On the Analysis of Semantic Aware Crossover

Nguyen Quang U¥; Nguyen Xuan Ho&i Michael O’Neill*,
Bob Mckay, and Edgar Galvan-Lopéz

INatural Computing Research & Applications Group, Univgréiollege Dublin, Ireland
25chool of Computer Science and Engineering, Seoul Natidniersity, Korea
nxhoai @nai | . com

Abstract. It is well-known that the crossover operator plays a veryadngmt
role in genetic programming (GP). Itis also widely admittieat standard crossover
is made mostly randomly without semantic information. Tdeklof semantic in-
formation is the main reason that causes destructive efjecerally producing
children worse than parents, of standard crossover. Rgcemt have proposed
a new semantic based crossover for GP, that is called Sexvfamdire Crossover
(SAC) [26]. It was shown in [26] that SAC outperforms stamterossover (SC)
in solving a class of real-value symbolic regression pnoisleThis paper extends
[26] by giving some deeper analyses to understand why SA@shelimprove
the performance of GP in solving these problems. The analyisew that SAC
can increase the semantic diversity of population and taipshto reduce the
crossover destructive effect in GP. The results also shavalthough SAC re-
quires more time for checking semantics, this extra timesgligible.

Key words: Semantic aware crossover, semantic, constructive efftett

1 Introduction

Genetic programming (GP) is an evolutionary algorithm iregpby biological evolu-
tion to find the solution as computer programs for an usenddftask [17]. The pro-
gram is usually represented in a language of syntactic fismauch as s-expression
trees [17], a linear sequence of instructions, grammavaléon trees, or graphs [24].
The genetic operators in such GP systems are usually desigrensure the syntac-
tic closure property, i.e. to produce syntactically validldren from any syntactically
valid parent(s). Using such purely syntactical geneticajpes, GP evolutionary search
is conducted on the syntactical space of programs with thesemantic guidance from
the fitness of program measured by the difference of beha¥/@rolving programs and
the target programs (usually on a finite input-output sdedditness cases).

Although GP has been shown to be effective in evolving pnogréor solving differ-
ent problems using such (finite) behavior-based semanitiagoe and pure syntactical
genetic operator, this practice is somewhat unusual frahpegrammers perspec-
tive. Computer programs are not just constrained by synt&also by semantics. As
a normal practice, any change to a program should pay hetantian to the change
in semantics of the program and not just those changes thaagiee to maintain the
program syntactical validity. To amend this deficiency in @Bulting from the lack

2 N. Q. Uy, N. X. Hoai, M. O'Neill, B. Mckay, E. Galvan-Lopez

of semantic guidance on genetic operators, recently, we pavposed a semantic-
based crossover operator for genetic programming [26]ishedlled Semantic Aware
Crossover (SAC). The experimental results in [26] show tiséitig semantic guidance
on the crossover operator helps to improve GP in terms of timeber of successful
runs in solving a class of real-value symbolic regressiabi@ms.

In this paper we extend work in [26] by giving some deeperyses to understand
why SAC helps to improve the performance of GP on the probleied. The analyses
show that SAC can increase the semantic diversity of pojpumland this helps to reduce
the crossover destructive effectin GP. The results alsw $hat although SAC requires
more time for checking semantics, this extra time is neplai

The paper is organized as follows. In the next section, we giveview of related
works on semantic based operations and semantics basedwgoin GP. Section 3
describes briefly our crossover (SAC) proposed in [26]. ThieEment setting is de-
scribed in section 4 of the paper. The results of the expettisnare then given and
discussed in section 5. Section 6 concludes the paper ahtighits some potential
future extensions of this work.

2 Related works

Using semantic information in genetic programming is nat,rteere has been a num-
ber of related research over the years. The use of semafditnation in the litera-
ture of GP could be seen in three ways: Using grammars [27, @sihg formal meth-
ods [11-13,15, 14] and based directly on GP expressionemesentation [1, 20, 26].
In the first way, Attribute Grammars have been the most pogalanalisms used to
incorporate semantic information into GP. By using an latiie grammar and adding
some attributes to individuals, we can check some usefubsgminformation of in-
dividuals during the evolutionary process. This inforraatcan subsequently be used
to remove bad individuals from the population [4] or can bedi® prevent generating
invalid individuals [27, 3]. However, the attributes that aised to present semantics are
problem dependent. Moreover, it might not always be easgsad attributes for each
problem.

Recently, Johnson has advocated for using formal methodsay of adding se-
mantic information in the evolutionary process of GP [11}-13 [12], he proposed
a number of possible ways for incorporating program serogrmktracted by formal
method techniques into GP. In these methods, the semaftiaiation that is extracted
by using formal methods, mostly based on Abstract Integpicet and Model Checking,
is mainly used as a way of measuring the fitness of individumas®me problems that
are difficult to use a sample points based traditional fitmesasure. Katz and cowork-
ers used a model checking to solve Mutual Exclusion problEsn4]. In these works,
semantics are extracted/calculated and then incorpargtethe fitness of individuals.

The use of semantic information on expression trees hasreaéired in the mod-
ification of the crossover operator. Some first modificatiohshe standard subtree
crossover in GP focused on syntax and structure of indivédia [10], the crossover
is implemented based on the depth of the trees or as in [2%®dbas the shape of
trees. More recently, context has been considered as extrariation for determining

On the Analysis of Semantic Aware Crossover 3

crossover points in GP [7, 18] which is perhaps most closeptoging semantic in-
formation for modifying the standard crossover. The weakraf these context based
methods is that it is rather time consuming to evaluate timéeoo of all subtrees of an
individual as required by these approaches. In [1], theastimvestigate the effect of
directly using semantic information to guide the crossmmgrator in GP on Boolean
domains. Their main idea is to check the semantic equivalbatween the newly born
children with their parents. The semantic equivalencekingmof two Boolean expres-
sion trees is done by transforming the trees to reducededdsenary decision diagrams
(ROBDDs), and that they have the same semantic if and onheif &ire reduced to the
same ROBDD. The semantic equivalence checking is then osgetérmine which of
the individual participating in crossover operation wil bopied to the next generation.
If the children born as the result of crossover are semdlytieguivalent with their
parents, they are not copied to the next generation, theénpaare copied instead. By
doing this, the authors argued that it helps to increasedimastic diversity of evolving
population of programs that helps to improve the performafcP in these problems.

In our previous work [26], we proposed a new crossover oaratalled Seman-
tic Aware Crossover (SAC), based on the semantic equivalehecking of subtrees.
GP with SAC was applied to a family of real-value symbolicresggion problems and
the experiment results show that SAC is really effectiver Work in [26] is different
from [1] in two ways. Firstly, the domain for testing semaatly driven crossovers is
real-valued rather than Boolean. For real-valued doméiesidea of checking seman-
tic equivalence by reducing to common ROBDDs is no longesis. Secondly, the
semantic guidance of the crossover operator is not from ti@erprogram tree behav-
ior but from subtrees. This is inspired by recent work in [#8)] calculating subtree
semantics. However, the subtree semantic calculated Jng26ér real-valued domains
but not Boolean domains as in [20].

3 Semantic Aware Crossover

The aim of the study in [26] is to extend the earlier work [1], @0real-valued domains.
For such problems it is not easy to compute the semanticsmarsic equivalence
of two expression trees by reducing them to a common stre@arfor Boolean do-
main as in [1]. Similarly, complete enumeration and congariof subtree fithess as in
[20] is also impossible on real domains. In fact, the probtdrdetermining semantic
equivalence between two real-valued expressions is knola tomplete NP-hard [6].
Therefore, we have to calculate the approximate semamti¢26], a simple method
for measuring and comparing the semantics of two expresssonsed. To determine
the semantic equivalence of two expressions, we measureafainst a random set of
points sampled from the domain. If the output of the two treeshe random sample
set are close enough (subject to a parameter called sensangivity) then they are
designated as semantically equivalent. It can be writtggs@udo-code as follows:

[f Abs(Val ue_On_Random.Set (P;) - Val ue_On_Random.Set (P2)) <€ t hen

Return P is semantically equivalent to Pa.

Where Abs is the absolute function aid a predefined constant called g@mantic

sensitivity This method is inspired by the simple technique for sinyplij expression

4 N. Q. Uy, N. X. Hoai, M. O'Neill, B. Mckay, E. Galvan-Lopez

trees proposed in [22] called equivalence decision singglifbon (EDS), where compli-
cated subtrees could be replaced by much simpler and teedabtrees if they are
semantically equivalent.

The semantic equivalence of two subtrees could be used tootdime crossover
operation by constraining the operator in such a way thdtefttvo subtree under the
crossover point are semantically equivalent, the opetattorced to be executed on
two new crossover points. The algorithms for SAC given ir] j2és follow:
1.1.Select two parents: Pi, P»

1. 2. Choose at random crossover points at Subtree; in Pp
Choose at random crossover points at Subtrees in Py
if (Subtreei is not equivalent with Subtreey){
Execut e crossover
Add the children to the new popul ation
Return TRUE }
el se{

Choose at random crossover points at Subtree; in Py
Choose at random crossover points at Subtrees in Pp
Execut e crossover

Ret urn TRUE}

The motivation for doing SAC is to encourage GP individuakes to exchange
subtrees that have different semantics, which is expect@htourage the change in
semantics of the whole trees after each crossover. In [2BwiEh SAC was proven to
have the best performance on a family of real-valued regmegsoblems in comparison
with GP coupled with standard crossover (SC) and some ogheaustic checking based
operation. However, the root of this success and the proathfeving the semantic
diversity in SAC motivation have not been clearly demonsttaT he following sections
will give further analyses of the GP runs in [26], to gain het insight into the succint
cause of the success of SAC.

4 Experiment settings

All parameters of the experiments in this papers are the sarmeour privious work [26]
meaning that the standard crossover and SAC are tested assarehl-valued of sym-
bolic regression problems with target functions as a fawfilyolynomials of increasing
degree givenin [9F1 = X3+ X2+ X, Fo = X4+ X3+ X2+ X, Fs = X5+ X4+ X3+
X2+ X, and By = X84 X5+ X# 4 X3+ X2 4 X. The parameters setting for SC and SAC
are the same and as follows:

— Population size: 500

— Number of generation: 50

Tournament selection size: 3

Crossover probability: 0.9

Mutation probability: 0.1

Max depth of program tree at the initial generation: 6

Max depth of program tree at all time: 15

Non-terminals: +, -, *, / (protected version), sin, cos, deg (protected)

On the Analysis of Semantic Aware Crossover 5

Terminals: X, 1

Number of sample: 20 random points from [-1...1].

Hit: when an individual has an absolute err00.01 on a fitness case.
Termination: A program scores 20 hits or maximum generati@xceeded.

The semantic sensitivitiegsed in the experiment are: 0.01, 0.02, 0.04, 0.05, 0.06,
0.08, 0.1. The reason why we choose this semantic serisivg that they are the
values that help to improve the performance of SAC versus S6as been shown
in [26]. For each kind of crossover (SC and SAC), each targatlpm, and semantic
sensitivity, 100 runs are performed which makes the totailver of runs 5600.

5 Results and Discussion

To analysis the behavior of SAC and to compare it with SC, wedaoted rerun the
experiments in [26] and collect stattistics on some asp#dteem. These statistics and
analyses are presented in the following subsections.

5.1 Equivalent crossovers

In the first experiment analysis, we investigate the questfdrequency of semantically
equivalent crossover event. It means how often SAC and SRaexge the semantically
equivalent subtree. To answer this question we did colkatistics as the percentage
of such crossovers events averaged over all generationllanoh& in [26]. The result
is shown in Table 1. we also graph the average percentagenagieally equivalent
crossover event over 100 runs for each of 50 generations seitisitivityas 0.01 in
Figure 1

Table 1. The average percentage of equivalent crossovers

Sensitivity 0.01| 0.02| 0.04| 0.05| 0.06| 0.08| 0.1

= SC (24.29%24.2%24.29%24.2%24.2%24.29%24.2%
1"SAC [5.4%5.3%|5.3%5.3%| 5.3%| 5.3%] 5.3%
E SC (22.19%22.19422.19%922.1%22.1%22.19%422.1%
2"SAC [4.2%|4.2%|4.2% | 4.2% | 4.2%| 4.2% | 4.2%
E SC |22.5%22.69422.5%922.6%22.6%22.6%422.6%
3"SAC [4.6%|4.5%|4.5%|4.5% | 4.5%]4.5%]|4.5%
E SC (21.8%21.9%21.9%21.9%21.9%21.9%21.9%
4"SAC [4.1%]4.1%[4.1%] 4.1% | 4.1% | 4.1%| 4.1%

From Table 1 and Figure 1 it can be seen that overall the aggragcentage of
semantically equivalent crossover events in SC (about 20%jJolds bigger than SAC
(about 4%). We also have conducted an experiment to test hossaver affect the
relative fitness of the children to their parent when it swisymssemantically equivalent
subtrees. The result is that in nearly all cases (about 98%6h crossover will produce

6

100

N. Q. Uy, N. X. Hoai, M. O'Neill, B. Mckay, E. Galvan-Lopez

F2

% equivalent crossover

F1

sc’
sAC

% equivalent crossover

sc’
sAC

F3

F4

5 10 15 0 25 35 40 45 50 ° 5 10 15 0 25 35 40 45 50
Generations Generations

100

5 2 2
& 2 8

% equivalent crossover

3

°

L

% equivalent crossover

100

e |

5 10

15 20 2

30 35

Generations

40 a5

50

5

10 15

20 25

30 35

Generations

40

a5

Fig. 1. The average percentage of equivalent crossoversssitiitivity=0.01

50

the two children that have identical fithess with their p&senhis infers that about 20%
of SC and much smaller with about 4% of SAC, does not produseamddren during
the evolutionary process. Therefore, we argue that SAC re memantical exploratory
than SC on the problems tried.

Table 2. The average percentage of different children from theieptin crossover

Sensitivity

0.01

0.02

0.04

0.05

0.06

0.08

0.1

63.4%

63.4%

63.4%

63.4%

63.4%

63.4%

63.4%

SC
Fisac

73.4%

72.1%

71.7%

73.2%

73.0%

73.5%

73.7%

F SC

66.8%

66.8%

66.8%

66.8%

66.8%

66.8%

66.8%

SAC

80.3%

79.1%

80.0%

80.5%

80.7%

80.3%

80.4%

Fs SC

67.6%

67.6%

67.6%

67.6%

67.6%

67.6%

67.6%

SAC

77.7%

79.7%

80.4%

78.1%

78.3%

78.1%

78.5%

Fs SC

67.9%

67.9%

67.9%

67.9%

67.9%

67.9%

67.9%

SAC

80.2%

80.1%

80.0%

80.7%

80.8%

80.7%

80.4%

On the Analysis of Semantic Aware Crossover 7

5.2 Semantic diversity

In the previous section, statistics has shown that, on thblgm tried SAC encour-
age more exchange of semantically different subtrees,hwihivitably encourage the
change in semantics of the children compared to their patdriggers the second ex-
periment in this section on semantic diversity. Populatiwersity has been long seen
as a crucial factor in genetic programming [2]. In genetta, $earch process will be
more robust if the more population diversity is maintairiEldere are two kind of met-
rics which have been used for measuring and controlling iversity of population is
genotypic diversity and phenotypic diversity [8]. Whileetfirst one concerts to syntax
(structure) of individuals in the population [23], the sad@ne is based on the behavior
(fitness) [21] of individuals in the population. In this papse propose a new measure
for semantic diversity of genetic operators cabedhantic diversity of crossové8DC).
SDC is different with other metrics in that it does not aim teasure the difference be-
tween the individuals in the same population but to measwelifference between the
individuals of the two successive populations. In otherdy@&@DC is used to measure
how are individuals different before and after crossoveresithe difference between
individuals before and after crossover is again determbreesed on a set of random
points drawn from the problem domain.

We use SDC to measure the semantic diversity of SC and SACubtiog the per-
centages of these crossover events in the runs that getheeatentically new children
from their parents. This value is then averaged over 50 gd¢ines and 100 runs and
shown in table 2. We also show in Figure 2. the average pexgemf different children
over 100 runs for each of 50 generations with sensitivity.85.0

It is obvious from Table 2 and Figure 2 that there is a strongetation with the
statistics given in the previous subsection. In some firaegations, about 70% of SC
generated different children while this value of SAC wasrlye@0%. It is important
as in the early phase of evolutionary process, it is expettadGP would have high
exploration capacity in creating (semantically) new indiials. During the evolutionary
process, the percentage of different children of both enveysgo down. However, SAC
is always about 15% higher than one of SC. It should be notgchgnerally in SAC it
is not guaranteed that SAC always generates two semantieadl children even when
the two semantically equivalent subtrees is preventechienr point of view the reason
might lie in the existence of some fixed semantic subtrees #sei boolean domains,
which was shown in [20]. However, further analysis needsga@dnducted to reach a
more certain conclusion.

5.3 Constructive effect

As is shown in section 5.2, SAC is more semantically prodediian SC generating
more children that are different with their parents. Howeitavould be interesting to

ask, at least on the problem tried, whether this helps thesoneer operations in breeding
better children from the parents (more constructive cneesgoTo answer this question
we conducted an experiment on constructive effect of SACSwdrhe methodology to

measure the constructive effect in here is similar to th@}. [t means that comparison
the constructive effect of two crossovers is done by simplguating the percentages

% of generating newly children

% of generating newly children

N. Q. Uy, N. X. Hoai, M. O'Neill, B. Mckay, E. Galvan-Lopez

F1 F2
T T < T T T T T T T —
SAC

H
8
H
8

SAC

ao\
sl - . J

2
8

% of generating newly children

B 10 S 3 4 45 50 B 10 s 2 2 3 4 45 50
Generations Generations
F3 Fa
- -~ - - - - - - - —
SAC —— SAC ——

% of generating newly children

5 10 15 0 25 3 % 40 45 50 5 10 15 0 25 3 % 40 45 50
Generations Generations

Fig. 2. The percentage of generating newly children of two crossssleemas

of the events of generating a better child from its parentsuph crossover. This value
is then averaged over number of generations and number sf Tine results are given
in Table 3, and in Figure 3 depicts the average percentagerargting a better child
from its parent over 100 runs for each 50 generations géthsitivityis 0.08.

Table 3. The average percentage of better children than their parenbssover

Sensitivity 0.01| 0.02 | 0.04| 0.05| 0.06| 0.08| 0.1

= SC (10.59410.59410.5%410.59410.5%4 10.5% 10.5%
1SAC [15.5%]|15.0%]|14.7%][15.4%][15.3%]|15.5%][15. 7%
SC (11.39411.39411.39%411.39411.39%411.3% 11.3%
SAC |17.2%16.7%|16.9%|17.3%|17.4%|17.3%|17.4%
SC [11.79911.79%411.79911.79%411.7%911.79%411.7%
SAC [15.99%16.8%)|17.0%)|16.0%|16.1%]|16.0%(16.1%
SC (11.49411.49411.49%411.49411.49%11.4%11.4%
SAC [16.7%]16.8%|16.7%|17.0%|17.1%]|17.0%(17.0%

F>

F3

F4

The result from Table 3 and Figure 3 shows that SAC is moresitmenstructive,
often 5%-10% better, than SC. This result explains why théopmance of SAC was
better than SC in terms of number of successful runs as in [26]

On the Analysis of Semantic Aware Crossover 9

F1 F2

= T T T T T T T T =

SAC SAC

% of generating better children
% of generating better children

5 10 15 20 25 E s w0 s e 5 10 15 20 25 0 s w0 s 50
Generations Generations
F3 F4
- < - - - - - - - —
SAC —— SAC ——

% of generating better children
% of generating better children

5 10 15 20 25 . 30 35 40 45 50 5 10 15 20 25 . 30 35 40 45 50
Generations Generations

Fig. 3. The percentage of constructive crossover wihsitivityis 0.08

5.4 Code bloat

The better performance of SAC as observed in [26] goes withsa as it takes more
time to calculate the subtree semantics. It reflected inlidjletly higher running time of
SAC compared to SC. But how much really expensive the extcaledions are? In this
paper, we do not want to compare the running time only andlgitng to look deeper
in the reasons that cause the extra computation time of SAGnaestigate how much
that expensiveness likely to be. To understand the root séipte extra computation
time of SAC compared to SC, we conducted a code bloat andtystee runs of the
two operators. Here, it is supposed that the extra computtithe of SAC might mainly
come from two sources. The first source is that the indivieliraBAC runs were more
complicated than those of SC. Therefore, the time to evalinglividual fitness in SAC
runs is higher than in SC runs. The second source is the tirm@eaeto compare the
semantic equivalence of the two subtrees. To determinehaibithe main source we
collected two statistics from the experiment runs. The first is the average size of
individuals (number of nodes) over 50 generations and geeraver 100 runs of SAC
versus SC. The second one is the average size of subtredse®d to be checked for
the semantical equivalence testing in SAC. This is averdgiedach of 50 generation
and over 100 runs. The two statistics are shown in Table 4Tahtk 5 respectively.

It can be seen from Table 4 and Table 5 that the higher runinimg of SAC was
caused not only by the calculation of subtree semanticslbattsy the increase of the
size of individuals (bloat). However, these two time measare almost negligible for

10 N. Q. Uy, N. X. Hoai, M. O'Neill, B. Mckay, E. Galvan-Lopge

Table 4.The average size of individuals

Sensitivity0.010.020.040.050.060.08 0.1
F SC [36.836.836.836.836.836.836.8

SAC (43.943.243.743.943.143.943.9
SC (42.542.542.5942.942.542.911.3
SAC |47.349.349.146.846.946.946.7
SC |43.543.543.943.5943.543.543.5
SAC |47.947.747.348.248.348.447.7
SC |45.245.245.245.245.245.245.2
SAC [51.150.950.450.650.551.050.8

F>

F3

F4

Table 5. The average size of subtrees in SAC

Sensitivity0.02{0.020.040.050.060.080.1]
F1 46|4.3|4.4|146|4.8/4.6(4.9
F 4.714.5/4.6/4.9|5.0/4.7|4.8
F3 4.7|145|4.4|14.6|51|4.7|4.9
Fa 4.7|145|4.714.6|/5.0/4.6(5.0

the problem tried. In Table 5, it can be seen that the aveliage$subtrees in SAC is
very small in comparison with average size of individualsefiefore, the time needed
to calculate and compare subtree subtree fitnes is smalkedxter, there are also some
methods which could be used to store semantics of theseessland that leads to more
efficient subtree semantic calculation. One example of suethod is the use of cache
as in [16], which we aim to do in further extensions of SAC. Ewerage individual
size in SAC was bigger than that of SC but only with a very smretgin. Moreover,
there could also be some ways to reduce further the size aidheduals in SAC runs.
For instance size of subtrees could be incorporated intedleetion of crossover points
apart from semantic information which might prefer smadlebtrees.

6 Conclusion and future works

In this paper we have compared SAC and SC on different aspeicssly, we have
pointed out that there are about 20% of SC operations is ttap i semantically
equivalent subtrees. This likely leads to the breed of childhat are semantically sim-
ilar to their parents. This weakness of SC can be amended @ I8Apreventing the
occurence of such swapping operations. Secondly, we hawensthat, at least on the
problem tried, SAC helps to promote better semantic ditieggnerating more seman-
tically new children than SC. The results also show that S&\@are constructive than
SC. This can be seen as a direct consequence of better sedigatsity obtained with
SAC. Furthermore, we also show that the extra computatina tf SAC compared to
SC is almost negligible.

In future, we aim to apply SAC to various and more difficult $yotic regres-
sion problems (such multi-variate regression with more glemsolution structure re-

On the Analysis of Semantic Aware Crossover 11

quired). In these problems the promotion of semantic dityensight be more difficult.
we are also planning to combine SAC idea with some of preyiwoposed crossovers
in the literature that are based on the structure of tredsasicrossover with bias on the
depth of nodes as in [10] or one point crossover as in [25].tA@opotential research
is to apply SAC on problems of Boolean domain that as in [20}bich it is very
difficult to generate the children that are different froreittparents in terms of seman-
tics. Finally, we are intending to investigate the suitatalege ofsemantic sensitivity
for each class of problems. In this papers, these valuesdeteemined mostly by hand
tunning. However, these value can be incorporated into @Ridual and get evolved
in a way that is similar to the self-adaptation of genetioaltpm parameters as in [5].

References

1.

10.

11.

12.

L. Beadle and C. Johnson. Semantically driven crossevgemetic programming. IRro-
ceedings of the IEEE World Congress on Computational igtice pages 111-116. IEEE
Press, 2008.

E. K. Burke, S. Gustafson, and G. Kendall. Diversity ing@nprogramming: An analysis
of measures and correlation with fitne$EEE Transactions on Evolutionary Computation
8(1):47-62, 2004.

R. Cleary and M. O’Neill. An attribute grammar decodertfoe 01 multi-constrained knap-
sack problem. IfProceedings of the Evolutionary Computation in Combinaldptimiza-
tion, pages 34-45. Springer Verlag, April 2005.

M. de la Cruz Echeanda, A. O. de la Puente, and M. Alfons&itabute grammar evolution.
In Proceedings of the IWINAC 200pages 182-191. Springer Verlag Berlin Heidelberg,
2005.

K. Deb and H.-G. Beyer. Self-adaptation in real-paranggaetic algorithms with simulated
binary crossover. IRProceedings of the Genetic and Evolutionary Computationf@ence
pages 172-179. Morgan Kaufmann, July 1999.

M. A. Ghodrat, T. Givargis, and A. Nicolau. Equivalencecking of arithmetic expressions.
In Proceedings of the CASESOECM, September 2005.

S. Hengpraprohm and P. Chongstitvatana. Selective@reiss1 genetic programming. In
Proceedings of ISCIT International Symposium on Commtinitaand Information Tech-
nologies pages 14-16, November 2001.

N. T. Hien and N. X. Hoai. A brief overview of population disity measures in genetic
programming. IrProceedings of 11th Asia-Pacific Workshop on Intelligert Brmolutionary
Systemgpages 128-139. Vietnamese Military Technical Acadely.

N. X. Hoai, R. McKay, and D. Essam. Solving the symbolicresgion problem with tree-
adjunct grammar guided genetic programming: The comparaésults. InProceedings
of the 2002 Congress on Evolutionary Computation (CEC2002yes 1326-1331. IEEE
Press.

T. Ito, H. Iba, and S. Sato. Depth-dependent crossovegeetic programming. |Rro-
ceedings of the 1998 IEEE World Congress on Computationellimzence pages 775-780.
IEEE Press, May 1998.

C. Johnson. Deriving genetic programming fitness ptmseby static analysis. |IRro-
ceedings of the 4th European Conference on Genetic Proghagn(BEuroGP2002) pages
299-308. Springer, 2002.

C. Johnson. What can automatic programming learn fremrétical computer science. In
Proceedings of the UK Workshop on Computational Intellagetniversity of Birmingham,
2002.

12

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

N. Q. Uy, N. X. Hoai, M. O'Neill, B. Mckay, E. Galvan-Lopge

. C. Johnson. Genetic programming with fithess based orelnebécking. InProceedings
of the 10th European Conference on Genetic Programmingo@&B2002) pages 114-124.
Springer, 2007.

G. Katz and D. Peled. Genetic programming and model ahgc8ynthesizing new mutual
exclusion algorithmsAutomated Technology for Verification and Analysis, Lexotes in
Computer Scien¢é311:33-47, 2008.

G. Katz and D. Peled. Model checking-based genetic arogning with an application
to mutual exclusion.Tools and Algorithms for the Construction and Analysis ct&ys
4963:141-156, 2008.

M. Keijzer. Alternatives in subtree caching for gengtiogramming. InProceedings of
the Genetic Programming 7th European Conferemaes 328—-337. Springer-Verlag, April
2004.

J. Koza.Genetic Programming: On the Programming of Computers byuhiSelection
MITPress, MA, 1992.

H. Majeed and C. Ryan. A less destructive, context-asagsover operator for gp. Pro-
ceedings of the 9th European Conference on Genetic Progiagnimpages 36—48. Lecture
Notes in Computer Science, Springer, April 2006.

H. Majeed and C. Ryan. On the constructiveness of ceateate crossover. IRroceedings
of the 9th annual conference on Genetic and evolutionarypetation (GECCO) pages
1659-1666. ACM Press, July 2007.

N. McPhee, B. Ohs, and T. Hutchison. Semantic buildingkd in genetic programming.
In Proceedings of 11th European Conference on Genetic Pragiagy pages 134-145.
Springer.

N. Mori. A novel diversity measure of genetic programgniim Proceedings of Randomness
and Computation: Joint Workshop “New Horizons in Computiagd “Statistical Mechan-
ical Approach to Probabilistic Informatigmpages 18-21.

N. Mori, R. McKay, N. X. Hoai, and D. Essam. Equivalentidem simplification: A new
method for simplifying algebraic expressions in genetiegpamming. InProceedings of
11th Asia-Pacific Workshop on Intelligent and EvolutionSgstems

U. M. O'Reilly. Using a distance metric on genetic praogsato understand genetic opera-
tors. InProceedings of IEEE International Conference on Systenas, ldind Cybernetics,
Computational Cybernetics and Simulatigrages 4092-4097. IEEE.

R. Poli, W. Langdon, and N. McPhee.A Field Guide to Genetic Programming
http://lulu.com, 2008.

R. Poli and W. B. Langdon. Genetic programming with onaypcrossover. IfiProceedings
of Soft Computing in Engineering Design and Manufacturirapf@rence pages 180-189.
Springer-Verlag, June 1997.

N. Q. Uy, N. X. Hoai, and M. O’Neill. Semantic aware crogsofor genetic programming:
the case for real-valued function regressionPinceedings of EuroGP0Springer.

M. L. Wong and K. S. Leung. An induction system that legsregrams in different pro-
gramming languages using genetic programming and logiogpars. InProceedings of the
7th IEEE International Conference on Tools with Artificiatélligence 1995.

