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Abstract: The metaphor of ‘foraging as search’ provides a rich source of inspiration for the
design of optimisation algorithms. An extensive literature has resulted in computer science over
the past twenty years based on this, with algorithmic families such as ant colony optimisation and
honeybee optimisation amongst others, being successfully applied to a wide range of real-world
problems. Of course, all organisms must forage to acquire necessary resources and in recent years,
increasing attention has been paid to the mechanisms by which nonneuronal organisms, in other
words organisms without a central nervous system, forage. The vast majority of living organisms,
encompassing some 99.5% of all biomass on earth, are nonneuronal. In this paper we introduce
the plasmodial slime mould Physarum polycephalum. This nonneuronal organism is formed when
individual amoebae swarm together and fuse, resulting in a large bag of cytoplasm encased within a
thin membrane which acts a single organism. Inspiration has been drawn from some of its foraging
behaviours to develop algorithms for graph optimisation and exemplars of these algorithms along
with some suggestions for future research are presented in this paper.
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1 Introduction

Computation abounds in nature. This realisation has led
to the development of the field of natural computing in
which inspiration is taken from natural processes in order to
design powerful algorithms for diverse applications including
optimisation, classification, clustering, design and model
induction (Brabazon et al., 2015b). Well-known subfields
of natural computing include neural networks, evolutionary
algorithms, artificial immune systems and particle swarm
optimisation.

Algorithms deriving their design inspiration from the
foraging activities of various organisms form an important
subdomain of natural computing (Fig. 1). In this paper
we focus on one of the lesser known of these families,
specifically slime mould foraging algorithms, initially
providing some background on these organisms and then
outlining how inspiration can be drawn from their foraging
behaviours in order to design algorithms for optimisation.
An interesting aspect of slime mould behaviour is that
it provides an exemplar of sophisticated decision making
by a nonneuronal organism and consequently, challenges
conventional wisdom that only organisms with a central
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Figure 1 Taxonomy of some of the common families of
foraging-inspired algorithms

nervous system are capable of complex behaviours in
response to their environment.

1.1 Structure of Paper

The remainder of this contribution is organised as follows.
Section 2 introduces the domain of foraging and a number of
algorithms that have been inspired by the foraging behaviours
of various organisms. Slime moulds are introduced in
Section 3, including a short overview of slime mould
physiology and foraging behaviours. Relevant behaviours
include how slime moulds move in order to efficiently
access and harvest food resources, the capability of slime
moulds to assess food quality, and their capability to create
a memory of already-visited areas when making foraging
decisions. Section 4 provides a synopsis of some recent
work on the application of slime mould as a ‘biocomputer’
and outlines a mathematical model of slime mould foraging
behaviour which has been used to develop a series of
computational algorithms. Section 5 discusses the application
of derived algorithms for the purposes of graph optimisation.
Section 6 compares slime mould algorithm performances
on graph problems against classical graph algorithms and
considers whether they have other properties that could aid
their robustness and widen their applicability to real-world
problems; this adds to the critical appreciation of these
algorithms. Finally, some opportunities for future work are
discussed in Section 7.

2 Foraging

All animals require resources such as food, shelter and mates.
Success in foraging for these is critical to survival and
reproduction. Indeed, the need to acquire resources and to
avoid predators is a key driver of the physical morphology and
of the sensory and cognitive capabilities of organisms. Given
the enormous diversity of life forms and ecological niches in
nature, it is unsurprising that we see a corresponding diversity
of foraging strategies.

Perhaps the most commonly-known foraging behaviours
in nature are those of animals which we can easily observe,
such as large predators actively searching an environment for
prey items. However, even the simplest creatures also need
to ‘earn a living’. Foraging activity can range from solitary

foraging, where an individual forages on its own, to group
foraging where foraging is a social behaviour. The essence
of social foraging is that there must be some communication
among organisms. Communication about resource finds may
take place between individuals, via direct interaction, indirect
interaction such as environmental marking or via a broadcast
mechanism at a communal nest or hive (Sumpter and
Brannstrom, 2008).

2.1 Foraging Algorithms

The observation that foraging typically requires organisms
to undertake a search process has in turn led to the
design of several families of search algorithms which draw
metaphorical inspiration from a range of real-world foraging
behaviours. These include ant colony optimisation algorithms
(Bonabeau et al., 1999; Dorigo, 1992; Dorigo and DiCaro,
1999; Dorigo et al., 1996; Dorigo and Stützle, 2004; Ibri
et al., 2010; Pedemonte and Cancela, 2010) and honeybee
algorithms (Bansal et al., 2013; Chong et al., 2006; Nakrani
and Tovey, 2004; Karaboga, 2005; Karaboga and Akay, 2009;
Pham et al., 2006; Yang, 2005; Gao et al., 2011; Wang et al.,
2014; Brabazon et al., 2013).

In the case of both ant and honeybee foraging, several
species of the insects are central place foragers, in that they
return to a colony or hive in order to store food. Therefore
they can interact with colony members and potentially pass
on information about food finds. A notable aspect of their
interaction is that successful foragers seek to recruit other
conspecifics to food resources that they have found.

Social transmission of information is emphasised in the
majority of search algorithms inspired by foraging processes.
Typically, the algorithms emphasise the importance of
sensing (i.e., assessment of the local environment around
an agent) and of communication processes between the
agents. This leads, in turn, to a discussion of what
the agents ‘know’ and how information is propagated
or ‘spread’ between individual nodes or agents in the
population. In some real-world instances, individual foraging
agents in the population have relatively limited information-
processing capabilities, but as a result of direct or
indirect communication mechanisms between these agents,
an ‘informationally-connected emergent creature’ or super-
organism results (Goldfield, 2018). Hence, sophisticated
information processing can result from physical and
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informational linkages between apparently simple individual
agents, not just as a result of agent’s having complex
individual cognitive capabilities.

Other significant families of foraging algorithms include
those inspired by the echolocation process of bats, with
the bat algorithm being developed by Yang (2010). The
bat algorithm has produced very competitive results on
both benchmark optimisation problems and across a variety
of applications, encompassing constrained optimisation
(Gandomi et al., 2013; Yang and Gandomi, 2012),
multimodal landscapes (Cai et al., 2015), multiobjective
optimisation (Bora et al., 2012; Niknam et al., 2013),
binary-valued representations (Nakamura et al., 2012), and
clustering (Rui et al., 2012). A detailed review of applications
of the bat algorithm is provided in Yang (2013) and some
extensions of the canonical algorithm are discussed in Cui et
al. (2015).

A variety of animals, including some species of birds,
engage in social roosting whereby large numbers of
conspecifics gather together to roost, either overnight or for
longer periods. It has been claimed that these roosts can serve
as information centres (Zahavi, 1971) to spread knowledge
concerning the location of food resources in the environment.
Brabazon et al. (2016) draw inspiration from this behaviour in
designing the raven roosting optimisation (RRO) algorithm.

A number of studies have employed a fish school
metaphor to develop algorithms for optimisation and
clustering. Amintoosi (2007); Bastos Filho et al. (2008); He
et al. (2009); Li et al. (2002); Tsai (2011); Zhou et al. (2009)
provide a sample of this work. Algorithms adopting this
approach include fish school search (FSS) (Bastos Filho et
al., 2008), the artificial fish swarm algorithm (AFSA) (Li et
al., 2002) and the fish algorithm (Brabazon et al., 2015).

Dominance hierarchies amongst group-living animals can
influence their decision-making and foraging behaviours.
One example of this is provided by wolves, and a number
of studies have drawn inspiration from wolf pack foraging
behaviours to design optimisation algorithms (Yang et al.,
2007; Mirjalili, 2015; Mirjalili et al., 2014; Li et al., 2016).
Obviously it is not possible to provide a detailed coverage
of the entire literature on foraging-inspired algorithms in a
single paper, and readers requiring a comprehensive overview
of this domain are referred to (Brabazon et al., 2018).

2.2 Nonneuronal Organisms

From the brief review above, it is evident that an array of
optimisation algorithms derived from the foraging behaviours
of organisms, including mammals, birds, fish and insects,
have been explored. In all of these cases, the organisms
possess a nervous system with varying degrees of complexity
and plasticity.

Of course, the foraging activities of most living things on
earth are not driven by neuronal-mediated decision processes.
As noted by Reid et al. (2015) and Tang (2018), the vast
majority of life forms, including the plant, bacteria, fungi
and protist kingdoms of life, do not have a brain or other
nervous system hardware. Recent work by Bar-on et al.
(2018) estimates that the vast majority of the earth’s biomass

is found in nonneuronal organisms such as plants (accounting
for 82% of total biomass) and bacteria (13%), with less than
0.45% of total biomass being comprised of animals with
neuronal tissue.

Nonneuronal organisms live in environments that are
no less complex than those faced by organisms with a
brain. They face the same basic challenges as animals in
foraging for food and other resources, and in dealing with
competitors, predators and pathogens. Key questions which
arise concern the nature of the mechanisms which allow these
organisms to forage successfully in their individual dynamic
and challenging environments.

Since the turn of the century, a significant research effort
has emerged concerning algorithms inspired by the foraging
activities of nonneuronal organisms, including bacterial
foraging algorithms (Passino, 2000, 2002; Müller et al., 2000;
Gao and Xu, 2014; Cai et al., 2015), plant-inspired foraging
algorithms (Müller et al., 2000; Mehrabian and Lucas, 2006;
Premaratne et al., 2009; Salhi and Fraga, 2011; Tong et al.,
2005; Cai et al., 2008; Zhang et al., 2012; Brabazon et al.,
2015a, 2018) and—the focus of this paper—slime mould
foraging algorithms. To date, the majority of slime mould
foraging algorithms have been applied to graph optimisation
applications and next we provide a short introduction to this
domain.

2.3 Graphs

Essentially, a graph is a mathematical structure that models
connectivity: the connections between things. The things are
called the vertices or nodes of the graph and the connections
are called edges, arcs or links. The connections capture
binary relationships. Graphs are also commonly referred to as
networks, but we will reserve the word network for real world
structures and the word graph for a mathematical model
thereof. The set of vertices is commonly denoted by V and its
order |V | by n; the set of edges is commonly denoted by E
and its order |E| by m.

Given vertices i and j, if there is an edge ij between
these vertices, then we say that vertices i and j are adjacent.
Nonadjacent vertices may be (path-)connected: if i and j
are vertices then we say that there is a path between i
and j if there is an ordered sequence of distinct vertices
i, a1, . . . , ak, j such that each vertex is adjacent to the next in
the sequence (that is, there is an edge connecting i and a1, an
edge connecting a1 and a2, and so on).

The graph is called weighted if there is a numerical weight
on each edge, representing a distance, cost or some other
number associated with the edge. Figure 2 shows an example
of a weighted graph.

2.3.1 Applications of Network Models

The graph model is simple and general: it has uses
ranging from analysis of road networks, to social network
analysis, to data clustering approaches and other applications.
A multitude of problems in operational research and/or
combinatorial (discrete) optimisation can be modelled as
graphs and thus solved. A graph generally allows multiple
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Figure 2 An example of a weighted graph with n = 9 vertices
and m = 16 edges. Vertices 1 and 2 are adjacent and the
weight on edge 12 is 4. Vertices 1 and 9 are
path-connected: an example of a path from vertex 1 to
vertex 9 is 1–2–6–7–9; another such is 1–4–5–7–8–9.

paths between two given vertices i and j; thus, natural
questions arising include:

• which path(s) are shortest (the shortest path problem)
by some measure such as distance, travel time, number
of edges, or some other cost or objective function?
There are well-established classical graph algorithms
for solving this problem: in the case where all edge
lengths are positive, the original Dijkstra algorithm
using an unordered array of vertices is O(n2), Tarjan’s
version (Tarjan, 1983) using a heap is O(m log n)
which is faster on sparse graphs, while Fredman
and Tarjan’s version (Fredman and Tarjan, 1987)
using a Fibonacci heap is O(m+ n log n) and is
asymptotically the fastest known single-source shortest
path algorithm;

• if one or more paths were removed from the graph,
would it still be possible to get from i to j (that is, is
the graph resilient or fault tolerant)?

• how can we design a graph (e.g., a transport or
communication network) to be resilient while still
meeting certain cost and/or connectivity requirements?
There are many kinds of network design problem, for
example requiring at least two paths between certain
pairs of vertices to enhance robustness of the design,
and they are typically NP-hard (Carroll et al., 2013).

• what is the shortest tour (a closed path containing all
nodes, starting and finishing at the same node) such that
each node is visited exactly once? (This is the famous
travelling salesperson problem or TSP.)

Another standard application of graph models is in the study
of flow or flux, e.g., a fluid, or a good transported in a supply
logistics network). The kinds of questions asked here include:
given one or more vertices (called sources) where flow enters
the graph and other vertices (called sinks) where flow leaves

the graph, and a maximum throughput or capacity on each
edge:

• how does flow move through the graph from source(s)
to sink(s)?

• what is the maximum flow possible from source(s) to
sink(s)? Classical max-flow/min-cut algorithms such
as the Ford-Fulkerson approach are efficient if all
capacities are rational numbers (in any situation
modelled on a finite-precision machine, all numbers
represented are perforce rational): the Ford-Fulkerson
method has complexity O(mf) where f is the
maximum flow (Cormen et al., 2001, Section 26.2); and
the Edmonds-Karp implementation of Ford-Fulkerson
using breadth-first search has complexity O(m2n)
(Cormen et al., 2001, Lemma 26.8, Theorem 26.9).

Another optimisation problem that can arise in a graph setting
is that of finding a Steiner minimum tree (SMT): the set
of edges of minimum total weight connecting a prechosen
subsetU of the vertex set V . If the subsetU = V , this reduces
to finding a minimum spanning tree (MST) in the graph (a
subset of edges which contains no cycles, but which path-
connects any pair of vertices, and is of least possible weight
given these requirements). The MST problem can be solved
by standard algorithms in O(m log n) time or less (Cormen
et al., 2001, 23.2), but in general the Steiner tree problem
is NP-hard. However, this problem can also be defined in a
setting where only the vertices are given, and the problem
becomes that of identifying and constucting the edges of the
Steiner minimum tree, possibly including new intermediate
vertices. For example, given three vertices in the plane, each
the same distance from the other two (so they are the vertices
of an equilateral triangle), the Steiner minimum tree can be
shown to be the tree got by adding a new vertex c at the centre
of gravity of the triangle, and connecting each of the three
original vertices to c by an edge; but no two of the original
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three vertices are directly connected to each other. The Steiner
tree problem in graphs is an example of a network design
problem.

Biological systems often require extensive networks to
transport resources and information (along paths). These
networks may be internal or external. Examples include
the vasculature of animals or plants, ant trails, and the
interconnected tubular networks of foraging slime mould.
Transport networks are ubiquitous in both human-designed
and biological systems. It is plausible that networks in both
will share common features such as short path length between
source and destination nodes, and resilience to faults.

It is important to note that (as with any model) a graph
model is an abstraction and may omit certain details of
a modelled real world situation; for example, the precise
topographical layout of a road segment in a road network
may be reduced to its start and end points, and its total
length. It is also plausible that when modelling some real
networks, the model may require more detail than a “pure”
graph model as described above would capture, in order to
be an adequate representation. Thus, a problem definition
and solution method incorporating more domain knowledge
may be preferable to a pure graph approach, despite having
inferior runtime: see Section 6.

3 Slime Mould

The term slime mould is a shorthand name for a number
of unrelated eukaryotic organisms which have similarities
in their life cycles, with their primary reproductive stage
arising on the formation of a fruiting body and the release
of spores. The organisms can live freely as single amoebae,
aggregating together for spore production and dispersal. The
phrase ‘slime mould’ refers to their appearance during the
aggregative phase of their life cycle, in which they look like a
gelatinous slime.

Perhaps the best-studied slime mould is is the plasmodial
slime mould, Physarum polycephalum. Plasmodial (or
acellular) slime moulds are formed when individual amoebae
swarm together and fuse, resulting in a plasmodium: a large
bag of cytoplasm encased within a thin membrane which
acts a single organism. Unusually, the organism in this state
consists of a large single cell with thousands of nuclei (i.e.
it is a unicellular, multinucleated eukaryote (Boisseau et
al., 2016)). About 875 species of plasmodial slime mould
are known to exist. Plasmoida can grow to a considerable
size, extending up to 930 cm2 in the case of Physarum
polycephalum (Latty and Beekman, 2009). During the motile
phase of their life cycle, plasmodia are capable of movement
by means of cytoplasmic streaming (the internal movement
of cell contents) at rates of up to 5 cm/h (Latty and Beekman,
2009).

3.1 Foraging Behaviours of Slime Mould

As with all organisms, a key behaviour of slime moulds
is foraging for food resources. Slime moulds feed on dead
plant material, living bacteria, yeasts and fungi, by engulfing

their prey, secreting enzymes and digesting the prey item
(phagocytosis). To do this effectively, they need to be able to
process sensory information and integrate this with internal
state information in order to decide for how long to exploit
already-discovered food resources, and when and where to
move to next. In the following subsections we consider
a number of characteristics of Physarum polycephalum,
including its ability to move and its ability to assess food
quality.

3.1.1 Mobility

Under idealised conditions of plentiful resources, Physarum
polycephalum plasmodia are sedentary and grow steadily.
If they are located on non-nutrient-bearing substrates they
search for food resources by migrating at a rate of up to a
few cm per hour directed by external stimuli such as gradients
of sugar and proteins (Dussutour et al., 2010). When a slime
mould chemotactically senses attractants such as food via
the binding of chemicals to receptor molecules presented
on its outer membrane surface, cytoplasm flows towards the
attractant, thereby inducing movement of the organism in the
direction of the food (Reid et al., 2012).

When a slime mould comes into contact with a food
item, it fully or partly engulfs it by covering it with biomass,
later resuming exploration by extending pseudopodia into the
surrounding environment while remaining in physical contact
with the initial food source (Latty and Beekman, 2009).

Physarum polycephalum is able to assess the quality of
current food resources and use this information to determine
how much time to allocate to exploring the environment
for new resources, and to determine what search strategy
to use during exploration. The quality of a food source
influences subsequent search behaviour, with higher quality
food sources promoting intensification of local search around
that food source, and lower quality food sources encouraging
explorative search of the environment elsewhere (Latty and
Beekman, 2009).

3.2 Foraging Networks in Physarum polycephalum

If a number of small sources of food are presented at
various positions on a surface to a starved plasmodium
of Physarum polycephalum, it endeavours to reach them
all. In nutrient-poor environments, the plasmodium grows
by extending pseudopodia towards nearby chemoattractant
sources, producing a parallel search process guided by
the chemoattractant gradients in the local environment. In
nutrient-rich conditions, the plasmodia grows radially in all
directions.

The organism attempts to optimise the shape of its
biomass in order to facilitate the harvesting of food resources.
As the plasmodium has a limited mass, it has to decide how
much of this mass to place over each food sources in order to
absorb nutrients (the more biomass placed over a food source,
the faster it can be absorbed) and how much to allocate to
the construction of tubes between the food sources in order
to maintain connectivity and intracellular communication
throughout the organism (Nakagaki, Kobayashi et al., 2004).
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3.2.1 Spatial Memory

The ability to navigate efficiently through an environment is
crucial to most organisms’ ability to survive (Smith-Ferguson
et al., 2017). It is clearly important to be able to find, for
example, a nest or to relocate a previously-discovered food
resource. Conversely, the ability to avoid areas already known
to contain no resources is also of importance. The presence of
a memory system will typically enhance the foraging success
of an organism.

Given the nature of the food resources consumed by
a slime mould, it would take some time for a previously
harvested area to regenerate new food resources (Reid
et al., 2013b). As Physarum polycephalum moves in its
environment, it deposits nonliving extracellular slime. It
has been found that Physarum polycephalum preferentially
avoids areas if they are found to be so marked (Reid et al.,
2012). This response is adaptive, as such regions are likely
to have been previously harvested of resources and therefore
represent a poor choice of foraging location. The deposit
of extracellular slime creates a form of external memory,
somewhat akin to the pheromone deposits of trail-marking
ants.

The use of an external spatial memory frees the forager
from having to internally store information on which areas
have already been searched, and it has been speculated that
external memory processes may be a functional precursor
to the development of internal memory systems, allowing
biological organisms with primitive information-processing
systems to solve complex tasks requiring spatial memory
(Reid et al., 2012).

4 Slime Mould Computation

An extensive literature on the computational capabilities of
slime mould has emerged over the past two decades. At a
high level, this literature can be divided into two groupings,
the first where slime mould is employed as a biological
computer (biocomputer), and the second where elements of
slime mould behaviours are used to inspire the design of
computational algorithms.

4.1 Slime Mould as a Biocomputer

Although slime moulds are relatively simple organisms, they
are capable of both sensory and locomotive behaviours,
and are also capable of adapting the morphology of their
protoplasmic tube network in response to environmental
conditions.

These capabilities have resulted in slime moulds such as
Physarum polycephalum being used as a living computational
material (Adamatzky, 2010), which can be ‘programmed’ by
appropriate placement of external stimuli such as food, or
repellents such as chemicals or light (Jones, 2016), with the
result of the program being the structure of the final slime
mould network.

Graph and network design problems are a natural fit
for slime mould computing applications, as the growth

and adaptation of a slime mould naturally forms edges
(protoplasmic tubes of slime mould) between discrete nodes
(which can be located on nutrients such as food flakes) (Jones,
2016). This has led to multiple studies which have applied
slime moulds as a biocomputer to solve these problems.

In Nakagaki, Kobayashi et al. (2004) three separate
food sources were presented to Physarum polycephalum,
located at the vertices of a triangle. In repeated experiments,
the resulting tubular networks connecting the food sources
were often similar in design to (and an approximation
of) a Steiner minimum tree (SMT): the set of edges of
minimum total length connecting all of the vertices. Further
investigation of the ability of the slime mould to construct
smart networks indicated that it can simultaneously meet
multiple requirements of a smart network, trading off total
length of connections against resilience in the sense of
tolerance of accidental disconnection of the tubes (Nakagaki,
Yamada et al., 2004; Reid et al., 2013a).

Recently (Zhu et al., 2018), Physarum polycephalum was
applied as a biocomputer to solve the TSP, and it was found
that the time taken by the organism to find a reasonably
high-quality TSP solution grows linearly for small problem
size up to eight vertices, and that the solution quality is
approximately constant in spite of the enormous expansion of
the search space size from 1

24! = 12 to 1
28! = 20160.

4.1.1 Solving Maze Problems

Physarum polycephalum has also demonstrated a capability
to solve maze problems, which are a standard test of
intelligence in animal psychology (Hickey and Noriega,
2008). In an experiment (Nakagaki, Yamada et al., 2000), a
large piece of plasmodium was cut into a number of smaller
pieces, which were then distributed at intervals within a
physical, two-dimensional maze structure. Initially, the pieces
coalesced to form a single organism that filled the entire maze
but when nutrient blocks of oat flakes (technically, it is the
bacterial colonies on the oat flakes, rather than the oat flakes
themselves, which are harvested by the slime mould) were
placed at two locations in the maze, the pseudopodia reaching
dead ends shrank resulting in a single thick pseudopodium
spanning the shortest path between the nutrient blocks,
indicating the capability of the slime mould to solve the maze
by adapting its physical structure.

4.1.2 Reproducing Human-Designed Transport
Networks

An interesting variant on the above studies investigated the
capability of Physarum polycephalum to design transport
networks, with the results being benchmarked against
existing human-designed transport networks. In Tero et al.
(2010), food sources were placed on a flat wet dish at
locations corresponding to 36 major cities in the Greater
Tokyo area and bright light was shone at appropriate places
in the environment in order to simulate the challenges
posed to network designers by geographic features such
as mountains and waterways (Physarum polycephalum is
negatively phototropic and preferentially avoids bright light).
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The slime mould initially filled the entire space with
plasmodia and then thinned to describe a network linking the
food sources. In repeated experiments, many of the networks
bore notable similarity to the actual rail system linking Tokyo
and the outlying cities. Analysis of the produced networks
indicated that they had characteristics similar to those of the
rail network in terms of cost, transport efficiency and fault
tolerance (Tero et al., 2010). A study by Adamatzky et al.
(2017) explored the capability of Physarum polycephalum to
design transport networks which bore similarity to the French
motorway network.

The previous studies used a two-dimensional
representation of the transport nodes / hubs (cities) and an
open question was whether the results would carry over
to a more complex three-dimensional representation of the
terrain between transport nodes. This issue was investigated
by Adamatzky (2014) using plastic three-dimensional
terrain models of both the US and Europe and the results
obtained illustrated Physarum polycephalum’s capability
to approximate Route 20, the longest road in the United
States (running from Boston to Newport, Oregon, this road
is 5,415 km in length), and Autobahn 7 (running from
Flensburg to Füssen, this road is 963 km in length), the
longest national motorway in Europe. In these experiments,
a plasmodium of Physarum polycephalum was placed at one
end of the road and nutrient sources were placed at the other
endpoint and the plasmodium was allowed to explore the
three-dimensional terrain, producing solutions which bore
considerable similarity to the actual road networks.

4.2 Slime Mould Algorithms

In addition to using a slime mould as a physical computing
substrate (computing in vivo), a number of researchers have
sought to mathematically model aspects of the behaviour of
slime mould. Although the underlying molecular mechanisms
which produce problem solving behaviour in slime mould are
not completely understood (Marwan, 2010), these simplified
models have proven to be high-quality problem solvers in
their own right. The resulting algorithms provide an example
of computing in silico.

4.2.1 Tero Model

One of the most commonly-used models is based on the
work of Tero et al. (2007). This model of the evolution of
transport networks within Physarum polycephalum is based
on an assumption that protoplasmic flux through network
veins produces an autocatalytic effect whereby increases in
the flux in a protoplasmic tube causes it to change structure
(becoming wider), in turn facilitating even greater levels of
flux.

The starting point for the Tero model, as applied
to shortest-path-type problems, is a complete network
of simulated protoplasmic tubes which connect nodes
(metaphorically, nutrient sources) which act as sources and
sinks for flux. An adaptation process, as outlined in the
model, is simulated, producing an optimal (shortest) path
through the network. In Sect. 5 we outline the detail of

the model’s implementation and describe two algorithms for
combinatorial optimisation which are derived from this.

Other approaches to deriving inspiration from slime
mould behaviours to design optimisation algorithms includes
the cellular automaton (CA) model of Gunji et al. (2008),
which considers the processes of plasmodial growth and
amoeboid movement, developing an algorithm for application
to maze solving and shortest path problems based on these
processes. A multiagent approach to reproduce behaviors of
slime mould is outlined by (Jones, 2016). This paper also
provides a useful review of other recent works on slime mould
computing.

5 Graph Optimisation Using Slime Mould

The majority of published work on slime-mould-inspired
algorithms concerns graph optimisation applications,
particularly shortest path and close variants of this problem.
In this section two exemplar algorithms from this work are
introduced.

The first algorithm, the ‘improved Physarum
polycephalum algorithm’, employs the Tero model but
modifies this through the addition of an energy parameter.
The resulting algorithm is used for a series of graph
optimisation problems. The second algorithm, the Physarum-
based ant colony system, illustrates how the model from
Tero et al. (2007) can be used to help modify the pheromone
matrix in an ant colony system application.

5.1 Improved Physarum polycephalum Algorithm

As described in earlier sections, plasmodia of Physarum
polycephalum in a starved state state can find the shortest
path between two points in a maze, where each end of
the maze is marked with food. In this scenario, as the
explorative (foraging) phase progresses, tubular pseudopodia
that are not on the shortest path will shrink and eventually
disappear, whereas pseudopodia on the shortest path between
discovered food sources will be reinforced and become
thicker. In essence, Physarum polycephalum self-adapts,
reconfiguring its biomass morphology to resource availability
in its environment.

In this section we introduce the improved Physarum
polycephalum algorithm (IPPA) developed by Zhang, Wang
et al. (2014). In this study the authors note that basic
Physarum-inspired algorithms can suffer from a low rate of
convergence, resulting in slow performance when applied
to shortest path problems. The IPPA adapts the canonical
Physarum-inspired shortest path algorithm based on the Tero
model (Tero et al., 2007) by adding a new energy parameter in
order to improve the speed at which good solutions are found.
The authors argue that the addition of an energy component
to the model is plausible from a biological perspective as
energy is consumed during the process of tube expansion and
during slime mould movement, whereas, at the same time,
these processes can facilitate the capture of new resources.
Therefore, dynamic adaptation of the morphology of a slime
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mould involves a trade-off between the consumption and
absorption of energy.

Initially, the canonical Physarum model for determination
of the shortest path across a graph is described, and this is
followed by a description of the modifications made to this in
the IPPA.

5.1.1 Canonical Physarum Algorithm for Shortest
Path

The canonical Physarum polycephalum algorithm for
calculation of the shortest path in an undirected graph is
based on Tero et al. (2007). In this model it is assumed that
the network formed by the Physarum is represented by a
graph, in which a plasmodial tube is an edge and the junction
between two tubes is a node. A key feature in the model
is a positive feedback phenomenon, based on hydrostatic
pressure, between flux and tube thickness. As noted in Tero et
al. (2007), hydrodynamic theory implies that short thick tubes
are the most effective for internal transportation. If a slime
mould can form short, thick, tubes it can enhance its survival
as this enables it to place most biomass over discovered food,
and to transport nutrients and chemical signals effectively
across its structure.

Tubes in the network become thicker in a given direction
when streaming of protoplasm persists in that direction for a
period of time, and thicker tubes enable greater conductance
as the resistance to flow is reduced as the tube widens. In turn,
greater conductance enables a greater flux (flow), leading to a
further thickening of the relevant tubes. Therefore, tubes with
a large flux tend to grow, while those with a small flux tend
to disappear.

Below we describe the model following the description
provided in (Tero et al., 2007) and (Zhang, Wang et al., 2014).

Let N1 and N2 be the source (starting) and sink (ending)
nodes, respectively, of the graph, let the edge (tube) between
node Ni and Nj be expressed as ij, and let Qij be the flux in
tube ij. If the flow on this tube is approximately a Poiseuille
flow (a laminar flow of an incompressible fluid induced by
a constant positive pressure difference or pressure drop in a
pipe), then the flux Qij can be calculated as:

Qij =
Dij

Lij
(pi − pj), (1)

where pi is the pressure at node Ni, Dij is the conductivity
of tube ij and Lij is its length. As the inflow and outflow at
each node must be balanced (the principle of conservation of
flow), we have∑

j 6=1,2

Qij = 0. (2)

For the source node (N1) and the sink node (N2) the
following hold:∑

i

Qi1 + I0 = 0,

∑
i

Qi2 − I0 = 0,

(3)

where I0 is the flux flowing out of the source node (a fixed
value; equivalently, I0 is the total flux flowing into the sink
node). It is assumed that conductivity Dij changes over time
as the flux Qij changes, such that the evolution of Dij(t) can
be expressed as

d

dt
Dij = f(|Qij |)− rDij , (4)

where r is a decay parameter for a tube. The conductivity of
a tube will vanish over time if there is no flux along it.

From (1)–(3), the network equation for the pressure can
be deduced (Zhang, Wang et al., 2014):

∑
i

Dij

Lij
(pi − pj) =


+1 for j = 1,

−1 for j = 2,

0 otherwise.
(5)

By setting p2 = 0 as a basic pressure level, all pi can be
determined from (5) and in turn Qij can be calculated.

Following the assumption in Tero et al. (2007) that
f(Q) = |Q| and with the flux calculated, the conductivity can
be calculated using (6):

Dn+1
ij −Dn

ij

δt
= |Q| −Dn+1

ij . (6)

A more detailed description of the above is provided in
Tero et al. (2007). In addition to its application to standard
shortest path problems, a variant on this model has been
applied to solve constrained shortest path problems (Zhang,
Wang et al., 2014).

5.1.2 Improved Physarum polycephalum Algorithm

In the improved Physarum polycephalum algorithm (IPPA),
the above mathematical model is modified to incorporate an
energy constraint. Under this modification it is assumed that
tubes need to consume energy in order to be maintained, and
that this energy is obtained from nutrients in the flow through
the tubes. If the net energy gain is positive, the tubes grow and
conductivity increases, otherwise the tubes wither and vanish
over time. As the tubes alter their physical state, the flux of
each tube also changes. Over time, the tubes in the network
tend to converge to a steady state. The IPPA is described as
follows in Zhang, Wang et al. (2014).

The energy E, the flux Q, and the conductivity D are
defined as below:

E1 = f(Q), (7a)
E2 = g(D), (7b)

∆D = h(E3), (7c)

where E1 is the energy that can be provided by the tube
when its flux reaches Q; E2 is the energy consumed by the
tube when its conductivity is equal to D and ∆D shows how
the conductivity changes when the remaining energy (i.e. the
energy provided by the flux less the energy consumed by the
tube) is E3. Therefore, (6) becomes:

∆Dij = h(f(Qij − g(Dij))) ∆t, (8)
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or, taking the derivative,

d∆Dij

dt
= h(f(Qij − g(Dij))). (9)

Next, the functions f , g and h are modified to render them
operational. In order to preserve the law of conservation of
energy (as noted in Zhang, Wang et al. (2014) the formulation
in (6) does not obey this law) it is assumed that the total
energy provided by the flux from the start to the end node is
constant, and is therefore independent of path. Therefore, f
can be defined as

f(Qij) =
Qij(pi − pj)
ps − pe

, (10)

where s and e are the starting and ending node respectively,
and pi and pj are the pressure at nodes i and j respectively.

It is assumed that the energy required to maintain tubes
is a function of the conductivity and length of the underlying
tube, and g is defined as

g(Dij) = DijLij . (11)

The function h which relates the level of net energy in a
tube to the change in conductivity is defined so as to take tube
length into account:

h(E3) =
E3

Lij
. (12)

The longer a tube is, the more energy it requires for its
maintenance.

Combining (10)–(12), the following can be obtained:

dDij

dt
=
Qij(pi − pj)
Lij(ps − pe)

−Dij . (13)

The pseudocode for the IPPA is presented in Algorithm 1.
As illustrated by Zhang, Wang et al. (2014), the IPPA can
produce competitive results when compared with ant colony
optimisation for a shortest path problem.

Recently, this approach has been extended to directed
networks (where movement may only happen in one direction
along an arc, not both), in the context of traffic flow problems
possibly involving one-way streets (Zhang and Mahadevan,
2018).

5.2 Physarum-Based Ant Colony System

In this section we highlight work of Lu et al. (2014) and
Zhang, Gao et al. (2014), who combined the Tero model
with an ant colony system algorithm to develop a hybrid
Physarum-Based Ant Colony System (denoted as PM-ACS).

Canonical versions of ant colony optimisation (ACO)
algorithms can be prone to premature convergence, and
a multitude of variant algorithms have been developed to
overcome this issue, for example by limiting the rate of
pheromone build-up on arcs. These algorithms attempt to
maintain continual exploration of novel solutions over time
and therefore avoid undue exploitation of already discovered
tours. A key suggestion from Lu et al. (2014) and Zhang, Gao
et al. (2014) is that a hybrid PMM-ACO algorithm, where the
updating strategy for the pheromone matrix is partially based

Algorithm 1: Improved Physarum Ploycephalum
Algorithm

Let N be the number of nodes in the network;
Let L be the N ×N matrix whose (i, j) entry Lij is the

length between node i and j;
Let s and e be the start and end nodes;
Let Dij ∈ (0, 1] for all i, j = 1, 2, . . . , N ;
Let Qij := 0 for all i, j = 1, 2, . . . , N ;
Let pi := 0 for all i = 1, 2, . . . , N ;
Set iteration counter t = 0;
while termination criteria not met do

Let pe := 0 (pressure at ending node e) ;
Calculate the pressure of every node in the network

solving (5);
Let Qij := Dij(pi − pj)/Lij using (1);

Let Dij :=
1

2

(
Qij(pi − pj)
Lij(ps − pe)

+Dij

)
using (6);

Let t = t+ 1;
end
Output the best solution (shortest path) found;

on a PMM (Physarum-inspired mathematical model), can
improve the efficiency and robustness of ACO algorithms.

The PMM used in this algorithm focusses on feedback
regulation of the thickness of each tubular pseudopodia
(tube in the network) arising from changes in the internal
protoplasmic flow. Higher rates of protoplasmic flow
stimulate an increase in the tube diameter (i.e., tubes get
bigger as internal streaming rates increase) and low flow
rates lead to a reduction and eventual disappearance of tubes
(Fig. 3).

Figure 3 PMM: initial network (top); final network after shortest
path has been reinforced (bottom). Nin and Nout are the
inlet and outlet nodes

Below, we outline the workings of the algorithm drawing
on the description provided in Lu et al. (2014).

5.2.1 Algorithm

The PM-ACS algorithm assumes that there is a Physarum
network with simulated pheromone flowing along the tubes in
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the network. Applying the model to the TSP, nodes represent
cities and the tubes of the Physarum network are the paths
connecting the cities.

As the algorithm iterates, the quantity of pheromone in
each tube of the Physarum network dynamically changes.
The update of the global pheromone matrix considers both the
pheromone released by ants as they construct tours and the
simulated pheromone flows in the Physarum network which
also models these cities and their connections. The PMM
acts to modify the Physarum network over time, reinforcing
(thickening) the arcs on the shorter tours of the cities. The
classical formulation of the TSP is adopted and it is assumed
that the object is to construct the shortest tour of n cities, such
that each city is visited exactly once, and the tour ends in the
city in which it started.

As in the canonical ACS algorithm, the ants construct
tours using the information in the pheromone matrix to guide
their choice of exit path at each node (city) as they build
their tour. In canonical ACS, the deposit and evaporation steps
which determine the updates in the pheromone matrix are
governed by

τij(t+ 1) = τij(t)(1− p) + p∆τ∗ij , (14)

where only the arcs traversed by the best-so-far ant (on
tour T ∗) participate in the pheromone deposit/evaporation
process. The term ∆τ∗ij(t) is equal to 1/L∗, where L∗ is the
length of the best-so-far tour.

Under PM-ACS, the global pheromone matrix update
rule from ACS is modified by adding an additional term
which considers the quantity of pheromone in the Physarum
network on all the arcs in the best-so-far solution, as follows:

τij(t+ 1) = τij(t)(1− p) + p∆τ∗ij + ε
QijM

I0
,

for all arcs ij on T ∗,
(15)

where M is the number of tubes (arcs) between the cities in
the TSP problem, Qij is the flux through a tube connecting
city i and j, and I0 is the flux (assumed to be a fixed quantity)
between the inlet node to a network and the outlet node of the
network (i.e. it represents the flow across the network). The
parameter ε determines the effect of the flowing pheromone in
the Physarum network on the final update in the pheromone
matrix. The value of ε is calculated using

ε = 1− 1

1 + λtPMM/2−(t+1)
. (16)

In (16), tPMM is the total number of steps of iteration affected
by the PMM process, t is the current iteration number (time
step) and λ ∈ (1, 1.2). As t gets large, the value of ε becomes
smaller, therefore, the impact of flows in the Physarum
network reduces as the PM-ACS algorithm iterates and as the
ants converge on a good solution.

The relationship between conductivity and flux in each
tube is modelled as:

Qij =
1

M

M∑
m=1

∣∣∣∣Dij

Lij
(pmi − pmj )

∣∣∣∣ , (17)

whereQij represents the flux through a tube connecting node
i and j, Lij is the length of tube connecting nodes (i, j), Dij

is a measure of the conductivity of the tube connecting nodes
i and j, and the pressure at node i is pmi . The flux through a
tube is related to its conductivity, its length and the pressure
at the node on each end of the tube.

The conductivity can be considered as the flow capacity
of a tube and is related to the tube’s thickness (diameter).
All tubes have an initial assigned value for Dij and if a
tube subsequently becomes thicker, its conductivity will be
enhanced. In turn, as conductivity increases, all other things
being equal, so does the rate of flux.

In an iteration of the PMM, each pair of nodes connected
by a tube can be selected as inlet / outlet nodes. The flux
input to a node must equal the flux output from that node
under an assumption of conservation of flow. As above, I0 is a
fixed quantity, being the flux between inlet node to a network
and the outlet node to the network. When two nodes a and
b connected by the mth tube are selected as inlet and outlet
nodes respectively, the pressure on each node pmi is calculated
using Kirchhoff’s Law as follows:

∑
i

Dij

Lij
(pmi − pmj ) =


−I0 for j = a,

I0 for j = b,

0 otherwise.
(18)

The above process iterates until all pairs of nodes in each
tube have been selected as inlet or outlet nodes. The flux Qij

is calculated using (17). The conductivity of a tube adapts
according to the flux based on

dDij

dt
=

|Qij |
1 + |Qij |

−Dij (19)

The conductivities at the next iteration step are fed back
to (18), and the flux is updated using (17). Based on the
positive feedback mechanism between conductivity and flux,
the shorter tubes (called critical tubes) become wider and
are maintained as connections, while other tubes become
narrower and eventually disappear.

The pseudocode for the PM-ACS algorithm is outlined
in Algorithm 2. Aspects of the ACS algorithm which remain
unchanged under PM-ACS, such as the processes by which
ants construct a new tour and the local pheromone matrix
update step, are not discussed here.

5.2.2 Discussion

The application of the PM-ACS algorithm requires the setting
of several parameters. The parameter values used by Lu et
al. (2014) are outlined in Table 1, with N being the number
of cities. A sensitivity analysis concerning the impact on
the results from different choices of parameter settings is
provided in Zhang, Gao et al. (2014).

The TSP is representative of a wide array of graph
problems, and algorithms for efficient solution to TSP
problems are of general interest. A feature of slime
moulds when foraging is their capability to allocate biomass
efficiently in order to capture resources. One aspect of this
is their ability to stream protoplasm to pseudopodia which
have encountered resources and away from locations without
resources.
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Algorithm 2: PM-ACS Algorithm

Set values for α, β, p, s, q0, λ, I0, tPMM, tmax;
Set initial values for pheromone levels on each arc τij(0)

and conductivity of each tube Dij ;
Set iteration counter t = 0;
while t < tmax do

for k = 1 to s (all s ants) do
Construct a tour by ant k using approach in

canonical ACS algorithm;
Update the local pheromone matrix;

end
Let kbest = global best ant (shortest tour found);
Let Smin = length of tour generated by kbest ant;
Calculate flowing pheromone in the Physarum network

using (17)–(18) and update the conductivity of each
tube using (19);

Update the global pheromone matrix using (15);
Let t = t+ 1;

end
Output the best solution (best tour) found;

Table 1 Parameter values used in Lu et al. (2014)

Parameter Description Value

α Relative importance of pheromone trail 1

β Relative importance of heuristic information 2

p Pheromone evaporation rate 0.8

s Number of ants N

q0 Parameter in range [0, 1] 0.1

λ Parameter impacting ε 1.05

I0 Fixed flux flowing in Physarum network 20

tPMM Total steps of iteration affected by PMM 300

tmax Maximum number of algorithm iterations 300

τij(0) Initial pheromone level on edge ij 1

Dij Initial conductivity in tube ij 1
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In the PMM-ACS algorithm, a model of this streaming
process is used to contribute to the updating of the pheromone
matrix which is used by the ants in constructing their
solutions, tours in the case of the TSP.

6 Critique of Slime Mould Algorithms

In this section, we compare slime mould approaches against
other graph based algorithms and contribute new perspectives
on slime mould algorithms, in addition to the literature to
date.

As discussed in Section 2.3 on classical graph algorithms,
there is a large body of work on graph optimisation in pure
graph models — generic models consisting only of vertices
and (weighted) edges linking them. For example, there
exist very efficient specialisations to graphs with particular
properties, e.g., sparsity. Slime mould algorithms, in common
with many other natural computing algorithms, may have a
higher computational cost for the same quality of solution
(whether an exact or — as here — approximate solution).
In particular, IPPA has a runtime of o(n3) (where n is the
number of vertices) and appears to be at least an order of
magnitude more costly than Dijkstra’s algorithm (Zhang,
Wang et al., 2014, p. 5, Figure 5), and even more costly
compared to approaches using special data structures such as
(Fredman and Tarjan, 1987).

The question then naturally arises as to whether a new
paradigm, such as slime mould algorithms, has value in its
own right: what other strengths and/or weaknesses might they
have, and can these outweigh the higher computational cost?

An important factor (and indeed to some extent a design
decision) is how close to nature the natural computing
algorithm is. A crucial choice in all biologically-inspired
computing algorithms is which of the currently-understood
aspects of the modelled organism to incorporate in the
problem/algorithm definition, and which to omit (Brabazon
et al., 2015a).

6.1 Strengths of slime-mould-inspired approaches

We first consider what strengths may arise from using an
approach inspired by our current understanding of nature, in
particular, foraging behaviours of slime moulds.

Compared to pure graph approaches, natural computing
(including slime mould approaches) may be compared and
contrasted in at least three ways:

Robustness The only purpose of an organism is to survive
(Brabazon et al., 2015a) and so biological systems are
not strict optimisers in just one area: robustness is more
important as it means no life-threatening weaknesses.
Slime mould biocomputers exhibit resilience in the
sense of tolerance of accidental disconnection of the
tubes (Nakagaki, Yamada et al., 2004; Reid et al.,
2013a). A biologically-inspired algorithm — if well-
designed, well-implemented and leveraging survival
traits — should exbibit robustness, for instance, to
network changes or faults in a network design problem.

The IPPA finds all shortest paths at the same time
(Zhang, Wang et al., 2014), whereas the classical
Dijkstra algorithm finds just one; and the one path
found depends on the ordering of nodes in the selection
set (although Dijkstra’s algorithm can be modified to
find all such shortest paths, at an extra runtime cost).

Multiple objectives Because of the survival value of
robustness, slime mould behaviours are fundamentally
multiobjective: they find a good or optimal main
objective, but also seek robustness.

Classical graph algorithms such as Dijkstra’s and
variants of it are good at finding an optimum
shortest path spanning tree but without significant
reengineering are not able to handle multiple
competing objectives. However, as mentioned in
Section 4, slime moulds do not just seek a shortest
path, but trade off total length of connections against
resilience (Nakagaki, Yamada et al., 2004; Reid
et al., 2013a). Thus a potential strength of slime-
mould-inspired algorithms is the handling of multiple
objectives.

Dynamic environments Robustness and survivability imply
ability to adapt to dynamic changes. Thus it is
plausible that a biologically-inspired algorithm may
show better behaviour in dynamic environments.
This has been used in applying slime-mould-based
algorithms to network flow problems (Zhang and
Mahadevan, 2018). Classical max-flow algorithms are
efficient (Section 2.3), but these approaches assume
that the arc capacities are static. However, Physarum-
inspired algorithms can be adaptable, because by
adjusting tube thicknesses, the simulated slime mould
can dynamically react to environmental changes, such
as changes in flows in the network (e.g., traffic
network) being modelled (Zhang and Mahadevan,
2018).

6.2 Choosing among metaheuristics

Next, we consider if and when one should choose slime
mould approaches over other meta-heuristics. In the specific
comparison of PM-ACO algorithms with traditional ant-
colony algorithms, Zhang, Gao et al. (2014) report that
experimental results in synthetic and real networks show the
PM-ACO algorithms are more efficient and robust than the
standard ACO algorithms, and are adaptable to solve the TSP
with single or multiple objectives. The strong performance
of slime-mould-based algorithms on shortest path problems,
both undirected (Zhang, Wang et al., 2014) and directed
(Zhang and Mahadevan, 2018), as well as on TSP problems,
gives reason to believe these approaches may transfer well to
a range of network problems.

The situation is more complex regarding the broader
question of when slime-mould-based algorithms should
be preferred over other metaheuristics. Recent work, e.g.,
(Antosiewicz et al., 2013; Gutierrez-Rodrı́guez et al., 2019;
Kanda et al., 2016) has shown that on the TSP and
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related problems, it is typical that the “best” algorithm may
fundamentally depend on the characteristics of the problem
instance being addressed. In fact, Kanda et al. (2016) and
Gutierrez-Rodrı́guez et al. (2019) have used machine learning
approaches to decide, on an instance-by-instance basis, which
algorithm or metaheuristic to apply for the TSP or its super-
problem, the Vehicle Routing Problem. An extension of this
is the field of hyperheuristics (see, for example, (Burke
et al., 2013)), where the solver may swap heuristics or
metaheuristics in and out on the fly, during the run, according
to the current status of the problem or stage of the search.

With this in mind, it is clearly very difficult to make
a generalisation as to when one metaheuristic should be
preferred over another. However, we may make some high-
level comments, based on the above discussion of properties
of slime-mould-based algorithms. Firstly, a slime-mould-
inspired algorithm may be considered where robustness or
resilience is a primary or secondary consideration, where this
can be incorporated in a multi-objective function. Secondly,
if the environment is dynamic, and network weights are
changing, a slime-mould-inspired algorithm is capable of
adjusting to these. However, as the work of Kanda et al.
(2016), Gutierrez-Rodrı́guez et al. (2019) and others has
shown, the choice of appropriate metaheuristic is an active
area of research and one that is rapidly evolving, with no firm
conclusions thus far.

6.3 Making slime-mould-inspired algorithms more
faithful to real-world slime mould behaviour

Finally, we consider whether a better understanding of slime
moulds may give new strengths to slime-mould-inspired
algorithms.

In the slime-mould-inspired algorithms disussed here,
some aspects of slime mould behaviour are deliberately
omitted or simplified by designer choice, and so the
algorithms are not completely faithful to nature. These
design choices represent the algorithm designer’s belief,
given experimental evidence, that the benefit in simplicity and
tractability outweighs the loss of accuracy of representation.

However, an issue with current slime-mould-inspired
approaches is that real-world slime mould behaviours are
imperfectly understood. In addition to the simplifications
made to slime-mould-inspired algorithms by choice of the
designer, it is possible that they miss some essential real-
world element of slime mould foraging behaviour and so lack
faithfulness to nature in another way. It is unclear at present
whether this happens and, if so, to what degree. What can be
said is that new developments in biological understanding do
not always transfer immediately to the domain of foraging-
inspired algorithms.

Recently, new hypotheses have been proposed on the
physical processes underlying slime mould movement and
tube diameter increase or reduction, for example, that
cytoplasmic flows are organised in peristaltic waves of
wavelength matching the organism size: “Contrary to long-
lasting speculations about localized pumps driving pressure
difference, the common understanding now is that flows
arise through network-wide, self-organized contractions of

the actin cortex” (Alim, 2017). These wave mechanisms, if
implemented in algorithms instead of the Tero model, could
plausibly give new algorithmic behaviours and capabilities,
and so extend the range of slime-mould-inspired algorithms.
It may be that more closely mimicking slime moulds can lead
to better algorithms because of adoption of some crucial fact.

As mentioned in Section 2.3, many network design
problems where the sum of weights of a certain subset of
edges must be minimised, subject to constraints enforcing
robustness, are NP-hard: such problems offer opportunities
for slime-mould-inspired approaches, given the capabilities
of slime moulds as discussed in Section 4. In particular,
Zhu et al. (2018) found promising results in terms of
both computational cost and solution quality when applying
Physarum polycephalum as a biocomputer to solve small
instances of the TSP.

Note that the three-dimensional representations discussed
in Section 4.1.2 are more detailed models (involving
topography) than the graph models introduced in Section 2.3;
the topography itself acts as an external memory. This
application together with the others in Section 4 demonstrate
that slime mould computation is applicable to a range of
problems, including but not restricted to “pure” graph models.
This indicates that slime-mould-inspired algorithms may not
run as fast as “pure” graph algorithms, but this may be
compensated for by a wider breadth of applicability, and by
the fact that they may be able to capture more aspects of the
real world problem/domain being modelled than the simpler
“pure” graph model can.

7 Conclusions

We now realise that even apparently ‘simple’ nonneuronal
organisms are capable of quite sophisticated behaviours.
This suggests that brains and neuronal networks are not
prerequisites for complex decision making (Reid et al.,
2015). All organisms are faced with a multitude of decisions
when foraging, including searching for resources, efficient
allocation of resources between exploitation of current food
resources and exploration for new resources, anticipation
of periodic environmental events, and making risk–return
tradeoffs when foraging. In this paper, we have provided
a brief introduction to some of the foraging behaviours
the plasmodial slime mould Physarum polycephalum and
described a number of algorithms which have drawn
inspiration from these behaviours in order to solve graph
optimisation problems. A range of avenues are open for
further exploration in this domain with Gao et al. (2018)
providing a good taxonomy for considering these.

Much of the work in this area so far has concerned
‘proof of concept’ of the relevant algorithms and further
work is required to comprehensively assess their scalability
and effectiveness on benchmark problems. Despite the
relative immaturity of the algorithms it is interesting to
note that a stream of literature is emerging which applies
these algorithms to real-world problem domains including
supply-chain network design (Zhang et al., 2017a,b), road
network design (Zhang and Mahadevan, 2018) and electrical



Slime Mould Foraging Algorithms: An Introduction 15

grid load shedding (Gao et al., 2017). Clearly, many real-
world problems can be encompassed in a graph-optimisation
framework and accordingly, if their effectiveness and
efficiency can be successfully verified, there will be plentiful
opportunities to apply the algorithms to practical problems.

Of course, it is also important to note that the
developed algorithms are very simplified representations of
(the imperfectly understood) real-world foraging behaviours
of Physarum polycephalum and other slime moulds and
doubtless future biological research concerning these
organisms will open up new avenues of investigation.

Taking a wider perspective, there are striking similarities
between the group decision-making processes of organisms
such as social bacteria and slime moulds, and those of
social insects. In each case the colony-level decision is
based on information gathered by individual organisms (or
cells), in a bottom-up, emergent process with feedback loops
playing an important role. The investigation of slime mould
behaviours could therefore cast light on a wider class of
group decision-making processes. Indeed, it is speculated
that similar mechanisms may govern the decision-making
processes in higher animals. Marshall et al. (2009) compare
the decision-making processes of social insect colonies and
the brain and notes that both individual ants and individual
neurons are relatively simple information processors with
incomplete information on the environment. For example,
sensory information may be ambiguous and time varying,
therefore individual information processors have local rather
than global information concerning the environment. In
insect societies, slime mould, bacterial colonies and brains,
decisions are not made by individual information processors
but rather as a result of an emergent process with information
being accumulated concerning alternative decision choices.
Future work is required in order to better integrate these
currently distinct research areas.
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