
Pre-, In- and Postfix grammars for Symbolic Regression in
Grammatical Evolution

Erik Hemberg
NCRA Group

University College Dublin
Ireland

erik.hemberg@ucd.ie

Nicholas McPhee
Div. of Science & Mathematics
University of Minnesota, Morris

USA
mcphee@morris.umn.edu

Michael O’Neill
NCRA Group

University College Dublin
Ireland

m.oneill@ucd.ie

Anthony Brabazon
NCRA Group

University College Dublin
Ireland

anthony.brabazon@ucd.ie

Abstract—Recent research has indicated that grammar de-
sign is an important consideration when using grammar-based
Genetic Programming, particularly with respect to unintended
biases that may arise through rule ordering or duplication.
In this study we examine how the ordering of the elements
during mapping can impact performance. Here we use to the
standard GE depth-first mapper and compare the performance
of postfix, prefix and infix grammars on a selection of symbolic
regression problem instances. We show that postfix can confer
a performance advantage on the harder problems examined.

I. I NTRODUCTION

A Substantial literature has emerged on the grammar-
based form of Genetic Programming, Grammatical

Evolution (GE), and its applications (e.g., [1], [2], [3]).Here
we investigate the importance of the ordering of the mapping
process that occurs during the generation of a solution.
Traditional GE constructs derivation trees in a depth-first
manner. InπGE, however, individuals can evolve the order
in which non-terminals are expanded, leading to performance
gains [4]. This indicated that the order in which non-
terminals are expanded can affect search efficiency. Other
studies also indicate that grammar design itself can impact
an algorithm’s performance [5], [6], [7], [15]

Here we use the standard depth-first mapper, with three
grammars which differ only in their expression syntax. The
first grammar is infix (typical in most previous GE work), the
second is prefix, and the third is postfix. We then compare the
performance of these grammars on a suite of symbolic regres-
sion problem instances. If the order in which non-terminals
are mapped is truly important we would expect performance
differences between the starkly contrasting prefix and postfix
grammars. With prefix grammars, for example, operators are
determined earlier in the input sequence than the operands,
where the opposite is true for postfix. As a result the root
of a syntax tree is the last component of a program that is
determined in postfix, as opposed to the first with prefix. See
Fig. I where the grammars from Fig. I produce the derivation
trees.

The structure of the paper is first an introduction to GE
in Sec. II, then a description of the experimental setup and
results in Sec. III, and finally Conclusions & Future Work in
Sec. IV.

II. BACKGROUND

GE [1] is a form of grammar-based genetic program-
ming(GP) [8]. For more background on grammar-based GP
see [13], [14] Rather than representing the programs as parse
trees, as in GP, a variable length linear genome representation
is used in GE. A genotype-phenotype mapping is employed
where an individual’s binary string is interpreted as a se-
quence of integer values (calledcodons), which are then used
to select production rules from a Backus-Naur Form (BNF)
grammar, see Fig. 3. A context free grammar (CFG) is a four
tuple (N,Σ, R, S). WhereN is a finite set of non-terminal
symbols.Σ is a finite set of terminal symbols,N ∩ Σ = ∅.
R is a finite set of production rules,A → α, A ∈ N and
α ∈ (Σ∪N)∗, andS is the start symbol,S ∈ N . An example
grammar is shown in Fig. 2.

---- Prefix ----
<e> ::= (<o> <e> <e>) | <v>
---- Infix ----
<e> ::= (<e> <o> <e>) | <v>
---- Postfix ----
<e> ::= (<e> <e> <o>) | <v>
---- Common for all grammars----
<o> ::= +|-|*|/
<v> ::= x0 | x1 | <c>
<c> ::= 1|2|3|4|5|6|7|8|9

Fig. 2. The CFGs that were used for the experiments, with the different
rules for each grammar design as well as the common rules.e is an
expression,o is an operator,v is a variable andc a constant.

In GE the genetic operators such as crossover and mutation
are applied to the linear genotype in a typical genetic
algorithm (GA) [9] manner, unlike in a GP approach where
they are applied directly to the phenotypic parse trees. The
grammar allows the generation of programs in an arbitrary
language that are guaranteed to be syntactically correct. The
user can design the grammar to produce solutions that are
purely syntactically constrained, or they may incorporate
domain knowledge by biasing the grammar. The mapping
process creates a clear distinction between the search and
solution space.

By using different grammars the search space can be
mapped and explored in different ways. This is illustrated by
examining the derivation trees that are created when mapping
the genotype to the phenotype. Fig. I shows how different
grammars can lead to different derivation trees that in fact

(a) Prefix mapping (b) Infix mapping (c) Postfix mapping

Fig. 1. Derivation trees mapped from the different grammars from Fig. 2. The grammars generate equivalent expressions from different inputs of length
17 and the input number is indicated in the figure. Diamonds denote non-terminal symbols and circles denote terminal symbols.

Genotype 14 8 27 254 5 17 12

Derivation Sequence

<o> <e> <e> −−> + <e> <e>

<e> −−−> <o> <e> <e>

+ <e> <e> −−> + <v> <e>

+ <v> <e> −−> + x <e>

+ x <e> −−> + x <v>

+ x <v> −−> + x y

(14 mod 2 = 0)

(8 mod 2 = 0)

(27 mod 2 = 1)

(254 mod 2 = 0)

(5 mod 2 = 1)

(17 mod 2 = 1)

Grammar

<e> ::= <o> <e> <e>
 | <v>

<o> ::= +
 | −

<v> ::= x
 | y

<e>

<e> <e><o>

<v> <v>+

x y

Derivation
Tree

x y

+

Parse Tree
(Phenotype)

Fig. 3. GE genotype-phenotype mapping, the genotype selectsproduction
rules from a grammar to produce a derivation sequence.

represent the same phenotype. (The input sequences used to
generate the trees, however, are different in each case.)

III. E XPERIMENTS& RESULTS

To test the effects of different grammar designs a small
but expressive grammar of Symbolic regression was used.

1) Symbolic regression: The goal is to find a function that
matches a target function on a set of observed points. In this
paper the following target functions were used:

8/(2 + x
2

+ y
2
) (1)

x
3
(x − 1) + y(y/2 − 1) (2)

x
3
/5 + y

3
/2 − y − x (3)

30 ∗ x2

(10 − x)y2
+ x

4
− x

3
+

y2

2
− y +

8

2 + x2 + y2
+ x (4)

30 ∗ x2

(10 − x)y2
+ x

4
−

4

5
x
3

+
y2

2
− 2y +

8

2 + x2 + y2
+

y3

2
− x (5)

Some of these target functions were adopted from [10],
while others where created to encourage the evolution of
larger expression trees. From the range [-3,3] for bothx

andy 20 random sample points where chosen. Fig.4 shows
the target functions plotted over this range, together with
diagrams showing the structure of the target expressions, with
the structural complexity increasing with each target.

TABLE I
PARAMETERS FOR THEGE ALGORITHM

Fitness function See III-1

Initialisation Ramped Half and Half

Grow Derivation tree depth 12

Selection operation Tournament

Tournament size 3

Replacement Generational

Elites 2

Population size 500

Max wraps 1

Generations 50

Crossover probability 0.9

Mutation probability 0.01

2) Grammar: The grammars used are shown in Fig.2. The
only variation is between prefix, infix and postfix representa-
tion of the function expression. This means that the grammars
have different sites that determine the order of the expansion
of the grammar in relation to the root, see Fig. I.

A. Experiment

The experiments are designed to test whether there is a dif-
ference in the performance between the different grammars.
The performance is measured as the average best fitnessµ

after 50 generations over 1000 runs. The false discovery
rate(FDR) [12] is calculated and the p-values are derived
from t-tests. The FDR value tells how many of the p-values
from the multiple hypotheses that were significant given the
α of the FDR-test.

1) Hypothesis:

H0: No difference in best fitness between the grammars.
µPre = µIn, µIn = µPost andµPre = µPost

H1: A difference in best fitness between the grammars.
µPre 6= µIn, µIn 6= µPost or µPre 6= µPost

α: The significance level of the test is0.05.

2) Setup: Parameter settings for the GE algorithm are
listed in Table I. The input (calledchromosomes) were
variable-length vectors of integers (4 byte integers). Our
fitness measure is the sum of the squared error over the

mk15

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3
0.5

1

1.5

2

2.5

3

3.5

4

(a) Target (1), n=11, l=6

mk13

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3
0

20

40

60

80

100

120

(b) Target (2), n=17, l=9

mk16

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3

-10

-5

0

5

10

(c) Target (3), n=19, l=10

ehLong1

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

30

500

1000

1500

2000

2500

3000

3500

4000

(d) Target (4), n=49, l=25

ehLong

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

30

500

1000

1500

2000

2500

3000

3500

4000

(e) Target (5), n=63, l=32

Fig. 4. Expression trees and a plot of the function over the range. Tree
generating code from [11]. n = total number of nodes, l = number of leaves.

20 test cases. One-point variable length crossover was used,
along with an integer mutation operator where a new value
was randomly chosen. For division a naive protection was
implemented, 0.0 was returned if the divisor equalled 0. An
individual is invalid if it cannot produce a valid phenotype
after it is mapped. Invalids are given the worst possible
fitness.

B. Results

The best fitness over time is shown in Fig. 6 and in
Fig. 5(a) boxplots of the runs are shown. Due to space
restrictions values from the t-tests are left out. Looking at the

last generation of pairwise comparisons between the different
grammars. The FDR value is 3 for Target (4) for postfix and
infix compared to prefix, and infix compared to postfix. For
Target (5) the FDR value is 2, here for infix compared to
prefix and infix compared to postfix. Also postfix compared
to prefix for Target (2) has an FDR value of 1.

5e
−

01
1e

+
00

5e
+

00
1e

+
01

5e
+

01
1e

+
02

5e
+

02
1e

+
03

Boxplot of the best fitness after 50 generations

F
itn

es
s

(lo
g

sc
al

e)

Target (1) Target (2) Target (3) Target (4) Target (5)

Infix
Postfix
Prefix

(a) Best fitness, y=axis is log scale

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boxplot of % invalids after 50 generations

%
 in

va
lid

s

Target (1) Target (2) Target (3) Target (4) Target (5)

Infix
Postfix
Prefix

(b) % invalids in population

Fig. 5. Boxplots of Best Fitness and % invalids at the final generation.

On the two larger problem instances, Targets (4 and 5),
a performance advantage was observed for postfix when
compared to both infix and prefix. Additionally, on Tar-
get (5) infix outperformed prefix. No statistically significant
differences in performance were observed on the smaller
Targets (1, 2 & 3). When studying the results from Fig. 5(b)
one can notice that postfix grammars always have more valid
individuals when compared to prefix, the FDR value was
always 2, except for Target (1), although for Target (2,3)
the number of invalids in all grammars is very low but for
Targets (5,4) the difference is quit high.

C. Discussion

All grammars show a similar behaviour when it comes
to fitness. An inspection of the log data recorded for each
run revealed that for the prefix grammar, a significantly
large number of invalid individuals were generated after the

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60

F
itn

es
s

Generation

prefix
postfix

infix

(a) Target (1), best fit.

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

F
itn

es
s

Generation

prefix
postfix

infix

(b) Target (2), best fit.

 55

 60

 65

 70

 75

 80

 85

 0 10 20 30 40 50 60

F
itn

es
s

Generation

prefix
postfix

infix

(c) Target (3), best fit.

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 10 20 30 40 50 60

F
itn

es
s

Generation

prefix
postfix

infix

(d) Target (4), best fit.

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 10 20 30 40 50 60

F
itn

es
s

Generation

prefix
postfix

infix

(e) Target (5), best fit.

Fig. 6. Best fitness results averaged over 1000 runs.

initial population. Clearly, this might account for some of
the differences in performance observed, but it is interesting
to ask why are so many invalids being generated? One
explanation could be the different locations of the grammar
expansions in the input string.

IV. CONCLUSION & FUTURE WORK

We wished to see if the order of symbols within a grammar
can impact on performance of GE by comparing infix, postfix

and prefix syntactical variants. The results suggest that the
choice of grammar can produce performance advantage on
the different problems examined.

In order to further understand the impacts of grammar
design and GE more problem types need to be tried. A
discrete problem like 6-MUX should be investigated to see
if this problem type exhibits the same behaviour. Further it
might be interesting to try a problem that is solved by GE, as
well as compare the findings to other grammar-GP systems.

Future studies will examine the number of invalids and
focus on how the search operators are manipulating the
solutions with different syntactical representations.

ACKNOWLEDGEMENT

This research is based upon works supported by the Science
Foundation Ireland under Grant No. 06/RFP/CMS042.

REFERENCES

[1] M. O’Neill and C. Ryan,Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language. Norwell, MA, USA:
Kluwer Academic Publishers, 2003.

[2] F. Rothlauf and M. Oetzel, “On the locality of grammatical evolution.”
in EuroGP, LNCS, P. Collet, et al, Eds., vol. 3905. Springer, 2006,
pp. 320–330.

[3] U.-M. O’Reilly and M. Hemberg, “Integrating generative growth and
evolutionary computation for form exploration,”Genetic Programming
and Evolvable Machines, vol. 8, no. 2, pp. 163–186, 2007.

[4] A. Brabazon and M. O’Neill, “Credit rating with pi grammatical evo-
lution,” in Proceedings of Computer Methods and Systems Conference,
R. Tadeusiewicz, et al, Eds., vol. 1. Krakow, Poland: Oprogramowanie
Naukowo-Techniczne Tadeusiewicz, 14-16 Nov. 2005, pp. 253–260.

[5] E. Hemberg, M. O’Neill and A. Brabazon, “Grammatical bias and
building blocks in meta-grammar grammatical evolution,” in2008
IEEE World Congress on Computational Intelligence, J. Wang, Eds,
IEEE Press 1-6 June 2008.

[6] M. O’Neill and C. Ryan, “Grammatical evolution by grammatical
evolution: The evolution of grammar and genetic code,” inEuroGP
2004, Proc., LNCS, M. Keijzer, et al, Eds., vol. 3003. Coimbra,
Portugal: Springer-Verlag, 5-7 Apr. 2004, pp. 138–149.

[7] M. Nicolau, “Automatic grammar complexity reduction in grammatical
evolution,” in GECCO 2004 Workshop Proc., R. Poli, et al, Eds.,
Seattle, Washington, USA, 26-30 Jun. 2004.

[8] J. R. Koza,Genetic Programming: On the Programming of Computers
by Means of Natural Selection (Complex Adaptive Systems). MIT
Press, Dec. 1992.

[9] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, Jan. 1989.

[10] M. Keijzer, “Improving symbolic regression with interval arithmetic
and linear scaling,” inEuroGP 2003, Proc., LNCS, C. Ryan, et
al, Eds., vol. 2610. Essex: Springer-Verlag, 14-16 Apr. 2003, pp.
70–82.

[11] S. Gustafson, http://www.gustafsonresearch.com/research/vis/.
[12] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:

a practical and powerful approach to multiple testing,”Journal of the
Royal Statistical Society B, vol. 57, no. 1, pp. 289-300, 1995.

[13] P. A. Whigham, “Grammatically-based genetic programming,” in
Proc. of the Workshop on Genetic Programming: From Theory to
Real-World Applications, J. P. Rosca, Ed., Tahoe City, California,
USA, 9 1995, pp. 33–41.

[14] R. I. (Bob) McKay, X. H. Nguyen, P. A. Whigham, and Y. Shan,
“Grammars in genetic programming: A brief review.” inProgress in
Intelligence Computation and Intelligence: Proceedings of the Inter-
national Symposium on Intelligence, Computation and Applications,
L. Kang, et al, Eds, ppp 3–18, Wuhan, PRC, April 2005. China
University of Geosciences Press.

[15] Marco A. Montes de Oca. “Exposing a bias toward short-length
numbers in grammatical evolution.”, inLNCS 4971. EuroGP 2008,
Proc, S. Gustafson, et al, Eds, pp 278–288, Berlin, 2008. Springer.

