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1 Introduction

General purpose neural network (NN) models such as multi-layer perceptrons
(MLPs) and radial basis function networks (RBFNs) have been applied to
many real-world problems. Although these models have very general utility,
the construction of a quality network can be time consuming. Practical prob-
lems faced by the modeller include the selection of model inputs, the selection
of model form, and the selection of appropriate parameters for the model
such as weights. The use of evolutionary algorithms (EAs) such as the genetic
algorithm provides scope to automate one or more of these decisions. Tra-
ditional methods of combining EA and NN methodologies typically entailed
the encoding of aspects of the NN model using a fixed-length binary or real-
valued chromosome. The EA is then applied to a population of chromosomes,
each representing a specific NN structure. The population of chromosomes is
evolved over time so that better NN structures are uncovered. A drawback of
this method is that the use of a fixed length chromosome places a restriction on
the nature of the NN models that can be evolved by the EA. This study adopts
an alternative approach, using a novel hybrid algorithm where evolutionary
computation, in the form of grammatical genetic programming, is used to gen-
erate an RBFN. This approach employs a variable length chromosome which
implies that the structure of the RBFN is not determined a priori but rather
is uncovered by means of an evolutionary process. This study represents the
first application of a grammar-based genetic programming algorithm, namely
Grammatical Evolution, to generate RBFNs.

In the remainder of this chapter the two components of the hybrid method-
ology are initially outlined (sections 2 and 3), followed by a description of how
they are combined to form the hybrid algorithm (section 3). The results of the
application of the hybrid algorithm to five benchmark classification problem
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instances is provided in section 5. Conclusions and suggestions for future work
are detailed in section 6.

2 Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can evolve
computer programs in any language [12, 13, 14, 15, 16] and it can be con-
sidered a form of grammar-based genetic programming. GE has enjoyed par-
ticular success in the domain of Financial Modelling [2] amongst numerous
other applications including Bioinformatics, Systems Biology, Combinatorial
Optimisation and Design [11, 9, 4, 3]. Rather than representing the programs
as parse trees, as in GP [5, 6, 1, 7, 8], a linear genome representation is used. A
genotype-phenotype mapping is employed such that each individual’s variable
length binary string contains in its codons (groups of 8 bits) the information
to select production rules from a Backus Naur Form (BNF) grammar. The
grammar allows the generation of programs (or in this study, RBFN forms)
in an arbitrary language that are guaranteed to be syntactically correct. As
such, it is used as a generative grammar, as opposed to the classical use of
grammars in compilers to check syntactic correctness of sentences. The user
can tailor the grammar to produce solutions that are purely syntactically con-
strained, or they may incorporate domain knowledge by biasing the grammar
to produce very specific forms of sentences.

BNF is a notation that represents a language in the form of production
rules. It is comprised of a set of non-terminals that can be mapped to elements
of the set of terminals (the primitive symbols that can be used to construct the
output program or sentence(s)), according to the production rules. A simple
example of a BNF grammar is given below, where <expr> is the start symbol
from which all programs are generated. These productions state that <expr>
can be replaced with either one of <expr><op><expr> or <var>. An <op> can
become either +, -, or *, and a <var> can become either x, or y.

<expr> ::= <expr><op><expr> (0)
| <var> (1)

<op> ::= + (0)

| - 1

| * (2)

<var> ::= X (0)
| v ¢D)

The grammar is used in a developmental process to construct a program by
applying production rules, selected sequentially using the genome, beginning
from the start symbol of the grammar. In order to select a production rule in
GE, the next codon value on the genome is read, interpreted, and placed in
the following formula:

Rule=c%r
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where ¢ is the codon value, r the number of choices for the current non-
terminal, and % represents the modulus operator.

Fig. 1. An example GE individual’s genome represented as integers for ease of
reading.

| 220] 240] 220] 203 | 101| 53 | 202 203 102] 55 | 221] 202 ——

& 241] 133] 30 [ 74 | 204] 140 39 | 202| 203] 102

Fig. 1 provides an example of an individual genome (where each 8-bit
codon is represented as an integer for ease of reading). The first codon inte-
ger value is 220, and given that we have 2 rules to select from for <expr> in
the above grammar, we get 220 % 2 = 0. <expr> will therefore be replaced
with <expr><op><expr>. Beginning from the the left hand side of the genome,
codon integer values are generated and used to select appropriate rules for the
left-most non-terminal in the developing program from the BNF grammar, un-
til one of the following situations arise: (a) A complete program is generated.
This occurs when all the non-terminals in the expression being mapped are
transformed into elements from the terminal set of the BNF grammar. (b)
The end of the genome is reached before the complete program is generated,
in which case the wrapping operator is invoked. This results in the return of
the genome reading frame to the left hand side of the genome once again. The
reading of codons will then continue unless an upper threshold representing
the maximum number of wrapping events has occurred during this individuals
mapping process. (¢) In the event that a threshold on the number of wrapping
events has occurred and the individual is still incompletely mapped, the map-
ping process is halted, and the individual assigned the lowest possible fitness
value.

Returning to the example individual, the left-most <expr> in <expr><op><expr>
is mapped by reading the next codon integer value 240 and used in 240 % 2 =
0 to become another <expr><op><expr>. The developing program now looks
like <expr><op><expr><op><expr>. Continuing to read subsequent codons
and always mapping the left-most non-terminal the individual finally gener-
ates the expression y*x-x-x+x, leaving a number of unused codons at the end
of the individual, which are deemed to be introns and simply ignored. A full
description of GE can be found in O’Neill & Ryan (2003)[12]. Some more
recent developments are covered in Brabazon & O’Neill (2005)[2].
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3 Radial Basis Function Networks

A radial basis function network (RBFN) generally consists of a three-layer
feedforward network. Like an MLP, RBFN can be used for prediction and
classification purposes, but RBFNs differ from MLPs in that the activation
functions of the hidden layer nodes are radial basis functions.

Output

Fig. 2. A radial basis function network. The output from each hidden node (HO
is a bias node, with a fixed input value of 1) is obtained by measuring the distance
between each input pattern and the location of the hidden node, and applying the
radial basis function to that distance. The final output from the network is obtained
by taking the weighted sum (using w0, wl and w5) of the outputs from the hidden
layer and from HO

The training of RBFNs typically consists of a combination of unsupervised
and supervised learning. Initially, a number hidden layer nodes (or centres)
must be positioned in the input data space. This can be performed by following
a simple rule, or in a more sophisticated application by using unsupervised
learning. Methods for choosing the locations of centers include distributing the
centres in a regular grid over the input space, selection of a random subset of
the training data vectors to serve as centres, or using an algorithm to cluster
the input data (e.g. SOMs can be used for this) and then selecting a centre
location to represent each cluster. Each of these centres forms a hidden node
in the RBFN’s structure.

Input data vectors are typically standardised before training. When each
input vector is presented to the network a value is calculated at each centre
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using a radial basis function. This value represents the quality of the match
between the input vector and the location of that centre in the input space.
Each hidden node, therefore, can be considered as a local detector in the
input data space. The most commonly used radial basis function is a Gaussian
function. This produces an output value of one if the input and weight vectors
are identical, falling towards zero as the distance between the two vectors gets
large. A range of alternative radial basis functions exists, including the inverse
multi-quadratic function and the spline function.

The second phase of the model construction process is the determination
of the value of the weights on the connections between the hidden layer and
the output layer. In training these weights, the output value for each input
vector will be known, as will the activation values for that input vector at each
hidden layer node, so a supervised learning method can be used. The simplest
transfer function for the node(s) in the output layer is a linear function where
the network’s output is a linearly weighted sum of the outputs from the hidden
nodes. In this case, the weights on the arcs to the output node(s) can be found
using linear regression, with the weight values being the regression coefficients.
Sometimes it may be preferred to implement a non-linear transfer function
at the output node(s). For example, when the RBFN is acting as a binary
classifier it would be useful to use a sigmoid transfer function to limit outputs
to the range 0 — 1. In this case, the weights between the hidden and output
layer could be determined using the backpropagation algorithm.

Once the RBFN has been constructed using a training set of input-output
data vectors it can then be used to classify or to predict outputs for new
input data vectors, for which an output value is not known. The new input
data vector is presented to the network, and an activation value is calculated
for each hidden node. Assuming that a linear transfer function is used in the
output node(s), the final output produced by the network is the weighted sum
of the activation values from the hidden layer, where these weights are the
coeflicient values obtained in the linear regression step during training. The
basic algorithm for the canonical RBFN is as follows:

i. Select the initial number of centres (m).

ii. Select the initial location of each of the centres in the data space.

iii. For each input data vector/centre pairing calculate the activation value
o(||z — y||), where ¢ is a radial basis function and ||...|| is a distance
measure between input vector x and a centre y in the data space. As an
example, let d = ||z — y||. The value of a Gaussian RBF is then given by

2

Y= exp(;Td?), where o is a modeller selected parameter which determines
the size of the region of input space a given centre will respond to.

iv. Once all the activation values for each input vector have been obtained,
calculate the weights for the connections between the hidden and output
layers using linear regression.

v. Go to step (iii) and repeat until a stopping condition is reached.
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vi. Improve the fit of the RBFN to the training data by adjusting some or
all of the following: the number of centres, their location, or the width of
the radial basis functions.

As the number of centres increases, the predictive ability of the RBFN on the
training data will tend to increase, possibly leading to overfit and poor out-
of-sample generalisation. Hence, the object is to choose a sufficient number
of hidden layer nodes to capture the essential features in the training data,
without overfitting it.

4 GE-RBFN Hybrid

Despite the apparent dissimilarities between GE and RBFN methodologies,
the methods can complement each other. A practical problem in utilising
RBFNs is the selection of model inputs and model form. By defining an appro-
priate grammar, GE is capable of automatically generating a range of RBFN
forms. Hence, a combined GE-RBFN hybrid can be considered as embedding
both hypothesis generation and hypothesis optimisation components.

The basic operation of the GE-RBFN methodology is as follows. Initially,
a population of binary strings are randomly created. In turn, each of these is
mapped to a RBFN structure using a grammar which has been constructed
specifically for the task of generating RBFNs (see next subsection). The qual-
ity of each resulting RBFN is then assessed using the training data. Based
on this information, the binary strings resulting in higher quality networks
are preferentially selected for survival and reproduction. Over successive iter-
ations, the quality of the networks encoded in the population of binary strings
improves.

4.1 Grammar

There are multiple grammars that could be defined in order to generate
RBFNs depending on exactly what the modeller wishes to evolve. For ex-
ample, if little was known about which inputs would be useful for the RBFN,
the grammar could be written so that GE selected which inputs to use, in
addition to selecting the form of the RBFN itself (for example, the number of
hidden layer nodes, their associated weight vectors, the form of their associ-
ated radial basis functions and so on).

In this study we define a grammar which permits GE to construct RBFNs
with differing numbers of centres. GE is also used to decide where to locate
those centres in the input space. The Backus Naur Form grammar for this is
as follows.

<RBFN> :: =1 / (1 + exp (- <HL>) )

<HL> ::= <weight> * <HN>



Title Suppressed Due to Excessive Length 7

| <weight> * <HN> + <HL>

<HN> ::= <gaussian>
<center> ::= <real>, <real> (one item for each
<radius> ::= <real>
<weight> ::= <real>
<real> ::= your constant generation method of choice
- Zz;l (input[IN[i]—center[HN][])?)
where the non-terminal <gaussian> ::= exp 2+(<radius>?)

Under the above grammar, the generation of a RBFN starts from the root
< RBFN >. This can only be mapped to one choice, hence it gives rise to the
expression 1/(1+exp(— < HL >)). Next, the non-terminal in this expression
< HL > is mapped into either < weight > * < HN > or < weight > % <
HN > + < HL >, depending on the value of the next codon on the binary
genome. Suppose the next codon on the genome gives rise to an integer value
of 34. Taking 34 Mod 2 (the number of choices available for < HL >) gives
0, hence < HL > becomes the first choice, < weight > * < HN >. At this
point, the RBFN consists of a network with a single hidden layer node. In
subsequent derivation steps, the real numbers corresponding to the location
of this centre, and the real number corresponding to the radius of the centre
are derived, eventually giving rise to a complete RBFN form.

4.2 Example Individuals

Fig. 3 provides a graphical illustration of the possible derivation trees which
the grammar could create. Tree A illustrates the basic form that all the RBFN
will take. The non-terminal <HL> is then expanded and can result in a RBFN
which has one or more hidden layer nodes. The RBFN generation process
iterates until all the non-terminals are mapped to terminals.

5 Experimental Setup & Results

Five benchmark classification problem instances from the UCI Machine Learn-
ing Repository [17] are tackled. Summary statistics on each problem instance
are provided in Table 1. Each dataset was recut between training and test
data ten times, with 80% of the dataset being used for training and 20% for
out of sample testing in each case. In assessing the quality of the developed
RBFNs, the number of correct classifications produced was used.
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N
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Fig. 3. An output radial basis function network in the form of a derivation tree.
Tree (A) represents the common structure of all RBFN’s generated by the example
grammar. Trees (B) and (C) represent the two possible sub-trees that can replace
the <HL> non-terminal in (A). (B) represents the case where a <HL> becomes a
single node, and (C) represents the case where <HL> becomes at least two nodes.

The Wisconsin problem is a data set of malignant and benign breast cancer
cases. Pima includes data on Pima Indians Diabetes from the National Insti-
tute of Diabetes and Digestive and Kidney Diseases. The Thyroid data set is
made up of thyroid patient records classified into disjoint disease classes. Aus-
tralian data set is made up of cases of credit card applications from the Credit
Screening Database and the Bupa data set is from Bupa Medical Research
Ltd. and has data on liver disorders.
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Table 1. Problem instance statistics and the training and test set partition sizes in
each case.

Dataset Training Test #variables #classes
Wisconsin 559 140 9 2
Pima 614 154 8
Thyroid 172 43 5
Australian 552 138 6
Bupa 276 69 6

N DD W N

The results obtained by the hybrid system over the ten recuts are reported
in Table 2. Overall the results are encouraging. Comparing them against pre-
viously published results from [18] on four of the same datasets (see Table 3),
it can be seen that the evolved RFBNs outperform on two of the datasets,
and underperform on the other two.

It should be noted that there is considerable room to fine-tune the param-
eters of the GE-RBFN hybrid, and this provides scope to further improve the
above results. In this proof of concept study, typical off-the-shelf parameter
settings were adopted for GE. A population size of 500 individuals was used
with 100 generations of training. A generational rank replacement strategy
was used with 25% of the weakest performing members of the population be-
ing replaced with newly generated individuals on each generation. For each
dataset, a total of 30 runs conducted with a crossover rate of 0.9 and a mu-
tation rate of 0.1 as in [19]. All reported results are averaged over the 30
runs.

Table 2. Results for GE/RBFN including average fitnesses for both in and out of
sample data sets along with standard deviation for the out of sample data.

Mean best Mean best Std. dev.
in sample out of sample

Australian 70.52 71.53 4.059
Bupa 60.26 57.11 4.504
Thyroid 62.40 75.78 4.559
Wisconsin 88.92 95.20 2.643
Pima 68.82 67.53 3.647

6 Conclusions & Future Work

This study presents a novel approach, based on a form of grammatical ge-
netic programming (grammatical evolution), for the automatic generation of
RBFNs. A particular feature of this methodology is that the structure of the
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Table 3. Comparative out of sample results.

Mean best Std. dev.
out of sample

Bupa 65.97 11.27
Thyroid 96.27 4.17
Wisconsin 95.63 1.58
Pima 73.50 4.23

resulting RBFN is not defined a priori, but is evolved during the construc-
tion process. The developed GE-RBFN hybrid was applied to five benchmark
instances from the UCI Machine Learning repository with encouraging results.

Substantial scope exists to further develop the RBFN-GE hybrid outlined
in this chapter. In this initial study we did not include the selection of inputs,
or the selection of the form of the RBF's in the evolutionary process. However,
the RBFN grammar could be easily adapted in order to incorporate these
steps if required. The use of the GE methodology also opens up a variety of
other research avenues. The GE methodology applied in this study is based
on a canonical form of the GE algorithm. As already noted, a substantial
literature exists on GE, covering such issues as the use of alternative search
engines for the algorithm, and the use of alternatives to the strict left-to-right
mapping of the genome (piGE). Future work could usefully examine the utility
of these GE variants for the purposes of evolving RBFNs.
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