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Abstract. Grammar-based genetic programming systems have gained
interest in recent decades and are widely used nowadays. Although
researchers normally present the grammar used to solve a certain prob-
lem, they seldom write about processes used to construct the grammar.
This paper sheds some light on how to design a grammar that not only
covers the search space, but also supports the search process in finding
good solutions. The focus lies on context free grammar guided systems
using derivation tree crossover and mutation, in contrast to linearised
grammar based systems. Several grammars are presented encompassing
the search space of sorting networks and show concepts which apply to
general grammar design. An analysis of the search operators on different
grammar is undertaken and performance examined on the sorting net-
work problem. The results show that the overall structure for derivation
trees created by the grammar has little effect on the performance, but
still affects the genetic material changed by search operators.
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1 Introduction

Grammars are an important representation in computer science, especially for
programming languages and compilers. Grammars have gained popularity in
genetic programming (GP) over time as they overcame some of traditional GP’s
limitations. Grammar based genetic programming is widely used nowadays [14].
A search space for a problem in GP can easily be defined with a grammar and
even problem specific information can be added to bias the search in a certain
region [18,27]. Much research has been conducted on different grammars that
can be used in GP to solve certain problems. Nevertheless, how to design a
grammar for GP remains an under explored research area. McKay et al. wrote
in a survey about grammar-based genetic programming [14]:

“While experienced practitioners of each representation form have some
tacit understanding of how to choose grammars, there is little explicit
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knowledge. More explicit knowledge may lead to more structured method-
ologies (and interactive software support) to incrementally find good rep-
resentations for new problem domains, and even to partial or complete
automation of the process.”

However some limited studies have been undertaken, including Whigham
[27], Hemberg [6], Murphy [17] and Nicolau [19].

This paper makes a step towards analysing grammar design and how it influ-
ences the search process. Section 2 gives an overview of how grammars have been
used in evolutionary systems. Section 3.3 explains the experimental setup. The
results are presented and discussed in Sect. 4. Finally, conclusion is presented in
Sect. 5 as well as possible future work.

2 Grammars in Evolutionary Systems

2.1 Grammar Guided Genetic Programming

Many different grammar based genetic programming system have been intro-
duced. The broad term Grammar Guided Genetic Programming (GGGP) will
be used in this paper to address these systems.

Some important GGGP systems are mentioned in this section. Whigham’s
CFG-GP system [27] uses a context-free grammar to specify the syntax of solu-
tions. He also defined specialized crossover and mutation operators for the search.
The search operators manipulate the derivation trees that are created when a
sentence is derived from a grammar.

Another well-known grammar-based system is grammatical evolution (GE),
which also uses CFGs normally in Backus-Naur Form (BNF) [5,22], but has also
been adapted to employ other grammars mentioned below.

In contrast to CFG-GP, GE uses an integer string as representation instead of
the derivation tree. A mapping process is used to generate a derivation tree from
the linear representation, which describes the phenotype. The search operators
used in GE primarily operate on the integer string. Other systems integrated
context-sensitive grammars into GP [25], logic grammars [8,28], tree adjoining
grammars [7,16], attribute grammars [1]. Also shape grammars have been used
for design by O’Neill et al. [21].

Depending on the grammar used, it might provide special features; context
free grammars, for example, can be used to interpret non-terminals differently
in different contexts.

Major benefits of GGGP systems are that the closure property is implicitly
given by the grammar similar to strongly typed GP [15] and bias can easily be
incorporated into the grammar. Bias is often an unwanted property of repre-
sentations or operators. In grammars bias can be used as an advantage [27]. A
grammar can be adapted to influence the search based on a priori knowledge
about a problem. Bias can be subtle, by increasing the frequency of a symbol
in a grammar or more definite by forcing a certain structure on all problems.
For example, the first few bits of a binary string can be defined to be all zeros.
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The risk of bias is that the grammar might not cover the whole search space or
worse that the global optimum is not even in the search space any more [14].

GGGP systems can be classified by their representation into tree based gram-
mar guided and linearised grammar guided systems. This paper mainly focuses
on tree based genetic programming systems, but differences to linearised repre-
sentations about grammar design are mentioned.

2.2 Grammar Design

GGGP systems can be used similar to fixed and variable length GAs [23] as
well as a generalization of GP, as shown by Whigham in his thesis [27]. A vari-
able length GA representation for binary strings in BNF can be achieved by a
grammar, as shown in Fig. 1.

<string> ::= <string><bit> | <bit>

<bit> ::= 0 | 1

Fig. 1. Variable length GA like representation for binary strings in BNF.

A fixed length representation in BNF is not more difficult than a variable
length representation, but more rules are required, as for every position in the
representation a separate rule has to be created, as shown in Fig. 2. A single
rule with one production with a fixed number of <bit> non-terminal symbols
could be used, but then crossover in a derivation tree based system could only
change single bits. A linearised grammar guided system like GE can represent
this grammar with exactly the same number of integers as bits are in the rep-
resentation, because the mapping process only uses an integer when deciding
which production to choose. As all rules except <bit> have only a single rule,
exactly n (number of stringparts) integers are needed. In a derivation tree based
system, crossover can only exchange subtrees with the same symbol, therefore
the structure of the derivation trees non-terminal symbols will never change.

<stringpart0> ::= <stringpart1><bit>

<stringpart1> ::= <stringpart2><bit>

...

<stringpartN> ::= <bit>

<bit> ::= 0 | 1

Fig. 2. Fixed length GA representation for binary strings in BNF.

Standard GP consists of a function and terminal set, with the important
property of closure, which means that every function has to be capable to eval-
uate any possible input it gets. Any GP representation with a function set
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<tree> ::= f1 tree ... tree | f2 tree ... tree | ... | fx tree ... tree

| t1 | t2 | ... | ty

Fig. 3. General standard GP grammar in BNF.

f1, f2, ..., fx and terminal set t1, t2, ..., ty can be represented with the general
grammar in Fig. 3. Note that any function can have an arbitrary number of
inputs and that only a single rule is required to represent the function and ter-
minal set of GP due to the closure property.

For a detailed discussion about grammars for GA and GP representations as
well as the schema theorem for such grammars, see Whigham’s thesis [27].

2.3 Structure in Grammars

Creating variable length derivation trees requires direct or indirect recur-
sion in a grammar as shown in Sect. 2.2. A direct left recursion, e.g.
<rule> ::= <rule><part> | <part> does that trick. <rule> and <part> can
be replaced with any rule like <string> and <bit> see Fig. 1, <code> and <line>
such as Santa Fe Ant Trail problem [22], <for> and <code> for program synthe-
sis [20], <design> and <component> for creating designs [13], <int constant>
and <number> for integer constant creation [4], etc.

If a derivation tree is drawn that has been created by this rule, it is more
similar to a “list” than a tree, as depicted in Sect. 3.2 for a similar grammar
in Fig. 6. It will be a list of <part> non-terminals. The reason is that it only
expands in one direction (unless there is an indirect recursion from <part> to
<rule>). The question about this fairly commonly used rule is, if it should be
expressed in another way. As the operators applied to the derivation tree are tree
based, the grammar might improve the search if it would express more tree-like
structures as in standard GP. For this purpose, we choose a problem, described
in Sect. 3.1, which can be expressed with a short grammar. Multiple grammars,
discussed in Sect. 3.2 are presented. All of them cover the search space for the
problem, but present different properties.

3 Experimental Setup

3.1 Sorting Network

For the grammars and the experiments in this study we use the sorting network
problem [10,24]. The reason why we choose this problem is that it is a real-world
problem and simple grammars can be written which cover all possible solutions.
At the same time a grammar for sorting networks has properties that apply to
other grammars and can be generalized from.

A sorting network can be seen as a sorting algorithm in hardware with a fixed
number of inputs and outputs. The output of a sorting network is the input in
sorted order. The sorting network consists only of wires and comparator modules.
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Comparators take two wires as input and swap the values of these wires if they
are not in the correct order, otherwise they return the input.

When drawing a sorting network, the wires are represented as straight lines
and the comparator modules are connections between the wires. An optimal
sorting network with four inputs is shown in Fig. 4. It is important to notice
that the order of the connections makes a difference. For example, if you would
put the last connection (on the right side) before the first connection, the sorting
network would not return correct values for all inputs.
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2
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0

Fig. 4. Sorting network with four inputs and five comparators.

A sorting network has three properties. The number of inputs, the size or
number of connections and its depth. The depth is the number of steps it takes to
complete the network. One step can execute multiple comparisons at once, if the
comparisons are independent of each other, which means they do not depend on
the output of the other comparisons in the same step. For example, the network
in Fig. 4 has 4 inputs, 5 connections and is of depth 3.

Testing the correctness of sorting networks is a computational expensive task.
Fortunately not all possible combinations of inputs have to be tested, which
would result in a runtime complexity of n!. The zero-one principle [9] says that
if all combinations of 0, 1 as inputs are sorted correctly by a network, all other
arbitrary values will be sorted correctly. This reduces runtime complexity to 2n.

3.2 Experimental Grammar Design

In this section we present multiple grammars which can be used in GGGP
systems to evolve sorting networks. The phenotype the grammars create are
lists with an even amount of numbers and at least one pair of numbers, e.g.
0 2 1 3 0 1 2 3 1 2 represents the sorting network in Fig. 4. Therefore, a grammar
needs a recursive rule to create arbitrary amount of pairs of numbers and always
has to append two numbers to the phenotype at once.

Section 2.3 showed a common grammar used to address such a grammar
design problem, but this grammar may hinder the search operators by forcing
them to exchange large parts of individuals, due to the list like structure of the
derivation trees. To address this issue, we assume that grammars that describe
more tree like structures, may be beneficial to find optimal solutions, as deriva-
tion tree based operators can exchange variable amounts of genetic material
anywhere in an individual.
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The grammars are context free grammars and written in (BNF). Note that
all grammars have a rule <node>, which can be expressed as a number from
0 − 3 as the sorting network presented in Sect. 3.1 and for reasons of simplicity.
Depending on the number of inputs of the network this rule has to be adapted.

Grammar 1 (G1). A simple grammar is depicted in Fig. 5. The first production
of <snet> is a left recursion and the second production stops the recursion, as
shown in Sect. 2.3. In both productions two non-terminals <node> are used so
that two numbers are added in every recursion step. This grammar consist of
only two rules and one production which creates the structure of the derivation
tree. An example of a derivation tree created with G1 is shown in Fig. 6. The
derivation tree has more in common with a list of pairs of numbers than a tree.
The rule <snet> is only responsible for creating the structure or more specifically
the length of the list.

<snet> ::= <snet> <node> <node> | <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 5. Simple grammar, which works similar to a list (G1).

<snet>

<snet>

<snet>

<snet>

<snet>
<node> 2

<node> 1

<node> 3

<node> 2

<node> 1

<node> 0

<node> 3

<node> 1

<node> 2

<node> 0

Fig. 6. Grammar 1 derivation tree for the optimal sorting network with four inputs,
see also Fig. 4.

Crossover can only exchange single numbers, if applied to <node>. If applied
to <snet> all pairs of numbers from the first parent will be in the child up to
the crossover point, where all the pairs of numbers from the second parent will
be inserted. In case of the phenotype, subtree crossover on G1 is similar to
single-point crossover in genetic algorithms, limited to crossover after an even
amount of numbers. It is not possible to exchange sorting network comparisons
somewhere in the middle of a list of numbers with subtree crossover in G1.
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Grammar 2 (G2). The next grammar is very similar to G1, see Fig. 7. Again
the structure the derivation tree creates, looks more like a list than a tree. The
difference to G1 is that every pair of numbers is encapsulated in a separate rule
<nodes>, which represents a single compare operation.

<snet> ::= <snet> <nodes> | <nodes>

<nodes> ::= <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 7. Simple grammar, which works similar to a list with the benefit that pairs of
nodes can be exchanged (G2).

The benefit of G2 is that crossover can exchange a single compare opera-
tion between parents, even if located in the middle of the list of comparisons.
Mutation can also replace a comparison, whereas in G1 it either changes a single
number or every number after the mutation point in the tree, which can be very
destructive.

Grammar 3 (G3). A grammar that can generate more tree-like derivation
structures is shown in Fig. 8. Additionally to the left recursion, its complement
a right recursion has been added, as well as production that can have two child
<snet> nodes. Therefore, binary trees can be created with G3. Note that every
production of <snet> also creates a pair of numbers. An example of a derivation
tree created with G3 is shown in Fig. 9.

The benefit of G3 is that the tree structure provides subtree crossover with
more possibilities for crossover points. Instead of operating on a “list”, where

<snet> ::= <snet> <node> <node> | <node> <node> <snet>

| <snet> <node> <node> <snet> | <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 8. Tree-like grammar, where every production contains a pair of nodes (G3).
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<snet>

<node>
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<node>

1

<node>
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<node>
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<node>

0

<node>
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<node>

2

<node>
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Fig. 9. Grammar 3 derivation tree for the optimal sorting network with four inputs,
see also Fig. 4.
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crossover takes the first part of the first parent and the second part from the
second parent, crossover on G3 can exchange any number of compare-exchange
operations anywhere in the tree. Furthermore, mutation might not be as destruc-
tive as in G1 and G2 any more, because smaller subtrees might be mutated
instead of the whole tail of a “list”.

Grammar 4 (G4). The fourth grammar provides the same tree structure as
G3, but with the same modification that has been added in G2. A separate
rule <nodes> has been added which encapsulates a pair of numbers, to easily
exchange a single compare operation anywhere in the tree (Fig. 10).

<snet> ::= <snet> <nodes> | <nodes> <snet>

| <snet> <nodes> <snet> | <nodes>

<nodes> ::= <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 10. Binary tree-like grammar, where every node contains a pair of nodes and a
pair of nodes can be exchanged individually (G4).

Grammar 5 (G5). The last grammar is short and simple, but it can also
create binary trees. It does not need a separate rule <nodes> to exchange single
comparisons, because every pair of nodes can already be exchanged on its own
when their parent node is exchanged (Fig. 11).

<snet> ::= <snet> <snet> | <node> <node>

<node> ::= 0 | 1 | 2 | 3

Fig. 11. Binary tree-like grammar. Nodes are not in the structure of the tree and pairs
of nodes can still be exchanged individually (G5).

G5 probably provides the easiest and most readable way to create binary
trees with a grammar. Additionally, it can easily be adapted to any n-ary trees
by adding any number of non-terminal <snet> as production to the rule <snet>.

Derivation Tree Sizes. As grammars define the structure of the derivation
trees, they also define the number of nodes and the depth of derivations trees
needed to form a solution. In the grammars above, a pair of numbers represents a
comparison operation in a sorting network. The minimum number of nodes and
the minimum depth required for representing a certain number of comparisons
is given in Table 1, which will be used in Sect. 3.3. Note that every production
will be treated as a single node with one child node for every non-terminal in
the production. This does not change the behaviour of the derivation trees or
search operators, but decreases the number of nodes in a tree.
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Table 1. Minimum number of nodes and minimum depth for each grammar given a
certain number of comparisons (c)

Grammar Number of nodes Depth

G1 3 ∗ c c + 1

G2 4 ∗ c c + 2

G3 3 ∗ c �log2(c + 1)� + 1

G4 4 ∗ c �log2(c + 1)� + 2

G5 4 ∗ c − 1 �log2(c)� + 1

Grammar Design Details. The grammars presented in this section have been
written concerning the derivation tree they will create and how search operations
which use the derivation tree might behave on them. These grammars can also be
used by other GGGP systems which have a linear representation like GE, but
keep in mind that systems with a linear representation do behave differently.
For example, G1 and G2 should yield the same results in GE, because the rule
nodes that has been added, has only one production rule. The mapping process
in GE automatically replaces non-terminals with its production rule, if only one
is available. The same applies for G3 and G4.

One additional change that may improve the grammars would be to change
the rule <nodes> to all possible comparisons for a given number of inputs of
a sorting network as depicted in Fig. 12. All given grammars can represent all
combinations of pairs of numbers which are n2. If only all possible compare-
exchange operations are used, then it reduces the number of pairs to n2−n

2 ,
because duplicates can be removed (for example, 0 1 and 1 0 represent the same
operation). And pairs with the same number twice are ignored as comparisons
with the same input would not do anything. It might still be beneficial to allow
one pair with the same number or an empty production of <nodes>, so that a
compare-exchange operation can be deleted.

<nodes> ::= 0 1 | 0 2 | 0 3

| 1 2 | 1 3

| 2 3

Fig. 12. All possible comparisons in a sorting network with four inputs.

This and further optimizations of the rule <nodes> have not been investi-
gated, because they would be problem specific, whereas changing the structure
of the derivation tree through the grammar and encapsulating non-terminals
into new rules can be used in any grammar.
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3.3 Experiments

The experiments performed for this paper have been executed with HeuristicLab
[26] and a plugin which we added that can be found on GitHub1.

Two experiments are performed on the grammars presented in Sect. 3.2. As
the grammars define different structures, the derivation tree operators, crossover
and mutation, may behave differently. They are going to add and remove different
amounts of genetic material and choose other nodes to exchange material.

Experiment 1. The first experiment is to analyse the grammars and the dif-
ference of genetic material that gets exchanged between individuals depending
on the grammars. One time we only use crossover, the second time we only
use mutation and the last time we use both operators. No evaluation is per-
formed and selection is done randomly as we are only interested how the search
operators behave. In all three cases we use 100 % probability for crossover and
mutation. The derivation trees are limited to 50 compare-exchange operations
for this experiment, see Table 1 for the number of nodes.

Experiment 2. In the second experiment, we want to know if any of the gram-
mars has a performance advantage over the others. Therefore, fitness is measured
and tournament selection is used. We choose a sorting network with twelve inputs
as problem to compare the grammars. The optimal number of comparators is
not yet known, but it has been proven that it lies between 37 to 39 comparators
[2]. Due to the zero-one principle the 12 input sorting network has 4096 training
cases. As fitness function we minimize the number of incorrect sorted inputs plus
the number of used comparators divided by 100, as in Koza et al. [11]. Therefore,
the main objective will be to sort the inputs correctly and the subsidiary goal is
to minimize the size of the sorting network. We limit the maximum number of
comparators to 59, which is 1.5 times the upper bound rounded up.

General Settings. The settings of the experiments are summarized in Table 2.
The differences between the experiments are marked with superscripts.

The initialisation of the individuals is done with the Probabilistic Tree-
Creation 2 (PTC2) [12], because PTC2 gives us the possibility to limit the
number of nodes of the initial trees and not only the depth. Setting a max depth
for the initialisation, like it is done for ramped half-and-half initialisation and
also grow or full method, would not give a fair comparison between the gram-
mars. The grammars produce different structures and therefore derivation trees
can have completely different amount of nodes for a certain depth, which would
make it impossible to compare the results. Additionally, Daida et al. [3] showed
that standard GP with binary trees searches rather sparse than dense trees.
Therefore, we decided to define the number of compare-exchange operations
that are allowed and calculated the required number of nodes in a derivation
tree for every grammar. So we set the number of nodes for every experiment
individually depending on the grammar, according to Table 1. Therefore, the
1 https://github.com/t-h-e/HeuristicLab.CFGGP.

https://github.com/t-h-e/HeuristicLab.CFGGP
https://github.com/t-h-e/HeuristicLab.CFGGP
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Table 2. Experimental parameter settings. 1Experiment 1. 2Experiment 2.

Parameter Setting

Runs 1001, 502

Generations 100

Population size 1000

Population initialisation PTC2 [12]

Tournament size 7

Internal crossover probability 0.9

Mutation probability 100 %1, 5 %2

Elite size 01, 12

Maximum compare-exchange operations 501, 592

structure of the derivation tree is not limited by depth and arbitrary trees only
limited by the number of nodes can be created.

4 Results

This section presents the results of the experiments. Note that no fitness eval-
uation was used in experiment one, because only the behaviour of the search
operators was observed.

4.1 Experiment 1

Changing grammars to more tree-like structures has an obvious effect on
crossover and mutation, which is that smaller amounts of genetic material can be
exchanged as Fig. 13 shows. The plots for the experiments where only crossover
or mutation was used are omitted, as they are quite similar. The only differ-
ence is that the trees are shrinking over time in the experiments where only
crossover is used. The reason is that the trees are limited by a maximum num-
ber of nodes. When crossover selects a subtree from the second parent, it has
to select a subtree which does not violate this limit. Therefore, the chance of
creating an overall smaller tree is more likely, when the tree is already rather big.
But the size of the trees stabilizes after 30 generations. When using mutation
only, the same amount of genetic material is removed and added again. In the
case of using crossover and mutation, this phenomena is only observed up to the
tenth generations, but crossover continues to remove more genetic material than
it is adding. Mutation counteracts crossover by adding more material.

In the case of G1, crossover and mutation take place on <snet> most of the
time, as this is the node which is most frequent in the trees. The most frequent
exchanged symbols by crossover with G2 are <snet> and <nodes>. The frequency
of <nodes> is slightly higher as there is always one more <nodes> than <snet>
non-terminal. For G3, G4 and G5, it is obviously <snet> and the child node
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Fig. 13. Genetic material added and removed when using crossover and mutation.

(from the second parent) is mostly <node> <node>. The reason is that crossover
chooses uniformly from all nodes in the tree and therefore smaller trees are more
likely to be selected, as there is a higher amount of smaller subtrees. Because we
use Koza’s crossover where a probability is used to decide whether an internal
node or a leaf node should be chosen, with a 90 % probability for internal nodes.
As crossover still favours smaller subtrees, <node> <node> gets exchanged most
frequently. For mutation there is no such probability, which explains why leaf
nodes are changed more frequently.

The first experiment showed that crossover on grammars which create tree-
like structures can exchange smaller amounts of genetic material between indi-
viduals. Mutation changes smaller amounts as well. The use of the extra rule
<nodes> had also on effect on the change of genetic material, see e.g. G1 and
G2 in Fig. 13, but not as much as the tree-like structure.

4.2 Experiment 2

When we look at the results in Table 3, we can see that G2, G4 and G5 are
doing better than G1 and G3. G2 and G4 have the extra rule <nodes> to be
able to exchange comparators individually, which G5 can also do without that
extra rule. The tree structure of the grammar seems to give G3 a slight advantage
over G1, but the difference is not statistically significant, similar to the difference
between G4 and G2. Although G5 also has a tree structure, it is not doing better
than G2.

A more difficult sorting network with 14 inputs is used to repeat the same
experiment with G2, G4 and G5, to check if it might create a statistically
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Table 3. Results for sorting networks with 12 inputs with the average best fitness,
standard deviation, median, best individual and success ratio over 50 runs.

Average best fitness ± Std dev Median Best Success ratio

G1 82.604 ± 42.794 77.58 18.56 0 %

G2 31.851 ± 21.662 26.58 0.58 4 %

G3 65.600 ± 47.892 51.57 14.58 0 %

G4 23.528 ± 15.472 19.57 0.53 8 %

G5 34.130 ± 28.255 28.59 0.55 2 %

significant difference. The results, shown in Table 4, are very similar. On the
one hand, G4 was again doing slightly better. On the other hand, G5 is doing
worse than G2. So there is no way to say that the tree structure improves the
results.

Table 4. Results for sorting networks with 14 inputs with the average best fitness,
standard deviation, median and best individual over 50 runs. No correct sorting network
was found.

Average best fitness ± Std dev Median Best

G1 769.833 ± 303.508 724.74 256.74

G2 245.515 ± 143.939 214.75 26.77

G3 575.554 ± 300.543 539.76 102.75

G4 230.196 ± 119.649 201.76 8.73

G5 297.675 ± 197.856 224.75 40.75

After examining the results from the experiments, we noticed that the main
reason G2, G4 and G5 are doing better is that they can exchange comparators
individually. The Koza style crossover favours internal nodes over leaf nodes,
but that does not change the fact that smaller trees are exchanged more often.
Therefore single comparators are exchanged quite frequently when using these
grammars, whereas leaf nodes rarely get exchanged. So we performed an addi-
tional experiment where crossover was changed to select nodes in the tree with an
equal probability to see the effect of exchanging even smaller bits of information.
The results are shown in Table 5. Now that single nodes can be exchanged more
frequently, the results have completely changed and improved for all grammars.

Using crossover which selects from all nodes with equal probability is useful
for this specific problem as single numbers are exchanged frequently. If more rules
are used which created bigger subtrees in the non-recursive part, this crossover
might have a negative effect.

Experiment 2 indicates that the structure of the grammar has only little
influence in performance, as G2 shows similar results as G4 and G5. Adding the
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Table 5. Results for sorting network with 12 inputs with subtree crossover that chooses
from all nodes in the tree with equal probability.

Average best fitness ± Std dev Median Best Success ratio

G1 9.719 ± 8.621 8.58 0.50 20%

G2 11.809 ± 11.209 8.58 0.53 22%

G3 11.767 ± 12.827 8.58 0.53 18%

G4 12.725 ± 11.410 11.56 0.53 16%

G5 13.286 ± 11.907 11.55 0.52 16%

extra rule <nodes> improved the performance, because it encapsulated a small
piece of information for the problem and was exchanged more often than leaf
nodes. Changing the crossover improved the performance on the sorting network
problem, but for grammars where the non-recursive part might express a deeper
derivation tree, it might not have any effect.

5 Conclusion and Future Work

This paper presented some general concepts on how to design a grammar, espe-
cially possibilities on how to write grammars that produce variable length pheno-
types, so that the derivation tree does not become “list-like”. The grammars were
analysed in terms of the behaviour of the applied search operators. Crossover
and mutation were able to exchange arbitrary amounts of genetic material within
these trees in grammars that created tree-like structures. The second set of
experiments analysed the impact of grammar design for tree based GGGP on
performance on sorting networks, particularly in the definition of recursive rules
for derivation tree based operators. Although the Koza style crossover helps
exchange bigger amounts of genetic material, it interferes with the search in this
problem instance. If Koza’s crossover should be used for tree based grammar
guided GP systems, cannot be inferred by these experiments alone. It might be
beneficial for problems which create bigger subtrees in the non-recursive part of
a grammar.

Nevertheless, the results of the experiments showed that the structure of
the underlying derivation tree created by a grammar seems to have no or only
little effect on the search given the search operators employed in this study, if
the grammar is not biased towards certain solutions and the language of the
grammars is equivalent. This conclusion can be seen positive, as this means that
no particular attention has to be paid to this aspect, when designing grammars.

Further investigation is needed, if grammars with non-recursive parts that
create bigger subtrees than the rule <nodes>, show the similar results.
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