6

* 3.336 × 10
−7

* 1.190 × 10
−9

* 7.800 × 10
−10

*

R-ID TP 3.237 × 10
−4

* 1.816 × 10
−7

* 3.620 × 10
−8

* 1.710 × 10
−9

* 7.800 × 10
−10

*

F-ID TP 2.221 × 10
−3

* 2.221 × 10
−3

* 2.844 × 10
−7

* 7.800 × 10
−10

*

F-ID AP 2.221 × 10
−3

* 0.235 1.477 × 10
−4

* 7.800 × 10
−10

*

F-ID TP G1 2.221 × 10
−3

* 0.235 1.802 × 10
−4

* 7.800 × 10
−10

*

F-ID AP G1 2.844 × 10
−7

* 1.477 × 10
−4

* 1.802 × 10
−4

* 7.800 × 10
−10

*

I-ID AP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 0.778

I-ID AP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 0.487

I-ID TP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 0.434

I-ID AP G1 n-25 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 0.191

I-ID TP n-50 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.045 × 10
−2

I-ID TP G1 n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 5.165 × 10
−2

I-ID TP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 3.452 × 10
−2

*

I-ID TP G1 n-50 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 2.172 × 10
−2

*

I-ID TP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 1.613 × 10
−2

*

GE 7.700 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 1.664 × 10
−3

*

I-ID AP G1 n-10 I-ID AP n-25 I-ID TP n-10 I-ID AP G1 n-25 I-ID TP n-50

ADF 7.600 × 10
−10

* 7.600 × 10
−10

* 7.600 × 10
−10

* 7.400 × 10
−10

* 7.400 × 10
−10

*

M-ID AP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

M-ID TP G1 n-50 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP G1 n-25 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID AP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

R-ID AP 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

M-ID TP n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

M-ID AP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

M-ID TP G1 n-10 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP n-50 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

M-ID TP n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

M-ID AP G1 n-25 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

R-ID TP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

R-ID AP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

R-ID TP 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

F-ID TP 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

*

F-ID AP 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID TP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID AP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-10 0.778 0.487 0.434 0.191 7.045 × 10
−2

I-ID AP G1 n-10 0.849 0.659 0.543 0.240

I-ID AP n-25 0.849 0.891 0.470 0.518

I-ID TP n-10 0.659 0.891 0.750 0.616

I-ID AP G1 n-25 0.543 0.470 0.750 0.887

I-ID TP n-50 0.240 0.518 0.616 0.887

I-ID TP G1 n-25 0.177 0.332 0.320 0.451 1.000

I-ID TP n-25 0.172 0.312 0.224 0.263 0.433

I-ID TP G1 n-50 9.959 × 10
−2

0.312 0.173 0.664 0.567

I-ID TP G1 n-10 0.110 0.109 0.279 0.363 0.521

GE 1.058 × 10
−2

* 4.966 × 10
−2

* 1.205 × 10
−2

* 9.848 × 10
−2

7.733 × 10
−2

I-ID TP G1 n-25 I-ID TP n-25 I-ID TP G1 n-50 I-ID TP G1 n-10 GE

ADF 7.000 × 10
−10

* 7.500 × 10
−10

* 6.900 × 10
−10

* 7.300 × 10
−10

* 6.100 × 10
−10

*

M-ID AP n-10 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*
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A.5. COMPARISON TO STANDARD GE

8× 8 Lawn Mower Wilcoxon rank-sun test results continued.

M-ID TP G1 n-50 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.500 × 10
−10

*

M-ID TP G1 n-25 7.600 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.500 × 10
−10

*

M-ID AP G1 n-10 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

R-ID AP 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

M-ID TP n-10 7.600 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.500 × 10
−10

*

M-ID AP n-25 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

M-ID TP G1 n-10 7.600 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.500 × 10
−10

*

M-ID TP n-50 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

M-ID TP n-25 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

* 7.700 × 10
−10

* 7.400 × 10
−10

*

M-ID AP G1 n-25 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

*

R-ID TP G1 7.600 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

R-ID AP G1 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.600 × 10
−10

*

R-ID TP 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.700 × 10
−10

* 7.500 × 10
−10

*

F-ID TP 7.800 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

* 7.800 × 10
−10

* 7.700 × 10
−10

*

F-ID AP 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID TP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

F-ID AP G1 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

* 7.800 × 10
−10

*

I-ID AP n-10 5.165 × 10
−2

3.452 × 10
−2

* 2.172 × 10
−2

* 1.613 × 10
−2

* 1.664 × 10
−3

*

I-ID AP G1 n-10 0.177 0.172 9.959 × 10
−2

0.110 1.058 × 10
−2

*

I-ID AP n-25 0.332 0.312 0.312 0.109 4.966 × 10
−2

*

I-ID TP n-10 0.320 0.224 0.173 0.279 1.205 × 10
−2

*

I-ID AP G1 n-25 0.451 0.263 0.664 0.363 9.848 × 10
−2

I-ID TP n-50 1.000 0.433 0.567 0.521 7.733 × 10
−2

I-ID TP G1 n-25 0.611 0.689 0.533 0.213

I-ID TP n-25 0.611 0.627 0.861 0.428

I-ID TP G1 n-50 0.689 0.627 0.890 0.216

I-ID TP G1 n-10 0.533 0.861 0.890 0.357

GE 0.213 0.428 0.216 0.357
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Appendix B

An Analysis of Modules (Chapter 7)

B.1 Module Content

B.1.1 Module Semantics
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B.1. MODULE CONTENT

Table B.1: This table shows the average semantic value and standard error of all the modules ever
discovered on the Santa Fe Ant Trail problem. The semantic value is calculated by evaluating
each module on the fitness function as if it was a stand-alone individual.

Approach Semantic Value Std. Err.
F-ID TP G1 68.118 1.237
F-ID AP G1 68.868 1.160
R-ID TP G1 68.713 0.993
I-ID TP n-25 79.710 1.087

I-ID AP G1 n-10 75.769 0.608
I-ID AP G1 n-25 79.405 0.415

I-ID TP n-50 79.912 1.120
F-ID AP 70.867 0.875

ADF 83.707 0.011
R-ID AP 67.217 0.691

M-ID TP G1 n-50 68.557 1.142
M-ID TP G1 n-25 66.812 1.138
M-ID TP G1 n-10 68.017 1.099
M-ID AP G1 n-10 70.474 0.551

I-ID AP n-10 77.130 0.574
M-ID AP n-10 67.992 0.642
I-ID AP n-25 78.025 0.561
R-ID AP G1 72.116 0.500

I-ID TP G1 n-25 78.874 1.131
I-ID TP G1 n-10 77.760 1.243

M-ID TP n-25 67.527 1.048
M-ID TP n-10 67.883 1.103

I-ID TP G1 n-50 80.491 1.122
F-ID TP 68.595 0.965

I-ID TP n-10 76.761 1.199
M-ID AP n-25 69.348 0.650
M-ID TP n-50 68.297 1.127

R-ID TP 69.939 0.977
M-ID AP G1 n-25 72.744 0.572
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B.1. MODULE CONTENT

Table B.2: This table shows the average semantic value and standard error of all the modules
ever discovered on the Even 7 Parity problem. The semantic value is calculated by evaluating
each module on the fitness function as if it was a stand-alone individual.

Approach Semantic Value Std. Err.
F-ID AP G1 62.428 0.292

I-ID TP G1 n-50
F-ID TP G1 61.884 0.334
R-ID AP G1 56.633 0.287

M-ID TP G1 n-10 51.704 0.582
M-ID TP G1 n-25 52.794 0.573
I-ID TP G1 n-25

M-ID TP G1 n-50 52.559 0.595
I-ID AP G1 n-10 58.143 2.819

R-ID AP 55.697 0.307
ADF 63.601 0.005

R-ID TP G1 56.625 0.364
M-ID AP G1 n-10 52.556 0.435

I-ID TP n-10 54.400 0.584
F-ID TP 61.112 0.379

M-ID AP G1 n-25 52.071 0.461
F-ID AP 61.626 0.361
R-ID TP 58.123 0.314

I-ID AP G1 n-25
I-ID TP G1 n-10 42.783 0.569

M-ID TP n-10 52.745 0.551
M-ID TP n-25 52.165 0.568
I-ID TP n-50
I-ID TP n-25 0 0

M-ID TP n-50 54.473 0.553
I-ID AP n-10 64.000 0

M-ID AP n-10 50.564 0.503
M-ID AP n-25 50.358 0.540
I-ID AP n-25

250



B.1. MODULE CONTENT

Table B.3: This table shows the average semantic value and standard error of all the modules ever
discovered on the x5 − 2x3 + x Symbolic Regression problem. The semantic value is calculated
by evaluating each module on the fitness function as if it was a stand-alone individual.

Approach Semantic Value Std. Err.
R-ID AP 5.0776× 1010 3.576× 1010

R-ID TP G1 3.297× 105 2.275× 105

F-ID AP 5.386× 103 2.822× 103

F-ID TP 1.817× 105 1.267× 105

I-ID TP n-25 1.115× 102 16.159
F-ID TP G1 1.090× 106 1.082× 106

I-ID TP n-10 2.728× 102 140.135
I-ID TP G1 n-50 9.351× 101 16.470

F-ID AP G1 7.039× 103 2.521× 103

I-ID AP n-10 1.047× 102 7.146
R-ID TP 4.617× 106 1.894× 106

R-ID AP G1 5.044× 109 4.976× 109

I-ID TP n-50 9.747× 101 19.949
M-ID TP G1 n-10 2.907× 1013 1.677× 1013

ADF 1.085× 1037 9.427× 1036

M-ID TP G1 n-25 4.537× 103 1.559× 103

I-ID TP G1 n-25 1.027× 102 13.709
I-ID AP G1 n-25 8.471× 101 6.629

M-ID AP n-10 1.425× 103 628.146
I-ID AP n-25 9.635× 101 9.567

M-ID AP n-25 5.108× 104 4.855× 104

M-ID TP G1 n-50 3.826× 105 3.823× 105

M-ID TP n-25 2.114× 104 1.320× 104

I-ID TP G1 n-10 1.077× 102 7.519
I-ID AP G1 n-10 1.509× 103 1.208× 103

M-ID TP n-50 4.572× 108 3.231× 108

M-ID TP n-10 2.789× 103 1.180× 103

M-ID AP G1 n-10 2.415× 106 1.922× 106

M-ID AP G1 n-25 2.584× 1010 2.400× 1010
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B.1. MODULE CONTENT

Table B.4: This table shows the average semantic value and standard error of all the modules
ever discovered on the 8×8 Lawn Mower problem. The semantic value is calculated by evaluating
each module on the fitness function as if it was a stand-alone individual.

Approach Semantic Value Std. Err.
ADF 57.905 0.012

M-ID AP n-10 12.505 0.189
M-ID TP G1 n-50 13.833 0.197
M-ID TP G1 n-25 12.854 0.199
M-ID AP G1 n-10 16.012 0.247

R-ID AP 13.381 0.168
M-ID TP n-10 12.872 0.187
M-ID AP n-25 16.269 0.213

M-ID TP G1 n-10 13.042 0.187
M-ID TP n-50 13.621 0.199
M-ID TP n-25 13.132 0.195

M-ID AP G1 n-25 25.482 0.303
R-ID TP G1 10.830 0.180
R-ID AP G1 18.007 0.205

R-ID TP 11.047 0.179
F-ID TP 30.284 0.198
F-ID AP 37.113 0.188

F-ID TP G1 40.916 0.219
F-ID AP G1 43.405 0.187
I-ID AP n-10 61.230 0.146

I-ID AP G1 n-10 61.553 0.148
I-ID AP n-25 61.466 0.202
I-ID TP n-10 60.694 0.331

I-ID AP G1 n-25 61.285 0.224
I-ID TP n-50 61.740 0.236

I-ID TP G1 n-25 61.810 0.219
I-ID TP n-25 61.362 0.334

I-ID TP G1 n-50 62.093 0.266
I-ID TP G1 n-10 61.822 0.293
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List of Abbreviations

Γ An integer array representing the chromosome of an individual

Γi The ith codon in a chromosome, Γ

κ The amount of modules that are kept after the module replacement operation is
performed

λ A candidate module

µ A module that has passed its evaluations and has been accepted into the module
list

ρ An double value specifying how many evaluations a candidate module must pass in
order to be accepted into the module list. This value is defined as a percentage of
n and rounded to the nearest integer value

Σ A finite set of terminal productions

σ A sub-derivation tree

τ The number of generations between module identification, module replacement, and
grammar modification occurrences

G A context-free grammar. G = (V,Σ, R, S)

I An individual in the evolving population

M A set of all modules that have passed the necessary evaluations and may be made
available to the population

n How many evaluations each candidate module undergoes

R A finite relation from V to (V ∪ Σ)∗.

S The start symbol used to represent the entire program. S must be a non-terminal
symbol (S ∈ V )

V A finite set non-terminal production
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B.1. MODULE CONTENT

MIG Module Identification Gap: A gap data plotted in relation to fitness evaluation
where some amount of fitness evaluations are spent identifying modules instead of
evolving the population
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