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Summary. The bacterial foraging optimisation algorithm is a novel evolutionary
computation technique, which is based on mimicking the foraging behavior of E.coli
bacteria. This chapter illustrates how a bacterial foraging optimisation (BFO) algo-
rithm can be constructed and compared with the canonical Genetic Algorithm (GA)
through testing of benchmark functions. The utility of the resulting algorithm is fur-
ther extended to the financial domain, solving parameter estimation of EGARCH
models, which can then be applied for pricing volatility options. The results from
the algorithm are shown to be robust and extendable, suggesting the potential of
applying BFO as a substitute to the conventional statistical computing techniques
used in parameter estimations of financial models.
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1 Introduction

This chapter introduces a novel evolutionary computation technique, the bac-
terial foraging optimisation (BFO) algorithm, which models the foraging be-
havior of Escherichia coli bacteria as an optimisation process. It has been
proposed and introduced recently by Passino[26] in 2002.

The proposed algorithm has been developed and applied to solve real prob-
lems. The basic foraging strategy is made adaptive through a Takagi-Sugeno
fuzzy system by Mishra [21], dealing with harmonic estimation for a signal
distorted with additive noise, the proposed algorithm does not rely on Newton-
like gradient descent methods, and has great improvements in error percentage
as well as the processing time compared with the conventional discrete Fourier
transform and genetic algorithm method. Kim uses a hybrid system based on
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conventional genetic algorithm and bacterial foraging optimisation algorithm
[17, 18] to tune a PID Controller for an automatic voltage regulator (AVR)
system, the proposed approach is very efficient for solving global optimisation
problems. Ulagammai trained wavelet neural network (WNN) using bacterial
foraging optimisation algorithm for load forecasting (LF) as used in electric
power system operations[32].

As shown above, BFO already has successful applications in solving real
engineering problems, demonstrating satisfactory accuracy and stability. In
this chapter, we further examine the ability of BFO to solve optimization
problems, applying it to optimise nonlinear financial problems. We consider
a basic BFO algorithm as proposed by Passino[26]. The various adaptive ver-
sions of the proposed BFO, and its ability to solve dynamic problems is beyond
the scope of this chapter, while interested readers could refer to recent work
by Tang et al[29, 30, 31, 19].

The ability of BFO to find optimal results is firstly assessed through the
testing of six major benchmark functions, and compared with the canonical
GA. It is thought that the comparative study would provide further insights
to improve the BFO algorithm. We then examine the ability of applying this
algorithm within financial domain. We apply BFO substituting traditionally
adopted statistical computing methods to estimate a EGARCH model. These
estimated parameters are used to approximate the volatility option pricing
model.

1.1 Structure of Chapter

The rest of this chapter is organized as follows. The next section provides a
concise overview of BFO, concentrating on the different steps involved in the
algorithm. The following section illustrates the comparative study of BFO and
GA, using testing results by six major benchmark functions. We then outline
the experimental methodology adopted to estimate an option pricing model.
The remaining sections provide the results of these experiments followed by
a number of conclusions.

2 The Bacterial Foraging Optimisation (BFO) algorithm

Natural selection tends to eliminate animals with poor foraging (methods for
locating, handling and ingesting food) strategies and favor the propagation
of genes of those animals that have successful foraging strategies, since they
are more likely to enjoy reproductive success. After many generations, poor
foraging strategies are either eliminated or shaped into good ones. This activ-
ity of foraging led researchers to use it as optimisation process: animals take
action to maximise the energy obtained per unit time spent foraging, in the
face of constraints presented by its own physiology (e.g., sensing and cogni-
tive capabilities) and environment (e.g., density of prey, risks from predators,
physical characteristics of the search area).
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The E.coli bacteria present in our intestines also undergo a foraging strat-
egy. During the lifetime of E.coli bacteria, they undergo different stages such as
chemotaxis, reproduction and elimination-dispersal. Chemotaxis is the ability
of the bacterium to move toward distant sources of nutrients. In this stage, an
E.coli bacterium alternates between swimming and tumbling (changing direc-
tion). In reproduction, the least healthy bacteria die and the other healthiest
bacteria each split into two bacteria, which are then placed in the same loca-
tion. In elimination-dispersal, any one bacterium is eliminated from the total
set by dispersing it to a random location. An outline of the BFO algorithm is
presented in Algorithm 1.

Algorithm 1. Canonical BFO algorithm
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As depicted in Algorithm.1, the BFO algorithm considered in this chap-
ter contains three steps, namely, chemotaxis, reproduction, and elimination-
dispersal. A description of each of these steps is as follows:

A. Chemotaxis
Microbiological studies show that E.coli bacteria move by their flagella,

or biological engines referred to by many biologists. When all the flagella
rotate counterclockwise, the E.coli bacteria move forward, when all the flagella
rotate clockwise, the E.coli bacteria slow down and tumble in its place. The
foraging of E.coli bacteria is accompanied by the alternation of the two modes
of operation its entire lifetime, and the bacteria are able to find nutrients, avoid
noxious substances. The chemotactic step is achieved through tumbling and
swimming via Flagella, which is illustrated in Figure 1.

 

Tumble 

Tumble 

Swim 

Swim 

Swim 

Unit walk 

Chemotactic step with tumbling and swimming 

Fig. 1. Chemotactic Step

In the existing BFO algorithm, a tumble is represented by a unit walk with
random direction, and a swim is indicated as a unit walk with the same direc-
tion in the last step. After one step move, the position of the ith bacterium
can be represented as

θi(j + 1) = θi(j) + C(i) ∗ φ(j)

where θi(j) indicates the position of the ith bacterium at the jth chemotactic
step. C(i) is the step size taken in the random direction, which is specified
by φ(j), a unit length random direction. Let J(i, j) denotes the cost at the
position of the ith bacterium θi(j). If at θi(j + 1), the cost J(i, j + 1) is bet-
ter(lower) than the cost at θi(j), another step of swimming is taken, and is
continued as long as it continues to reduce the cost, but only up to a maxi-
mum number of steps, Ns. This means that the bacterium will tend to keep
moving if it is headed in the direction of an increasingly favorable environment.

B.Reproduction
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After Nc chemotactic steps, a reproduction step is taken. Let Nre be the
number of reproduction steps to be taken. The accumulated cost of each bac-
terium is calculated as the sum of the cost during its life, i.e.,

∑Nc+1
j=1 J(i, j).

All bacteria are sorted in order of ascending accumulated cost(higher accumu-
lated cost represents that a bacterium has lower fitness value, which means it
did not get as many nutrients during its life of foraging and thus unlikely to
reproduce ). In the reproduction step, only the first half of population survive
and a surviving bacterium splits into two identical ones, which are placed at
the same location. Thus, the population size of bacteria is kept constant.

C.Elimination - dispersal
The elimination-dispersal step happens after a certain number of repro-

duction steps. A bacterium is chosen according to a preset probability ped, to
be dispersed and moved randomly to a new position within the optimisation
domain.

The chemotactic step provides a basis for local search, the reproduction
step speeds the convergence, and the elimination-dispersal step prevent the
local optimum trapping effectively. For the BFO algorithm employed in this
chapter, we did not consider the social swarming effect during the chemotac-
tic stage, where cell-released attractants are used to signal other cells that
they should swarm together. The ways representing swarming effect can be
different, Passino [26] suggests a cell-cell attractant/repellant function, how-
ever, it remains a question of how much more marginal benefits it brings in
by adding complexity of the basic algorithm. For this reason, we focus our
study of the basic form of BFO algorithm, where chemotactic step size pa-
rameter C(i) is adapted to control the convergence speed, i.e., C(i) starts
from Range of search domain

100 , and shrinks after each reproduction step.
The basic form BFO bears many similarities to the canonical GA, in the

next section, we continue by presenting a comparison of BFO and the canoni-
cal GA on some benchmark problem instances in order to assess the searching
ability of BFO for global optimum.

3 Comparative study with GA

The comparison with GA is undertaken to understand the relative perfor-
mance characteristics of BFO. Then it might be possible to build newer ver-
sions of BFO, for example, hybrid GA-BFO algorithms.

BFO and GA are all population based search algorithms. As shown from
Table 1, the nutrient concentration function and the fitness function used
in BFO and GA respectively are both types of landscape. In BFO, bacteria
in the most favorable environments gain a selective advantage for reproduc-
tion, which is similar to the Selection process in GA. In BFO, the bacteria
with higher fitness (lower cost) split into two children, which are at the same
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Table 1. Comparison of BFO and canonical GA

BFO GA

Nutrient concentration function Fitness function
Bacterial reproduction Selection
Bacterial splitting Crossover
Elimination and dispersal Mutation

concentration, whereas in GA, with crossover they generally end up around
their parents on the fitness landscape. In BFO, elimination-dispersal results in
physical dispersion in a geographical area, and mutation in GA results geno-
typical changes, but they both can help jumping out of the local optimum
trap during the search.

Note: While implementing the BFO algorithm in Matlab, instead of using an
inner for loop for each bacterium i within the chemotactic loop 3, we process
the population of all the bacteria together in a matrix form, which improves
the algorithm speed significantly.

Benchmark Function Tests

Six major static benchmark functions[8, 25] are chosen to test the ability of
BFO to find the global minimum. We test these benchmark functions within 5
dimensions, so that the result would provide implications to the 5-dimensional
financial problem we consider in section 4.2. In order to get a better under-
standing of BFO, the results are compared to the canonical GA results. Details
of the benchmark functions are shown in Table 2 and Figure 2.

Table 2. Benchmark functions

f Function Mathematical representation Range f(x∗i ) x∗i
f1 Sphere f(x) =

Pp
i=1 xi

2 −5.12 ≤ xi ≤ 5.12 0 0
f2 Schwefel f(x) =

Pp
i=1(

Pi
j=1 xj)

2 −65.536 ≤ xi ≤ 65.536 0 0

f3 Rosenbrock f(x) =
Pp−1

i=1 100(xi+1 − xi
2)2 + (1− xi)

2 −2.048 ≤ xi ≤ 2.048 0 1
f4 Rastrigin f(x) = 10p +

Pp
i=1(xi

2 − 10cos(2πxi)) −5.12 ≤ xi ≤ 5.12 0 0

f5 Ackley f(x) = 20+e−20exp
“
−0.2

q
1
p

Pp
i=1 xi

2
”
−

exp
“

1
p

Pp
i=1 cos(2πxi)

”
−30 ≤ xi ≤ 30 0 0

f6 Griewangk f(x) =
Pp

i=1
xi

2

4000 −
Qp

i=1 cos
“

xi√
i

”
+ 1 −600 ≤ xi ≤ 600 0 0

f1: Sphere’s function (also known as De Jong’s function 1) is the simplest
test function, which is continuous, convex and unimodal.

3The original Matlab code of the algorithm by Passino can be found on the web
address http:/www.ece.osu.edu/~passino/ICbook/ic_index.html
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f2: Schwefel’s function produces rotated hyper-ellipsoids with respect to
the coordinate axes. It is continuous, convex and unimodal.

f3: Rosenbrock’s function (also known as De Jong’s function 2, or Banana
function) is a classic optimization problem. The global optimum is inside a
long, narrow, parabolic shaped flat valley. To find the valley is trivial, however
convergence to the global optimum is difficult and hence this problem has been
repeatedly used to assess the performance of optimization algorithms.

f4: Rastrigin’s function is based on function 1 with the addition of cosine
modulation to produce many local minimum. Thus, the test function is highly
multimodal 4. However, the location of the minimum are regularly distributed.

f5: Ackley’s function is a widely used multimodal test function.
f6: Griewangk’s function is similar to Rastrigin’s function. It has many

widespread local minimum. However, the location of the minimum are regu-
larly distributed.

The parameters used for BFO are shown in Table 3. The value are chosen
according to trial and errors before, to make balance between search speed and
accuracy. The chemotactic step size C(i) starts from Range of search domain

100 ,
and shrinks after each reproduction step. The larger C(i) results in the jump
out of local optimum during the early search, and the shrank C(i) make the
convergence slower, exploring more accurate value around the local minimum.

Table 3. Initializing BFO Parameters

Parameters Definition

D = 5 Dimension of the search space
S = 50 Number of bacteria (population size)
Nc = 20 Maximum number of chemotactic steps
Ns = 4 Maximum number of swimming steps
Nre = 2 Maximum number of reproduction steps
Sr = S/2 Number of bacteria for reproduction/splitting in two
Ned = 2 Maximum number of elimination-dispersal steps

ped = 0.25 The probability that each bacterium will be eliminated/dispersed
C(i) Chemotactic step size for bacterium i

To make a fair comparison between BFO and GA, we use same population
size of 50, the same dimension of 5, and the same number of iterations as 100.
Where in GA, the number of iterations is equivalent to the number of gen-
erations, and in BFO, number of iterations is the count of total chemotactic
steps taken for each bacterium at the end of the algorithm. We set crossover
rate of 0.7, and mutation rate of 0.05.

4A function is multimodal if it has two or more local optimum
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Fig. 2. Two dimensional visualization of benchmark functions
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The results are shown in Table 4, where both BFO and GA are run 30
times. The first column lists the minimal (optimal) objective value found
during the 30 runs within the whole population. The second and third column
lists the mean and standard deviation for the minimal value of 30 runs. The
Time column shows the averaged processing time taken for each run.

Table 4. Results of BFO and GA with 30 runs for benchmark functions testing

Algorithm Best Mean S.D. Time(s)

f1 : Sphere′s function

BFO 0.000376 0.00194 0.00103 0.047
GA 0.002016 0.00202 1.32e-018 1.07

f2 : Schwefel′s function

BFO 0.1717 6.55 9.508 0.049
GA 0.1982 0.55 0.614 1.21

f3 : Rosenbrock′s function

BFO 0.03989 0.578 0.73 0.050
GA 0.06818 2.46 1.43 1.17

f4 : Rastrigin′s function

BFO 2.032 10.4 3.84 0.058
GA 0.399 0.7841 0.69 1.06

f5 : Ackley′s function

BFO 0.0361 3.11 4.14 0.085
GA 1.0895 1.0895 9.03e-016 1.14

f6 : Griewangk′s function

BFO 0.3271 0.687 0.17 0.113
GA 0.7067 0.722 0.015 1.20

As suggested in Table 4, BFO can find more accurate minimal(optimal)
results than GA except for f4- Rastrigin′s function. f4 is a highly multimodal
function, where BFO is more likely to be trapped in the local minimum in this
case. The average processing time to run BFO is much shorter than GA for
same number of iterations. And though BFO found accurate minimal values,
the mean and standard deviation is rather high in function f2, f4 and f5.

The global search process for f3 using BFO and GA is illustrated in Figure
3, obviously from the graph, GA converges much earlier with fewer iteration
steps compared with BFO, however, BFO can find more optimal objective
value with more iterations. There is always trade-off between accuracy and
speed, and BFO gives good balance with acceptable accuracy and search speed
compared with GA. It is then reasonable to apply BFO solving real financial
problems, such as parameter estimation considered in the next section. Tra-
ditionally statistical computing methods are usually employed in finance for
parameter estimation, it requires gradient information about the objective
function and often requires the initial estimates of optimising parameters,
however, BFO is not confined by these. In the following section, we illustrate
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BFO estimating parameters of a EGARCH model for the purpose of volatility
option pricing.
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Fig. 3. Objective Value vs. Number of Generations. GA converges earlier than
BFO, however, BFO can find more optimal objective value with more iterations.

4 Volatility Option Pricing Model

4.1 Volatility Option

Volatility is a measure of how much a stock can move over a specific amount
of time. The more variability there is in the price changes of the stock or
index, the higher the volatility. It is defined as the standard deviation of daily
percentage changes of the stock price. Options are financial instruments that
convey the right, but not the obligation, to engage in a future transaction on
some underlying security. For example, the buyer of a European call option
has the right, but not the obligation to buy an agreed quantity of a particular
security (the underlying instrument) from the seller of the option at a certain
time (the expiration date) for a certain price (the strike price).

In February 2006, options on the S&P500 volatility index (VIX Options)
began trading on the Chicago Board of Exchange(CBOE), which is the first
product on market volatility to be listed on an regulated securities exchange.
The S&P500 Volatility Index (VIX) was created in 1993 as the first measure
of volatility in the overall market. VIX is designed to reflect investors’ con-
sensus view of expected stock market volatility over the next 30 days. VIX is
the widely disseminated benchmark index commonly referred to as the mar-
ket’s “fear gauge” and serves as a proxy for investor sentiment - rising when
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investors are anxious or uncertain about the market and falling during times
of confidence or complacency. VIX options offer investors the ability to make
trades based on their view of future direction or movement of the VIX, and
option buyers have the advantage of limited risk. VIX options also offer the
opportunity to hedge volatility risk of a portfolio, distinct from price risk.

The growing literature on volatility options has emerged after the 1987
stock market crash. Brenner and Galai [3, 4] first suggested options written
on a volatility index that would serve as the underlying asset. Towards this
end, Whaley [33] constructed VIX (currently termed VXO), a volatility index
based on the S&P 100 option’s implied volatilities 5 traded in CBOE. Ever
since, other implied volatility indices have also been develop (e.g., VDAX in
Germany, VXN in CBOE, VX1 and VX6 in France). Various models to price
volatility options written on the instantaneous volatility have also been de-
veloped (e.g., Whaley [33], Grunbichler and Longstaff [11], and Detemple and
Osakwe [7]). These models differ in the specification of the assumed stochas-
tic process, and the assumptions made about the volatility risk premium. For
example, Grunbichler and Longstaff [11] specify a mean reverting square root
diffusion process for volatility. Their framework is similar to that of Hull and
White [15], Stein and Stein [28] and others. Since volatility is not trading at
the time they assume that the premium for volatility risk is proportional to
the level of volatility. This approach is in the spirit of the equilibrium ap-
proach of Cox, Ingersoll and Ross [6]. A more recent paper by Detemple and
Osakwe [7] also uses a general equilibrium framework to price European and
American style volatility options. They emphasize the mean-reverting in log
volatility model.

The literature on option pricing under stochastic volatility can be grouped
into two categories - the bivariate diffusion and GARCH (generalized autore-
gressive conditional heteroskedasticity 6 ) approaches. The former strand ap-
proaches option pricing with stochastic volatility in a diffusion framework,
assuming that the function of asset price and the volatility of an asset fol-
low stochastic processes. The latter develops the option pricing model in
a GARCH framework. GARCH models are popular econometric modelling
methods, having been firstly specified by Engle [10] and Bollerslev [1], they
are specifically designed to model and forecast changes in variance, or volatility
per se. These two strands of option pricing models are unified by a conver-
gence result that the GARCH option pricing model weakly converged to a
bivariate diffusion option pricing model[23, 9].

Figure 4 provides some empirical results about the volatility of S&P500 in-
dex, based on sample period from 02/01/1990 to 30/12/2006, the data source

5Implied volatility is simply the volatility that makes the theoretical value of an
option equal to the market price of an option.

6the “heteroskedasticity” term refers to a condition which exists when the dif-
ferences between actual and forecast values do not have a constant variance across
an entire range of time series observations.
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is CBOE: 4(a) shows the daily closing values of the S&P 500 equity index in
the sample period. There appears no long-run average level about which the
series evolves. This is evidence of a nonstationary time series. 4(b) illustrates
the continuously compounded returns (the log returns) 7 associated with the
price series in Figure 4a. In contrast to the price series in 4(a), the log returns
appear to be quite stable over time, and the transformation from prices to
returns has produced a stationary time series. 4(c) shows the closing level of
the S&P 500 Volatility Index (VIX) during the sample period. We could in-
tuitively find the volatility clustering effect, where large volatility movements
are more likely to be succeeded by further large volatility movements of ei-
ther sign than by small movements. 4(d) gives an example of the probability
density function of VIX, the dots represents the frequency of VIX occurred
within range of values in the x-axis, and the belled curve line represents the
probability of ln(VIX) for a normal distribution (with mean µ = 2.89, and
standard deviation σ=0.32). It shows that VIX tends to follow a lognormal
distribution.
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Fig. 4. Empirical Results on Volatility of S&P500

We can see from the empirical results in Figure 4, that the volatility rates
of S&P 500 are higher over certain periods and lower in others, and that pe-
riods of high volatility tend to cluster together. Therefore, we would expect

7Denoting the successive price observations made at times t − 1 and t as Pt−1

and Pt respectively, then we could obtain the continuously compounded returns as
Rt = log Pt

Pt−1
= logPt − logPt−1, this is the preferred method for most financial

calculations since the log returns are more stationary and continuously distributed.
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the volatilities to be correlated to some extent. Also it is noticeable that the
volatility tends to revert to some long-running average (mean-reversion prop-
erties). In this chapter, we consider the mean-reverting log process (MRLP)
option pricing model, proposed by Detemple and Osakwe [7]. The relevance of
this model is motivated by (i) substantial empirical evidence supporting the
EGARCH (Exponential GARCH) model of Nelson [24] and (ii) the fact that
EGARCH converges to a Gaussian process that is mean reverting in the log
and thus matches our MRLP specification.

4.2 EGARCH Pricing Model

With the existence of too much noise in the newly traded volatility op-
tion data, we calibrate the MRLP option pricing model by estimating the
corresponding EGARCH model and then taking the limit. The exponential
GARCH (EGARCH) model 8 is an asymmetric model designed to capture the
leverage effect, or negative correlation, between asset returns and volatility.

The EGARCH 9 (1,1) model considered in this chapter is set up as follows:
The conditional mean model:

yt = C − 1
2
σ2

t + εt (1)

where εt = σtzt, andzt ∼ N(0, 1)
yt = log( St

St−1
) , (the log returns of S&P)

The conditional variance model:

logσ2
t = K + G1logσ2

t−1 + A1[|zt−1| − E(|zt−1|)] + L1zt−1 (2)

Where zt−1 = |εt−1|
σt−1

E(|zt−1|) =
√

2/π , if zt ∼ Gaussian

Duan [9] shows that under the locally risk-neutralized probability mea-
sure Q, the asset return dynamic takes the form in equation 1 (also refers to
Detemple [7] and Hentschel [14]).

There are five parameters to be estimated using BFO, namely, C, K, G1, A1,
and L1, the search domain is from -1 to 1. C is the conditional mean constant,
K is the conditional variance constant, G1 (GARCH term) is the coefficients

8The EGARCH model was proposed by Nelson [24] , the nonnegativity con-
straints as in the linear GARCH model are taken out and so there are no restriction
on the parameters in this model.

9The EGARCH model specified here is often referred to as the EGARCH in
Mean (EGARCH-M) model, since the conditional variance term σ2 in the variance
equation also appears in the mean equation
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related to lagged conditional variances, A1 (ARCH term) is the coefficients
related to lagged innovations, L1 is the leverage coefficients for asymmetric
EGARCH-M(1,1) model. The coefficient of σ2 (GARCH in Mean term) is
fixed at − 1

2 , hence not being estimated.
The left-hand side of equation 2 is the log value of the conditional variance.

This implies that the leverage effect is exponential, rather than quadratic, and
the forecasts of the conditional variance are guaranteed to be nonnegative. The
presence of leverage effects can be tested by the hypothesis that α3 < 0. The
impact is asymmetric if α3 6= 0.

The weak limit of this model converges to the unique strong solution of
the MRLP (mean-reverting log process) stochastic volatility diffusion model.
The limiting process is:

d ln(St) = (r − δ − 1
2
V 2)dt + Vt(ρdZ1t +

√
1− ρ2dZ2t) (3)

d ln(Vt) = (α− λln(Vt))dt + σdZ1t (4)

Detemple and Osakwe ([7]) derived analytic pricing formulae for European
volatility options as a functions of parameters α, λ, σ and ρ, based on the
MRLP volatility diffusion model. Where α/λ denoting a long run mean for log
(V), exp

(
(α + 1

4σ2)/λ
)√

285 denoting a long run mean annualized volatility
(based on 285 days), and ρ represents the correlation between Z1 and Z2.
These parameters for the option pricing model can be calculated as below [9]:

α =
K

2
+

A1√
2π

λ = 1−G1

σ =
1
2

√
L1

2 + (
π − 2

π
)A1

2

ρ =
L1
2σ

(5)

We employ BFO to optimize the EGARCH model parameters: C, K, G1, A1

and L1, details is explained in the following part.

4.3 EGARCH Estimation using BFO

The EGARCH model can be estimated by maximum likelihood estimation
(MLE). The idea behind maximum likelihood parameter estimation is to de-
termine the parameters that maximize the probability (likelihood) of the sam-
ple data. From a statistical point of view, the method of maximum likelihood
is considered to be more robust and yields estimators with good statistical
properties. Although the methodology for maximum likelihood estimation is
simple, the implementation is mathematically intense. For the EGARCH mod-
els specified in equation 1,2, the objective is to maximise the log likelihood
function (LLF ) as follows:
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LLF = −1
2

T∑
t=1

[log(2πσ2
t ) +

ε2t
σ2

t

] (6)

Given the observed log return series, the current parameter values, and
the starting value of z1 ∼ N(0, 1), σ2

1 = exp(K), the σ2
t and εt are inferred

by recursive substitution based on the conditional mean/variance equation
(equation 1 and 2):

σ2
t = exp(K + G1logσ2

t−1 + A1[|zt−1| − E(|zt−1|)] + L1zt−1)

z(t) = (−C + yt +
1
2
σ2

t )/σt

εt = σtzt

(7)

The log-likelihood function then uses the inferred residuals εt and condi-
tional variances σ2

t to evaluate the appropriate log-likelihood objective func-
tion in equation

We employ BFO as an optimisation tool searching for the optimal pa-
rameters and maximising the log-likelihood objective function. Since min-
imising the negative log-likelihood (−LLF ) is the same as maximising the
log-likelihood(LLF ), we use −LLF as our nutrient function (the objective
function). And the goal is to minimize the −LLF value, by optimising pa-
rameters C, K, G1, A1, L1 within the search domain.

5 Results

The EGARCH model is fitted to the return series of S&P 500 daily index
using BFO algorithm. The S&P 500 (Ticker SPX) equity index is obtained
from CBOE, with the sample period from 02/01/1990 to 30/12/2006, for a
total of 4084 daily observations (the first price data at 02/01/1990 is used to
calculate return series, hence the return series have 4083 observations).

The parameters used in the BFO algorithm are listed in Table 5. They
are chosen based on benchmark function results, and adjusted on trial and
errors for this particular problem. C(i) is decided by varying it from 0.01 to
0.1 in step of 0.01, and running the BFO algorithm for 10 trials in each case
respectively. The best result to achieve the mean of the minimal J is obtained
for C(i) = 0.008.

Figure 5 depicts the evolution of the objective function, measured using
negative maximum likelihood (−LLF ), as a function of the iteration number
for a single run of the algorithm. Figures 6(a), 6(b), 6(c), 6(d) and 6(e) de-
pict the evolution of the parameters C, K, G1, A1, and L1 as a function of the
iteration number for a single run of the algorithm. In the early generations
BFO mainly performs global search for the optimum value, with quicker con-
vergence than the latter generations, where local optimal search is focused.
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Table 5. BFO Parameters

Dimension of the search space: D = 5
Population size: S = 50
Chmotactic steps: Nc = 20
Swimming steps: Ns = 4
Reproduction steps: Nre = 4
Number of bacteria for reproduction/splitting: Sr = S/2
Elimination-dispersal steps: Ned = 2
Probability that each bacterium will be eliminated/dispersed ped = 0.25
Chemotactic step size for bacterium i: C(i) = 0.08

From the 40th iteration, the optimal objective value becomes worse and the
effect lasting for a few generations, this is due to the elimination-dispersal
step conducted in iteration 40, by allowing the optimal value to be worse, we
can jump out of the local minimum, and moving towards global optimum.
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Fig. 5. Objective Value vs. Iteration

The best results over 30 runs are reported in the second column of Table
6. The best results averaged over 30 runs are reported in the third column.
The standard deviation of the best results over 30 runs are reported in the
fourth column. In order to provide a benchmark for the results obtained by
BFO, a Matlab optimising function fmincon was used. The function fmincon
uses sequential quadratic programming (SQP) methods, which closely mimic
Newton’s method for constrained optimization. It requires information about
the gradient of the objective function and initial estimates of the optimising
parameters, while BFO does not require these. Running BFO over 30 trials,
we obtain the results shown in Table 6.

From Table 6, we obtain the the optimal objective (the minimal −LLF )
value of -14180.98, which is slightly lower than -14244.13 obtained in Matlab
using the default fmincon function. The result is reasonably acceptable and
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Fig. 6. Evolution of parameters over generations

Table 6. Results of BFO with 30 runs

Parameter Optima Mean Standard Deviation Matlab optimisation

−LLF (Objective) -14180.98 -14099.87 32.3997 -14244.13
C 0.0005 0.0003 0.00067 0.0002
K -0.3588 -0.301 0.0478 -0.3643
G1 0.9107 0.904 0.0056 0.9610
A1 0.1634 0.235 0.0489 0.1782
L1 -0.1197 -0.0495 0.0473 -0.1184

the standard deviation is relatively small, indicating the stability of BFO
algorithm. The estimated optimal parameters value are: C = 0.0005, K =
−0.3588, G1 = 0.9107, A1 = 0.1634, L1 = −0.1197. The leverage effect term
L1 is negative and statistically different from zero, indicating the existence
of the leverage effect in future stock returns during the sample period. With
the flexibility of BFO, it is believed that by further evolving BFO parameters
such as chemotactic step size C(i), number of chemotactic steps Nc etc, we can
improve the accuracy of the results, however, there is always trade off between
accuracy(achieved by adding complexity to the algorithm) and convergence
speed.

Based on the above results and equation 5, the resulting stochastic volatil-
ity option pricing model parameters are: α = −0.1142, λ = 0.0893, σ = 0.0775
and ρ = −0.7722. The negative correlation ρ corresponds to the asymmet-
ric relationship between returns and changes in volatility, i.e., the leverage
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effect. The negative α implied mean reversion with a long run mean for log
(V) of α/λ = −1.2790, and a long run mean annualised volatility (based on
285 days) of exp

(
(α + 1

4σ2)/λ
)√

285 = 4.7783 percent. The speed of rever-
sion λ, is small, indicating strong autocorrelation in volatility which in turn
implies volatility clustering. These are consistent with the empirical results
found from Figure 4.

Furthermore, based on the estimated parameters of the volatility option
pricing model, hedgers can manage their risk/volatility in the existing in-
vestment/portfolio. Traders can also use the generated theoretical volatility
options prices as a trading guide to make arbitrage/speculating profits.

6 Conclusion

In this chapter, we introduced and assessed the recently proposed bacterial
foraging optimisation (BFO) algorithm. It bears many similarities to the ex-
isting GA, through a further comparative study between BFO and GA and
from the testing results using six major benchmark functions, we find that
BFO can find a satisfactory trade-off between the global and local search. It
has fast running speed which has special implications to the dynamic prob-
lems. However, while implementing BFO solving multimodal problems, more
efforts should be done to choose parameters before coming to an optimal es-
timation. In solving our financial problem, the EGARCH volatility option
pricing model, BFO shows its applicability and flexibility - not dependent on
the gradient information about the nutrient (objective) function. This has fur-
ther implications to estimate more complicated financial econometric models.
BFO mimics social foraging behavior of bacteria, this is similar to the be-
havior of individual investors in the financial market, where they might share
information and have herding effect, hence it worth further investigation of
BFO with swarming effect and the applications in the financial market.
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