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Objectives: The planning and control of team sport training activities is an extremely important aspect of athletic
development and team performance. This research introduces a novel system which leverages techniques from
the fields of control system theory and artificial intelligence to construct optimal future training plans when un-
expected disturbances and deviations from a training plan goal occur.
Design: Simulation-based experimental design.
Methods: The adaptation of training load prescriptions was formulated as an optimal control problemwhere we
seek to minimize the difference between a desired training plan goal and an observed training outcome. To de-
termine themost suitable approach to optimize future training loads the performance of an artificial intelligence-
based feedback controller was compared to random and proportional controllers. Computational simulations (N
= 1800)were conducted using a non-linear training plan spanning 60 days over a 12-week period, and the con-
trol strategies were assessed on their ability to adapt future training loads when disturbances and deviations
from an optimal planning policy have occurred. Statistical analysis was conducted to determine if significant dif-
ferences existed between the three control strategies.
Results: The results of a repeated measures analysis of variance demonstrated that an intelligent feedback con-
troller significantly outperforms the random (p < .001, ES = 7.41, very large) and proportional control (p <
.001, ES = 7.41, very large) strategies at reducing the deviations from a training plan goal.
Conclusions: This system can be used to support the decision making of practitioners across several areas consid-
ered important for the effective planning and adaption of athletic training.
© 2021 The Author(s). Published by Elsevier Ltd on behalf of SportsMedicine Australia. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Practical implications

• Practitioners can use the novel control system presented in this study
to support key decisions concernedwith the planning and adaption of
athlete training loads.

• Training loads are automatically generated from higher level training
goals over medium to long term horizons.

• The model introduced in this study is responsive to feedback and
adapts future training to ensure that athletes are only exposed to
highly controlled and feasible loads.

• Intelligent control-based approaches are more effective at reducing
the effect of unplanned disturbances compared to proportional and
random methods.
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1. Introduction

The planning and control of team sports training is an important
aspect in the development of athletes and the enhancement of
performance.1 Teamsports typically present a greater challenge than in-
dividual sports for coaches, scientists and support staff, as multiple
training goals need to be accounted for and satisfied.2 The quantity or
volume of training load accumulated during a training session is a pri-
mary variable that requires considered manipulation to achieve long-
term adaptations and reduce the risk of injury.3 The prescription of
training load is therefore prioritized as a higher level goal in the prepa-
ration and development of athletes by coaches and support staff. Train-
ing load has also shown to be a key factor in the regulation of fatigue4

and is routinely manipulated in a training plan to achieve desired adap-
tions across a training phase. The construction of training plans and pre-
scription of training loads across a training phase have largely been
guided by instinct and experience.5 While this is suitable for simple
lia. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
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higher level goals, research has shown that when the complexity of a
planning task starts to increase, our performance at constructing an op-
timal policy over a medium to long term duration exponentially
decreases.6 It is also common for planned training goals to not be real-
ized during a training session, week or phase. These unplanned devia-
tions can accumulate disrupting the complex balance between fatigue,
adaption and athlete performance.

Previous work has sought to address the problem of planning train-
ing prescriptions and several contributions have beenmadewhich have
leveraged the utility of mathematical optimization to produce optimal
training plans.7,8 While the methods detailed in previous research
have contributed to addressing theproblemof optimally planning train-
ing sessions, these approaches do not include any provisions to account
for disturbances and deviations away from an optimal or desired plan-
ning policy. In control system theory this approach is described as an
open-loop control system, where the system does not adapt its control
actions based on the system's outputs. In an open-loop control system,
once an optimal training plan has been designed it cannot be adjusted
based on an athlete's response or external factors, which disrupt the re-
alization of a training plan goal.9 This type of approach may be suitable
to prescribe training loads to athletes when there is limited feedback
available. However, currently, it is common practice in elite sport to
have extensive athlete monitoring data available pre, during and post-
training.10,11 This information can be effectively utilized to dynamically
inform the future training plans and load prescriptions of athletes. To
utilize the vast quantity of athlete training data currently available and
address the problem of minimizing deviations from optimal training
plans, we have sought to design and implement an intelligent control
system. Intelligent control refers to approaches that use artificial intelli-
gence techniques such as fuzzy logic, neural networks and genetic algo-
rithms in the design and operation of a control system.12 The aim of
these systems is to produce rational control actions to achieve a goal
or maintain a goal state, typically in an autonomous fashion or as part
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of a man–machine interface. Intelligent control systems have shown
to be more effective at controlling complex dynamical systems com-
pared to conventional methods and have been deployed in several
real world applications including autonomous driving, utility power
and health care.13

This paper introduces a new method to assist coaches, scientists
and support staff in the planning and control of training load pre-
scriptions to their athletes. This new method seeks to address the
problem of constructing optimal training plans over medium to
long term durations and the requirement to adapt those plans
when real world disturbances force a deviation away from the opti-
mal policy. We hypothesize that an intelligent controller (IC) will
be superior to both a random controller (RC) and a proportional con-
troller (PC) when applied to the task of prescribing and adapting
training loads to realize a higher level training plan policy goal. The
specific control strategies of the IC, RC and PC will be discussed in
more detail in the proceeding sections.

2. Methods

This section will detail the intelligent control model (Fig. 1), how a
training plan is initially formulated using a hierarchical training goal
and the structure of the controller which is used to adapt training
loads in response to feedback. The model is then subject to robustness
testing using a traditional training plan incorporating both linear in-
creases in training load and a nonlinear taper. The purposed method
consists of a hierarchical policy goal (U), which is expected to be
achieved at the mesocycle level, and realized through the optimization
and adaptive control of training loads (OPL) at the microcycle level
using a closed-loop feedback control model (Fig. 1).

A training plan goal can be explicitly defined by a coach in a hierar-
chical fashion, for example, a coach may plan a linear increase in the
total weekly training load over X number of weeks which is then
Athlete Observed
Load (OL)

k (OPL, OL)

(OL)

load control model.
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realized through the accumulation of training sessions during those
weekly periods.

A training plan goal can also be implicitly defined using the follow-
ing variables and mathematical formulation:

G ¼ B� R ð1Þ

where G is the desired goal load, B is a base load and R is a ramp rate or
uplift factor. For example, a coach may want to increase the current
weekly base training loadby anuplift factor of 15%.14We can further de-
fine sub goals in a similar manner whereby an overall goal G is a linear
combination of subgoals as per Eq. (2).

G ¼ G1 þ G2 . . .Gn ð2Þ

Numerous sub goals can also be combined in a piecewise style to
form a combination of both linear and non-linear loading strategies. A
sub goal will then consist of a number of variables x ∈ ui that are
representative of the training session load values which when
aggregated should equal the overall sub goal load. The training session
load x can then be intelligently prescribed and subsequently adapted
using mathematical optimization and feedback control so that a
hierarchical goal set by the coach can be fully realized.

The process of mathematical optimization consists of finding a set of
variables that either minimize or maximizes a defined goal commonly
referred to as an objective or fitness function. In control problems, the
goal is typically to minimize the difference between an observed
trajectory and the planned or preferred trajectory. In this instance, we
define our objective function as a minimization of the root mean
squared difference between the optimal or desired training plan goal
G and anobserved training outcomeO, where themanipulated variables
are the set U of future daily training session load values.

min f G,Oð Þ ¼
ffiffiffi
1
n

r
∑
n

i
Gi,Oið Þ2 ð3Þ

Constraints can also be added such that for any training session x∈ ui
⊂U an upper and lower bound can be placed on the possible value it can
take to ensure it is feasible and realistic. For example 0 < x < 1000.

In order to perform the minimization we need to find some set of
optimal inputs U subject to constraints, we utilize an algorithm from a
branch of artificial intelligence known as evolutionary computation to
search the space of possible solutions. The field of evolutionary
computing utilizes biologically inspired population based heuristic
search algorithms to find solutions to complex problems in a time
efficient manner.12,15 In this experiment we have utilized the differen-
tial evolution (DE) algorithm. DE operates by generating an initial
Fig. 2. Training
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population of solutions to a problem and then proceeds to iteratively
find better solutions by traversing a search space of all potential solu-
tions through the use of mutation, recombination and selection based
operators. Once a globally optimal solution is found, or the algorithm
cannot improve on the current solution after a set number of attempts,
the best solution thus far is returned.15,16 DE has shown to be a simple
and effective optimization method across a number of different
domains and applications,17 thus we have chosen it to perform the in-
telligent adaptation/prescription of future training loads in the IC. The
RC consists of generating random future training load values from a dis-
crete uniformdistributionwith the sameupper and lower bounds as the
IC. Finally, the PC uses a proportional strategy to adapt future training
loads by calculating the difference between an optimal session load
and the realized/observed load, and the difference is then added
(subtracted) to the next sessions' optimal value; if the resulting future
session value is negative a zero value is applied to indicate no training
should be conducted (Fig. 2).

To test the robustness of the IC, and compare it to an RC and PC, we
design a set of simulation experiments that replicate a real world train-
ing scenario. A training goal is defined consisting of several linear in-
creases in weekly training load followed by a nonlinear taper. The
training plan consisted of 60 training sessions over a 12-week period.
This goal was chosen as it is thought to be representative of a typical
athlete training plan.18–20 The simulation experiment was conducted
using a custom programwritten in the python programming language.
To simulate a deviation away from an optimal training plan, individual
training session load values were subject to added random noise gener-
ated from a Gaussian distribution with a mean of zero and a standard
deviation equal to 50% of the original optimal training session load
value. This process was designed to replicate unforeseen over and
under accumulations of training session load as a result of several real
world factors, such as the inclusion of extra training drills mid-session,
a higher than expected training intensity or a within session change in
training activities due to environmental conditions. In this experiment
training load was quantified in arbitrary units, however the system
will accept values in any unit of measurement the user prefers (Watts,
Metres, TRIMP, etc.). The system can also be easily adapted to accept
multiple inputs and produce multiple training load values by adapting
the fitness function to be compatible with multivariate optimal control
procedures.

In order to quantify and compare the performance of each control
strategy two quantitative outcome measures were used, first, the aver-
age of the rootmean squared errors (RMSEs) between the optimal plan-
ning policy and the adapted planning policy at every updated time step
was calculated: this measure represents how close an adapted plan is to
the desired or optimal planning policy. A score of zero indicates no
plan policy.

Image of Fig. 2


Fig. 4. PΔv controller values over thirty experimental simulations.
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difference.14 The second outcomemeasure used was the average of the
change in control signal power PΔv. Thismeasure represents the average
change in the control signal 7, which in this experiment equates to the
change in training load values between consecutive training sessions.
Thirty experimental runs were conducted totaling N = 1800 training
plan simulations. The outcome measures were then collated and
compiled for further analysis. The computational experiments were
constructed using a bespoke program written in the Python 3.8
programming language and run on a high-performance computing
cluster running a Linux operating system. The Storn and Price version
of the differential evolution was implemented using the SciPy open-
source software for mathematics, science, and engineering with the fol-
lowing custom parameters: maxiter = 100, popsize = 30, tol = 0.001.
A repeated measures analysis of variance (RMANOVA) was used to test
for significant differences between the IC, RC and PC training plan con-
trol strategies. The significance level was set at an alpha value of 5%. If
the assumption of superiority was violated Greenhouse–Geisser correc-
tions were applied. Where applicable Bonferroni post hoc analysis was
conducted. Results are reported using p-values, omega squared (ω2)
and absolute Cohen's d effect sizes. Cohen's d values, interpreted by
Hopkins, are as follows: trivial < 0.2; 0.2 ≤ small < 0.6; 0.6 ≤ moderate
< 1.2; 1.2 ≤ large < 2.0; and very large > 2.0.21 Descriptive statistics
are reported using mean ± 95% confidence intervals (CI) unless other-
wise stated. All statistical analysis was conducted using the JASP soft-
ware (Version 0.14, Amsterdam, The Netherlands).

3. Results

The results of the RMANOVA indicated significant differences between
the IC, RC and PC control strategies for the RMSE outcomemeasure (p <
.001, ES = 0.71, moderate). Bonferroni post hoc analysis revealed
significant mean differences between the IC and RC plans (p <
.001, ES = 7.41, very large) and the IC and PC plans (p < .001, ES =
2.38, very large) in addition to the RC and PC plans (p < .001, ES =
1.18, large). Significant differences were also found between the con-
trol strategies for the second outcome measure PΔv (p < .001, ES =
0.79, moderate). Post hoc analysis revealed significant differences
between the IC and RC plans (p < .001, ES = 1.43, large) and the IC
and PC plans (p < .01, ES = 0.70, moderate), and the RC and PC
plans (p < .001, ES = 9.34, very large). Fig. 3 displays the distribution
of the RMSE score values, for each control protocol, over the thirty
experimental simulations employing the specified planning policy.
Fig. 4 displays the second outcome measure PΔv.

4. Discussion

In agreement with the authors' hypothesis, the results demonstrate
that an IC was superior to both an RC and a PC when applied to the task
Fig. 3. RMSE controller values over thirty experimental simulations.
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of prescribing and adapting training loads to realize a higher-level
training plan policy goal. To the best of our knowledge, this is the first
objective method introduced to adjust future training loads when sub-
jected to real world unplanned deviations and disturbances, thereby
minimizing the difference between a realized training plan and a spec-
ified or optimal plan. The novel method which we have introduced uti-
lizes established theory from the fields of intelligent control and
artificial intelligence to provide an initial solution to an important prob-
lem in sport and exercise science. The results of our simulation experi-
ment have shown that feeding back and intelligently adapting training
plan variables, can reduce future deviations from an optimal planning
policy caused by unplanned disturbances. We have also highlighted
the relatively poor performance of the naive control strategies such as
randomly prescribing future loads or adapting future loads by adding
or subtracting load values proportional to previous deviations. These
findingsmake an important contribution to the current body of research
concerning the planning and realization of athletic training. We have
shown that even small training session deviations can accumulate
over the length of a training plan and cause an overall significant devia-
tion away from an initial optimal planning policy or a higher level goal.
This research has demonstrated that even for a simple planning policy
with linear goals, deviations can accumulate which require some form
of intelligent correction. Previous research has established the positive
physiological adaptions that can be achieved from appropriately
planned or ‘periodized’ training.22,23 Therefore the rationale for adher-
ing to a training plan is well understood, however to date no method
has been purposed to reduce the impact of deviations away from a
training plan. In this work, we have demonstrated that an intelligent
feedback controller is a feasible and effectivemethod for adapting train-
ing plans to achieve higher level linear or non-linear training goals.

The results of this experiment have demonstrated that the intelli-
gent adaptive control of training load variables can reduce the overall
deviation from a desired or optimal training plan policy quantified
using the RMSE outcomemeasure. The significant differences andmod-
erate to very large effect sizes found between the three control strate-
gies for the PΔv outcome measure suggest that the magnitude of the
control signal may be a strong discriminating factor when evaluating
the quality of an adaptive planning method, e.g. if a large unplanned
deviation occurs it cannot simply be corrected by a large deviation of
an equal and opposite magnitude. The significant RMSE and PΔv
differences found between the performance of control strategies add
further support to this argument. The RC has shown to perform worse
than the IC while demonstrating similar magnitudes of corrective ac-
tion. This would suggest that an optimal set of training load variables
exists which when realized results in the achievement of a higher
level hierarchical goal and that to achieve that goal subject to forced/un-
forced deviations from the optimal policy an intelligent search of the so-
lution space needs to be conducted to update future training plan
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variables, such that the residual negative effects of any distributive devi-
ations are minimized reducing the risk of potential illnesses, injuries
and or performance reductions. Thiswork is thefirst of its kind to be ap-
plied to the problem of training plan design and control in the field of
sport and exercise science. A limitation of this study is the lack of com-
parison between the types of corrective action which would have been
implemented by a human coach both with and without the support of
this system to make a decision. Ultimately this system is intended to
support decisionmakers in their choice of corrective action. The authors
recognize that constructing an optimal or effective training plan goal is
also currently an open area of research and comprises of several com-
plex considerations which need to be specified as inputs to this system.
However, we feel that the design of the system is such that it allows the
user to leverage their own knowledge and experience to devise goals
which are specific and sufficient for them, or which incorporate other
techniques previously reported in the literature.7,8

Future work will seek to advance the initial work presented in this
study to develop the capabilities of the feedback controller to consider
multiple inputs in the control process and be guided by model based
predictions.Wewill seek to address other considerations such as the re-
lationship between deviations from a training plan and the subsequent
effect onmeasured performance at various time points using intelligent
model-based control strategies. Finally, we will seek to robustly test the
performance of this system and its iterations after it has been deployed
and used in real world environments.

The practical applications of this work are numerous, and the impor-
tance of refined control in the training process is heightened during the
rehabilitation and return to play process.24 Athletes exhibit extremely
non-linear responses to, and deviations from, training activities during
rehab but are required to follow training plans stringently in order to
make a timely return to competition. Practitioners can use the novel
control system presented in this study to support the planning and
adaption of training during the rehabilitation process to achieve their
goals in the most time efficient way. Similarly, the application of this
system can be extended to any type of higher level goal or planning pol-
icy which can be quantified and controlled by a set of training load var-
iables. Another strength of the control systemwhich we have designed
is its flexibility, the system is training variable agnostic and the training
variable inputs that represent a higher level goal or sub-goal can be in
any unit (e.g., RPE, TRIMP and Distance). The systems' flexibility allows
it to be highly versatile, whereby a user can make trivial adjustments
adapting it to different goals and training scenarios, such as gym
based resistance training or field based conditioning.

5. Conclusion

This study has shown that an intelligent closed-loop feedback con-
troller consistently outperforms a random controller and proportional
controller when adapting the future training loads of athletes when
subjected to real world disturbances and deviations from a non-linear
higher level training plan goal. This work is the first of its kind to
apply techniques from the fields of control system theory and artificial
intelligence to the problem of training plan design and adaption in ath-
letic populations.

The system proposed in this study can be used to support coaches
andpractitioners to realize higher level training plan goalswhen subject
to forced/unforced deviations away from a desired or optimal planning
policy. Therefore this system has numerous practical applications in
various areas considered important for the effective planning, mainte-
nance and control of athletic training.
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