
On the Analysis of Semantic Aware Crossover

Nguyen Quang Uy1, Nguyen Xuan Hoai2, Michael O’Neill1,
Bob Mckay2, and Edgar Galván-López1

1Natural Computing Research & Applications Group, University College Dublin, Ireland
2School of Computer Science and Engineering, Seoul NationalUniversity, Korea

nxhoai@gmail.com

Abstract. It is well-known that the crossover operator plays a very important
role in genetic programming (GP). It is also widely admittedthat standard crossover
is made mostly randomly without semantic information. The lack of semantic in-
formation is the main reason that causes destructive effect, generally producing
children worse than parents, of standard crossover. Recently, we have proposed
a new semantic based crossover for GP, that is called Semantic Aware Crossover
(SAC) [26]. It was shown in [26] that SAC outperforms standard crossover (SC)
in solving a class of real-value symbolic regression problems. This paper extends
[26] by giving some deeper analyses to understand why SAC helps to improve
the performance of GP in solving these problems. The analyses show that SAC
can increase the semantic diversity of population and this helps to reduce the
crossover destructive effect in GP. The results also show that although SAC re-
quires more time for checking semantics, this extra time is negligible.

Key words: Semantic aware crossover, semantic, constructive effect,bloat

1 Introduction

Genetic programming (GP) is an evolutionary algorithm inspired by biological evolu-
tion to find the solution as computer programs for an user-defined task [17]. The pro-
gram is usually represented in a language of syntactic formalism such as s-expression
trees [17], a linear sequence of instructions, grammar derivation trees, or graphs [24].
The genetic operators in such GP systems are usually designed to ensure the syntac-
tic closure property, i.e. to produce syntactically valid children from any syntactically
valid parent(s). Using such purely syntactical genetic operators, GP evolutionary search
is conducted on the syntactical space of programs with the only semantic guidance from
the fitness of program measured by the difference of behaviorof evolving programs and
the target programs (usually on a finite input-output set called fitness cases).

Although GP has been shown to be effective in evolving programs for solving differ-
ent problems using such (finite) behavior-based semantic guidance and pure syntactical
genetic operator, this practice is somewhat unusual from real programmers perspec-
tive. Computer programs are not just constrained by syntax but also by semantics. As
a normal practice, any change to a program should pay heavy attention to the change
in semantics of the program and not just those changes that guarantee to maintain the
program syntactical validity. To amend this deficiency in GPresulting from the lack



2 N. Q. Uy, N. X. Hoai, M. O’Neill, B. Mckay, E. Galván-López

of semantic guidance on genetic operators, recently, we have proposed a semantic-
based crossover operator for genetic programming [26] thatis called Semantic Aware
Crossover (SAC). The experimental results in [26] show thatusing semantic guidance
on the crossover operator helps to improve GP in terms of the number of successful
runs in solving a class of real-value symbolic regression problems.

In this paper we extend work in [26] by giving some deeper analyses to understand
why SAC helps to improve the performance of GP on the problemstried. The analyses
show that SAC can increase the semantic diversity of population and this helps to reduce
the crossover destructive effect in GP. The results also show that although SAC requires
more time for checking semantics, this extra time is negligible.

The paper is organized as follows. In the next section, we give a review of related
works on semantic based operations and semantics based crossover in GP. Section 3
describes briefly our crossover (SAC) proposed in [26]. The experiment setting is de-
scribed in section 4 of the paper. The results of the experiments are then given and
discussed in section 5. Section 6 concludes the paper and highlights some potential
future extensions of this work.

2 Related works

Using semantic information in genetic programming is not new, there has been a num-
ber of related research over the years. The use of semantic information in the litera-
ture of GP could be seen in three ways: Using grammars [27, 3, 4], using formal meth-
ods [11–13,15, 14] and based directly on GP expression tree representation [1, 20, 26].
In the first way, Attribute Grammars have been the most popular formalisms used to
incorporate semantic information into GP. By using an attribute grammar and adding
some attributes to individuals, we can check some useful semantic information of in-
dividuals during the evolutionary process. This information can subsequently be used
to remove bad individuals from the population [4] or can be used to prevent generating
invalid individuals [27, 3]. However, the attributes that are used to present semantics are
problem dependent. Moreover, it might not always be easy to design attributes for each
problem.

Recently, Johnson has advocated for using formal methods asa way of adding se-
mantic information in the evolutionary process of GP [11–13]. In [12], he proposed
a number of possible ways for incorporating program semantics extracted by formal
method techniques into GP. In these methods, the semantic information that is extracted
by using formal methods, mostly based on Abstract Interpretation and Model Checking,
is mainly used as a way of measuring the fitness of individualsin some problems that
are difficult to use a sample points based traditional fitnessmeasure. Katz and cowork-
ers used a model checking to solve Mutual Exclusion problem [15, 14]. In these works,
semantics are extracted/calculated and then incorporatedinto the fitness of individuals.

The use of semantic information on expression trees has beenrealized in the mod-
ification of the crossover operator. Some first modificationsof the standard subtree
crossover in GP focused on syntax and structure of individuals. In [10], the crossover
is implemented based on the depth of the trees or as in [25] based on the shape of
trees. More recently, context has been considered as extra information for determining



On the Analysis of Semantic Aware Crossover 3

crossover points in GP [7, 18] which is perhaps most close to exploiting semantic in-
formation for modifying the standard crossover. The weakness of these context based
methods is that it is rather time consuming to evaluate the context of all subtrees of an
individual as required by these approaches. In [1], the authors investigate the effect of
directly using semantic information to guide the crossoveroperator in GP on Boolean
domains. Their main idea is to check the semantic equivalence between the newly born
children with their parents. The semantic equivalence checking of two Boolean expres-
sion trees is done by transforming the trees to reduced ordered binary decision diagrams
(ROBDDs), and that they have the same semantic if and only if they are reduced to the
same ROBDD. The semantic equivalence checking is then used to determine which of
the individual participating in crossover operation will be copied to the next generation.
If the children born as the result of crossover are semantically equivalent with their
parents, they are not copied to the next generation, their parents are copied instead. By
doing this, the authors argued that it helps to increase the semantic diversity of evolving
population of programs that helps to improve the performance of GP in these problems.

In our previous work [26], we proposed a new crossover operation, called Seman-
tic Aware Crossover (SAC), based on the semantic equivalence checking of subtrees.
GP with SAC was applied to a family of real-value symbolic regression problems and
the experiment results show that SAC is really effective. Our work in [26] is different
from [1] in two ways. Firstly, the domain for testing semantically driven crossovers is
real-valued rather than Boolean. For real-valued domains,the idea of checking seman-
tic equivalence by reducing to common ROBDDs is no longer possible. Secondly, the
semantic guidance of the crossover operator is not from the whole program tree behav-
ior but from subtrees. This is inspired by recent work in [20]for calculating subtree
semantics. However, the subtree semantic calculated in [26] is for real-valued domains
but not Boolean domains as in [20].

3 Semantic Aware Crossover

The aim of the study in [26] is to extend the earlier work [1, 20] to real-valued domains.
For such problems it is not easy to compute the semantics or semantic equivalence
of two expression trees by reducing them to a common structure as for Boolean do-
main as in [1]. Similarly, complete enumeration and comparison of subtree fitness as in
[20] is also impossible on real domains. In fact, the problemof determining semantic
equivalence between two real-valued expressions is known to be complete NP-hard [6].
Therefore, we have to calculate the approximate semantics.In [26], a simple method
for measuring and comparing the semantics of two expressions is used. To determine
the semantic equivalence of two expressions, we measure them against a random set of
points sampled from the domain. If the output of the two treeson the random sample
set are close enough (subject to a parameter called semanticsensitivity) then they are
designated as semantically equivalent. It can be written inpseudo-code as follows:

If Abs(Value On Random Set(P1)-Value On Random Set(P2))<ε then
Return P1 is semantically equivalent to P2.

Where Abs is the absolute function andε is a predefined constant called thesemantic
sensitivity. This method is inspired by the simple technique for simplifying expression



4 N. Q. Uy, N. X. Hoai, M. O’Neill, B. Mckay, E. Galván-López

trees proposed in [22] called equivalence decision simplification (EDS), where compli-
cated subtrees could be replaced by much simpler and templated subtrees if they are
semantically equivalent.

The semantic equivalence of two subtrees could be used to control the crossover
operation by constraining the operator in such a way that if the two subtree under the
crossover point are semantically equivalent, the operatoris forced to be executed on
two new crossover points. The algorithms for SAC given in [26] is as follow:
1.1.Select two parents: P1, P2

1.2.Choose at random crossover points at Subtree1 in P1

Choose at random crossover points at Subtree2 in P2

if (Subtree1 is not equivalent with Subtree2){
Execute crossover
Add the children to the new population
Return TRUE }
else{
Choose at random crossover points at Subtree1 in P1

Choose at random crossover points at Subtree2 in P2

Execute crossover
Return TRUE}

The motivation for doing SAC is to encourage GP individual trees to exchange
subtrees that have different semantics, which is expected to encourage the change in
semantics of the whole trees after each crossover. In [26], GP with SAC was proven to
have the best performance on a family of real-valued regression problems in comparison
with GP coupled with standard crossover (SC) and some other semantic checking based
operation. However, the root of this success and the proof ofachieving the semantic
diversity in SAC motivation have not been clearly demonstrated. The following sections
will give further analyses of the GP runs in [26], to gain further insight into the succint
cause of the success of SAC.

4 Experiment settings

All parameters of the experiments in this papers are the sameas in our privious work [26]
meaning that the standard crossover and SAC are tested on a class real-valued of sym-
bolic regression problems with target functions as a familyof polynomials of increasing
degree given in [9]:F1 = X3

+ X2
+ X, F2 = X4

+ X3
+ X2

+ X, F3 = X5
+ X4

+ X3
+

X2
+X, and F4 = X6

+X5
+X4

+X3
+X2

+X. The parameters setting for SC and SAC
are the same and as follows:

– Population size: 500
– Number of generation: 50

• Tournament selection size: 3
• Crossover probability: 0.9
• Mutation probability: 0.1
• Max depth of program tree at the initial generation: 6
• Max depth of program tree at all time: 15
• Non-terminals: +, -, *, / (protected version), sin, cos, exp, log (protected)



On the Analysis of Semantic Aware Crossover 5

• Terminals: X, 1
• Number of sample: 20 random points from [-1. . . 1].
• Hit: when an individual has an absolute error< 0.01 on a fitness case.
• Termination: A program scores 20 hits or maximum generationis exceeded.

Thesemantic sensitivitiesused in the experiment are: 0.01, 0.02, 0.04, 0.05, 0.06,
0.08, 0.1. The reason why we choose this semantic sensitivities is that they are the
values that help to improve the performance of SAC versus SC as has been shown
in [26]. For each kind of crossover (SC and SAC), each target problem, and semantic
sensitivity, 100 runs are performed which makes the total number of runs 5600.

5 Results and Discussion

To analysis the behavior of SAC and to compare it with SC, we conducted rerun the
experiments in [26] and collect stattistics on some aspectsof them. These statistics and
analyses are presented in the following subsections.

5.1 Equivalent crossovers

In the first experiment analysis, we investigate the question of frequency of semantically
equivalent crossover event. It means how often SAC and SC exchange the semantically
equivalent subtree. To answer this question we did collect statistics as the percentage
of such crossovers events averaged over all generation and all runs in [26]. The result
is shown in Table 1. we also graph the average percentage of semantically equivalent
crossover event over 100 runs for each of 50 generations withsensitivityas 0.01 in
Figure 1

Table 1.The average percentage of equivalent crossovers

Sensitivity 0.01 0.02 0.04 0.05 0.06 0.08 0.1

F1
SC 24.2%24.2%24.2%24.2%24.2%24.2%24.2%

SAC 5.4% 5.3% 5.3% 5.3% 5.3% 5.3% 5.3%

F2
SC 22.1%22.1%22.1%22.1%22.1%22.1%22.1%

SAC 4.2% 4.2% 4.2% 4.2% 4.2% 4.2% 4.2%

F3
SC 22.5%22.6%22.5%22.6%22.6%22.6%22.6%

SAC 4.6% 4.5% 4.5% 4.5% 4.5% 4.5% 4.5%

F4
SC 21.8%21.9%21.9%21.9%21.9%21.9%21.9%

SAC 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% 4.1%

From Table 1 and Figure 1 it can be seen that overall the average percentage of
semantically equivalent crossover events in SC (about 20%)is 5 folds bigger than SAC
(about 4%). We also have conducted an experiment to test how crossover affect the
relative fitness of the children to their parent when it swapstwo semantically equivalent
subtrees. The result is that in nearly all cases (about 98%),such crossover will produce



6 N. Q. Uy, N. X. Hoai, M. O’Neill, B. Mckay, E. Galván-López

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

%
 e

qu
iv

al
en

t c
ro

ss
ov

er
 

Generations 

F1 
SC 

SAC 

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

%
 e

qu
iv

al
en

t c
ro

ss
ov

er
 

Generations 

F2 
SC 

SAC 

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

%
 e

qu
iv

al
en

t c
ro

ss
ov

er
 

Generations 

F3 
SC 

SAC 

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

%
 e

qu
iv

al
en

t c
ro

ss
ov

er
 

Generations 

F4 
SC 

SAC 

Fig. 1.The average percentage of equivalent crossovers withsensitivity=0.01

the two children that have identical fitness with their parents. This infers that about 20%
of SC and much smaller with about 4% of SAC, does not produce new children during
the evolutionary process. Therefore, we argue that SAC is more semantical exploratory
than SC on the problems tried.

Table 2.The average percentage of different children from their parent in crossover

Sensitivity 0.01 0.02 0.04 0.05 0.06 0.08 0.1

F1
SC 63.4% 63.4% 63.4% 63.4% 63.4% 63.4% 63.4%

SAC 73.4% 72.1% 71.7% 73.2% 73.0% 73.5% 73.7%

F2
SC 66.8% 66.8% 66.8% 66.8% 66.8% 66.8% 66.8%

SAC 80.3% 79.1% 80.0% 80.5% 80.7% 80.3% 80.4%

F3
SC 67.6% 67.6% 67.6% 67.6% 67.6% 67.6% 67.6%

SAC 77.7% 79.7% 80.4% 78.1% 78.3% 78.1% 78.5%

F4
SC 67.9% 67.9% 67.9% 67.9% 67.9% 67.9% 67.9%

SAC 80.2% 80.1% 80.0% 80.7% 80.8% 80.7% 80.4%



On the Analysis of Semantic Aware Crossover 7

5.2 Semantic diversity

In the previous section, statistics has shown that, on the problem tried SAC encour-
age more exchange of semantically different subtrees, which inevitably encourage the
change in semantics of the children compared to their parent. It triggers the second ex-
periment in this section on semantic diversity. Populationdiversity has been long seen
as a crucial factor in genetic programming [2]. In general, the search process will be
more robust if the more population diversity is maintained.There are two kind of met-
rics which have been used for measuring and controlling the diversity of population is
genotypic diversity and phenotypic diversity [8]. While the first one concerts to syntax
(structure) of individuals in the population [23], the second one is based on the behavior
(fitness) [21] of individuals in the population. In this paper, we propose a new measure
for semantic diversity of genetic operators calledsemantic diversity of crossover(SDC).
SDC is different with other metrics in that it does not aim to measure the difference be-
tween the individuals in the same population but to measure the difference between the
individuals of the two successive populations. In other word, SDC is used to measure
how are individuals different before and after crossover. Here, the difference between
individuals before and after crossover is again determinedbased on a set of random
points drawn from the problem domain.

We use SDC to measure the semantic diversity of SC and SAC by counting the per-
centages of these crossover events in the runs that generated semantically new children
from their parents. This value is then averaged over 50 generations and 100 runs and
shown in table 2. We also show in Figure 2. the average percentage of different children
over 100 runs for each of 50 generations with sensitivity as 0.05.

It is obvious from Table 2 and Figure 2 that there is a strong correlation with the
statistics given in the previous subsection. In some first generations, about 70% of SC
generated different children while this value of SAC was nearly 90%. It is important
as in the early phase of evolutionary process, it is expectedthat GP would have high
exploration capacity in creating (semantically) new individuals. During the evolutionary
process, the percentage of different children of both crossover go down. However, SAC
is always about 15% higher than one of SC. It should be noted that generally in SAC it
is not guaranteed that SAC always generates two semantically new children even when
the two semantically equivalent subtrees is prevented.From our point of view the reason
might lie in the existence of some fixed semantic subtrees as in the boolean domains,
which was shown in [20]. However, further analysis needs to be conducted to reach a
more certain conclusion.

5.3 Constructive effect

As is shown in section 5.2, SAC is more semantically productive than SC generating
more children that are different with their parents. However, it would be interesting to
ask, at least on the problem tried, whether this helps the crossover operations in breeding
better children from the parents (more constructive crossover). To answer this question
we conducted an experiment on constructive effect of SAC andSC. The methodology to
measure the constructive effect in here is similar to that [19]. It means that comparison
the constructive effect of two crossovers is done by simply calculating the percentages



8 N. Q. Uy, N. X. Hoai, M. O’Neill, B. Mckay, E. Galván-López

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

%
 o

f g
en

er
at

in
g 

ne
w

ly
 c

hi
ld

re
n 

Generations 

F1 
SC 

SAC 

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

%
 o

f g
en

er
at

in
g 

ne
w

ly
 c

hi
ld

re
n 

Generations 

F2 
SC 

SAC 

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

%
 o

f g
en

er
at

in
g 

ne
w

ly
 c

hi
ld

re
n 

Generations 

F3 
SC 

SAC 

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

%
 o

f g
en

er
at

in
g 

ne
w

ly
 c

hi
ld

re
n 

Generations 

F4 
SC 

SAC 

Fig. 2.The percentage of generating newly children of two crossover schemas

of the events of generating a better child from its parents through crossover. This value
is then averaged over number of generations and number of runs. The results are given
in Table 3, and in Figure 3 depicts the average percentage of generating a better child
from its parent over 100 runs for each 50 generations withsensitivityis 0.08.

Table 3.The average percentage of better children than their parentin crossover

Sensitivity 0.01 0.02 0.04 0.05 0.06 0.08 0.1

F1
SC 10.5% 10.5% 10.5% 10.5% 10.5% 10.5% 10.5%

SAC 15.5% 15.0% 14.7% 15.4% 15.3% 15.5% 15.7%

F2
SC 11.3% 11.3% 11.3% 11.3% 11.3% 11.3% 11.3%

SAC 17.2% 16.7% 16.9% 17.3% 17.4% 17.3% 17.4%

F3
SC 11.7% 11.7% 11.7% 11.7% 11.7% 11.7% 11.7%

SAC 15.9% 16.8% 17.0% 16.0% 16.1% 16.0% 16.1%

F4
SC 11.4% 11.4% 11.4% 11.4% 11.4% 11.4% 11.4%

SAC 16.7% 16.8% 16.7% 17.0% 17.1% 17.0% 17.0%

The result from Table 3 and Figure 3 shows that SAC is more fitness constructive,
often 5%-10% better, than SC. This result explains why the performance of SAC was
better than SC in terms of number of successful runs as in [26].



On the Analysis of Semantic Aware Crossover 9

0

10

20

30

40

50

5 10 15 20 25 30 35 40 45 50

%
 o

f g
en

er
at

in
g 

be
tte

r 
ch

ild
re

n 

Generations 

F1 
SC 

SAC 

0

10

20

30

40

50

5 10 15 20 25 30 35 40 45 50

%
 o

f g
en

er
at

in
g 

be
tte

r 
ch

ild
re

n 

Generations 

F2 
SC 

SAC 

0

10

20

30

40

50

5 10 15 20 25 30 35 40 45 50

%
 o

f g
en

er
at

in
g 

be
tte

r 
ch

ild
re

n 

Generations 

F3 
SC 

SAC 

0

10

20

30

40

50

5 10 15 20 25 30 35 40 45 50

%
 o

f g
en

er
at

in
g 

be
tte

r 
ch

ild
re

n 

Generations 

F4 
SC 

SAC 

Fig. 3.The percentage of constructive crossover withsensitivityis 0.08

5.4 Code bloat

The better performance of SAC as observed in [26] goes with a cost as it takes more
time to calculate the subtree semantics. It reflected in the slightly higher running time of
SAC compared to SC. But how much really expensive the extra calculations are? In this
paper, we do not want to compare the running time only and simply but to look deeper
in the reasons that cause the extra computation time of SAC and investigate how much
that expensiveness likely to be. To understand the root of possible extra computation
time of SAC compared to SC, we conducted a code bloat analysisfor the runs of the
two operators. Here, it is supposed that the extra computation time of SAC might mainly
come from two sources. The first source is that the individuals in SAC runs were more
complicated than those of SC. Therefore, the time to evaluate individual fitness in SAC
runs is higher than in SC runs. The second source is the time needed to compare the
semantic equivalence of the two subtrees. To determine which is the main source we
collected two statistics from the experiment runs. The firstone is the average size of
individuals (number of nodes) over 50 generations and averaged over 100 runs of SAC
versus SC. The second one is the average size of subtrees which need to be checked for
the semantical equivalence testing in SAC. This is averagedfor each of 50 generation
and over 100 runs. The two statistics are shown in Table 4, andTable 5 respectively.

It can be seen from Table 4 and Table 5 that the higher running time of SAC was
caused not only by the calculation of subtree semantics but also by the increase of the
size of individuals (bloat). However, these two time measure are almost negligible for



10 N. Q. Uy, N. X. Hoai, M. O’Neill, B. Mckay, E. Galván-López

Table 4.The average size of individuals

Sensitivity0.010.020.040.050.060.08 0.1

F1
SC 36.836.836.836.836.836.836.8

SAC 43.543.243.743.543.743.943.9

F2
SC 42.542.542.542.542.542.511.3

SAC 47.349.349.146.846.946.946.7

F3
SC 43.543.543.543.543.543.543.5

SAC 47.947.747.348.248.348.447.7

F4
SC 45.245.245.245.245.245.245.2

SAC 51.150.950.450.650.551.050.8

Table 5.The average size of subtrees in SAC

Sensitivity0.010.020.040.050.060.080.1
F1 4.6 4.3 4.4 4.6 4.8 4.6 4.9
F2 4.7 4.5 4.6 4.9 5.0 4.7 4.8
F3 4.7 4.5 4.4 4.6 5.1 4.7 4.9
F4 4.7 4.5 4.7 4.6 5.0 4.6 5.0

the problem tried. In Table 5, it can be seen that the average size of subtrees in SAC is
very small in comparison with average size of individuals. Therefore, the time needed
to calculate and compare subtree subtree fitnes is small. Moreover, there are also some
methods which could be used to store semantics of these subtrees and that leads to more
efficient subtree semantic calculation. One example of suchmethod is the use of cache
as in [16], which we aim to do in further extensions of SAC. Theaverage individual
size in SAC was bigger than that of SC but only with a very smallmargin. Moreover,
there could also be some ways to reduce further the size of theindividuals in SAC runs.
For instance size of subtrees could be incorporated into theselection of crossover points
apart from semantic information which might prefer smallersubtrees.

6 Conclusion and future works

In this paper we have compared SAC and SC on different aspects. Firstly, we have
pointed out that there are about 20% of SC operations is the swap of semantically
equivalent subtrees. This likely leads to the breed of children that are semantically sim-
ilar to their parents. This weakness of SC can be amended in SAC by preventing the
occurence of such swapping operations. Secondly, we have shown that, at least on the
problem tried, SAC helps to promote better semantic diversity generating more seman-
tically new children than SC. The results also show that SAC is more constructive than
SC. This can be seen as a direct consequence of better semantic diversity obtained with
SAC. Furthermore, we also show that the extra computation time of SAC compared to
SC is almost negligible.

In future, we aim to apply SAC to various and more difficult symbolic regres-
sion problems (such multi-variate regression with more complex solution structure re-



On the Analysis of Semantic Aware Crossover 11

quired). In these problems the promotion of semantic diversity might be more difficult.
we are also planning to combine SAC idea with some of previousproposed crossovers
in the literature that are based on the structure of trees such as crossover with bias on the
depth of nodes as in [10] or one point crossover as in [25]. Another potential research
is to apply SAC on problems of Boolean domain that as in [20], of which it is very
difficult to generate the children that are different from their parents in terms of seman-
tics. Finally, we are intending to investigate the suitablerange ofsemantic sensitivity
for each class of problems. In this papers, these values weredetermined mostly by hand
tunning. However, these value can be incorporated into GP individual and get evolved
in a way that is similar to the self-adaptation of genetic algorithm parameters as in [5].

References

1. L. Beadle and C. Johnson. Semantically driven crossover in genetic programming. InPro-
ceedings of the IEEE World Congress on Computational Intelligence, pages 111–116. IEEE
Press, 2008.

2. E. K. Burke, S. Gustafson, and G. Kendall. Diversity in genetic programming: An analysis
of measures and correlation with fitness.IEEE Transactions on Evolutionary Computation,
8(1):47–62, 2004.

3. R. Cleary and M. O’Neill. An attribute grammar decoder forthe 01 multi-constrained knap-
sack problem. InProceedings of the Evolutionary Computation in Combinatorial Optimiza-
tion, pages 34–45. Springer Verlag, April 2005.

4. M. de la Cruz Echeanda, A. O. de la Puente, and M. Alfonseca.Attribute grammar evolution.
In Proceedings of the IWINAC 2005, pages 182–191. Springer Verlag Berlin Heidelberg,
2005.

5. K. Deb and H.-G. Beyer. Self-adaptation in real-parameter genetic algorithms with simulated
binary crossover. InProceedings of the Genetic and Evolutionary Computation Conference,
pages 172–179. Morgan Kaufmann, July 1999.

6. M. A. Ghodrat, T. Givargis, and A. Nicolau. Equivalence checking of arithmetic expressions.
In Proceedings of the CASES05. ACM, September 2005.

7. S. Hengpraprohm and P. Chongstitvatana. Selective crossover in genetic programming. In
Proceedings of ISCIT International Symposium on Communications and Information Tech-
nologies, pages 14–16, November 2001.

8. N. T. Hien and N. X. Hoai. A brief overview of population diversity measures in genetic
programming. InProceedings of 11th Asia-Pacific Workshop on Intelligent and Evolutionary
Systems, pages 128–139. Vietnamese Military Technical Acadely.

9. N. X. Hoai, R. McKay, and D. Essam. Solving the symbolic regression problem with tree-
adjunct grammar guided genetic programming: The comparative results. InProceedings
of the 2002 Congress on Evolutionary Computation (CEC2002), pages 1326–1331. IEEE
Press.

10. T. Ito, H. Iba, and S. Sato. Depth-dependent crossover for genetic programming. InPro-
ceedings of the 1998 IEEE World Congress on Computational Intelligence, pages 775–780.
IEEE Press, May 1998.

11. C. Johnson. Deriving genetic programming fitness properties by static analysis. InPro-
ceedings of the 4th European Conference on Genetic Programming (EuroGP2002), pages
299–308. Springer, 2002.

12. C. Johnson. What can automatic programming learn from theoretical computer science. In
Proceedings of the UK Workshop on Computational Intelligence. University of Birmingham,
2002.



12 N. Q. Uy, N. X. Hoai, M. O’Neill, B. Mckay, E. Galván-López

13. C. Johnson. Genetic programming with fitness based on model checking. InProceedings
of the 10th European Conference on Genetic Programming (EuroGP2002), pages 114–124.
Springer, 2007.

14. G. Katz and D. Peled. Genetic programming and model checking: Synthesizing new mutual
exclusion algorithms.Automated Technology for Verification and Analysis, Lecture Notes in
Computer Science, 5311:33–47, 2008.

15. G. Katz and D. Peled. Model checking-based genetic programming with an application
to mutual exclusion.Tools and Algorithms for the Construction and Analysis of Systems,
4963:141–156, 2008.

16. M. Keijzer. Alternatives in subtree caching for geneticprogramming. InProceedings of
the Genetic Programming 7th European Conference, pages 328–337. Springer-Verlag, April
2004.

17. J. Koza.Genetic Programming: On the Programming of Computers by Natural Selection.
MITPress, MA, 1992.

18. H. Majeed and C. Ryan. A less destructive, context-awarecrossover operator for gp. InPro-
ceedings of the 9th European Conference on Genetic Programming, pages 36–48. Lecture
Notes in Computer Science, Springer, April 2006.

19. H. Majeed and C. Ryan. On the constructiveness of context-aware crossover. InProceedings
of the 9th annual conference on Genetic and evolutionary computation (GECCO), pages
1659–1666. ACM Press, July 2007.

20. N. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks in genetic programming.
In Proceedings of 11th European Conference on Genetic Programming, pages 134–145.
Springer.

21. N. Mori. A novel diversity measure of genetic programming. InProceedings of Randomness
and Computation: Joint Workshop “New Horizons in Computing” and “Statistical Mechan-
ical Approach to Probabilistic Information, pages 18–21.

22. N. Mori, R. McKay, N. X. Hoai, and D. Essam. Equivalent decision simplification: A new
method for simplifying algebraic expressions in genetic programming. InProceedings of
11th Asia-Pacific Workshop on Intelligent and EvolutionarySystems.

23. U. M. O’Reilly. Using a distance metric on genetic programs to understand genetic opera-
tors. InProceedings of IEEE International Conference on Systems, Man, and Cybernetics,
Computational Cybernetics and Simulation, pages 4092–4097. IEEE.

24. R. Poli, W. Langdon, and N. McPhee. A Field Guide to Genetic Programming.
http://lulu.com, 2008.

25. R. Poli and W. B. Langdon. Genetic programming with one-point crossover. InProceedings
of Soft Computing in Engineering Design and Manufacturing Conference, pages 180–189.
Springer-Verlag, June 1997.

26. N. Q. Uy, N. X. Hoai, and M. O’Neill. Semantic aware crossover for genetic programming:
the case for real-valued function regression. InProceedings of EuroGP09. Springer.

27. M. L. Wong and K. S. Leung. An induction system that learnsprograms in different pro-
gramming languages using genetic programming and logic grammars. InProceedings of the
7th IEEE International Conference on Tools with Artificial Intelligence, 1995.


