
Semantics Based Crossover for Boolean Problems

Nguyen Quang Uy
Natural Computing Research

& Application Group
University College Dublin
Belfield, Dublin 4, Ireland

quanguyhn@gmail.com

Nguyen Xuan Hoai
School of Information

Technology
Military Technical Academy

Hanoi, Vietnam
nxhoai@gmail.com

Michael O’Neill
Natural Computing Research

& Application Group
University College Dublin
Belfield, Dublin 4, Ireland

m.oneil@ucd.ie

Bob McKay
School of Computer Science

and Engineering
Seoul National University

Seoul, Korea
rimsnucse@gmail.com

ABSTRACT
This paper investigates the role of semantic diversity and
locality of crossover operators in Genetic Programming (GP)
for Boolean problems. We propose methods for measuring
and storing semantics of subtrees in Boolean domains using
Trace Semantics, and design several new crossovers on this
basis. They can be categorised into two classes depending on
their purposes: promoting semantic diversity or improving
semantic locality. We test the operators on several well-
known Boolean problems, comparing them with Standard
GP Crossovers and with the Semantic Driven Crossover of
Beadle and Johnson. The experimental results show the
positive effects both of promoting semantic diversity, and of
improving semantic locality, in crossover operators. They
also show that the latter has a greater positive effect on GP
performance than the former.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms
Algorithms, Representation, Experimentation

Keywords
Genetic Programming, Trace Semantics, Crossover Opera-
tors, Boolean Problems

1. INTRODUCTION
Genetic Programming (GP) is an evolutionary paradigm,

inspired by biological evolution, for finding solutions (in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

form of a program) to a user-defined task [19, 21, 26]. The
program is usually presented through a syntactic formalism
such as s-expression trees [19], a linear sequence of instruc-
tions, grammars, or graphs [26]. The genetic operators in
such GP systems are usually designed to ensure the syntac-
tic closure property, i.e., to produce syntactically valid chil-
dren from any syntactically valid parent(s). Using purely
syntax-based genetic operators, GP evolutionary search is
conducted on the syntactical space of programs, with the
only semantic guidance coming from the fitness of individu-
als.

Although GP has demonstrated its effectiveness in solv-
ing a range of problems, the limitation to (finite) behavior-
based semantic guidance and pure syntactic genetic opera-
tors, is somewhat alien to the practice of human program-
mers. Computer programs are constrained not only by syn-
tax, but also by semantics. In programming practice, any
change to a program should pay careful attention to the
change in program semantics. Thus a number of researchers
have proposed a wide variety of semantically based methods
for controlling the genetic operators [5, 6, 32, 14, 15, 16, 18,
17, 1, 23, 30, 31].

One useful piece of semantic information is the scale of
change. Beadle and Johnson [1] showed, for Boolean prob-
lems, that eliminating crossover between semantically equiv-
alent subtrees could substantially improve the computational
efficiency of GP. Subsequently, Uy et al [31] showed that in-
formation about the scale of semantic difference between
crossover candidates could be even more useful: limiting se-
mantic change to an intermediate range further improved
performance. Potentially, though, discrete domains could
show a different behaviour: the benefits of an intermediate
semantic change might disappear with a quantised fitness
function.

A second potentially useful piece of information is the re-
sulting change in semantics at parent nodes. Even when
the exchanged children are semantically different, this might
not necessarily result in a change of semantics of the par-
ent nodes after crossover. In this work, we propose two new
operators which control the extent of this change directly,
rather than relying on the difference in semantics of the chil-
dren. We study the performance of these new operators on

869

Boolean domains, comparing them with operators more di-
rectly analogous to those reported in [1, 31].

The remainder of the paper is structured as follows. In
section 2, we give a review of related work using seman-
tics in GP. Section 3 details the Boolean semantic measure
and attribute-based representation, and introduces the new
crossover operators. Experimental settings are described in
section 4. The results of the experiments are presented and
discussed in section 5. Section 6 concludes the paper and
highlights potential future work.

2. RELATED WORK
The use of semantics in GP has been the subject of in-

creasing attention. While the precise meaning attached to
”semantics” may vary from field to field, in GP it has gener-
ally meant the use of semantic information to provide addi-
tional guidance to the GP search. There are at least three
ways in which semantics can be represented, extracted and
used to guide GP:

1. using grammars incorporating semantic information
about the domain [32, 5, 6]

2. through semantics-based formal methods [14, 15, 16,
18, 17]

3. based on GP tree-like structures [1, 23, 30, 31].

The most popular form of the first uses attribute grammars.
GP individuals expressed in the form of attribute grammar
trees can incorporate semantic information, which can be
used to eliminate bad individuals from the population [6]
or to prevent the generation of semantically invalid individ-
uals as in [32, 5]. However, these attribute grammars are
generally designed for a specific problem, and so not readily
extended to other problems.

Recently, Johnson has advocated the use of formal meth-
ods as a means to incoporate semantic information in GP [14,
15, 16]. In this work, semantic information is extracted
by formal methods (e.g., abstract interpretation or model
checking) and used to measure individual fitness in prob-
lems where more traditional sample point fitness is difficult
to use. Katz et al. used model checking to solve the Mu-
tual Exclusion problem [18, 17]; semantics were also used to
calculate individual fitnesses.

In expression tree GP, semantic information has been in-
corporated mainly through modification of the crossover op-
erator. At first, this focused on the syntax and structure of
individuals – in [13], the authors modified the standard sub-
tree crossover operator to take into account the depth of
trees. Others modified crossover based on awareness of the
shape of individuals [24]. More recently, context has been
used as additional information in determining GP crossover
points [11, 29, 22]. However these methods generally pay a
high computational cost in evaluating the context of every
subtree of every individual in the population.

Beadle and Johnson [1] investigated the direct use of se-
mantic information to guide GP crossover in Boolean do-
mains. Their crossover, Semantically Driven Crossover (SDC),
checks the semantic equivalence between offspring and par-
ents by transforming Boolean expression trees to Reduced
Ordered Binary Decision Diagrams (ROBDDs) [7]. Two
trees are semantically equivalent exactly when they reduce
to the same ROBDD. This controls the survival of children

in the crossover operation: if they are semantically equiva-
lent to their parents, they are discarded and the crossover
is restarted; this is repeated until semantically new chil-
dren are found. This increases semantic diversity and con-
sequently improves performance. Subsequent papers [3, 2]
extended the approach to GP mutation and initialisation.

McPhee et al. [23] take a different approach to extract-
ing semantic information from a Boolean expression tree:
enumerating all possible inputs. They evaluate (and mea-
sure) two different aspects: the semantics of subtrees and the
semantics of context. They particularly emphasised fixed-
semantic contexts, where replacing one subtree by another
does not change the semantics. They showed that as tree
size increases during evolution, many such fixed-semantic
contexts may arise; thus it becomes increasingly difficult to
change the semantics using standard crossover and mutation
operators.

Krawiec [20] proposed a way to measure the semantics
of an individual based on fitness cases, using it to guide
crossover (Approximating Geometric Crossover - AGC).

Uy et al. [31] proposed two new crossover operators, Se-
mantics Aware Crossover (SAC) and Semantic Similarity
based Crossover (SSC); the former eliminates crossovers re-
sulting in small semantic change, while the latter addition-
ally eliminates those resulting in large change, confining se-
mantic change to an intermediate range.

Variants of most of these semantically-based crossover op-
erators have been tested on continuous domains, with SSC
giving the best overall performance, while only a few have
been tested on discrete domains, with the record so far going
to SDC. The aim of this paper is to compare the performance
of our new crossover operators, both with more standard
syntactically-based operators, and with some of the newer
semantically-based operators, on Boolean domains. In doing
so, we also provide a more detailed and direct comparison
of these operators on Boolean domains than has previously
been available..

3. METHODS

3.1 Measuring Semantics
The exact meaning of ”semantics”varies from field to field,

though there is always a common element contrasting the se-
mantics (or meaning) of a syntactic expression with its sur-
face syntax. In programming, the definition is more tightly
defined: semantics is the relationship between the sequence
of inputs to a program and the corresponding sequence of
outputs. In GP, we generally restrict still further, requiring
a program to have only a single (albeit possibly complex)
input and a single corresponding output, so that the seman-
tics becomes a simple mathematical relation – and in the
commonest case, of deterministic programs, a mathematical
function. This is the meaning we will attach to ”semantics”
here.

There are two primary ways we can define such a func-
tion, and correspondingly two kinds of semantics. An inten-
sional definition (thus intensional semantics) defines a func-
tion by relating it to simpler previously-defined functions.
This is the form of semantics underlying formal methods
in programming, as for example in the work of Beadle and
Johnson [1]. More common in GP, though, is extensional
definition (and extensional semantics), in which a function

870

St

X2 X2 X1

OR AND

AND

X1

Figure 1: Example for Trace Semantics

is defined through listing its set of input-output pairs (or in
many cases, a finite approximation of this set).

In this paper, we use the simplest possible extensional
semantic measure, namely the input-output relation defined
by the fitness cases as inputs. For concreteness, we call
this semantics the Trace Semantics (TS). This definition
of semantics goes back at least to Poli and Page [27], who
however only used it for full trees; more recently, McPhee
et al. [23] used it to also define the semantics of subtrees.
Formally, given a particular GP problem with a pre-defined
set of fitness cases, the Trace Semantics of a (sub)tree is
defined as follows:

Let P = {p1, p2, ..., pN} be the fitness cases of the prob-
lem in domain D, and let F be the function expressed by a
(sub)tree T on D. Then the Trace Semantics of T relative to
P on domain D is the set S = {(p1, s1), (p2, s2), ...(pN , , sN}
where si = F (pi), i = 1, 2, ..., N .

Consider subtree St in figure 1. Assume that the problem
has only two input variables (X1, X2), so there are four fit-
ness cases P = {p1, p2, p3, p4} with p1 = {0, 0}, p2 = {0, 1},
p3 = {1, 0}, p4 = {1, 1}. Thus the trace semantics of St,
since it computes OR, is S = {(p1, s1), (p2, s2), (p3, s3), (p4, s4)}
={((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 1)}.

For the remainder of this paper, we will assume a canoni-
cal ordering of the possible inputs (for example, for Boolean
domains we might use lexicographical ordering, as for P
above), so that we can abbreviate the TS to the sequence
(0,1,1,1).

Trace semantics is also closely related to the sampling se-
mantics of Uy et al. [31] for real-valued problems. Sampling
semantics differs in using an independent set of test points
sampled from the domain, rather than the test cases.

We follow [31] in defining the semantic distance between
two subtrees as the sum of the absolute distances between
their outputs over all fitness cases, and in defining relations
of semantic equivalence and similarity based on this dis-
tance. We use the Hamming distance as the underlying dis-
tance metric. Let U = {(p1, u1), (p2, u2), ..., (pN , uN)} and
V = {(p1, v1), (p2, v2), ..., (pN , vN)} be the TS of (sub)trees
St1 and St2. Then the Trace Semantics Distance (TSD)
between St1 and St2 is:

TSD(St1, St2) = |u1 − v1| + |u2 − v2| + + |uN − vN |
Two subtrees are said to be Semantically Equivalent (SE)
if they have the same TS (or in other words, their TSD is
zero).

They are said to be semantically similar (SS) if their TSD

(a)

A3=0
A4=0

A1=0
A2=0
A3=0
A4=0

A1=0
A2=0
A3=0
A4=0

A1=0A2=0
A3=0
A4=0

A1=0

A2=0
A3=0
A4=0

A1=0
A2=0
A3=0
A4=0

A1=0

A2=0
A3=0
A4=0

A1=0

X2 X2 X1

OR AND

AND

X1

A2=0

(b)

A3=1
A4=1

A1=0
A2=0
A3=1
A4=1

A1=0A2=1
A3=0
A4=1

A1=0

A2=0
A3=0
A4=0

A1=0
A2=0
A3=0
A4=0

A1=0

A2=0
A3=0
A4=0

A1=0

A2=1
A3=0
A4=1

A1=0

X2 X2 X1

OR AND

AND

X1

A2=0

(c)

A3=1
A4=1

A1=0
A2=0
A3=1
A4=1

A1=0A2=1
A3=0
A4=1

A1=0

A2=1
A3=1
A4=1

A1=0
A2=0
A3=0
A4=1

A1=0

A2=0
A3=0
A4=0

A1=0

A2=1
A3=0
A4=1

A1=0

X2 X2 X1

OR AND

AND

X1

A2=0

(d)

A3=1
A4=1

A1=0
A2=0
A3=1
A4=1

A1=0A2=1
A3=0
A4=1

A1=0

A2=1
A3=1
A4=1

A1=0
A2=0
A3=0
A4=1

A1=0

A2=0
A3=0
A4=1

A1=0

A2=1
A3=0
A4=1

A1=0

X2 X2 X1

OR AND

AND

X1

A2=0

Figure 2: An individual in AGP and the process of
evaluating the value of its attributes.

lies within a predefined range. That is:

SS(St1,St2) = if α < SSD(St1, St2) < β

then true

else false

where α and β are predefined constants, known as the lower
and upper bounds for semantic sensitivity. Uy et al. used
a small nonzero value for the lower bound to exclude close
numerical approximation. In a discrete domain, this seems
unnecessary, so we set the lower bound to zero, investigating
the effects of a range of values for the upper bound.

3.1.1 Attribute-based Representation
Repeatedly computing semantics of subtrees may, in gen-

eral, be costly. To avoid this, we store the trace semantics of
each subtree directly in the root node of that subtree, as a
sequence of attribute values (corresponding to the sequence
of inputs). In Figure 2, four attributes (A1, A2, A3, A4) are
used to represent the TS of a problem with only two in-
put variables. These attributes are evaluated bottom-up, as
shown in figure 2, in which the values are initialised to zero
(subfigure a), then propagated upwards (subfigures b, c, d).

In doing so, we are trading off time for space. How much?
Let P be the population size, each individual having an av-
erage of S nodes, with k Boolean variables. If all Boolean
combinations are used as fitness cases, the memory cost will
be O(P ∗ S ∗ 2k). In general, for small Boolean problems,
this is affordable. For larger problems, computational cost
will preclude using all Boolean combinations as fitness cases.
If N cases are used, the memory cost will be O(P ∗ S ∗ N),
which is again generally affordable.

3.2 Diversity Promoting Semantic Crossovers
It is widely recognised that maintaining high diversity is

very important in GP [10]. Higher diversity helps GP to

871

(a)

A2=0
A3=0
A4=1

A1=0
A2=1
A3=0
A4=1

A1=0
A2=0
A3=0
A4=1

A1=1
A2=1
A3=0
A4=1

A1=1
A2=1
A3=0
A4=0

Selected Point

X

OR

Z

Y

AND

A1=1

X1
A2=0
A3=0
A4=1

A1=0
A2=0
A3=1
A4=1

A1=0
A2=0
A3=0
A4=1

A1=1
A2=1
A3=0
A4=1

A1=1
A2=1
A3=0
A4=0

Replaced Subtree

OR

Z

Y

AND

(b)

A1=1

X2
A2=0
A3=0
A4=1

A1=1
A2=0
A3=1
A4=0

A1=1
A2=0
A3=0
A4=0

A1=1
A2=1
A3=0
A4=0

A1=1
A2=1
A3=0
A4=0

Replaced Subtree

OR

Z

Y

AND

(c)

A1=1

Figure 3: An individual in AGP and the process of
evaluating the value of its attributes.

find new solutions through exploration, and thus improve
its performance [4], while a rapid loss of diversity can cause
premature convergence to local optima [8, 25]. Thus for ex-
ample, the Semantics Aware Crossover (SAC) of [30] aborts
crossovers that exchange semantically equivalent subtrees,
with the aim of promoting diversity. Whenever two subtrees
are chosen for crossover, they are tested for trace semantic
equivalence; if the test succeeds, the crossover is aborted and
new candidates are selected.

However SAC cannot guarantee to produce children se-
mantically different from their parents. For example, con-
sider figure 3(a), showing part of a GP tree with attached
semantic attributes (X, Y and Z represent whole subtrees,
not merely single nodes). Assume that X is the point se-
lected for crossover. Suppose that it is replace by subtree
X1, with the TS shown in 3(b). Although the TS of X and
X1 differ, the TS at the parent ’AND’ node does not change,
nor does that at the root ’OR’ node. However when X is
replaced with X2, the TS of the ancestors does change.

Thus the form of fixed semantics investigated in [23] is
not the only cause of crossover failing to change semantics.
The replacement might simply not change the right compo-
nents of the semantics for change to propagate to the root.
To remedy this, we propose a crossover operator known as
Guaranteed Change Semantic Crossover (GCSC). The ob-
jective of GCSC is to guarantee a change in the semantics
of the children in the new population. The detail of GCSC
is presented in algorithm 1.

How can we efficiently compute whether two crossover
points are change-inducing? Before we try to exchange X
and X1 in figure 3 (a, b), we compute which attributes differ
(in this case, forming the set {A2, A3}. We then propagate
this upward, discovering that at the parent ’AND’ node,
since Y guarantees that A2 and A3 will be 0, the root dif-
ference set R becomes the empty set, φ. Therefore, this
crossover is not change-inducing, so it is aborted. If we
try to exchange X and X2 in figure 3 (a, c), the difference
set is {A1, A2, A3, A4}, which propagates to the ’AND’ as

Algorithm 1: Guaranteed Change Semantic Crossover

select Parent 1 P1;
select Parent 2 P2;
Count=0;
while Count<Max Trial do

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
if Subtree1 and Subtree2 are change-inducing
then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

if Count=Max Trial then
choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
execute crossover;
return true;

{A1, A4}, and then to the ’OR’ as R = {A4}. Since the root
change-set is nonempty, this crossover is change-inducing.

The objective of GCSC is similar to that of SDC [1]: to
guarantee change. The differences lie in the use of exten-
sional rather than intensional semantics, and in the checking
of only a single child.

3.3 Locality Promoting Semantic Crossovers
The two crossover operators in the previous subsection fo-

cus on promoting semantic diversity. In Evolutionary Com-
putation (and GP in particular), locality (a small change in
genotype leading to a small change in phenotype) also plays
a crucial role in algorithm efficiency [9, 12, 28]. However,
most current GP representations and operators have low lo-
cality: small (syntactic) variations in individuals can cause
large changes in semantics.

Uy et al [31] introduced SSC as an extension of SAC
with controlled semantic step size. In SSC, the crossover
is aborted not only when the two children are semantically
too similar, but also when they are too dissimilar. Two
parents are randomly selected and a subtree in each par-
ent is stochastically chosen. The two subtrees are checked
for semantic similarity. If they are similar, the crossover is
executed by exchanging these subtrees and the children are
added to the next generation. If they are not, SSC uses mul-
tiple trials to find a semantically similar pairs, only reverting
to random selection after passing a bound on the number of
trials.

Here we propose a variant, Locality Controlled Semantic
Crossover (LCSC). LCSC is an extension of GCSC, bearing
the same relation to it as SSC does to SAC. LCSC is imple-
mented in the same way as GCSC, propagating the differ-
ence set of changed attributes upward in the tree. However
when the root is reached, the crossover is aborted not only
if the difference set is empty, but also if it is too large. In
other words, LCSC is only executed if 0 < |R| ≤ε, where R is
the difference set at the root, and ε is a predefined constant
called the semantic sensitivity. In this paper, the value of ε
is one of the experimental parameters.

872

Table 1: Run and Evolutionary Parameter Values.

Parameter Value

Population size 200
Generations 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.1
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Function sets AND, OR, NAND, XOR
Terminals X1, X2, ..., XN

Fitness cases NFIT
6MUX 64
5PAR 32
6PAR 64
5MAJ 32

Semantic Sensitivity
SSC2 NFIT/2
SSC3 NFIT/3
SSC4 NFIT/4
LCSC4 4
LCSC8 8
LCSC12 12

Fitness total number of error bits
overall fitness cases

Success Zero errors
Trials per treatment 100 independent

runs for each value

4. EXPERIMENTAL SETTINGS
We investigated the effects of the new crossover operators

GCSC and LCSC, comparing them with SC , SDC, SAC
and SSC. We trialed all operators on four test-bed Boolean
problems: 5 bit parity, 5 bit majority, 6 bit multiplexer, and
6 bit parity.

The 6-bit multiplexer problem (6MUX).
(6MUX) interprets the two control bits {A0, A1} as an

address with which to choose the correct input bit from the
binary input lines {D0, D1, D2, D3} as its output.

The even 5- and 6-bit parity problems (5PAR and 6PAR).

These problems take respectively 5 and 6 bits as input,
returning true (1) if and only if an even number of the inputs
are true (1).

The 5 majority problem (5MAJ).
This problem takes 5 bits as input, and returns true(1) if

and only if, the majority of the inputs are true(1).
In these (minimising) problems, the fitness of an individ-

ual is the number of error bits, not matching the target func-
tion. A run is considered successful if it finds an individual
with no error (i.e. fitness zero).

The function set for all problems was {AND, OR, NAND,
XOR} and the terminal set was {X1, X2, ..., XN}, where N
is the number of input variables. The main GP parameters
used for our experiments are given in Table 1. Although

Table 2: Percentage of Successful Runs

Xovers 5PAR 5MAJ 6MUX 6PAR

SC 48 35 13 14

SDC 58 64 13 20
SAC 63 43 13 23
GCSC 65 68 14 26

SSC2 63 48 16 26
SSC3 68 49 21 23
SSC4 58 42 10 22

LCSC4 75 62 30 25
LCSC8 76 69 32 33
LCSC12 73 74 25 29

Table 3: Mean and Standard Derivation of Best Fit-
ness

Xovers 5PAR 5MAJ 6MUX 6PAR

SC 1.02±1.22 1.01±0.93 3.96±2.69 5.76±3.53

SDC 0.61±0.81 0.45±0.62 3.33±2.27 4.76±3.67
SAC 0.60±0.88 0.82±0.85 3.84±2.37 5.03±3.68
GCSC 0.49±0.75 0.36±0.58 3.50±2.25 4.47±3.93

SSC2 0.70±1.07 0.63±0.69 3.31±2.47 4.66±3.85
SSC3 0.44±0.70 0.59±0.70 2.96±2.35 4.92±3.73
SSC4 0.69±0.95 0.76±0.75 3.89±2.49 4.78±3.65

LCSC4 0.34±0.65 0.44±0.60 2.83±2.79 4.67±3.81
LCSC8 0.39±0.79 0.35±0.55 2.52±2.51 3.87±3.33
LCSC12 0.43±0.78 0.27±0.46 2.79±2.23 4.03±3.34

these experiments were purely concerned with crossover, the
system also incorporated (a low rate of) mutation, because
we wanted to study the behaviour of crossover in the context
of a normal GP run.

The experimental settings for all GP systems are given in
Table 1. The maximum number of trials permitted to select
satisfied subtrees for SD, SAC, GCSC, SSC and LCSC was
set at 20.1

The semantic sensitivities for SSC was set as varying pro-
portions of the number of fitness cases NFIT. Because LCSC
testing is more exhaustive than SSC, it is less likely to gen-
erate change for a given fitness case; thus semantic sensi-
tivity levels need to be set correspondingly lower. We used
NFIT/N, with N = 2, 3, 4 for SSC and 4, 8, 12 bits for LCSC
(the corresponding treatments being denoted SSCN and LC-
SCN).

5. RESULTS AND DISCUSSION
For all treatments, we recorded two classic performance

metrics, the percentage of successful runs (table 2) and the
mean best fitness (table 3). We tested the statistical signif-
icance of all differences from SC in the results in table 3,
using the Wilcoxon signed-rank test with a confidence level

1[1] in SDC repeated attempts at crossover until semanti-
cally different children were found. However the effect of
continuing beyond 20 attempts is small, while the computa-
tional cost can be significant. For better comparability, we
used the same bound as for the other algorithms.

873

of 95%. If a crossover operator is significantly better than
SC, the result is printed in italic face.

5.1 Effects of Promoting Diversity
From [30], we would expect SAC to slightly out-perform

SC, and indeed this is what we see in tables 2 and 3, but
the differences are significant only on 5PAR. Similarly, from
[1] we expect to see SDC more substantially out-perform
SC, and again this is what we see, with all differences ex-
cept 6MUX being significant at the 95% confidence level.
GCSC being an extensional analogue of (intensional) SDC,
we would expect to see similar performance from it – and
again we do. It is possible that GCSC performance is slightly
better than SDC (though not significantly); if so, it is likely
to result from the small differences between the two com-
parison algorithms that we mentioned earlier.

In general, the results in this section provide strong evi-
dence for the value of crossover operators promoting seman-
tic diversity, with SDC and GCSC performing the best.

5.2 Effects of Improving Locality
From [31], we might anticipate that improving semantic

locality of crossover operators through SSC might further en-
hance GP performance by comparison with SAC. The results
in both tables confirm this: for every problem, at least one
level of SSC performed better than SAC, the differences be-
ing quite substantial in most cases. However this improved
locality was not always enough to compensate for the en-
hanced diversity promotion of SDC and GCSC, so that the
comparison between them and SSC was mixed.

However when we combined diversity and locality promo-
tion in LCSC, we saw the largest improvements: on every
problem, the best performance came from some setting of
LCSC (though the best setting varied with the problem).
This is particularly clear in table 2, where the improvements
in success rates are generally substantial.

It is particularly worth noting that, with the hardest prob-
lem (6MUX), the diversity-promoting mechanisms made only
small improvements, especially in success rates, while LCSC
was able to make substantial improvements in both mean
best fitness and success rate performance measures.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we compared a number of different semantically-

based crossover operators that have been previously pro-
posed by various authors (SAC, SDC and SSC), and added
two of our own (GCSC and LCSC). We can classify these
operators in two ways. We can classify them according
to whether they add only semantic diversity control to SC
(SAC, SDC, GCLC) or also incorporate locality control (SSC,
LCSC). We can also classify them accordingly as they mea-
sure the semantic effect only at the point of insertion (SAC,
SSC) or at the root (SDC, GCLC,SCLC). Overall, it seems
clear from the results that supporting semantic diversity is
valuable, but that additionally supporting semantic locality
is even more so. It also seems clear that it is worth the ex-
tra effort to evaluate these semantic changes at the root, not
just at the point of insertion.

A number of directions for further research flow from this
paper.

Firstly, for SSC and LCSC, semantic sensitivity is clearly
a very important parameter, and not particularly robust (i.e.
changes in sensitivity lead to large changes in performance).

Thus we either need a good understanding of how to set
the semantic sensitivity for a particular problem, or we need
ways to set it automatically through parameter self-adaption
techniques.

One issue, particularly with GCSC and LCSC, is compu-
tational cost. We can either pay a time cost to compute the
necessary semantic values, or else (as here) a memory cost to
cache them. Two potential alternatives present themselves:

• using only a subset of the fitness cases to compute
trace semantics, thus removing the exponential cost of
increases in the number of variables

• using compression methods to reduce the size of the
stored TSs

Finally, we need to further analyse the effects of these
operators on other aspects of GP runs. In particular, we
plan to measure the effects on locality and on code bloat in
future work.

Acknowledgment
This paper was funded under a Postgraduate Scholarship
from the Irish Research Council for Science Engineering and
Technology (IRCSET). The Seoul National University Insti-
tute for Computer Technology provided some facilities sup-
porting this research.

7. REFERENCES
[1] L. Beadle and C. Johnson. Semantically driven

crossover in genetic programming. In Proceedings of
the IEEE World Congress on Computational
Intelligence, pages 111–116. IEEE Press, 2008.

[2] L. Beadle and C. G. Johnson. Semantic analysis of
program initialisation in genetic programming.
Genetic Programming and Evolvable Machines,
10(3):307–337, Sep 2009.

[3] L. Beadle and C. G. Johnson. Semantically driven
mutation in genetic programming. In A. Tyrrell,
editor, 2009 IEEE Congress on Evolutionary
Computation, pages 1336–1342, Trondheim, Norway,
18-21 May 2009. IEEE Computational Intelligence
Society, IEEE Press.

[4] E. K. Burke, S. Gustafson, G. Kendall, and
N. Krasnogor. Is increased diversity in genetic
programming beneficial? an analysis of the effects on
performance. In R. Sarker, R. Reynolds, H. Abbass,
K. C. Tan, B. McKay, D. Essam, and T. Gedeon,
editors, Proceedings of the 2003 Congress on
Evolutionary Computation CEC2003, pages
1398–1405, Canberra, December 2003. IEEE Press.

[5] R. Cleary and M. O’Neill. An attribute grammar
decoder for the 01 multi-constrained knapsack
problem. In Proceedings of the Evolutionary
Computation in Combinatorial Optimization, pages
34–45. Springer Verlag, April 2005.

[6] M. de la Cruz Echeanda, A. O. de la Puente, and
M. Alfonseca. Attribute grammar evolution. In
Proceedings of the IWINAC 2005, pages 182–191.
Springer Verlag Berlin Heidelberg, 2005.

[7] R. E.Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on
Computers, C-35:677–691, 1986.

874

[8] C. Gathercole and P. Ross. An adverse interaction
between crossover and restricted tree depth in genetic
programming. In J. R. Koza, D. E. Goldberg, D. B.
Fogel, and R. L. Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual Conference,
pages 291–296, Stanford University, CA, USA, July
1996. MIT Press.

[9] J. Gottlieb and G. Raidl. The effects of locality on the
dynamics of decoder-based evolutionary search. In
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 283 – 290. ACM, 2000.

[10] S. Gustafson. An Analysis of Diversity in Genetic
Programming. PhD thesis, School of Computer Science
and Information Technology, University of
Nottingham, Nottingham, England, February 2004.

[11] S. Hengpraprohm and P. Chongstitvatana. Selective
crossover in genetic programming. In Proceedings of
ISCIT International Symposium on Communications
and Information Technologies, pages 14–16, November
2001.

[12] N. X. Hoai, R. I. McKay, and D. Essam.
Representation and structural difficulty in genetic
programming. IEEE Transection on Evolutionary
Computation, 10(2):157–166, 2006.

[13] T. Ito, H. Iba, and S. Sato. Depth-dependent crossover
for genetic programming. In Proceedings of the 1998
IEEE World Congress on Computational Intelligence,
pages 775–780. IEEE Press, May 1998.

[14] C. Johnson. Deriving genetic programming fitness
properties by static analysis. In Proceedings of the 4th
European Conference on Genetic Programming
(EuroGP 2002), pages 299–308. Springer, 2002.

[15] C. Johnson. What can automatic programming learn
from theoretical computer science. In Proceedings of
the UK Workshop on Computational Intelligence.
University of Birmingham, 2002.

[16] C. Johnson. Genetic programming with fitness based
on model checking. In Proceedings of the 10th
European Conference on Genetic Programming
(EuroGP 2002), pages 114–124. Springer, 2007.

[17] G. Katz and D. Peled. Genetic programming and
model checking: Synthesizing new mutual exclusion
algorithms. Automated Technology for Verification and
Analysis, Lecture Notes in Computer Science,
5311:33–47, 2008.

[18] G. Katz and D. Peled. Model checking-based genetic
programming with an application to mutual exclusion.
Tools and Algorithms for the Construction and
Analysis of Systems, 4963:141–156, 2008.

[19] J. Koza. Genetic Programming: On the Programming
of Computers by Natural Selection. MIT Press, MA,
1992.

[20] K. Krawiec and P. Lichocki. Approximating geometric
crossover in semantic space. In F. Rothlauf, editor,
Genetic and Evolutionary Computation Conference,
GECCO 2009, Proceedings, Montreal, Québec,
Canada, July 8-12, 2009, pages 987–994. ACM, 2009.

[21] W. B. Langdon and R. Poli. Foundations of Genetic
Programming. Springer, Berlin, 2002.

[22] H. Majeed and C. Ryan. A less destructive,
context-aware crossover operator for gp. In
Proceedings of the 9th European Conference on
Genetic Programming, pages 36–48. Lecture Notes in
Computer Science, Springer, April 2006.

[23] N. McPhee, B. Ohs, and T. Hutchison. Semantic
building blocks in genetic programming. In
Proceedings of 11th European Conference on Genetic
Programming, pages 134–145. Springer, 2008.

[24] R. Poli and W. B. Langdon. Genetic programming
with one-point crossover. In Proceedings of Soft
Computing in Engineering Design and Manufacturing
Conference, pages 180–189. Springer-Verlag, June
1997.

[25] R. Poli and W. B. Langdon. On the search properties
of different crossover operators in genetic
programming. In J. R. Koza, W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H.
Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors,
Genetic Programming 1998: Proceedings of the Third
Annual Conference, pages 293–301, University of
Wisconsin, Madison, Wisconsin, USA, July 1998.
Morgan Kaufmann.

[26] R. Poli and W. L. N. McPhee. A Field Guide to
Genetic Programming. http://lulu.com, 2008.

[27] R. Poli and J. Page. Solving high-order boolean parity
problems with smooth uniform crossover, sub-machine
code gp and demes. Genetic Programming and
Evolvable Machines, 1(1):37–56, 04 2000.

[28] F. Rothlauf and D. Goldberg. Redundant
Representations in Evolutionary Algorithms.
Evolutionary Computation, 11(4):381–415, 2003.

[29] W. A. Tackett. Selection, and the Genetic
Construction of Computer Programs. PhD thesis,
University of Southern California, USA, 1994.

[30] N. Q. Uy, N. X. Hoai, and M. O’Neill. Semantic aware
crossover for genetic programming: the case for
real-valued function regression. In Proceedings of
EuroGP 2009, pages 292–302. Springer, April 2009.

[31] N. Q. Uy, M. O’Neill, N. X. Hoai, B. McKay, and
E. G. Lopez. Semantic similarity based crossover in
GP: The case for real-valued function regression. In
P. Collet, editor, Evolution Artificielle, 9th
International Conference, Lecture Notes in Computer
Science, pages 13–24, October 2009.

[32] M. L. Wong and K. S. Leung. An induction system
that learns programs in different programming
languages using genetic programming and logic
grammars. In Proceedings of the 7th IEEE
International Conference on Tools with Artificial
Intelligence, 1995.

875

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

