
An efficient Search Tool for an Anti-Money Laundering
Application of an Multi-national Bank's Dataset

Nhien-An Le Khac1, Sammer Markos1, Michael O'Neill1, Anthony Brabazon2 and M-Tahar Kechadi1

1School of Computer Science & Informatics, University College Dublin, Dublin, Ireland
2School of Business, University College Dublin, Dublin, Ireland

Abstract - Today, money laundering (ML) poses a serious
threat not only to financial institutions but also to the nations.
This criminal activity is becoming more and more
sophisticated and seems to have moved from the cliché of
drug trafficking to financing terrorism and surely not
forgetting personal gain. Most of the financial institutions
internationally have been implementing anti-money
laundering solutions (AML) to fight fraud activities. However,
the AML systems are so complicated that simple query tools
provided by current DBMS may produce incorrect and
ambiguous results and they are also very time-consuming due
to the complexity of the database system architecture.

In this paper, we present a new approach for identifying
customers quickly and easily as part of an AML application.
This will help AML experts to identify quickly customers who
are managed independently across separate databases of the
organization. This approach is tested on large and real-world
financial datasets. Some preliminary experimental results
show that this new approach is efficient and effective.

Keywords: Anti-Money laundering, customer identification,
search algorithms, tree topology, inverted list.

1 Introduction
 Money laundering (ML) is a process of disguising the
illicit origin of "dirty" money and makes them appear
legitimate. It has been defined by Genzman as an activity that
"knowingly engage in a financial transaction with the
proceeds of some unlawful activity with the intent of
promoting or carrying on that unlawful activity or to conceal
or disguise the nature location, source, ownership, or control
of these proceeds" [7]. Through money laundering, criminals
try to convert monetary proceeds derived from illicit activities
into “clean” funds using a legal medium such as large
investment or pension funds hosted in retail or investment
banks. This type of criminal activity is getting more and
more sophisticated and seems to have moved from the cliché
of drug trafficking to financing terrorism and surely not
forgetting personal gain. Today, ML is the third largest
“Business” in the world after Currency Exchange and Auto

Industry. According to the United Nations Office on Drug
and Crime, worldwide value of laundered money in a year
ranges from $500 billion to $1 trillion [1] and from this
approximately $400-450 Billion is associated with drug
trafficking. These figures are at times modest and are partially
fabricated using statistical models, as no one exactly knows
the true value of money laundering, one can only forecast
according to the fraud that has already been exposed.
Nowadays, it poses a serious threat not only to financial
institutions but also to the nations. Some risks faced by
financial institutions can be listed as reputation risk,
operational risk, concentration risk and legal risk. At the
society level, ML could provide the fuel for drug dealers,
terrorists, arms dealers and other criminals to operate and
expand their criminal enterprises. Hence, the governments,
financial regulators require financial institutions to implement
processes and procedures to prevent/detect money laundering
as well as the financing of terrorism and other illicit activities
that money launderers are involved in. Therefore, anti-money
laundering (AML) is of critical significance to national
financial stability and international security.

Typically, an AML system is composed of some components
such as customer identification, transaction monitoring, case
management, reporting system, etc. Among them, customer
identification is one of the most important tasks as it assists
AML experts in monitoring customer behaviours;
transactions that they are involved in, their frequencies,
values, etc. Fundamentally, a customer is identified by
searching customer databases using query tools provided by
DBMS. However, in the case where a specific customer is
stored in separate databases that are managed independently,
this will require a very large processing time due the search
operations initiated over all the databases. Users need firstly
to login to different databases, run the same query repeatedly,
get the results separately, and displayed independently.
Furthermore, in large financial institutions, these databases
are heterogeneous and have very complex designs. This sort
of approach allows great flexibility, however it has poor
performance. In addition, data quality is also another factor
that makes this naïve approach becoming unfeasible.

In this paper, we present a new approach for identifying
customers in an international investment bank BEP1. This
approach provides a global view of customer information and
it is developed as a tool that allows the users to quickly and
efficiently identify customers who are managed
independently across separate databases. This tool is a
component of an AML solution developed for BEP.

The rest of this paper is organised as follows: the section 2
presents a background highlighting the current status of
BEP’s datasets and their customer search problems within the
AML context. Some indexing approaches are also discussed
in this section. We present our new approach that is a global
indexing based on word-ordered grouping and inverted list in
the Section 3. We describe the implementation of this
approach in Section 4. Section 5 presents preliminary
experimental results. Finally, we conclude in section 6.

2 Backgrounds
 We start this section with a brief presentation of an
AML project at BEP and then we will discuss on customer
search problems in its current environment. We finish this
section by reviewing some indexing approaches for data
search in the literature.

2.1 AML in BEP
 Similar to any banking institution, BEP is required by
law to conduct strict AML governance on all transactions.
The BEP AML Unit does not have an automated solution to
support pattern recognition and detection of suspicious
activities. The purpose of this project is to apply new
principles and methodologies to build an AML framework in
order to detect suspicious customer transactions and
behaviour for the AML Unit. In this framework, one of the
important components is customer identification. Before
launching any customer transactional investigation, the
customer should be identified in all customer databases of
BEP. The structure of the BEP databases is complicated and
there are many problems with data quality that will can be
extracted and analysed, which are discussed in the following
paragraphs.

BEP datasets are divided into different environments
corresponding to sixteen clients with multiple funds per client
and managed hence by sixteen independent databases. When
a new customer or an investor X want to invest into a specific
fund (client specific), the AML team would request certain
documentation and will always treat him as a new customer
even though he could already invest into one/more of the
other fifteen clients, i.e. already exist in another databases.
The purpose of the customer search is to verify and identify a
customer’s profile in all invested funds. The AML Unit is

1 Real name of the bank can not be disclosed because of
confidential agreement of the project.

currently applying a manual search based on DBMS queries.
However, this is a time-consuming task because users should
login separately to each database and carry out repeated
queries. Moreover, each database contains not only data but
also its meta-data, so many joint operations are needed to
retrieve the information required.

Meanwhile, the data quality is also another impact that affects
the searching task. BEP’s input GUI is not efficient and its
databases design is cumbersome. Each customer database is
“identical”, i.e. the customer identification (CID) is only
unique in this database but the CID is not unique in all
databases. For instance, we can have (name= “John Smith”,
CID= “12345”) in database A vs. (name= “Peter Chang”,
CID= “12345”) in database B. Briefly; there is a uniqueness
violation at the global level. Furthermore, each database has a
different set of quality problems at the instance level. Some
problems can be listed as:

• Missing values, dummy values or null. These
appear in most of the data fields in all databases
except the CID, the customer type (corporate,
individual and joint) and the fund name.

• Misspellings; usually typos and phonetic errors.
For instance, we have “MACAO” vs. “MACAU”,
“11 1101” vs. “11-1101”, “Bloggs Corporation A/C
001” vs. “Bloggs Corporation 001”, etc.

• Abbreviations; e.g. “A/C” vs. “AC” and
“Account”

• Word transpositions; e.g. “John Smith” vs. “Smith
John”

• Duplicated records e.g. “John Smith” vs. “J.
Smith”

Moreover, the names of some corporate customers are
normally not identical even though they are the same
company. For instance, “First Commercial Bank Ltd”2, “First
Commercial Bank Ltd OBB Account”, “First Commercial
Bank Ltd Trust Account TA 101010”, “First Commercial
Bank Ltd Trust Account TA 505055”, etc. We call this a
“company name group” property. Besides, some customer
databases also have the problem of incoherent data in address
data fields. The address information includes the following
data fields: “Street”, “Town”, “Zip”, “Country Code” and
“Country”. And then, for example, the “Zip” field contains
information about the street, house number and/or town, city
instead of its zip code.

2 Again, due to the confidential agreement, all examples
presented in this paper do not use the real customer names,
company names and address

Because of the customer datasets quality as well as its
complicated design, the manual customer search task by
DBMS queries currently takes more than two hours to
identify a customer.

2.2 Indexing
 Fundamentally, search engines index the data in order to
facilitate fast and accurate information retrieval. Some
indexing methods in literature are tree-based, suffix tree,
inverted list, citation index, ngram index, term document
matrix, etc. The tree-based index would be the most popular
method where the search operations are linked with tree
nodes. The tree topology can be varied from a binary [10] to
a B-Tree family such as B/B*/ B+Tree [2] [3] [12]. For
instance, some DBMS implement an index structure based on
B-Tree such as MySQL, SQL Server [11]. Nevertheless, this
topology is not efficient enough for indexing complex,
heterogeneous, and bad quality data fields.

4 2
5

1

0

3

n

a
b
a
n
a
n
a
$

na

$ a

$ na
$

$ na
$

suffix link internal node
leaf node 1 starting position

Figure 1. A suffix tree for “banana$”

Suffix tree [8], so-called PAT tree or position tree, is a data
structure that presents a given string in a suffix way (Figure
1). The suffix tree for a string S is a tree whose edges are
labelled with strings such that each suffix of S corresponds
exactly to one path from the tree’s root to a leaf. The
advantage of suffix tree is that operations on S and its
substring can be performed quickly. However, the
constructing suffix tree takes time and storage space linear in
the length of S.

Inverted list [13] is another kind of index where each entry in
the index table includes two elements: an atomic search item
and a list of occurrences of this item in the whole search
space. For example, the index of a book lists every page on
which certain important words appear. This approach is
normally implemented by the hash table [4] or the binary tree
[10]. Inverted list is one of the most efficient index structures
[14].

Citation index approach [6] stores the citation or hyperlinks
between documents to support citation analysis. This
approach is normally applied in the Bibliography domain.

Ngram index [9] stores sequences of length of data and term
document matrix stores the occurrences of words in the
documents in a two-dimensional sparse matrix. The last two
index methods are mainly used in information retrieval or text
mining [5].

3 Customer Search approaches
 As mentioned above, the current techniques based
DBMS queries are not suitable for the BEP’s AML system,
as they depend strongly on the quality of the data sets.
Therefore, the current quality of BEP’s customer data sets
should be improved before running any query. For instance,
in order to correct the misspelling problem, a spelling module
should be implemented to deal with typos and phonetic
errors. Similarly, abbreviated words must be uniform across
all separate databases; e.g. “A.C”, “Account”, “AC.” are
transformed to “A/C”. Meanwhile, data mining techniques
such as decision tree induction, regression, and inference-
based tools can be applied to fill missing values (tuples that
contain missing value fields cannot be ignored because all
customer information are important). Indeed, in some cases,
we should fill the missing value manually. Similarity, the
word transposition and duplicated records often need manual
intervention. Besides, the incoherent data problem in address
data fields (ref. Section 2.1) can only be manually corrected
but it is an unfeasible task with large datasets. Briefly, a
general solution for improving efficiently the quality of
BEP’s customer data sets is still an open question. Finally yet
importantly, the execution of DBMS queries on sixteen
independent BEP’s customer databases is also a very time-
consuming task. Next, we present our approach, which can
overcome the quality and design problems of BEP’s
customer databases

3.1 Basic concepts
 In this new approach, we aim to provide a global view
of information about all customers managed independently
across the BEP’s customer databases. Concretely, we build a
global index of these customers and provide a search engine
for AML users. Firstly, by analysing BEP’s customer
datasets, some important features can be summarised as:

• There are two main types of customer: individual
and corporate. The individual customer has two
name fields: “First Name” and “Last Name”. In
some records, “First Name” (resp. “Last Name”)
field stores all parts of customer name; e.g. in a
record X, “First Name” field stores “John Smith”
and its “Last Name” is empty. This is a special kind
of missing value. The corporate customer has only
one name field: “Company Name” and most of them
have a “company name group” property as
mentioned in the Section 2.1 above.

• The “Country” field is the most popular, i.e. its
missing value is less than 1%.

In addition, we also build a summary of all abbreviation cases
after this pre-processing process. We build our solution based
on these features and assuming that all abbreviation words are
expressed in a uniform way as well as all minor data
preparation is performed.

In order to deal with the incoherence of the address data
(Section 2.1), we merge all of the address data fields into one
field called “Address”. Similarity, we merge the “First
Name” and “Last Name” of individual customer into one
field named “Customer Name” to solve the missing value
problem. For each data record, word order in “Address” and
“Customer Name” can vary. For instance, we can have “John
Smith” vs. “Smith John” or “123, Main Street” vs. “Main
Street, 123” (word transposition problem). Therefore, the
inverted list technique can be used in this case to index
“Address” and “Customer Name”.

Meanwhile, the word order in the “Company Name” field is
important because of the “company name group” property.
Therefore, we need another type of index in this case. We can
address the “company name group” as a kind of suffix
problem and we can then use the suffix-tree topology.
Nevertheless, the implementation of this topology is
complicated. Hence, we rely on this topology to build an
index tree, which is simpler than the suffix tree for the
“Company Name” field of BEP’s customer datasets. So, our
global index is composed of three main parts: “Company
Name” index, “Customer Name” and “Address” index and
they are based on tree topology (the first index) and inverted
list (the last two ones), which are detailed in the following
section.

3.2 Index architecture
 The main architecture of our index consists of
“Company Name” tree, “Customer Name” and “Address”
inverted lists (Figure 2, 3 and 4). Furthermore, the whole
customer datasets are grouped by the customer type
(corporate or individual) and by the country.

Company Name Tree (CN tree) design. This is a suffix tree
based topology. Generally, the first word of a company name
appears at the root level (level 0) and its last word is at the
leaf level (Figure 2). The CN tree includes a set of nodes.
Each node contains one or many elements and each element
at level l links to only one node at level l+1 or to NULL if l is
at the leaf level. Each element has a key, which is a word
from the “company name” string. Hence, each node p at the
level l (l>0) contains all words derived from their prefix word
at the level l-1 and so on. Formally, supposing that a
customer datasets includes a set of n company names N and
each company name cni ∈ N (i=1, 2 ... n) is a string composed
of a set of words wj and the number of words in a cni is noted

by Ci, a CN tree T of N from customer datasets is defined by
the following:

• The height of T is h, h =max(Ci), i =1,2...n

• ∀ node pk ∈ T, pk ⊇ set of elements {em}:
Card{em}>0, em ≡ wj.

• The level 0 has at most one node p0.

• Each element em0i ∈ p0, em0i contains the first
word of each company name cni.

• ∀ element em ∈ T at the level l (l > 0), there is a
link, so-called node-link, between em and a node pem
∈ T at the level l+1. The node pem contains the first
word of all suffixes of the word wj stored in em.

• A path from the root to the leaf by following node-
links will create a specific company name. Each
element at the leaf level does not have a node-link
but a list of {client identification (FID), customer
identification (CID)} of the company name that
creates this path.

Figure 2. An example of CN tree index

For instance, as shown in Figure 2, we have the following
company name: “FIRST COMMERCIAL BANK LTD”,
“FIRST BANK LTD OBB ACCOUNT”, “FIRST AMERICA
BANK LTD TRUST ACCOUNT TA 101010”, “FIRST
AMERICA BANK LTD TRUST ACCOUNT TA 505055”,
“ABC CAPITAL GROUP”, “ABC CAPITAL NEW YORK
BRANCH”, “BANK OF UBUBA” and “INTERNATIONAL
DDD INVEST CORP”. Hence, the root node has four
elements: em00 = “ABC”, em01 = “BANK”, em02 = “FIRST”
and em03 = “INTERNATIONAL”. The element em00 links to

a node that has one element “CAPITAL” at the level 1. Then,
this element links to another node that has two elements:
“GROUP” and “NEW”. The element “GROUP” is at the leaf
level, it then contains {“Skada”, “B123”} (list of {FID, CID}
has only one element). Otherwise, the element “NEW” links
to another node at the level 2, etc. The path from the root
node with the element “ABC” following its node-links
creates two company names “ABC CAPITAL GROUP” and
“ABC CAPITAL NEW YORK BRANCH”. Similarity, the
element em02 links to a node with three elements at the level
1: “AMERICA”, “BANK” and “COMMECIAL”. The
element “AMERICA” links to another node at the level 2 and
so on, at the level 7, the element “101010” is at the leaf level
and contains [{Merlu, 1024}, {Abba, 392}] (list of {FID,
CID} has two elements).

Based on this CN Tree, the search engine can find all {FID,
CID} of a requested “company name”. For instance, if the
query is “ABC CAPITAL GROUP” then the result is
{“Skada”, “B123”}, etc. Indeed, this index also supports an
approximate search i.e. users might not know the sufficient
name of a company so they just input its first few worlds, e.g.
the query is “ABC CAPITAL” then the result list will be
{“Skada”, “B123”} and {“Abba”, “566”}. Next, we can
retrieve all details of customers whose {“FID”, “CID”} are in
the result list.

Figure 3. An example of Customer Name Index

“Customer Name Index” is an index table based on the
inverted list technique. This index table consists of two parts:
items and a collection of lists; one list per item (Figure 3). An
item is a word from the “Customer Name” i.e. each customer
name in customer datasets is parsed into a set of separate
words. For instance, the customer name “John Smith” is split
into two words: “John” and “Smith”. A list Li of a word wi
records tupes of {FID, CID} of customers whose names
contain the word wi. We have, for example, the customer
“John Smith” with {FID= “ABBA”, CID= “1234”} and
“Murphy John” with {FID= “MERLU”, CID= “112”}.
Hence, the index table has three elements: [“John”:
{“ABBA”, “1234”}, {“MERLU”, “112”}], [“Murphy”:
{“MERLU”, “112”}] and [“Smith”: {“ABBA”, “1234”}].

“Address Index” is also an index table based on inverted list
technique. Similar to the “Customer Name Index”, its index
table consists of two parts: items and a collection of lists, one

list per item (Figure 4). An item is a word from the “Address”
i.e. each address in customer datasets is also parsed into a set
of separate words. For instance, we have an “address index”
table as shown in Figure 4.

The whole index structure is shown in Figure 5. In order to
limit the search space, these datasets are also grouped by
country (the most popular data field, ref. section 3.1).
Therefore, our search engine allows users to launch requests
on customer information managed in different databases only
through their name and address. If a customer is a corporate
then the search process will scan the CN Tree and Address
Index table. Meanwhile, Customer Index Table and Address
Table are used for an individual customer. Advantages and
problems of this approach will be discussed in section 5.

Figure 4. An example of Address Index

Belarus

...
Zimbabwe

...
Afghanistan

Country Index

...

Figure 5. Index structure

4 Implementation

 We developed our approach as a search tool based on a
distributed paradigm and this tool is implemented as web
services that can support 2-tier or 3-tier application model

(Figure 6). We implemented services for two kinds of users:
end-users and administrative users. There are indexing,
updating services for administrators. End-users exploit this
system through searching and extracting services.

4.1 Indexing service
 This service scans all the BEP’s databases once and
builds indexes of “Company Name”, “Customer Name” and
“Address”. Elements in each node of “Company Name”
index as well as items in “Customer Name” and “Address”
index table are sorted by lexical order. Indexing service also
builds a country list and each element in this list stores
information (hash code) about appropriate entries of three
indexes above. These indexes are organised is main memory
and this service allows them to be saved in secondary
memory. Hence, the administrator only needs to create
indexes once and stores them in databases (index databases)
and then each time she/he reloads it to the main memory on
application launch. In the real world of banking application,
these indexes are loaded permanently in the main memory of
the servers and are synchronised periodically with their
databases (index databases). The customer information is not
real-time data processing i.e. when a customer opens an
account s/he always has to wait for a certain period of time
for all the security checks to be carried out (7 days, for
example) before the account is activated to perform her/his
first transaction (or Subscription in term of the investment
banking). Therefore, if indexes in the main memory are
damaged due to system halt, the electric cut, etc., the
administrators can reload them from index databases without
losing any information.

Figure 6. Application models

4.2 Updating service
 When indexes are being exploited, new customer
profiles are added in the customer datasets. Therefore, this
service allows updating new customer information into
indexes. It updates firstly in the main memory of the servers

and it then synchronises this information with the index
databases. The update service is automatically performed at a
predefined time by scanning all the databases (all update
information of customer is always stored for auditing).

4.3 Searching and extracting service
 A search request submitted by the users includes
customer/company name and its address. Searching service
uses this information to look for a set of related {CID, FID}
on “Company Name”/ “Address” indexes (corporate
customer) or on “Customer Name”/ ”Address” (individual
customer). This is followed by performing queries on
databases to retrieve related customer information. The users
can choose which information to extract or perform further
investigations.

5 Evaluation and discussion
 We implemented and tested our approach on real-world
customer datasets. The database architecture is similar to
BEP’s databases. The hardware platform for testing includes
1 Pentium Dual Core 3.4Ghz 2Gb RAM Windows Server
2003 (database server), 1 Pentium 4 Hyper Threading 3.4Ghz
1Gb Windows XP SP2 (application server), 1 Pentium 4
2.7Ghz Windows XP SP2 512Mb (front-end user). This web
service-based tool is developed in C#/Visual Studio 2005 and
we use SQL Server 2005. All services are implemented at the
application server and the database server manages the
datasets (3-tier model, Figure 6). The number of records is
approximately 32000 for all the databases.

We ran different tests on this platform and took the average
results. The indexing time I is about 17 seconds. The total
search time S is about 15 seconds (15s 40ms) for one request.
The search time S is composed of local search on the indexes,
query process by SQL server and communication overheads;
among them, the local search on the indexes only takes about
2 milliseconds on the application server. We also launched a
customer search by SQL queries with exact
“customer/company name” and “address” automatically on
all the databases and it takes about 3 minutes for one request.
We can see that our technique is much more efficient.

The approach presented in this paper has many advantages.
First, it solves the problem of access and querying
independent and separate databases by providing a global
view of all customer information without changing the
current architecture of BEP’s databases system. Then, this
approach also overcomes the data quality problems that
normally take an important time to pre-process, especially the
manual correction of incoherent address data. The
preliminary tests show that it is efficient. It is about 10 times
faster than the normal approach by DBMS queries and
exhibits better accuracy than the traditional approach.

Moreover, our approach also supports parallel processing
where two threads can be launched to search independently
on “Company/Customer Name” index and “Address” index.
It can benefit from the multi-core architecture of BEP’s
servers.

Besides, two main aspects of this approach need to be
improved. The first one is memory consumption because all
index structures are stored in the main memory. However,
each item stored is not a word but its hash code and it uses a
small amount of memory in our experiments. Furthermore, in
the real BEP’s servers, the main memory space is greater than
100 Gb and the whole indexes take less than 0.2%. Besides,
loading index in the main memory is normal practice of many
current DBMSs to exploit it efficiently. Another aspect is the
replication of items in the “Company Name” tree, e.g. the
word “BANK” exists in many nodes (Figure 2). This problem
can be improved by replacing this tree with a graph where
each item appears once as a node and the edges linking these
items represent the paths.

6 Conclusions and Future Works
 In this paper, we have presented an approach for
identifying specific customer patterns in an investment bank.
This approach has been developed as a tool, which is a set of
web services on a distributed platform. The contribution of
this research is to provide a set of indexes combined with
suffix-tree based on an inverted list in order to overcome the
problem of database design and data quality of BEP’s
customer datasets. Our experimental results obtained on parts
of the BEP’s customer datasets, we can conclude that
approach is very efficient tool and it satisfies the needs of an
AML task.

Experimental results on real-platforms of BEP are also being
produced and these will allow us to test and evaluate the tool
robustness. We are currently working on the graph index
approach that takes in account the memory consumption issue
to tackle huge datasets. A multithreading version is also
under development.

7 References

[1] R. Baker, “The biggest loophole in the free-market
system”, Washington Quarterly, 1999, 22, pp. 29-46.

[2] R. Bayer, “Binary B-Trees for Virtual Memory”,
Proceedings of 1971 ACM-SIGFIDET Workshop on Data
Description, Access and Control, San Diego, California,
November 11-12, 1971.

[3] R. Bayer and E.M. McCreight “Organization and
Maintenance of Large Ordered Indices”. Acta Informatica 1,
1972: 173-189

[4] T. H. Cormen, C.E Leiserson, R.L. Rivest, C. Stein,
Clifford “Introduction to Algorithms” MIT Press and
McGraw-Hill 2nd Ed. 2001. pp. 222.

[5] R. Feldman and J. Sanger “The Text mining handbook:
Advanced Approaches in Analyzing Unstructed Data”,
Cambridge University Press, 2007.

[6] E. Garfield, A. I. Pudovkin, V. S. Istomin. “Algorithmic
Citation-Linked Historiography-Mapping the Literature of
Science”. ASIS&T 2002: Information, Connections and
Community. 65th Annual Meeting of ASIST, Philadelphia,
PA. November 18-21, 2002.

[7] L. Genzman, “Responding to organized crime: Laws
and law enforcement”, Organized crime, In H.Abadinsky
(Ed.) Belmont, CA: Wadsworth, pp. 342.

[8] R. Giegerich and S. Kurtz "From Ukkonen to
McCreight and Weiner: A Unifying View of Linear-Time
Suffix Tree Construction". Algorithmica 19 (3): 331—353,
1997

[9] http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId =LDC2006T13

[10] D. E. Knuth “The Art of Computer Programming:
Fundamental Algorithms”, Addison Wesley, 3rd Ed. Volume
1, Chapter 2, 1997

[11] http://www.simple-talk.com/sql/learn-sql-server/sql-
server-index-basics/

[12] A.A. Toptsis. "B**-tree: a data organization method for
high storage utilization". Computing and Information, 1993.
Proceedings ICCI '9, 1993.: pages 277–281

[13] J. Zobel, A. Moffat, R. Sacks-Davis. “An efficient
indexing technique for full-text database systems” Proceeding
of the 18th VLDB Conference Vancouver, British Columbia,
Canada, 1992, 352-362

[14] J. Zobel, A. Moffat, R. Sacks-Davis. “Searching Large
Lexicons for Partially Specified Terms using Compressed
Inverted Files”, Proceeding of the 19th VLDB Conference
Dublin, Ireland, 1993, 290-301

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

