
Chapter 1
Information Propagation in a Social Network:
The Case of a Fish Schooling Algorithm

A. Brabazon, W. Cui and M. O’Neill

Abstract The propagation of information about the environment amongst animals
via social communication has attracted increasing research interest in recent decades
with the realisation that many animal species engage in subtle forms of information
transfer which had previously escaped notice. From an evolutionary perspective, the
widespread existence of social communication mechanisms is not surprising given
the significant benefits which can accrue to behaviours such as sharing of informa-
tion on resources and on environmental threats. More generally, we can consider this
process as information flowing between a network of nodes or agents, wherein each
agent receives inputs from their senses and conspecifics, processes this information,
and in turn through their resulting actions, can influence subsequent actions of other
agents. Social communication mechanisms of organisms have inspired the develop-
ment of several powerful families of optimisation algorithms including ant colony
optimsation and honey bee optimisation algorithms. One interesting example of so-
cial information propagation is provided by the shoaling and schooling behaviours
of fish. In this chapter we develop an optimisation algorithm (the Fish Algorithm)
which is inspired by the schooling behaviour of ‘golden shiner’ fish (Notemigonus

Anthony Brabazon
Complex Adaptive Systems Laboratory and
School of Business
University College Dublin
Dublin, Ireland, e-mail: anthony.brabazon@ucd.ie

Wei Cui
Complex Adaptive Systems Laboratory and
School of Business
University College Dublin
Dublin, Ireland, e-mail: wei.cui.ireland@gmail.com

Michael O’Neill
Complex Adaptive Systems Laboratory and
School of Business
University College Dublin
Dublin, Ireland, e-mail: m.oneill@ucd.ie

1



2 A. Brabazon, W. Cui and M. O’Neill

crysoleucas) and explore the relative importance of social information propagation
and individual perception mechanisms in explaining the resulting performance of
the algorithm.

1.1 Introduction

Swarm behaviour has long attracted research attention with the ‘flocking’ (‘boids’)
simulation by Reynolds [35], which mimicked the flocking behaviour of birds, being
one of the earliest and best-known examples of such work. In these simulations the
flock has no leader (no global control) and co-ordinated movement emerges from
the local interactions of individuals in the population. The simulation embeds a few
simple rules whereby individuals move in the same direction as their neighbours, re-
main close to their neighbours, and avoid collisions with their neighbours (produc-
ing alignment, cohesion and separation). The key characteristic is that each agent
only needs local information when deciding how to adjust their movements and
yet this, allied to the three simple rules, is sufficient to ensure globally-coordinated
behaviour at flock level.

More recently, mechanisms of collective intelligence and their application as
practical problem-solving tools, has attracted considerable research interest lead-
ing to the development of several families of swarm-inspired algorithms including,
ant-colony optimisation [7, 10, 11, 12, 13], particle swarm optimisation [14, 18, 19],
bacterial foraging [32, 33], honey bee algorithms [9, 27, 34, 45], and a developing
literature on fish school algorithms. A critical aspect of all of these algorithms is
that powerful, emergent, problem-solving occurs as a result of the propagation or
sharing of information among a network of individuals, where each individual only
possesses local information. Typically the algorithms emphasise the importance of
sensing and of communication processes between the agents, and this leads in turn
to a discussion of what the agents ‘know’ and how information is propagated or
‘spread’ between individual nodes or agents in the population.

1.1.1 Fish Schooling

Biologists draw an important distinction between dispersion and aggregation economies.
In a dispersion economy an increase in group size is correlated with a decrease in the
fitness of individual group members, so maximal welfare is obtained when individ-
uals are dispersed and solitary. In contrast, aggregation economies emphasise how
group membership can increase the survival rate of individuals particularly when
population density is low. A particular example of an aggregation economy is ex-
hibited by some social species of fish which ‘shoal’. ‘Shoaling behaviour’ occurs
when fish are observed to cluster together. If the fish also demonstrate a tendency
to swim in the same direction in a coordinated manner they are said to ‘school’.
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These behaviours are common. Approximately a quarter of fish shoal for their en-
tire lives (‘obligate shoalers’ such as tuna, herrings and anchovy) and approximately
half shoal for at least part of their lives (‘facultative shoalers’ such as Atlantic cod).
More than 4,000 species of pelagic fish are known to be schooling [37] and fish
aggregations can be very large with Parrish et al. (2002) [31] noting that herring can
form schools of a billion or more fish.

Fish shoal and school for mutual protection and to synergistically achieve certain
tasks. The benefits include defence against predators as the shoal possesses ‘many
eyes’ (or distributed sensing) and has a high-level of vigilance. There is also better
protection from individual capture by predators due to the predator confusion effect
(the many moving targets overloads the predator’s visual channel). The shoal may
exhibit enhanced foraging success as many eyes search for food and information
on food finds is transmitted through the shoal as the fish can visually monitor each
other’s behaviour. Another claimed benefit of schooling is increased hydrodynamic
efficiency as the school moves through the water [37].

Another potential benefit of schooling is that it may reduce or even eliminate
the need for sleep. During waking, the brain of most vertebrates is busy processing
sensory information, particularly visual information, and this conflicts with the need
to refresh and consolidate memories [25]. During schooling, the need for sensory
processing, particularly by fish inside the school, is greatly lessened and the burden
of sensory processing is shifted from individuals to the entire school [25]. Schooling
behaviours may therefore play a role similar to that of restful waking or sleep in
non-schooling fish species.

1.1.2 How do Fish Schools Make Decisions?

A natural question facing any modeller who is seeking to develop an optimisation
algorithm using fish school inspired behaviours is how do fish schools actually make
decisions - and critically, is there any theoretical reason to suppose that distributed
sensing can generate a more ‘intelligent’ decision than the decision that could be
made by an individual fish?

When we consider the dynamic environment which faces a school of fish, it is
apparent that many complex decisions are faced. In which direction should it swim
if faced by a predator? When should it stop and forage? When and where should it
migrate? In contrast to mammal herds, fish schools have no leader. Each of the fish
in a school has similar sensing capabilities and similar behaviour patterns for acting
on sensory information [37] but there is no strong evidence that individual fish can
undertake highly complex information processing.

A recent study [39] has suggested that fish schools may implement a form of
consensus-based decision making employing a simple quorum rule. Under a quo-
rum rule, an individual’s probability of committing to a particular decision option
increases sharply when a threshold number of other individuals have committed
to it. Hence, if individuals can observe the decisions of others before committing
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themselves to a decision such as what direction in which to swim, a relatively naive
copying behaviour can be an effective strategy for successful decision making, with-
out the need for individuals to undertake complicated information processing.

Distributed perception and quorum decision processes combine therefore to cre-
ate a form of collective intelligence which can reduce the need to undertake complex
cognition at agent level, and can also allow robust decision making to take place
even when individual perceptions are noisy. The quality of the decision and the size
of the group are highly correlated [39] so the quality of the decision increases as
group size increases. This suggests that fish school behaviours can indeed form a
useful platform for the development of optimisation algorithms. In this study, we
propose an optimisation algorithm inspired by a recent study by Berdahl et al. [4]
of golden shiner fish and within this framework, explore the relative importance of
social information propagation and individual perception mechanisms in explaining
the resulting performance of the algorithm.

The remainder of this contribution is organised as follows. Section 1.2 pro-
vides some background literature on previous work which has adopted a fish school
metaphor in the development of optimisation algorithms and on the specific bio-
logical model underlying this study. Section 1.3 describes the proposed algorithm
(termed the ’Fish Algorithm’). The results from a series of test problems are pro-
vided in Section 1.5 and finally, conclusions and opportunities for future work are
discussed in Section 1.6.

1.2 Background

A number of previous studies have previously employed a fish school metaphor to
develop algorithms for optimisation and clustering ([1, 2, 17, 20, 42, 48] provide a
sampling of this work). Two of the better-known approaches are Fish School Search
(FSS) [2] and the Artificial Fish Swarm Algorithm (AFSA) [20].

In FSS the algorithm implements three fish behaviours, namely feeding, swim-
ming and breeding. The behaviour of feeding is inspired by the natural instinct of
fishes to feed, feeding here is a metaphor for the evaluation of candidate solutions
in the search space; the swimming behaviour aims at mimicking the coordinated
movement of fish in a school guiding the search process; the breeding behaviour
is inspired by natural selection a metaphor for exploitation of better-adapted candi-
date solutions. The fish (agents) swim (search) for food (candidate solutions) in an
aquarium (search space) and the weight of each fish acts as an innate memory of
its past individual success. Unlike particle swarm optimisation (PSO) [18, 19], no
direct memory of a personal best location or a global best location is maintained.
FSS has shown itself to be a powerful optimisation algorithm demonstrating good
results on a range of optimisation problems.

The AFSA [20] embeds a number of fish behaviours including preying, swarm-
ing, and following so that the behaviour of an artificial fish depends on its its current
state, its local environmental state (including the quality of its current location and
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the states of nearby companions). A good review of the recent literature on AFSA
is provided in [28].

1.2.1 Application of Fish School Algorithms

Fish school algorithms have been applied for a wide variety of applications and an
excellent overview of these is provided by [28]. Canonical versions of fish school
algorithms typically employ a real-valued representation and are used to search in an
environment / problem space for a ‘point’ which corresponds to an optimal solution
vector (a simple exemplar would be a vector of parameters for a mathematical model
which is being calibrated using a training dataset). Hence, the algorithms can be
applied to any real-valued optimisation problem. The canonical algorithms can also
be modified for application to discrete optimisation, multi-objective optimisation
and clustering.

A sampling of the applications for which fish school algorithms have been em-
ployed include, the determination of the optimal deployment strategy for nodes in
a wireless network [5, 46]; the optimal deployment of directional visible light sen-
sor networks for battlefield surveillance and intrusion detection [47]; road traffic
network design [23]; the optimisation of weights in a feed-forward neural network
model [44]; quality of service (QoS) graded optimisation in electric power commu-
nication networks [29]; the optimisation of the parameters of membership functions
for a fuzzy logic controller [40]; task scheduling in a multi robot group [41]; aircraft
landing scheduling in a multi-runway airport [6]; and efficient job scheduling in grid
computing [15].

1.2.2 Golden Shiner Fish

A practical issue that arises in attempting to develop an algorithm based on the be-
haviour of fish schools is that we have relatively little hard data on the behavioural
mechanisms which underlie schooling phenomena. At the level of the individual,
agents respond to their own sensory inputs, physiological and cognitive states, and
locomotory constraints [16] and it is not trivial to disentangle the relative influence
of each of these. At group-level, it is often difficult to experimentally observe the
mechanics of the movement of animal groups or fish schools, and hence much pre-
vious work developing fish school algorithms has relied on high-level observations
of fish behaviour rather than on granular empirical data on these behaviours.

In this study, we draw inspiration from a detailed study of the behaviour of a
species of schooling fish ‘golden shiners’ which display a marked preference for
shaded habitat [4]. These fish are strongly social and form shoals of some 200-250
individuals in the fresh-water lakes where they live.
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In order to investigate the mechanism underlying the observed collective re-
sponse of golden shiner fish to light gradients, fish were tracked individually to ob-
tain information on individual and group trajectories. The study examined the degree
to which the motion of individuals is explained by individual perception (steepest
direction of light gradient as seen by the individual fish) and social influences based
on distributed perception (positions of conspecifics). The results indicated that an
individual’s acceleration was more influenced by the location of conspecifics than
by locally-perceived environmental gradients. When the magnitude of the social
vector was high (all conspecifics moving in similar direction) the social influence
was dominant. As noted by [36], all forms of animal communication are closely
tied to the senses. In the case of fish, visual cues form the primary basis of the social
communication mechanism as schooling fish are able to observe the movements of
their neighbouring conspecifics.

1.3 Fish Algorithm

An important question that underlies the design of foraging strategies, or the design
of optimisation algorithms, is what is the most effective way of searching for objects
whose location is not known a priori. In foraging, the search could be guided by ex-
ternal cues, either via past experience (memory) or sensory inputs (such as vision) of
the searcher. Alternatively, the search process could be stochastic (i.e. undirected).
When the location of the target objects is unknown, a degree of ‘guessing’ is un-
avoidable, and probabilistic or stochastic strategies are required [43].

In the proposed algorithm, the movement of each fish is governed by three
biologically-inspired factors which are described below, and also embeds a stochas-
tic element. In each iteration of the algorithm, a fish is displaced from its previous
position through the application of a velocity vector:

pi,t = pi,t−1 + vi,t (1.1)

where pi,t is the position of the ith fish at current iteration of the algorithm (t),
pi,t−1 is the position of the ith fish at the previous iteration (t − 1), and vi,t is its
velocity.

The velocity update is a composite of three elements, prior period velocity, an
individual perception mechanism, and social influence via the distributed perception
of conspecifics. The update is:

vi,t = vi,t−1 +DPi,t + IPi,t , (1.2)

or more generally

vi,t = w1vi,t−1 + w2DPi,t + w3IPi,t . (1.3)
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The difference between the two update equations is that weight coefficients are given
to each of the update items in Equation 1.3. In all the experiments of this study,
Equation 1.2 is used for velocity update. While the form of the velocity update bears
a passing resemblance to the standard PSO velocity update, in that both have three
terms, it should be noted that the operationalisation of the individual perception
and distributed perception mechanisms is completely different to the memory-based
concepts of pbest and gbest in PSO. The next subsection explains the operation of
the two perception mechanisms.

1.3.1 Prior Period Velocity

The inclusion of a prior period velocity can be considered as a proxy for momentum
or inertia. Although this feature was not described in the study of golden shiner fish
[4], the inclusion of this term is motivated by empirical evidence from the movement
ecology literature which indicates that organisms tend to move with a ‘directional
persistence’ [43].

1.3.2 Distributed Perception Influence

Fig. 1.1 Illustration of Distributed Perception

In all social models, a key element is how the overall population influences the
decisions of each agent at each time step. Typically, the actions of each agent are
influenced by a subset of the population who are within an ‘interaction range’ of
them. This influence can be modelled in a variety of ways including the fraction of
an individual’s neighbours taking a particular course of action or the action of their
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nearest neighbour. In this study we model the distributed perception influence for
the ith fish by the following:

DPi =

∑NDP
i

j=1 (pj − pi)

NDP
i

, j ̸= i (1.4)

where pi is the position of the ith fish, and the sum is calculated over all neighbours
within an assumed range of interaction of the ith fish rDP , that is 0 <| pj − pi |≤
rDP , where pj is the position of the jth neighbouring fish, and NDP

i is number
of neighbours in the assumed range of interaction of the ith fish. If there are no
neighbours in its assumed range of interaction, this term becomes zero. Figure 1.1
shows how the ith fish is affected by the three neighbouring fish (p1, p2, p3) which
are within its visible range (defined by the radius rDP ).

Alternative methods of modelling this social influence could be implemented
such as only considering neighbours within the angular visual range of each agent as
suggested by [30]. While this would be more plausible from a biological perspective,
it would impose additional computational complexity so we use a simpler approach
in this paper which implicitly assumes 3600 vision. Note that in this mechanism,
no direct account is taken of the light gradient in any direction by an individual
fish, rather the influence on the movement of a fish is completely determined by the
movement of its neighbours.

1.3.3 Individual Perception Influence

Fig. 1.2 Illustration of Individual Perception

Individual perception is implemented as follows. At each update, each fish assesses
the local ‘light’ gradient surrounding it, by drawing N IP

i samples within an assumed
‘visibility’ region of radius rIP . While a real-world fish will have a specific angle
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of vision depending on its own body structure, we adopt a random sampling in a
hypersphere around the fish on grounds of generality. The individual perception
influence for the ith fish is determined by:

IPi =

∑NIP
i

j=1 (sj − pi) ∗ fitj∑NIP
i

j=1 fitj
, j ̸= i (1.5)

where pi is the position of the ith fish, rIP is the radius of the assumed range
within which the ith fish can sense environmental information, N IP

i is the number
of samples which the ith fish generates, sj is the position of the jth sample (0 <|
sj − pi |≤ rIP ), and fitj is the fitness value (or ‘quality’) of the jth sample. Figure
1.2 demonstrates how the ith fish is influenced by the five random samples (s1−s5)
in the perception range with a radius rIP .

1.4 Experimental Design

In this section we describe the test functions used in all our experiments, we outline
the precise experiments undertaken in this study, and we describe the associated
experimental parameters.

1.4.1 Benchmark Functions

Twelve standard benchmark problems (outlined in Table 1.1) taken from the op-
timisation literature were used to test the developed algorithms. All problems are
examined at two levels of dimensionality, namely 30 and 60 dimensions. The aim
in all the experiments is to find the vector of values which minimises the value of a
test function, hence, we can define the fitness of a solution vector as the value of the
test function at that location, with lower values (in this case, as we are minimising)
indicating a better quality (or ‘fitter’) solution.

Two of the functions namely, the Sphere and Rosenbrock functions, represent
unimodal problems. The Griewank and Rastrigin functions are more complex and
contain multiple local optima. In following paragraphs, we provide a brief descrip-
tion of these test functions in order to provide some intuition as to their structure.

The last six problems are drawn from the optimisation benchmark functions used
in the IEEE CEC 2005 Special Session on Real-Parameter Optimization [38]. An
interesting aspect of these functions is that the global optima are shifted or rotated
(shift is given by the parameter o, and the parameter M represents an orthogonal
matrix which is used to rotate the function). The net effect of these processes is
to move the global optimum away from the origin in each case, due to the known
issues with using standard, benchmark functions which have their optimum at the
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origin [21]. These issues can sometimes be exploited by algorithms to produce an
upward bias in reported performance. Problems include the fact that,

1. many popular benchmark functions are symmetric, and hence have the same op-
timal parameter values for all dimensions (for example, a vector of zeros); and

2. the global optimum may lie at the centre of the search space (this can produce
problems if search agents are initialised randomly along the range of each di-
mension).

Hence, considering the conventional sphere function,

f(x) =

D∑
i=1

x2
i ,

the shifted sphere function is given by:

f(x) =

D∑
i=1

(xi − oi)
2 ,

and the shifted rotated sphere function is given by:

f(x) =

D∑
i=1

[(xi − oi) ∗M ]2 .

Table 1.1 Twelve Optimisation Problems

Name Function Search Space Optima

Sphere F1(x) =
∑n

i=1 x2
i [−3.12 7.12]D 0

Rosenbrock F2(x) =
∑n−1

i=1
[100(xi+1 − x2

i )2 + (1 − xi)
2] [−30 30]D 0

Ackley F3(x) = −20 exp

(
−0.2

√
1
D

∑D
i=1

x2
i

)
[−32.768 32.768]D 0

− exp

(
1
D

√∑D
i=1

cos(2πxi)

)
+ 20 + e

Griewank F4(x) = 1 +
∑n

i=1
x2
i

4000
−
∏n

i=1 cos(
xi√
i
) [−600 600]D 0

Rastrigin F5(x) = 10n +
∑n

i=1[x2
i − 10 cos(2πxi)] [−5.12 5.12]D 0

Schwefel F6(x) = 418.9829 × D −
∑D

i=1 xi sin

(
|xi|

1
2

)
[−500 500]D 0

Shifted Sphere F7(x) =
∑D

i=1 z2i − 450 , z = x − o [−100 100]D −450

Shifted Rosenbrock F8(x) =
∑D−1

i=1
100(z2i − zi+1)2 + (xi − 1)2 + 390 , [−100 100]D 390

z = x − o + 1

Shifted Rotated Ackley F9(x) = −20 exp(−0.2
√

1
D

∑D
i=1

z2
i
) − exp( 1

D

∑D
i=1 cos(2πzi)) [−32 32]D −140

+ 20 + e − 140 , z = (x − o) ∗ M

Shifted Rotated Griewank F10(x) =
∑D

i=1
z2i

4000
−
∏D

i=1 cos(
zi√
i
) + 1 − 180 , z = (x − o) ∗ M [−600 600]D −180

Shifted Rotated Rastrigin F11(x) =
∑D

i=1 (z2i − 10 cos(2πzi) + 10) − 330 , z = (x − o) ∗ M [−5 5]D −310

Shifted Schwefel F12(x) =
∑D

i=1(
∑i

j=1 zi)
2 − 450 , z = x − o [−100 100]D −450
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1.4.1.1 Sphere Function

This is a relatively simple test function as it is continuous, convex and unimodal. The
function is defined as

∑n
i=1 x

2
i . In Fig. 1.3, n is set to 2 for ease of illustration, and

−5.12 ≤ xi ≤ 5.12. The objective is to find the values of x1 and x2 which minimise
the value of the function. By inspection, the global minimum (zero) occurs when x1

and x2 are zero. While we illustrate the function here for the case where there are
two inputs, in our experiments on each test function we undertake a search for the
global optimum in both 30 and 60 dimensions in order to render the test function
non-trivial.

 

Fig. 1.3 Sphere Function.

1.4.1.2 Griewangk’s Function

Griewangk’s function has many local minima in the region of the global minimum,
with these minima being regularly distributed. The presence of many local minima
renders the determination of the optimal value for this function more difficult than
is the case for the Sphere function. The function is defined as:

F (x) = 1 +
n∑

i=1

[
x2
i

4000

]
−

n∏
i=1

[
cos

(
xi√
i

)]
(1.6)

where n=2 (in Fig. 1.4), and −600 ≤ xi ≤ 600. The global minimum (zero) occurs
when all xi are 0.
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Fig. 1.4 Griewangk’s function, range +/- 5.

1.4.1.3 Rastrigin’s Function

Rastrigin’s function has a cosine modulation to produce many local minima. This
produces a test function which is highly multimodal. However, the location of the
minima are regularly distributed. The function is defined as:

F (x) = n ∗A+

n∑
i=1

[
x2
i −A ∗ cos(2πxi)

]
(1.7)

with A=10 and n=2 (in the illustration ) and −5.12 ≤ xi ≤ 5.12. The global
minimum (zero) occurs when all xi are zero.

The Rosenbrock function (also known as Rosenbrock’s valley or Rosenbrock’s
banana function) is a non-convex function. The global minimum is inside a long,
narrow, parabolic shaped flat valley. While it is relatively easy to find the valley, it
is difficult to find the global optimum point within this.

1.4.2 Experiments

Two groups of experiments are undertaken. Initially, we determine the performance
of the canonical fish algorithm (denoted as ‘FA’) which uses the velocity update
described in eq. 1.2, on all the test problems. Next we develop three variants of the
canonical FA which switch off, in turn, the momentum, the distributed perception
(DP) and the individual perception (IP) influences (these algorithmic variants are
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Fig. 1.5 Rastrigin’s function.

denoted as FA1, FA2 and FA3 respectively). The performance of each of these vari-
ants on the test problems is examined in order to gain insight into the role that each
of the three components of the velocity update step plays in determining the FA’s
overall performance.

The second set of experiments examines the sensitivity of the canonical FA to
changes in two of its parameters, namely the radius of perception in both rDP &
rIP , and the number of samples (denoted as s) used in the simulated individual
perception (IP) component . The chosen values of these parameters are shown in
Table 1.2.

From a biological point of view, it is plausible to assume that fish have a bigger
radius for DP than IP, namely rDP > rIP . The value chosen for the two radii is
problem specific, as it is influenced by the choice of the number of fish (N ), the
radius (size) of the search space (R) and the dimensionality of the this space (D). In
the FA algorithm, the values of rDP and rIP were chosen after initial experimen-
tation as R

1.5
D√

N
and R

1.8
D√

N
so that in most cases each fish has neighbouring fish

within the radius rDP .
In order to undertake some sensitivity analysis, four variants of the FA algorithm

are developed. In the FAa algorithm, the values of rDP and rIP are set to be half
of those in the FA algorithm. In the FAb algorithm, the values of rDP and rIP are
set to be larger than those in the FA algorithm. In the FAc algorithm, the value of
s is increased to 10 (as against 5 in the FA algorithm). In the FAd algorithm, the
value of s is reduced to 1. Note that in these latter two cases, the effect is to alter
the implicit weighting accorded to the IP mechanism in the velocity update step,
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as in all our experiments, each algorithmic variant is accorded the same number of
function evaluations.

We note that in this study the focus is not on designing the ‘best’ possible variant
of the fish algorithm for optimisation purcposes. Rather, using the framework out-
lined in Section 1.3 we seek to examine the relative importance of social informa-
tion propagation and individual perception mechanisms in explaining the resulting
performance of the algorithm. We also wish to examine the sensitivity of the per-
formance to changes in key parameters in each mechanism (range of perception and
relative weight placed on IP vs DP).

Table 1.2 Parameter Setting of Algorithms

Algorithm Radius of DP (rDP ) Radius of IP (rIP ) Number of Velocity Updating Equation

Samples in IP (s)

FA R

1.5
D√

N

R

1.8
D√

N
5 vi,t = vi,t−1 + DPi,t + IPi,t

FA1 R

1.5
D√

N

R

1.8
D√

N
5 vi,t = 0 + DPi,t + IPi,t

FA2 R

1.5
D√

N

R

1.8
D√

N
5 vi,t = vi,t−1 + 0 + IPi,t

FA3 R

1.5
D√

N

R

1.8
D√

N
5 vi,t = vi,t−1 + DPi,t + 0

FAa R

3
D√

N

R

3.6
D√

N
5 vi,t = vi,t−1 + DPi,t + IPi,t

FAb R

1
D√

N

R

1
D√

N
5 vi,t = vi,t−1 + DPi,t + IPi,t

FAc R

1.5
D√

N

R

1.8
D√

N
10 vi,t = vi,t−1 + DPi,t + IPi,t

FAd R

1.5
D√

N

R

1.8
D√

N
1 vi,t = vi,t−1 + DPi,t + IPi,t

Note: R is the radius of the search space.
D is the dimension of the test problem.
N is the number of fish.

1.4.3 Experimental Settings

Table 1.3 describes the parameter settings adopted. In each experiment, 40 fish are
used. All reported results are averaged over 30 runs and we test the statistical signif-
icance of all differences in the means using a t-test. In all experiments, an equivalent
number of function evaluations are undertaken in order to ensure a fair comparison
between the different algorithms. The experiments were undertaken on an Intel Core
i7 (2.93 GHz) system with 12 GB RAM.
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Table 1.3 Parameter Setting of Experiments

Parameters Values

Trials 30

Size of Fish School N = 40

Dimension of Problem D = 30, 60

1.5 Results

Tables 1.4-1.7 and Figures 1.6-1.7 present the results from our experiments. The
Tables show for each algorithm variant & test function combination (for both D=30
and D=60), the end of run evaluation for each test function at the best location
(solution vector) found across all 30 runs (‘Best’), the evaluation of each benchmark
function averaged over the best location (solution vector) found on each of the 30
individual runs (‘Mean’), and the associated standard deviation over all 30 runs. The
Tables also present the results from our statistical testing of a variety of hypotheses.
In all cases, low p values indicate that the null hypothesis of ‘no difference between
the means’ is rejected (a 95% level is applied).

Figures 1.6-1.7 illustrate the ‘Mean’ (defined as above) evaluation of each bench-
mark function and indicate how this value changes (improves) as the number of
iterations increases (only the D=60 case is shown in order to conserve space).

1.5.1 Hypotheses Examined

In order to facilitate interpretation of the statistical tests we outline the notation used
below.

The first set of hypotheses concern the testing of the importance of each compo-
nent of the fish algorithm (FA). The null hypothesis is that there is no difference in
the performance (i.e. ‘Mean’) between the algorithm with a component turned off
and the canonical FA. Therefore three hypotheses are tested as follows.

• H1: no difference in performance between the FA and the FA1 algorithm;
• H2: no difference in performance between the FA and the FA2 algorithm;
• H3: no difference in performance between the FA and the FA3 algorithm.

The next set of hypotheses concern the analysis of differing parameter settings for
FA. Four cases are examined, FAa, FAb FAc and FAd and the relevant hypotheses
are denoted as follows.

• Ha: no difference in performance between the FA and the FAa algorithm;
• Hb: no difference in performance between the FA and the FAb algorithm;
• Hc: no difference in performance between the FA and the FAc algorithm;
• Hd: no difference in performance between the FA and the FAd algorithm.
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1.5.2 Discussion of Results

Initially we overview Figures 1.6-1.7 to get an idea of the general trends in the
results. Taking a high-level perspective, we note that while the performance of each
algorithmic variant varies depending on the test function examined, the performance
of the canonical version of FA is generally better than that of FA2 or FA3 (which
have DP and IP turned off respectively), but that FA1 variant (in which momentum
is turned off) appears to perform better than FA on several problems. Looking at the
three variants FA1-FA3, FA1 performs better than either of the other two variants,
with FA2 generally slightly outperforming FA3.

Taking the results together, it appears that DP (distributed perception) and IP
(individual perception) contribute usefully to the search process but that the impor-
tance of momentum is not clearly demonstrated. It also appears that the DP and IP
mechanisms can produce relatively similar levels of performance by the end of each
experiment.

Next, we take a high-level overview of the performance of FA versus the al-
gorithmic variants with different parameter settings (FAa-FAd). As before, the
performance of the algorithmic variants depends on the test problem but in gen-
eral, the ordering of performance (on the 60D cases in the Figures) appears to be
FAb > FAc > FA > FAd > FAa. This ordering is plausible as fish in the
algorithmic variant FAb have a wider ‘perception radius’ than do the fish in any of
the other algorithmic variants allowing them to perceive information from a greater
volume of the search space. Conversely, the relatively poorer search performance of
FAa is not unexpected as it has a smaller perception radius than the other algorithm
variants.

Hence, from a high-level overview of Figures 1.6-1.7, the key points are that
while IP and DP provide useful information for the search process, the momentum
mechanism does not appear to be as important. It is also evident that the performance
of the algorithm is sensitive to choices of perception radius, with increases in this
parameter leading to enhanced performance.

Next, we proceed to look at the results in Tables 1.4-1.7 in order to obtain finer
detail.

1.5.3 Analysis of Components in FA

Comparing the mean (of the best results found across each of the 30 trials) perfor-
mance of FA with FA1, FA outperforms FA1 in 5 out of 12 cases (30D) and 4 out of
12 cases (60D). In all but one case, the difference in mean performance between the
algorithms is significant. Hence, the conclusion drawn is that there is no compelling
evidence that the addition of a momentum mechanism has led to enhanced search
performance. It is noted that the inclusion of a momentum mechanism in these ex-
periments was motivated by general findings in the behavioural ecology literature



1 Information Propagation in a Social Network 17

[43] that organisms tend to display directional persistence rather than it being a
distinct mechanism displayed by golden shiner fish [4].

Comparing the performance of FA with FA2, we note that FA outperforms FA2
in 7 out of 12 cases (30D) and 8 out of 12 cases (60D). In 9 cases (30D) and 1
case (60D) the difference is statistically significant. The conclusion drawn is that
FA slightly outperforms FA2, but that the degree of outperformance becomes less
(statistically speaking) as we move to the 60D case.

Comparing FA with FA3, FA outperforms FA3 in 11 out of 12 cases (30D) and 10
out of 12 cases (60D). In 11 cases (30D) and 8 cases (60D) the difference is statis-
tically significant. The conclusion drawn is that FA generally outperforms FA3 and
that, based on the results for FA2 and FA3, the inclusion of both IP and DP mech-
anisms (as distinct from only including one mechanism) produces a better quality
search process.

We also compare the performance of FA2 and FA3, and find that FA2 outper-
forms FA3 in 7 out of 12 cases (30D) and 9 out of 12 cases (60D), indicating that
a IP mechanism produces a better search performance than DP alone. This is not
surprising as the DP mechanism is not driven by any feedback from the environ-
ment, and therefore, on its own is similar to a random search process. As would be
expected, the standard deviation of the results produced by FA3 is generally higher
than those produced by either FA1 or FA2.

Hence, the results suggest that while social information propagation can usefully
spread information on good locations amongst the population of agents, it needs
to be informed by information from the individual perception mechanism in order
to strongly guide the search process. Combining the results, across the algorithmic
variants we get a general performance ordering of FA1 > FA > FA2 > FA3.

1.5.4 Parameter Sensitivity Analysis

The detailed ‘end of run’ results from the FAa, FAb FAc and FAd variant algorithms
are shown in Tables 1.4-1.7. Initially, we compare the results of each algorithmic
variant with the performance of the canonical algorithm FA.

We note that FA outperforms FAa in 8 out of 12 cases (30D) and 9 out of 12
cases (60D). In 9 cases (30D) and 4 cases (60D) these differences are statistically
significant. This suggests that FA generally performs better than FAa, which is not
unexpected given that FA has a wider perception radius.

Examining FA versus FAb, FA performs better in only 2 out of 12 cases (30D)
and 1 out of 12 cases (60D). The differences in mean performance are statistically
significant in 10 (30D) and 11 (60D) cases respectively. The strong performance of
FAb arises as in this variant of the algorithm, the fish have a wider perception radius
than they do in FA.

Comparing the results of FAa and FAb we note that FAa performs better on
the majority of test problems. Combining the results from the above analyses, we
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can conclude that the choice of perception radius is a critical parameter for the
algorithm.

The FAc variant employs 10 samples in each IP step. The canonical FA out-
performs FAc in 12 out of 12 cases (30D) but in only 3 out of 12 cases (60D),
with the differences in performance being significant in 8 (30D) and 10 (60D) cases
respectively. It it interesting to note the switch in relative performance when the
dimensionality of the test problems is increased.

In contrast to FAc, the variant FAd only undertakes a single sampling in each IP
step. Comparing FA with FAd, FA performs better in 5 out of 12 cases (30D) and in
7 out of 12 cases (60D). The differences in performances are significant in 12 out of
12 cases (30D) and 6 out of 12 cases (60D).

Comparing FAc and FAd, it is not clearly evident that either outperforms the
other, as the performance ranking between the two varies across the test problems.
The conclusion is that the results from the FA algorithm are not clearly impacted by
choice of number of IP samplings.

1.6 Conclusions

The propagation of information about the environment amongst a population via
social communication has attracted increasing research interest in recent decades
with the realisation that many animal species engage in subtle forms of information
transfer which had previously escaped notice. More generally, we can consider this
process as information flowing in a network of nodes or agents, wherein each agent
receives inputs from their senses and from conspecifics, processes this information,
and in turn through their resulting actions, subsequently influence actions of other
agents.

In this study we draw inspiration from the schooling behaviour of ‘golden shiner’
fish which alter their movement in an effort to track shade and develop a novel op-
timisation algorithm, the fish algorithm (FA). The FA can be considered as a swarm
algorithm as the search process embeds bottom-up learning via information flow
between agents (fish). We assess the utility of the algorithm on a series of test prob-
lems and undertake an analysis of the algorithm by examining the importance of its
component elements for the search process. The results indicate that momentum or
‘directional persistence’ mechanism is not found to be particularly useful but that
best results are obtained when using a mix of information from individual percep-
tion and social communication. While social communication can usefully spread
information on good locations amongst the population of agents, it needs to be sup-
plemented by information from the individual perception mechanism in order to
strongly guide the search process.

The current study indicates several interesting areas for follow up research. Ob-
viously the results from any study only extend to the test problems and specific
parameter settings examined, and future work could seek to examine the utility of
the algorithm in additional problem domains. A factor which is not fully included
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Fig. 1.6 Average best performance (averaged over 30 trials) of each algorithm variant on test
problems F1-F6 (60D)
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Fig. 1.7 Average best performance (averaged over 30 trials) of each algorithm variant on test
problems F7-F12 (60D)
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Table 1.4 End of Run Results for Each Algorithmic Variant for F1-F6 (30D case)

Algorithm Function 1 Function 2 Function 3 Function 4 Function 5 Function 6

FA Best 23.20 5,711,602 4.75 92.64 1,269.10 8,572.38

Mean 31.60 10,997,353 5.18 110.91 1,605.36 9,109.52

Std. 4.09 1,809,538 0.15 9.76 123.22 217.68

FAa Best 116.19 126,828,764 8.11 423.36 5,755.66 7,093.78

Mean 160.83 229,847,840 9.03 550.35 7,076.47 7,563.07

Std. 17.70 38,217,754 0.29 57.36 606.75 263.16

Ha 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FAb Best 22.95 2,941,104 4.63 68.27 1,141.99 8,476.14

Mean 28.31 7,045,931 5.06 96.18 1,426.84 9,228.50

Std. 2.15 1,817,708 0.15 9.30 105.46 193.53

Hb 0.0003 0.0000 0.0035 0.0000 0.0000 0.0291

FAc Best 25.47 9,864,494 4.89 100.96 1,400.92 8,129.12

Mean 33.90 15,997,277 5.19 119.82 1,734.15 9,224.45

Std. 3.66 2,195,339 0.13 9.56 135.65 345.81

Hc 0.0254 0.0000 0.8633 0.0007 0.0003 0.1289

FAd Best 67.55 8,788,5 7.48 334.16 4,275.20 6,603.14

Mean 125.18 130,952,522 8.31 432.63 5,439.34 7,291.36

Std. 27.59 63,633,167 0.40 65.45 781.83 238.38

Hd 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA1 Best 5.87 769,851 3.24 30.26 605.85 9,085.49

Mean 11.95 2,016,472 3.82 40.37 804.36 9,638.35

Std. 2.73 863,653 0.22 7.76 109.39 197.50

H1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA2 Best 142.02 102,254,451 8.65 391.98 5,136.39 6,705.87

Mean 161.94 219,256,368 9.03 537.83 6,996.73 7,498.80

Std. 11.31 42,204,038 0.19 56.26 553.66 320.17

H2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA3 Best 54.24 34,303,799 6.69 174.07 2,803.55 8,402.80

Mean 118.95 147,475,612 8.08 375.25 4,866.90 9,358.78

Std. 40.72 76,584,873 0.90 104.84 1,748.87 403.90

H3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0043
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Table 1.5 End of Run Results for Each Algorithmic Variant for F7-F12 (30D case)

Algorithm Function 7 Function 8 Function 9 Function 10 Function 11 Function 12

FA Best 43,609.53 33,251,772,403 -119.15 1,961.38 341.18 69,551.47

Mean 73,399.67 51,123,866,487 -119.06 3,363.09 429.12 153,085.92

Std. 7,333.86 5,270,435,371 0.03 426.19 35.67 45,548.08

FAa Best 60,402.13 36,139,582,367 -119.18 1,687.58 273.99 73,671.21

Mean 73,453.61 52,326,755,580 -119.06 2,343.38 345.95 92,338.86

Std. 6,757.77 7,917,980,119 0.03 241.66 35.97 11,512.57

Ha 0.9765 0.4913 0.7135 0.0000 0.0000 0.0000

FAb Best 48,692.70 18,887,598,328 -119.19 2,137.20 246.97 68,000.39

Mean 56,701.66 29,121,822,007 -119.07 2,684.83 307.88 123,883.58

Std. 4,172.39 3,406,108,447 0.05 196.01 29.30 46,059.22

Hb 0.0000 0.0000 0.1841 0.0000 0.0000 0.0165

FAc Best 63,122.53 46,219,215,386 -119.15 2,833.47 399.57 69,209.61

Mean 84,807.43 65,737,688,501 -119.02 3,928.29 518.35 162,667.01

Std. 8,166.06 11,155,657,744 0.05 462.02 58.75 50,988.65

Hc 0.0000 0.0000 0.0025 0.0000 0.0000 0.4459

FAd Best 54,346.58 11,983,840,968 -119.26 1372.58 162.86 46,895.82

Mean 65,107.04 29,184,496,221 -119.14 1,788.40 286.61 75,499.57

Std. 5,908.49 7,029,267,934 0.05 228.13 38.78 9,330.60

Hd 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA1 Best 63,849.53 24,242,817,446 -119.15 2,921.08 356.39 63,231.72

Mean 78,639.07 45,195,413,457 -119.06 3,887.02 476.55 127,709.92

Std. 7,724.06 10,278,935,692 0.03 483.17 50.81 45,586.37

H1 0.0092 0.0067 0.8309 0.0000 0.0001 0.0352

FA2 Best 51,504.81 35,277,599,066 -119.10 1802.17 249.84 85,342.68

Mean 71,047.83 53,586,077,306 -119.05 2,295.75 356.74 99,470.47

Std. 8,502.51 10,895,945,623 0.03 277.71 44.55 7,656.39

H2 0.2560 0.2698 0.2514 0.0000 0.0000 0.0000

FA3 Best 60,643.40 23,910,071,808 -119.15 2,913.74 341.82 74,311.54

Mean 101,787.20 83,404,345,263 -118.97 4,014.97 573.92 144,463.81

Std. 16,783.55 27,221,806,065 0.07 567.37 105.95 37,769.59

H3 0.0000 0.0000 0.0000 0.0000 0.0000 0.4281
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Table 1.6 End of Run Results for Each Algorithmic Variant for F1-F6 (60D case)

Algorithm Function 1 Function 2 Function 3 Function 4 Function 5 Function 6

FA Best 287.79 311,582,651 6.10 850.62 4,602.89 17,392.30

Mean 379.79 607,913,058 9.21 1,305.69 15,203.91 18,062.21

Std. 40.32 88,975,366 1.05 142.69 2,687.78 324.02

FAa Best 316.91 513,332,990 9.16 1,230.04 14,316.41 16,740.36

Mean 394.05 631,994,795 9.66 1,386.62 16,719.04 17,920.98

Std. 32.12 64,533,215 0.22 81.55 1,105.92 449.75

Ha 0.1355 0.2350 0.0250 0.0091 0.0060 0.1682

FAb Best 77.71 26,742,064 5.49 243.21 3,860.06 19,609.69

Mean 88.42 36,348,031 5.92 307.41 4,223.62 20,443.04

Std. 4.12 4,381,860 0.11 18.18 163.05 302.90

Hb 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FAc Best 85.60 43,270,190 5.62 305.97 3,916.05 17,972.25

Mean 237.08 449,166,558 7.65 776.13 7,813.33 18,633.15

Std. 121.05 247,705,930 1.58 459.70 5,026.22 387.10

Hc 0.0000 0.0016 0.0000 0.0000 0.0000 0.0000

FAd Best 312.57 371,304,375 8.89 1,013.70 12,571.32 16,910.43

Mean 388.55 589,343,313 9.70 1,360.94 16,819.07 17,670.53

Std. 33.65 104,217,530 0.27 118.10 1,412.29 322.42

Hd 0.2795 0.4060 0.0011 0.0544 0.0003 0.0000

FA1 Best 25.57 2,635,463 3.83 82.36 1,444.85 19,840.50

Mean 30.98 4,880,904 4.18 107.38 1,847.15 21,007.05

Std. 3.58 1,429,855 0.14 11.29 159.25 443.44

H1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FA2 Best 322.44 492,743,476 9.16 1,017.49 15,048.75 17,191.05

Mean 387.32 622,753,537 9.62 1,334.03 16,640.72 18,069.47

Std. 24.19 69,381,378 0.18 109.47 816.48 392.15

H2 0.3843 0.4742 0.0393 0.3916 0.0069 0.9380

FA3 Best 322.44 492,743,476 8.39 961.99 12,802.50 19,901.43

Mean 389.43 632,722,577 9.62 1,303.44 16,563.01 20,945.41

Std. 26.05 73,067,155 0.33 137.22 1,230.47 416.20

H3 0.2764 0.2427 0.0472 0.9508 0.0146 0.0000
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Table 1.7 End of Run Results for Each Algorithmic Variant for F7-F12 (30D case)

Algorithm Function 7 Function 8 Function 9 Function 10 Function 11 Function 12

FA Best 159,458.20 101,440,099,772 -118.92 5,367.39 1,163.32 330,672.22

Mean 210,503.03 188,388,985,169 -118.80 7,107.06 1,420.50 397,832.08

Std. 19,728.45 32,095,577,831 0.03 726.08 89.72 37,187.04

FAa Best 173,831.05 142,801,200,876 -118.92 5,655.23 1,180.41 284,368.86

Mean 213,184.06 212,224,115,674 -118.80 7,197.15 1,420.27 374,998.36

Std. 17,464.80 21,633,796,969 0.04 823.27 107.99 44,435.06

Ha 0.5794 0.0013 0.6089 0.6547 0.9928 0.0350

FAb Best 108,596.74 59,065,713,240 -118.88 3,658.36 884.23 311,357.75

Mean 130,188.82 70,454,662,207 -118.80 5,137.79 1,079.93 713,842.41

Std. 7,705.40 6,690,493,140 0.03 686.85 64.09 338,861.85

Hb 0.0000 0.0000 0.9847 0.0000 0.0000 0.0000

FAc Best 150,520.29 106,064,987,767 -118.85 4,919.17 1,124.88 308,881.61

Mean 181,714.55 166,416,739,386 -118.79 7,095.28 1,330.02 521,952.55

Std. 13,605.42 36,340,990,005 0.03 1,036.29 92.02 108,045.25

Hc 0.0000 0.0160 0.3545 0.9595 0.0003 0.0000

FAd Best 192,437.89 125,451,253,553 -118.93 5,592.48 1,231.55 239,554.04

Mean 218,978.72 190,448,882,676 -118.86 7,100.64 1,426.49 296,261.74

Std. 12,060.85 27,148,876,846 0.03 662.18 89.36 27,396.78

Hd 0.0134 0.7504 0.0000 0.9666 0.7655 0.0000

FA1 Best 146,554.32 66,996,750,338 -118.89 6,427.89 1,059.54 351,171.76

Mean 162,332.97 86,987,862,848 -118.80 7,144.74 1,162.22 864,918.75

Std. 9,607.24 11,310,775,223 0.03 404.89 57.04 346,570.48

H1 0.0000 0.0000 0.8134 0.8048 0.0000 0.0000

FA2 Best 187,090.19 140,251,557,412 -118.85 5,772.94 1,132.50 301,394.25

Mean 211,949.44 200,622,613,125 -118.79 7,009.69 1,404.10 393,418.16

Std. 11,137.19 21,475,434,745 0.02 705.40 111.61 46,386.99

H2 0.7278 0.0880 0.6529 0.6003 0.5329 0.6858

FA3 Best 197,106.30 192,083,954,497 -118.82 6,664.71 1,300.24 314,263.05

Mean 251,792.25 274,617,244,480 -118.69 9,179.32 1,707.49 664,776.88

Std. 20,690.26 44,967,767,801 0.03 1,189.09 157.68 193,674.39

H3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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in current work is that fish do not select shoal mates randomly but rather prefer to
shoal with healthy fish, and fish which are similar in size and age to themselves.
The algorithms developed in this paper could be adapted to incorporate these issues
more comprehensively.

At an even deeper level, the results of the study highlight the question as to what
is the optimal balance between the use of individual perception and the propaga-
tion of social information in the population? In other words, what weight should
be placed on each factor in order to optimise the search process. Further investiga-
tion of this issue has potential to assist in our understanding as to how best to tailor
optimisation algorithms for specific problem environments, and for deepening our
understanding of the foraging strategies of various organisms.
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