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Abstract 
This research introduces a new novel method for mathematically optimizing team 

sport training models to enhance two measures of athletic performance using an 

evolutionary computation based approach. A common training load model, 

consisting of daily training load prescriptions, was optimized using an 

evolutionary multi-objective algorithm to produce improvements in the mean 

match-day running intensity across a competitive season. The optimized training 

model was then compared to real-world observed training and performance data 

to assess the potential improvements in performance that could be achieved. The 

results demonstrated that it is possible to increase and maintain a stable level of 

match-day running performance across a competitive season whilst adhering to 

model-based and real-world constraints, using an intelligently optimized training 

design compared a to standard human design, across multiple performance 

criteria (BF+0 = 5651, BF+0 = 11803). This work demonstrates the value of 

evolutionary algorithms to design and optimize team sport training models and 

provides support staff with an effective decision support system to plan and 

prescribe optimal strategies to enhance in-season athlete performance. 

KEYWORDS: TRAINING LOAD; GENETIC ALGORITHMS; EVOLUTIONARY 

COMPUTATIONS; ARTIFICIAL INTELLIGENCE 
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Introduction 

A core responsibility of every sports coach is to design and conduct training sessions that 

effectively develop an athlete’s performance. Coaches will routinely use training models to 

assist them in completing this important task. A training model can consist of planning, 

analysis and assessment, which are important components in the overall development of 

athletes (Bompa & Buzzichelli, 2019). It has been repeatedly demonstrated that effective 

training can enhance an athlete or teams performance. A large volume of research has been 

dedicated to studying the effects that suitable modifications in training models and 

interventions can have on specific measures of physiological performance and adaptation 

(Jaspers et al., 2017; Borresen & Ian Lambert, 2009). In practice, the manipulation of training 

model variables are typically conducted by a coach with sufficient domain-specific knowledge 

and experience, selecting what they consider to be effective combinations of training 

frequency, mode and load to enhance their athletes’ performance. However, when the number 

of variables in a training model become too large and non-independent, it can be difficult for 

coaches to select the optimal set which will result in an athlete achieving a significant 

enhancement in performance. Additional complexity arises when we consider managing 

multiple training variables across an entire season whilst reducing the risk of overtraining and 

injury. For example, a coach may desire to maintain a high level of athlete readiness and 

performance across a season, while also peaking for specific competitions and events. 

Techniques commonly utilised in the field of operational research, such as mathematical 

optimization, can assist coach’s in finding the best possible combination of training model 

variables to achieve a well defined and measurable performance goal. Recently Carey et al. 

(2018) utilised such a method to investigate the effects optimizing pre-season training load had 

on player performance in Australian rules football. Their defined objectives were to maximise 

the total distance covered over a range of days spanning the pre-season training period and to 

maximise a model-based prediction of performance on the first day of the competitive season. 

The authors effectively demonstrated the utility of this approach and produced optimized 

training plans that were in agreement with previous research-based recommendations. 

However, the authors only sought to optimize pre-season training load prescriptions. Whilst 

this is an important period for players to prepare for the upcoming season, the approach of 

Carey et al. (2018) provides limited operational utility during the in-season competitive period 

given the increased complexity of the training and competition schedule. 

The problem of constructing optimal training models to enhance in-season physical 

performance is considered complex from a number of physiological and operational 

perspectives (Wright, 2009). For example, previous research has shown there to be a negative 

relationship between increased acute training load and physical output during a simulated 

soccer match (Slattery, Wallace, Bentley, & Coutts, 2012; Jones, Greig, Maw´en´e, Barrow, & 

Page, 2019). The effects of an accumulation of training load on match performance were also 

previously reported by (Lazarus et al., 2017), who concluded that periods of high acute load, as 

well as sustained increases in load, lead to negative match performances in elite AFL 

competition. Paradoxical research on the importance of having high physical outputs during 

games was reported by Chmura et al. (2017) who detailed that during the 2014 FIFA World 

Cup tournament, winners Germany, covered significantly more distance at higher relative 

intensity than players from other teams. Similarly, Konefal et al. (2019) showed that, during 

the 2014/2015 Bundesliga domestic season, having a higher mean and peak speed in the 

second half of a match significantly increased the odds of winning that match. Furthermore, 

Longo et al. (2019) reported that high-intensity running activity was associated with a higher 

probability of achieving a top-three end of season ranking in the 2016/2017 Serie A season. 
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Therefore, the effective construction of a training model that included the planning and 

management of training load has an important role to play in supporting positive performance 

outcomes throughout the competitive season and slowing the rate of progressive 

deterioration’s in physical conditioning typically observed as the season advances (Meckel, 

Doron, Eliakim, & Eliakim, 2018; Mara, Thompson, Pumpa, & Ball, 2015). 

This research seeks to advance the approaches applied in previous research (Connor, Fagan, & 

O’Neill, 2019), (Carey et al., 2018), (Schaefer, Asteroth, & Ludwig, 2015) (Ladany, 1975) to 

the problem of enhancing performance in competitive matches during the in-season period 

using a form of multi-objective evolutionary computation. 

This study introduces a new approach to the problem of constructing an optimal training plan 

model, that can be used by coaches and support staff to enhance the in-season physical 

performance of their players. To test the utility of the optimized training plan model we 

compare it to the observed training of a competitive team sport athlete designed by a 

professional coach. We hypothesise that the artificially designed training models will out 

perform the human designed model. 

Methods 

In order to generate training models which enhance physiological performance, the problem is 

constructed as a multi-objective optimization. This type of problem seeks to find the maximum 

or minimum of two or more objective functions, subject to a set of constraints (Deb, 2001). In 

this experiment, we aim to maximise the average model predicted performance on match days 

across the entire season and minimise large fluctuations in the daily training load prescribed to 

the athlete. The schematic in Figure 1.0 provides a visual overview of the optimization process 

and the modular multi-model setup. The following sections will detail the structure of the 

multi-objective optimization and the approach used to solve it. 

Quantifying Performance 
To quantify physiological performance during a match, two measures were calculated that 

capture differing aspects of running intensity; velocity based running intensity (VRI) and 

acceleration based running intensity (ARI). All data was collected using a GNSS based 

wearable device (STATSports Apex 10Hz, N.Ireland). The validity and reliability of this 

device has previously been established (Beato, Coratella, Stiff, & Dello Iacono, 2018; Beato & 

de Keijzer, 2019). The VRI measure is defined as the sum of all distance run above 5.5ms−1 

divided by the total active playing time. The ARI measure was calculated as above were all 

distance run above 3.0ms−2 is summed and divided by the active playing time to produce two 

intensity measures in units of metres per minute m/min. These threshold values represent an 

industry norm and are in line with previous methods used to quantify running intensity in other 

sports (Tierney, Tobin, Blake, & Delahunt, 2017; Trewin, Meylan, Varley, & Cronin, 2018). 
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Figure 1.: Schematic of the optimization process.

Training Models
To produce training models that adhere to real-world operational constraints, the training and 

match schedule of a female soccer player competing in division one of the National Collegiate 

Athletic Association competition was replicated exactly to form the structure of the training 

model. The training model spanned 120 days of the inseason competitive period. Each day in 

the training model was categorised using a match-day minus system to allow microcycle 

specific constraints to be incorporated into the optimization process. The training load 

prescriptions on each day is split into two sets containing six values. The values in each set 

consist of the running distances in metres accumulated in six different manufacturer defined 

velocity and acceleration zones (Table 2.0 Appendix). The two sets of zones are then 

aggregated using a training impulse (TRIMP) exponentially weighted (Appendix Table 3.0) 

calculation (Stagno, Thatcher, & van Someren, 2007), to form two daily training load 

variables: TRIMPVel and TRIMPAcc (Graham, Cormack, Parfitt, & Eston, 2018). This process 

is conducted in order to ensure that running intensity in higher zones receive a higher 

weighting as those zones represent a larger physiological load on the player. These variables 

are inputted into the objective functions to predict an athletes performance, the optimization 

process will find the set of variables that maximise predicted performance subject to 

constraints.

Training Model Optimization
In order to generate optimized training models, an evolutionary computing algorithm was 

implemented using the open-source PonyGE2 program written in the Python 3 programming 

language (Fenton et al., 2017). The following sections will describe the specifics of the 

algorithm and its application to the problem.
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Figure 2.: The grammar adopted to encode an in-season training plan. The number and order of training and 

match days are replicated using the observed training plan of an elite soccer player. The non-

terminals generate a random integer from 0 to an upper limit using a special python operator.

Training Model

Day 1              1000
Day 2              2000
Day 3              3000
Day N              . . .

Converged?

Model Search

Training Model g
Evaluation End

Update
Model No

Yes
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Evolutionary Computing 
Evolutionary computing is a subfield of artificial intelligence focused on the use of 

biologically inspired population-based heuristic search algorithms. A genetic algorithm is one 

such type of population-based heuristic which seeks to emulate in part the Darwin principles of 

evolution. Genetic algorithms operate by generating an initial population of candidate 

solutions, fitter solutions are selected to progress on to the next generation based on an 

objective function score. Research has shown that genetic algorithms are capable of solving 

complex optimization problems in a timely and satisfactory manner (Coello Coello, Lamont, & 

Van Veldhuisen, 2007; Schaefer et al., 2015). Grammatical Evolution is an extension of the 

canonical genetic algorithm which seeks to direct the search to a space of potential solutions by 

employing a mapping function using a formalised grammar (O’Neill & Ryan, 2001, 2003; 

Dempsey, O’Neill, & Brabazon, 2009). The advantage of this technique is that it allows for 

domainspecific knowledge to be encoded into the grammar, which helps uncover more 

desirable solutions in the search space. Figure 2 shows an example of the grammar used in this 

experiment. 

Objective Functions & Constraints 
In order to evaluate the quality of a training model, it is scored by using multiple objective 

functions. This is stated mathematically in the following form: 
 

$%&

'()&*� $+,

'-)&* 

   s.t xi ≤ aj .j  

xi ≥ 0 .j 



(1)  

Where, & is a training model, &/ is a set of training load variables, %0 is an upper bound on 

training load that can be prescribed on the +12 day preceding a match (i.e. MD-1), in the set 3 of 

match-day type constraints (See appendix Table 1.0). Constraints were selected by selecting 

high but feasible training load values using unpublished data. The first of the two objective 

functions is based on the seasonal mean of the impulse response (IR) model predicted match-

day performances. This model asserts that a training stimulus will have a dose-response type 

effect on an athletes’ performance. A single training input to the impulse response model 

results in two antagonistic responses, an increase in fitness and an increase in fatigue. The 

balance between the two responses, which have varying rates of decay, form a prediction of the 

athletes current level of performance. The objective function is then the mean of the model 

predicted performances for both the velocity and acceleration based running intensity 

measures, as follows: 
 

'()&* �
4( 5 4-

�
 

 

(2)  

Where P1 & P2 are each the sum of the average seasonal match-day predicted velocity and 

acceleration based running intensity performances, calculated as follows using the impulse 

response model: 
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Where P is the overall average seasonal performance 

7)8* � 7 : 5;� < =)8* > ;� < ?)8* (4)  

Where p(t) is the predicted performance at time (t), p: describes the initial state of the athlete, 

w(t) is the measured training load and g(t) describes the response to that training load, which 

can be further broken down into the relationship between the time decay factors of fitness and 

fatigue. The parameters of the models were fit by minimising the residual sum of squares 

between the model predicted and observed performances using a differential evolution 

stochastic global optimization method (Storn & Price, 1997) in a custom Python script. In 

order to evaluate the predictive accuracy of the fitted parameters, the Bootstrap method was 

utilised (Tsamardinos, Greasidou, & Borboudakis, 2018). Briefly, this involved re-sampling 

the original data set to create a bootstrapped replicate data set of the same size as the original 

to which we apply the impulse response model. Samples which are not chosen, known as out 

of bag samples, are used to evaluate the accuracy of the model by calculating the root mean 

square error (RMSE) between the observed and predicted out of bag samples. This method 

was repeated 1000 times to calculate the mean impulse response model error with 95% 

confidence intervals (Harrell, 2006). For further information on the impulse response model 

see Banister, Calvert, Savage, and Bach (1975). 

The second objective function implemented to evaluate the quality of a training model was the 

regulation of daily training load prescriptions using a method known as the acute chronic 

workload ratio (ACWLR). The ACWLR is routinely used to restrain the prescription of daily 

or weekly training load in order to avoid large fluctuations which could potentially cause 

detrimental effects to an athletes’ performance. Research conducted by Lazarus et al. (2017) 

has demonstrated that match-day performances are typically higher when the ACWLR on a 

match-day is closer to the seasonal mean. This makes intuitive sense as the seasonal mean 

value represents a reasonable baseline fluctuation in training load that is tolerable for the 

athlete and provides a suitable method of restraining the ramp rate of training load 

accumulation. We state this objective function mathematically as: 

'-)&* � 4( 5 4- (5)  

 

Where P1 & P2 are the performances of the algorithm, scored on its ability to prescribe a 

training load distribution that results in match-day ACWLR values being closer to the seasonal 

mean, calculated by the following equation (6): 

 

4
 � 

6 @A/ > BC@9

/D(

,
 (6)  

 

Where n is the number of match days in the season, yi is the ACWLR value on the ith match-

day of the season and BC  the mean ACWLR across the entire season. The ACWLR is calculated 

using the exponentially weighted moving average method as detailed in Williams, West, 

Cross, and Stokes (2017). 

Experimental Parameters 
The following experimental parameters were used when running the grammatical evolution 

algorithm over 30 experimental runs to generate optimized solutions: Generations - 500, 

Population Size - 500, Cross Over - Fixed One Point, Mutation - Integer Flip Per Individual, 
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both Cross Over and Replacement were performed using a version of the non-dominated 

sorting genetic algorithm (NSGA-II) (Deb, Pratap, Agarwal, & Meyarivan, 2002). For further 

information about the experimental parameters used see Fenton et al. (2017). 

Statistical Analyses 
The bootstrapped root mean squared error of the impulse response models is reported as the 

mean ± s.d. with 95% confidence intervals. The converged objective function values of the 

500th generation over 30 experimental runs is reported as the mean ± s.d. Statistical analysis of 

the difference between training model optimized performances and the observed performances 

are reported using a directional Bayesian paired samples t-test with a Cauchy prior of 0.7 

(Kruschke, 2013). A two-sided KolmogorovSmirnov test was used to test the hypothesis that 

the two distributions of prescribed training load are the same, the alpha values were set at 0.05 

(Hodges, 1958). All analysis was conducted using the Python 3.7 programming language. 

Results 

The mean bootstrapped impulse response model error for high velocity running was 1.65 ± 

0.12 (CI 1.45, 1.87). The error for high accelerated running was 0.97 ± 0.02 (CI 0.94, 1.02). 

Over the 30 experimental runs, the mean Pareto front on the 500th generation has a value of 

8.90 ± 1.30 (a value of zero is a fully satisfied solution), this shows the stability of the 

algorithm to consistently converge on an optimal solution space. The impulse response model 

based objective reached convergence between 11.3 - 11.4 (AU). While the ACWLR objective 

appeared to converge to an optimal value of between 0.5 - 0.6 (AU) in fewer generations. The 

model optimized and observed performances can be seen in Figures 3 and 4. The first 

observation displays the summary of the optimized and observed seasonal performances for 

velocity based running intensity, while the second observation displays optimized and 

observed seasonal performances for acceleration based running intensity. The standardized 

mean difference between the model optimized and observed performances are displayed in 

Table 1.0 as a Bayes factor in favour of the alternative hypothesis, which in both instances was 

a directional hypothesis stating that the optimized performances would be greater than the 

observed. The Bayes factor in both cases demonstrates that the alternative hypothesis explains 

the data substantially better than the null hypothesis. 

 

  
BF+0 error % 

Optimized VRI - Observed VRI 5651.222 NaN 

Optimized ARI - Observed ARI 11803.009 NaN 

 

Table 1.0 Bayesian Paired Samples T-Test 
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Figure 3.: Velocity Based Running Inten- Figure 4.: Acceleration Based Running Intensity 

Training Load Distributions 
An aggregation of the daily zonal training load prescriptions can be seen in Figures 5 and 6. 

The Kolmogorov-Smirnov test results show that there are significant differences 

 

Figure 5.: Optimized and observed aggregated velocity based training loads (TRIMP) over the in-season period. 

in the seasonal distributions of both the velocity (p < 0.001) and acceleration (p < 0.001) daily 

training load values, which likely attributed to the differences in matchday running 

performances. 

 

Figure 6.: Optimized and observed aggregated acceleration based training loads (TRIMP) over the in-season 

period. 
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Figure 7.: Optimized and observed velocity based training loads (m) distributed across zones 1-6. 

 

Figure 8.: Optimized and observed acceleration based training loads (m) distributed across zones 1-6. 

Discussion 

This research demonstrates that it is possible to generate feasible training models that can 

enhance multiple athlete performance criteria, while also satisfying microcycle upper load 

constraints. This is the first study to demonstrate the ability of an evolutionary computation 

based algorithm to optimize training models for an athlete during the in-season competitive 

period. This study is also the first to construct novel multi-model objective functions and 

converge on solutions, over several dimensions, that are considered important for the effective 

design of a training model to enhance athlete performance. The findings of this study appear to 

be in agreement with other researchers (Connor et al., 2019; Carey et al., 2018; Schaefer et al., 

2015) who demonstrated that training load prescription values can be optimized utilising 

mathematical models that map the effects of training stimuli to a change in athlete 

performance. 
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The flexibility of using grammatical evolution to solve this problem can’t be understated, with 

trivial changes to the grammar the training model structure can be altered or updated to reflect 

real world changes. Similarly, the objective functions can be swapped out and altered with ease 

if model parameters need to be changed, or new models are developed to help to direct the 

planning of training activities. The multi-objective nature of the problem also presents a Pareto 

front of possible solutions, the choice can be made to use a solution that achieves a higher 

performance in one objective at the cost of another or a balanced solution from the middle of 

the front. This characteristic may be desirable for coaches given that different situations can 

arise during the season which requires one objective to prioritised over another. Or if the 

objectives are not equally weighted by coaching staff. For example, higher fluctuations in 

training load may be tolerated achieving enhanced performance in the lead up to important 

matches. 

When examining the model optimized daily training load values, displayed in Figures 7 and 8, 

we observe similar distributions of daily training load in velocity zones 1-6 as actually 

completed by the player. The training model optimized daily prescriptions appear to have a 

slight positive skew towards higher loads in zones 1-4, these zones represent distance covered 

at a velocity under 4.0 ms−1, which is typically a velocity below the maximal aerobic threshold 

for this population of athletes. And thus the increases in a training stimulus in these zones will 

predominantly bring about aerobic performance adaptations which have shown to differ elite 

from non-elite players. This type of behaviour is not programmatically encoded into the 

models or algorithms, yet on observation, it appears to emerge from the repeated evolution of 

optimal training models. Examining the daily training load prescribed in the acceleration zones 

we see a contrast in the distribution between the model optimized and observed values. The 

observed daily training load completed by the player occur predominantly in zones 2 & 3, the 

optimized training model prescribes a more even dispersion across zones 1-3 representing 

movement below 3.0 ms−2 and a less pronounced increase in accelerations between 3.0 - 4.0 

ms−2. The reasons for this is unclear as the dynamics of accelerations in team sports is not as 

well-studied as velocity. However, one theory may be that due to the metabolically taxing 

nature of accelerations, more varied exposure to acceleration stimuli across a range of zones 

could help develop a strong capacity to support a high consistent performance over the full 

competitive season (Harper & Kiely, 2018). 

It is worth noting that the variations in daily training load do not fully explain match-day 

running performance, a limitation of the impulse response and ACWLR models is the 

requirement to have a univariate input which can restrict the predictive power of the models. 

Similarly, a limitation in our approach was the weightings we applied when combining the 

velocity and acceleration models, which in this experiment are both considered equal. 

However, the individual subsystems of the body will respond differently to specific external 

load stimuli such as those arising during high-intensity velocity or acceleration based running. 

Similarly, the rate at which adaptions to training can occur is also different for the body’s 

different subsystems as previous research has shown (Issurin, 2008) thus the timing of 

exposures to stressors are an important consideration in maintaining fitness and avoiding high 

levels of acute fatigue. Ultimately these relationships are unique to an individual athlete and 

were outside of the scope of this research to explore fully. However, the flexible modular 

nature of our novel optimization process allows for the expansion and incorporation of new 

models which can capture this type of information and incorporate it into the planning process. 

In future work, we will seek to address some of these highlighted issues. The problem of 

finding optimal training models in this instance used a fixed training structure, however, this 

can be extended to incorporate other high-level variables such as the frequency and mode of 

training sessions or training drills. In this experiment, the generation of optimal training 
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models that don’t violate model-based and real-world constraints has been approached using a 

static optimization method. Future work will seek to develop this approach to account for the 

dynamic time-variant nature of the problem and explore the use of dynamic optimization 

algorithms with suitable performance models to find solutions that can adjust to the types of 

unpredictable scenarios encountered in professional sports. 

Conclusion 

In this study, we demonstrated the ability of an evolutionary computation based algorithm to 

optimize an athlete training model with the goal of finding values that minimise/ maximise 

multiple objective functions. We were able to achieve a high stable level of match-day 

running-based performance over the entire competitive season with only small to moderate 

manipulations in daily training load prescriptions. This paper further demonstrates the utility 

of evolutionary computation based optimization techniques applied to common models used 

in sports performance. Coaches and support staff can utilise techniques such as this, 

embedded in software packages, to support their decisions concerned with the optimal 

prescription of training to their athletes. And aid them in developing optimized training 

models to enhance performance, reduce player fatigue and improve physical fitness. 
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Appendix 

Table 1.: Upper TL prescription constraints for velocity and acceleration in metres. 

Upper Load Constraints 

Zones 1 2 3 4 5 6 

Velocity Upper 3000 3000 3000 1500 500 250 

Velocity Lower 2000 2000 2000 500 250 150 

Acceleration Upper 2000 2000 2000 500 250 100 

Acceleration Lower 1000 1000 1000 250 100 50 

Table 2.: Zonal boundaries for velocity (ms−1) and acceleration (ms−2). 

Locomotion Zones 

Zones 1 2 3 4 5 6 

Velocity 0-1.5 1.5-3.0 3.0-4.0 4.0-5.5 5.5-7.0 7.0-8.5 

Acceleration 0.5-1.0 1.0-2.0 2.0-3.0 3.0-4.0 4.0-5.0 5.0-10.0 

 

Table 3.: TRIMP calculation weighting coefficients for velocity and acceleration based TL per zone. 

TRIMP Coefficient 

Zone 1 2 3 4 5 6 

TRIMPVel 1 1.2 1.5 2.2 4.5 9 

TRIMPAcc 1 1.2 1.5 2.2 4.5 9 
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