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Abstract

This study develops an agent-based simulation model (InventSim) of the process of product invention.
Invention is conceptualised as a search on a landscape of product design possibilities, by a population of
payoff-seeking agents (inventors). The agents employ a set of search heuristics in searching this landscape
which embed individual & social learning, and expectations of future payoffs to proposed product inventions.
In the simulation, agents compete for payoffs and co-evolve based on each other’s actions. The simulation
experiments examine the impact of agent’s search heuristics on the societal rate of inventive progress. The
results indicate that the forward-looking heuristics of election and thought-experiments are crucial in driving
forward the inventive process, even when payoff expectations for proposed product inventions are noisy.
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1 Introduction

Given the economic and social importance of the
development of new products, questions of inter-
est naturally arise concerning the dynamics of the
process of invention, and these form the research
domain of this study. Fleming and Sorenson [8]
note that the processes of commercial diffusion of
new goods have attracted substantial study:

‘. . . however, we lack a systematic and
empirically validated theory of inven-
tion.’ (p. 1019).

Insight into the process of invention is important
for several reasons. Without a robust model of
invention, the ability of managers to create or-
ganisations which encourage inventive practices is
constrained, and policy-makers risk making sub-
optimal decisions regarding how best to encour-
age invention in society in order to promote long-
term economic growth.

The lack of a theory of invention leaves open the
question how do inventors actually invent? In
product invention there are a huge number of pos-
sible choices of components and related compo-
nent attributes. This renders the dimensionality
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of product design spaces vast, and makes any at-
tempt to engage in enumerative invention futile.
Two interesting questions which naturally arise
from this observation are: what methods do in-
ventors employ to simplify their task? and what
are the implications of these methods for the rate
of inventive progress in a population of inventors?

One way inventors seek to simplify their task is
by employing search heuristics. Search heuristics
are widely used in every-day decision making, ei-
ther because of the impossibility of determining
and evaluating all possible solutions to a prob-
lem, or because the benefits from obtaining the
best, rather than a good, solution to a problem
are outweighed by the extra costs of obtaining the
optimal solution. This study examines the effect
of a number of inventor’s search heuristics on the
rate of product advance.

2 An Evolutionary Metaphor

for Invention

Evolutionary algorithms such as the GA [11, 9]
draw metaphorical inspiration from biological
evolution in order to simulate the adaptation of a
population of entities over time. Prima facie, the
framework of the GA has the potential to incorpo-
rate several salient aspects of the process of prod-
uct invention, namely: a population of entities
(product designs) which adapt over time, com-
petition for resources amongst inventors (payoff-
seeking behavior), reuse of previously invented
components (imitation), and trial-and-error ex-
perimentation.

The environment (market) favors (selects) the
better inventions from those discovered to date,
and through feedback mechanisms such as re-
alised profit and increased funding for research,
encourages further related invention through
adaptation and imitation of current product de-
signs. The concept of invention as the directed
recombination (or partial imitation) of existing
technology fragments in novel ways has a long
pedigree in studies of economic innovation [23].

Although there are parallels between biological
evolutionary processes and the process of inven-
tion, there are also important differences. The
most significant of these differences concern the
consciousness of economic agents. Unlike biolog-
ical evolution, economic agents such as inventors
intentionally direct their search efforts in order

to achieve the greatest expected payoff [2].

2.1 Conceptual Model of Invention

The conceptual model of invention underlying the
simulation experiments is outlined in Figure 1.
The model is embedded in a general evolutionary
process, but this is adapted for the salient char-
acteristics of the process of product invention.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Create Physical 
Product Invention 

Experience Variety Generation 
(mental process) 

Anchoring Selection from 
Existing Designs 

Copying Trial-and-
Error 

Backward-looking 

Forward-looking 

Influences 

Expectations 

Thought 
 Experiments 

Election Fitness-sharing 

Figure 1. Model of product invention.

The conceptual model contains the general evo-
lutionary search heuristics of selection, imitation
and trial & error experimentation, and these are
supplemented by the additional heuristics of an-
choring, thought experiments, election, and fit-
ness sharing. In the model, inventors are con-
ceptualised as starting from their existing prod-
uct design in each inventive trial (an anchoring
heuristic). The generation of novel proto-product
ideas (defined as mental product design ideas in
the heads of inventors) in an effort to improve
existing product designs, arises from a combina-
tion of copying elements of existing product de-
signs (an imitation heuristic), and incremental
trial and error invention.

In each inventive trial, an inventor is consid-
ered to generate multiple proto-product ideas (a
thought experiment heuristic). The expected
payoff to the best of these thought experiments
is compared with the expected payoff to the in-
ventor’s current product, and if higher, the proto-
product is physically made and replaces the in-
ventor’s current product (an election heuristic).
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All the expected payoffs are discounted by consid-
ering the expected degree of competition that a
proposed product idea will face (a fitness-sharing
heuristic). The heuristics of anchoring, election,
thought experiments and fitness sharing are dis-
cussed in more detail in the following subsections.

2.1.1 Anchoring

Product invention is strongly influenced by, and
anchored within, the population of currently ex-
isting product designs. Heavy reliance is placed
on historical experience by inventors, and the re-
sults of past searches become natural starting
points for new ones [19, 24]. From a technical
stand-point, as populations of engineers and de-
signers build up experience and absorption ca-
pacity [7] with current product architectures and
design elements, they will tend to draw on this ex-
perience when faced with future design decisions,
rather than re-examining all possible alternatives
ab initio in each inventive trial. Existing products
also embed past learning concerning knowledge of
customer needs. Hence, it is plausible to assume
that inventors employ an anchoring search heuris-
tic, and start their inventive activity from current
product designs.

2.1.2 Election Heuristic

Payoff-seeking inventors will not discard their
current product design until they uncover one
which they expect will produce even higher re-
turns. This represents a search heuristic ‘do
not give up a good idea until a better one
comes along’. The economic interpretation of this
heuristic is that the inventor carries out a men-
tal simulation [4, 15]. If the expected payoff to
the new product design idea appears unattrac-
tive, the ‘bad’ idea is discarded, and the inventor
stays with his current design. In the election step,
inventors compare the expected return from the
proposed proto-product design idea with that of
their current physical product and if it is less, the
proto-product idea is discarded and is not phys-
ically created. Examples of election mechanisms
abound in business, ranging from formal project
appraisal systems, to procedures for monitoring
the performance of on-going product development
projects.

2.1.3 Thought experiments

Inventors do not typically consider a single
product-design idea in each inventive trial before
they attempt to physically create a new product
[21]. Thought experiments represent the heuristic
‘generate several mental product ideas, and pick
the best of these’. These mental simulations can
include the construction of computer simulations
and mock-ups [20]. Thought experiments can be
considered as corresponding to the openness of an
inventor to new ideas. The greater the number of
mental thought experiments which inventors con-
sider when creating new products, the more open
they are considered to be to new ideas.

2.1.4 Fitness Sharing

A key factor which impacts on the return to any
product is the degree of competition it faces from
similar existing products. If there are several very
similar products in the marketplace, they com-
pete for the same customer segment, and the re-
turns to each product are likely to be lower than
they would be in the absence of competition. In
the model of invention it is assumed that inven-
tors employ a heuristic of ‘take account of ex-
pected competition’ (payoff sharing) when form-
ing their expectations as to the likely payoff to a
product idea. The fitness-sharing mechanism is
based on that of [18], and is defined as follows:

f ′(i) =
f(i)

n
∑

j=1

s(d(i, j))
(1)

where f(i) represents the original raw payoff of
product design i (the payoff to the design is cal-
culated using the NK landscape - see section 3.1)
which exists in the marketplace. If this design
suffers competition from other very similar prod-
ucts which are active in the market, its realised
payoff is reduced. f ′(i) represents the shared (re-
duced) payoff of design i, and corresponds to its
original raw payoff, reduced by an amount which
is determined by a sharing function s.

The (sharing) function s provides a measure of
the density of active product designs within a
given neighbourhood of design i on the landscape.
For any pair of designs (i, j), the sharing function
returns a value of ‘0’ if the two designs (i, j) are
more than a specified distance (‘t’) apart, and
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therefore are not considered to be competing for
the same market niche, a value of ‘1’ if the de-
signs are identical, and a scaled value between 0
and 1 otherwise. The form of the sharing function
adopted in this study was taken from [18]:

s(d) =

{

1 −
(

d
t

)α
if d < t;

0 otherwise.
(2)

where t is the neighbourhood within which de-
signs are considered to compete, d is the actual
distance between two designs, and α is a scaling
constant.

Fitness-sharing impacts on the expectations of in-
ventors as to the likely payoffs to proto-designs,
and acts to discourage inventors from closely im-
itating products which are already subject to sig-
nificant competition. In the simulation experi-
ments, all payoffs are assessed by inventors using
a shared fitness heuristic. Therefore, election and
selection (for imitation) decisions are based on
shared rather than raw payoff values. The idea of
fitness sharing embeds a co-evolutionary aspect in
the model, as payoffs are a function of the actions
of multiple as well as individual inventors.

3 Simulation Model

A relatively recent development in the analysis of
complex economic systems is the use of agent-
based modelling (ABM) [3, 16, 1]. In ABM,
the complex system of interest is split into arti-
ficial adaptive agents. The interactions, informa-
tion flows, and decision processes of these agents
can then be modelled using computer simulation.
This study uses an ABM approach, wherein the
agents are inventors, and the activities of these in-
ventors are simulated under different conditions,
in order to obtain insight into the implications of
the rules (search heuristics) governing their be-
havior.

The use of a simulation-based methodology offers
particular advantages when:

• The system of interest has stochastic ele-
ments. These generally make it difficult to
evaluate a system analytically.

• The system of interest is long-lived. Simu-
lation allows the study of such systems in a

compressed time-frame, a particular advan-
tage when studying systems with an evolu-
tionary component.

• The intention is to examine the sensitivity
of system output to changes in system in-
puts.

These issues arise in this study. Product inven-
tion is an on-going, stochastic process, and the in-
tent of the simulation experiments is to examine
the sensitivity of the rate of inventive advance in
a population of inventors (the output of the sys-
tem), to particular sets of search heuristics (the
inputs).
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Figure 2. Components of simulation model.

The simulation framework for this study is drawn
from [6]. In order to operationalise the concep-
tual model for the simulation experiments, it was
mapped into a synthesis of two general frame-
works drawn from the literature of complex adap-
tive systems, Kauffman’s NK model, and Hol-
land’s genetic algorithm (see Figure 2). The NK
model was used to define a product-design land-
scape (the environment). The GA framework was
adapted (as outlined in section 2.1) to encompass
inventor’s (agent’s) search heuristics.

3.1 Product Design Landscape

The product design landscape is defined using
Kauffman’s NK model, and a detailed description
of this model can be found in [12, 13]. The NK
model considers the behavior of systems which
are comprised of a configuration (string) of N in-
dividual elements. Each of these elements are in
turn fitness-interconnected to K other of the N
elements (K<N). In Kauffman’s operationalisa-
tion of this general framework [13], the number
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of states for each element is restricted to two (0
or 1). Therefore the configuration of N elements
can be represented as a binary string. The para-
meter K, determines the degree of fitness inter-
connectedness of each of the N elements and can
vary in value from 0 to N-1. In one limiting case
where K=0, the contribution of each of the N el-
ements to the overall fitness value (or worth) of
the configuration are independent of each other.
As K increases, this mapping becomes more com-
plex, until at the upper limit when K=N-1, the
fitness contribution of any of the N elements de-
pends both on its own state, and the simultaneous
states of all the other N-1 elements, describing a
fully-connected graph.

Physical product designs are characterised as con-
sisting of N attributes [17]. Each of these at-
tributes represents a choice of design attribute,
that an inventor faces. Hence, a specific de-
sign configuration s is represented as a vector
s1, . . . , sN where each attribute can assume a
value of 0 or 1 [22]. The vector of attributes rep-
resents an entire product design, hence it embeds
a choice of physical components, ancillary choices
concerning these components (such as their colour
or finish), the choice of configuration of the com-
ponents (their tolerances, directional orientation,
physical linkage structure), and the choice of pro-
duction technologies required to manufacture the
product design [14]. Good consistent sets of com-
ponents and attributes, correspond to peaks on
the product design landscape.

3.2 Pseudo-code for Simulation

Model

The pseudo-code for the InventSim simulator is
presented below. An overview of the simulation
experiments undertaken is provided in Figure 3.

Repeat ‘A’ times Create Product Landscape

Repeat for each string (active product design)

in the population

Take string ‘i’

Calculate fitness values for each string

in the population

For x=1:a (‘a’ thought experiments)

Select another design ‘j’ in the population

Recombine design ‘i’ and ‘j’

to produce new design ‘k’

Apply mutation operator to new design ‘k’

If design ‘k’ is best design of thought

experiments so far, store design ‘k’ in

design ‘best’

End (for loop)

If design ‘best’ is better than the original

design ‘i’,replace design ‘i’ with design

‘best’(election operator)

End (Repeat for each string loop) (end of generation)

Output results for simulation run End (Repeat ‘A’ loop)

 
 
 
 
 
 
 
 
 
 

DIVERSITY GENERATION 
 

1. Trial and Error (continuous improvement) 
 
2. Trial and Error + Binary Recombination 

(continuous improvement + copying) 

 
Landscape Ruggedness 

(K=4) 
 

 
Errorful Election 

(two levels of noise during election, zero & 0.05) 

 
Thought Experiments 

(three levels of TE=1,3 & 5) 

Figure 3. Overview of simulation

experiments.

In the simulations the inventor has a very limited
knowledge of the worth of locations on the prod-
uct design landscape when undertaking each in-
ventive trial. The inventor knows the worth of his
(her) current product design, and stochastically
selects other currently active product designs for
imitation based on their observed payoffs. The
inventor forms an expectation of the payoff of
the proto-designs generated by his thought exper-
iments, and also uses these expectations of payoff
when making an election decision. The inventor
does not have knowledge of the potential payoffs
to any other product designs during his inventive
trial.

4 Results

All results are averaged across 30 separate sim-
ulation runs, and in each run the NK landscape
is specified anew, and the positions of the initial
product designs are randomly selected. A value
of N=96 and a K value of 4 were selected in defin-
ing the landscapes. The imitation operator (bi-
nary crossover) is applied with a probability of
0.60, and the trial and error (mutation) rate is
selected to produce an expected mutation of one
bit in each product design string during each in-
ventive trial. In all the simulations, the number
of inventors is held constant at fifty.



82 Inteligencia Artificial Vol. 9 No 28 (2005)

Both the election and thought experiment heuris-
tics rely on an inventor’s ability to make estimates
of the likely payoff to a proposed product design.
However, making accurate estimates is problem-
atic, and ex-post the expectation may found to
be incorrect. The majority of new products in-
troduced each year fail [10], indicating that real-
world inventors find it difficult to assess the likely
worth of new products. In particular, the abil-
ity of inventor’s to assess the likely payoff to a
proposed product will vary depending on the na-
ture of the underlying product market. For exam-
ple, the accurate estimation of payoffs for product
ideas is likely to be particularly difficult in rapidly
changing markets for technological goods.

The long-run impact of noisy payoff assessment
on the process of invention is unclear. It could act
to retard development of promising product ideas,
or by producing occasional wrong way choices
by product inventors it could allow inventors to
escape a local optima in product design space.
Hence the simulations also examine the utility of
the heuristics of thought experiments and elec-
tion under conditions of different levels of noisy
payoff assessment when making the election deci-
sion. Two levels of noise are considered, zero and
0.05. In the latter case, the noise level applied to
a payoff assessment during an individual inven-
tive trial is modelled as a random draw from a
gaussian distribution, with a mean of zero and a
standard deviation of 0.05.

4.1 Trial and Error

Figure 4 shows the comparative curves of average
product-payoff advance in a population of inven-
tors for the scenarios where there is zero noise in
assessing the payoffs to proto-products and the
case where the noise-level=0.05, for three levels
of thought experiment (1,3 & 5), and for K=4.
Payoffs graphed are those after the first iteration
(generation), and thereafter every tenth iteration
up to 200 iterations.

In each case, inventors only use a trial-and-error
variety generating heuristic (they do not use imi-
tation). Figure 4 indicates that the introduction
of noise (moving from zero noise to noise=0.05)
into the assessments of the payoffs of proto-
designs which are used in the election process,
reduces the level of average product payoffs at-
tained at the end-point of 200 iterations (differ-
ence is statistically significant at the 5% level).
Noisy payoff assessments lead to slower product

invention progress than would occur absent the
noise. Hence, there is no evidence that noisy pay-
off assessments by inventors can play a useful role
in the process of invention by allowing inventors
to escape from locally optimal product designs,
by means of wrong-way moves on the product de-
sign landscape.

The introduction of noise into inventor’s elections
does not alter earlier findings [5] concerning the
importance of thought experiments in determin-
ing the rate of inventive progress. Even with the
introduction of noise, the undertaking of more
than one thought experiment leads to increased
average populational payoffs by the simulation
end-point of 200 iterations (difference is statisti-
cally significant at the 5% level). It is also noted
that the effect of noisy election in reducing the
level of average populational payoffs is greatest
when inventors undertake a limited number of
thought experiments. As the number of thought
experiments increases, the impact of noisy elec-
tion is reduced.

In assessing the results from the differing levels
of thought experiments, it is useful to remember
that the thought experiments mechanism does
not require that inventors can make perfect as-
sessments of the payoffs of several potential prod-
uct designs ex-ante their testing in the market-
place. Rather it only requires that inventors can
assess the relative payoffs of the designs. A sim-
ilar comment can be made in respect of the elec-
tion heuristic, in that inventors only need to be
able to identify whether the new product design
is better than their existing design. It is not nec-
essary that inventors are able to precisely assess
the worth of the new design. Once inventors can
make reasonably accurate assessments of the rel-
ative payoffs of proto-product designs, average
populational payoff advance is assured under a
simple trial and error search heuristic when in-
ventors use an election mechanism, or when they
engage in multiple thought experiments.
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4.2 Trial and Error + Imitation

Figure 5 shows the comparative curves of prod-
uct payoff advance for the scenarios where there
is zero noise and the case where noise=0.05, for
three levels of thought experiment (1,3 & 5), and
for K=4. In both cases, inventors use a trial and
error and an imitation heuristic when generating
novel products. Figure 5 suggests that the in-
troduction of noise (moving from zero noise to
noise=0.05) into the election evaluation for new
product designs, leads to a reduction in the level
of average populational product payoffs obtained
after 200 iterations (difference is statistically sig-
nificant at the 5% level).

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

Iterations

A
v
.
 
P
o
p
u
l
a
t
i
o
n
a
l
 
f
i
t
n
e
s
s Binary recombin,

elect on, TE=1

Binary recombin,
elect on, TE=3

Binary recombin,
elect on, TE=5

Binary recombin,
elect on
(noise=0.05), TE=1
Binary recombin,
elect on
(noise=0.05), TE=3
Binary recombin,
elect on
(noise=0.05), TE=5

Figure 5. Imitation + trial and error with elec-

tion (no noise) vs imitation, trial and error,

and election (noise=0.05).

In summary, the simulation results for both forms
of variety-generation heuristic (trial and error vs
imitation & trial and error) indicate that:

• Noisy election generally leads to slower
rates of inventive progress than would oc-
cur without noise.

• The negative impact of noisy election on
the rate of populational payoff advance ad-
vance is lessened as the number of thought
experiments increases. The gap in the rate
of product inventive progress between noisy
and noise-free election is generally greatest
when the number of thought experiments
is 1, lessening when the number of thought
experiments increases to 3 or 5.

• Election and thought experiments, in other
words inventor’s expectations, matter, and
remain an important driver of the process
of product invention even when inventor’s
payoff assessments are noisy.

• The results do not suggest that inventors
should bias their choice of search heuristics

depending on their ability to accurately as-
sess the payoffs to proposed products.

5 Conclusions

In order to investigate the role that search heuris-
tics play in the inventive process for physical
products, a conceptual model of the process of
product invention was developed, and opera-
tionalised in a series of simulation experiments.

The results highlight the importance of expecta-
tions as to payoffs in product invention and sug-
gest that an essential role of the inventor, and by
analogy managers in organisations, is to supply
direction to the variety-generating process. Suc-
cessful product invention is not a matter of mon-
keys sitting at typewriters! The results also un-
derscore the importance of formal product evalu-
ation procedures in organisations, and the impor-
tance of generating multiple product ideas when
inventing new products. Methods of promoting
the openness of organisations to multiple product
ideas include diverse hiring, and allowing staff to
devote a portion of their time to personal research
projects.

The developed InventSim simulator allows the
modeller to alter a wide-variety of parameters
which govern the simulation. The generalisabil-
ity of the findings of this study across different
rates of trial and error & imitation, different val-
ues of K, and varying levels of other parameters of
the conceptual framework, will be tested in future
work.
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