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ABSTRACT

We describe the first steps in the adoption of Shape Gram-
mars with Grammatical Evolution for application in Evo-
lutionary Design. Combining the concepts of Shape Gram-
mars and Genetic Programming opens up the exciting pos-
sibility of truly generative design assist tools. In this ini-
tial study we provide some background on the adoption of
grammar-based Genetic Programming for Evolutionary De-
sign, describe Shape Grammars, and give a brief overview of
Grammatical Evolution before detailing how Grammatical
Evolution used Shape Grammars to successfully rediscover
some benchmark target structures.

Categories and Subject Descriptors

1.2 [Artificial Intelligence]; [.2.2 [Automatic Program-
ming]; F.4.2 [Grammars and Other Rewriting Sys-
tems (D.3.1)]

General Terms

Algorithms, Experimentation

Keywords

shape grammars, evolutionary design, grammatical genetic
programming, grammatical evolution

1. INTRODUCTION

The natural process of biological evolution has served as
inspiration for the development of powerful problem solv-
ing tools in the form of Evolutionary Algorithms. Of par-
ticular note are the Genetic Programming variants which
are now capable of routine human-competitive performance,
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e.g. in the area of Analog Circuit Design [24]. Some of
the evolved solutions have even passed human tests of in-
novation by being patentable in their own right. The long
term objective of the research, of which this study forms
the seed, is to extend and examine a powerful and already
well recognised grammatical approach to Genetic Program-
ming, Grammatical Evolution, to challenging Architectural
design problem environments. This will be achieved through
the development of a more evolvable and rich representa-
tion, Shape Grammars [45]. Shape Grammars allow us a
natural way to encode human domain knowledge into the
evolutionary /generative process, and they are proving in-
valuable in the area of Grammatical Design for example by
the Integrated Design Innovation Group at Carnegie Mellon
University to explore the essence of the design of products
ranging from Harley Davidson motorcycles to Cars and Cof-
fee Makers [8, 50]. To date, this powerful Shape Grammar
formalism has not been combined with an advanced gram-
matical evolutionary algorithm such as Grammatical Evo-
lution, and the proposed research addresses this important
gap.

The remainder of this paper is structured as follows. The
following Section 2 provides some background on the adop-
tion of Genetic Programming for Evolutionary Design, we
then expose the use of Shape Grammars as a Design Lan-
guage in Section 3. A brief overview of Grammatical Evo-
lution is provided in Section 4 before we outline the experi-
ments undertaken and finally draw conclusions in Sections 5
and 6 respectively.

2. BACKGROUND

Evolutionary Computation has clearly demonstrated its
potential for Evolutionary Design producing solutions that
are competitive, and in some cases superior to those de-
veloped by human experts resulting in patentable inven-
tions [24, 49, 5]. As such, the real world application domain
of Design (in particular Analog Circuit Design [24]) has been
a proving ground for the abilities of an artificial evolutionary
process and has led to arguably the first routinely, human-
competitive form of Machine Learning.

The combination of an Evolutionary Algorithm coupled
to a Grammatical Representation (or Design Language) is a



particularly powerful and novel departure in recent years [19].
Examples of research at this nexus of Evolutionary Compu-
tation and a Grammatical Representation [19, 17, 40, 12]
include Genr8 and GENRE approaches.

The grammar-based form of GP as realised in Grammati-
cal Evolution brings a number of strengths over more tradi-
tional optimisation methods for the design domain [19, 17,
30]:

e GP handles the search of open-ended structure. The
model size and structure is not specified a-priori.

e Search is stochastic. This facilitates the explorative
process as it is not limited or biased by the imagina-
tion of the human user. This can result in designs
which are novel and sometimes counterintuitive. This
has significant implications in the architectural design
process, as evidenced by recent work by architectural
practices such as Greg Lynn and Foreign Office Archi-
tects, as it facilitates creativity through unanticipated
form generation and removes the bias of preconcep-
tions based on prior typologies or solutions.

e On the flip-side of the innovative, un-biased explo-

rative process embodied in stochastic evolutionary search,

if desired, positive bias can be introduced in the form of
architectural domain knowledge. This can be achieved
by allowing the user to specify proven structural forms,
planning constraints, and even aesthetic preferences a-
priori. In a grammar-based form of GP such as Gram-
matical Evolution, domain knowledge can be easily in-
corporated through the underlying grammatical repre-
sentation.

The natural process of biological evolution has clearly
demonstrated its power to design elegant form and struc-
ture in the name of survival. As such, it is natural to turn
to algorithms which are inspired by the biological process of
evolution to tackle the development of algorithms for design.

A number of open issues (e.g., see [27]) must be addressed
to ensure a successful application of EAs and in particular
GE to Design, for example,

e Representation: This should be evolvable, adaptable,
allow incorporation of domain knowledge, and be gen-
eral enough to allow the generation of all possible struc-
tures. Grammars have been shown to have much po-
tential as they are both amenable to evolutionary search,
through a method like GE, and they provide the build-
ing blocks of structural information that can be used to
allow the generation of any shape [19, 17]. Grammars
provide an easy mechanism by which domain knowl-
edge can be encoded, and with a grammar-based ap-
proach to GP like GE, we can also subject the under-
lying grammar to the process of evolution itself [34,
33, 14, 15, 16].

e Evolvability: The population of candidate designs must
have the potential to provide constant innovation and
improvements [1]. Critical to the efficient operation
of any EA, particularly in the application domain of
design, is to incorporate mechanisms for modularity,
hierarchy and reuse into the algorithm [19, 14]. These
mechanisms will allow a more adaptive and efficient
exploration of the design search space. In the case of

Architectural Design, the application domain of inter-
est in this research, there are clear parallels between
these concepts of modularity, hierarchy and reuse dur-
ing the human driven design process. Once a success-
ful design module is discovered it can be constantly
reused, adapted, or re-evaluated relative to a variation
in the underlying constraints, and as such the incor-
poration of such principles into an automated search
technique will prove invaluable. The underlying gram-
matical representation is also key to evolvability, and
the main focus of this research will be towards the
evolvability of Shape Grammars.

e Evaluation of candidate designs: In Interactive EC
(iEC) where the fitness function is driven even partly
by a human user a number of significant challenges
arise [27, 49]. Of primary concern is the cost of eval-
uating the evolving designs, as a human-in-the-loop is
a bottleneck which severely slows the search process.
A novel strategy to overcome this will be investigated
in future studies [28].

3. SHAPE GRAMMARS AS THE DESIGN
LANGUAGE

The Design Language is represented in the input grammar
that GE uses in the construction of a solution (in this case
a design). A number of possible Design Languages exist, for
example, L-systems [26] have been adopted and extended
with Genr8 [17, 40] and Shape Grammars have been ex-
plored in their own right [47, 46, 7] and in combination with
other Evolutionary Algorithms (e.g., see [12, 3, 2]). In this
study we concentrate on shape grammars.

It is clear from earlier research in Grammatical Design
that Shape Grammars are a powerful representation that
can be used with success in the design of structures [7, 12,
23, 48, 21, 25] and as such they will be the starting point
for this research. Shape grammars allow the recognition and
transformation of a set of shapes. An example shape gram-
mar illustrating how the nonterminals (primitive shapes) can
be transformed is presented in Figure 1. For example, the
production rules (transformations) can include movement
of a shape along an axis, a description of how a shape can
be sub-divided or placed alongside other shapes, and even
transformations such as scaling.

To date Shape Grammars have not been combined with

the representational and search power of an advanced grammar-

based evolutionary algorithm such as Grammatical Evolu-
tion. This proposal addresses this important research gap
by directly addressing the limitations of the earlier studies
on Shape Grammars with Evolutionary Computation. In
particular, we will extend earlier research on Shape Gram-
mars [12] to examine their adoption with GE in the first
instance to overcome the limitations of a fixed-length and
fixed-integer rule encoding and the resulting issue of illegal
genotypes being generated.

4. GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) [10, 35, 29, 36, 37, 42] is a
grammatical approach to GP, and there is a vast literature
on the use of grammars in GP, e.g., see [18, 41, 51, 52, 44].
GE has been adopted for a range of application domains,
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Figure 1: An example Shape Grammar containing a
single square non-terminal with five possible produc-
tions. The cross-hairs indicates a point of reference
to help illustrate what effect each production rule
has. The first three rules translate the position of
the non-terminal square south, west and south-west
respectively. The fourth rule transforms the original
square non-terminal by scaling its size by half. The
fifth production duplicates the square and places it
alongside the original non-terminal.

e.g., financial modeling (e.g., [6, 9])'. In addition to the
notion of explicit grammars, GE borrows additional princi-
ples from molecular biology. The most powerful of these is
the genotype-phenotype map. Earlier research in GP has
shown some of the potential benefits of such a mapping [4,
20] and GE further exploits this representation to create
a highly-modular and flexible approach to program/model
induction. An example of this is the fact that alternative
search engines can be adopted to explore the model space
(e.g. Particle Swarm Optimization and Differential Evolu-
tion have been adopted [31, 32]). The flexibility of GE is
such that even with the presence of the genotype-phenotype
map, traditional tree-based search operators of crossover and
mutation can be adopted in place of the genotype search op-
erators effectively transforming GE into a standard form of
GP with the grammar used during the initialization of the
population [13]. Of course, it is also entirely possible to com-
bine search operators that are focused on both the genotype
and phenotype combining the benefits of each approach.
GE uses grammars in a generative sense to guide the con-
struction of phenotypic solution structures. We briefly il-
lustrate an example of such a mapping taking the grammar
adopted in this study as an example (see Figure 2).

'Further information on GE and pointers to code can
be found at http://www.grammatical-evolution.org and
http://ncra.ucd.ie

<prog> ::= <term> | <term> <prog>

<term> ::= <var> | <op> <term> | [ <term> ]
<op> ::=s0 | s1 | s2 | s3 | gro | shrnk
<var> ::= sqr | crcl

Figure 2: The Shape Grammar adopted in this study
represented in a more typical GP-like symbolic ex-
pression representation.

The behaviour of the operators (<op>) adopted in the
grammar are as follows; sO moves the shape right 10 pix-
els, s1 moves the shape down 10 pixels, s2 moves the shape
left 10 pixels, s3 moves the shape up 10 pixels, gro doubles
the size of the shape, and shrnk halves the size of the shape.
sqr draws a square shape, crcl draws a circle shape, [ and
1 push and pop the pen’s state (i.e., position of where we
draw next) onto and off the stack respectively.

We begin the development of each individuals solution
structure from a seed known as the Start symbol. In Gram-
matical Evolution this is typically the first non-terminal
symbol encountered in the grammar file. In this case start-
ing from <prog> there are two possible rules which can trans-
form it into either <term> or alternatively into <term><prog>.
To decide which rule replaces <prog> we consult the genome
by reading the next available codon integer value and apply
the following mapping function:

Rule = ¢c%n

where c is the the codon integer value, and n is the number of
choices available for the current non-terminal context. Given
a codon integer value of 13, this gives 13 % 2 = 1. In
other words, <prog> will be replaced with <term><prog>.
The mapping continues by taking the left-most non-terminal
symbol in the developing solution, examining the grammar
to determine if a choice has to be made for that non-terminal
and if so, the next codon integer value is read. If the next
codon had the value 7, 7 % 3 = 1 resulting in <term><prog>
being replaced with <op><term><prog>. Continuing to read
codon values from the example individual in Figure 3 to
map the left-most non-terminal will give the expansion in
Figure 4.

\13\ 7\24\ 3\ 45\10\ 27\ 5\

Figure 3: An example Grammatical Evolution indi-
vidual represented as integer codon values.

This solution has the effect of moving the pen’s position 10
pixels to the right (s0), drawing a circle at this point (crcl),
and then drawing another circle over the first one (crcl). In
contrast if the generated solution had the form [s0 crcl]
crcl this would have moved the pen 10 pixels to the right,
drawn a circle, and then the pen state is reset to the center
of the image and the second circle is drawn in this location,
resulting in two circles side-by-side.

5. EXPERIMENT DESCRIPTION

In this study we wish to determine if it is possible to
rediscover structures using a Shape Grammar approach with



<op><term><prog>
|
I
')
s0 <term><prog>
|
|
')
s0 <var><prog>
|
|
\')
s0 crcl <prog>
|
|
')
sO0 crcl <term>
|
|
'
sO crcl <var>
|
I
v
sO0 crcl crcl

Figure 4: A sample partial Grammatical Evolution
mapping of an individual using the Shape Grammar
adopted in this study.

Grammatical Evolution. To this end we apply the Shape
Grammar in Figure 2 to three separate targets of increasing
difficulty, which are outlined in Figures 5, 6 and 7.

A.0.0 Matching the Image

Figure 5: The first (easy) benchmark target tackled
in this study. The target is depicted on the left and
the best evolved structure is depicted in the right
half of the image.

We adopted the GEVA v1.0 software [38, 39] for these
experiments and the parameter settings were employed as
outlined in Table 1.

Evolution in this case was driven by an automated fitness
function as we are attempting to rediscover known bench-
mark target structures. The fitness function adopted min-
imises fitness and is:

i=n—1

fitness = Z if (¢! = pi){fitness = fitness + 1;}

=0

t; is the pixel value at target image index i, p; is the pixel
value of the evolved image at index 4, with a total image size

AD0 Matching the Image

Figure 6: The second (medium difficulty) bench-
mark target tackled in this study. The target is de-
picted on the left and the best evolved structure is
depicted in the right half of the image.

Matching the Image

Figure 7: The third (hard) benchmark target tack-
led in this study. The target is depicted on the left
and the best evolved structure is depicted in the
right half of the image.

Table 1: Grammatical Evolution parameter settings
adopted for each of the three benchmark problem

instances.
Parameter Value
integer codon mutation 0.02
initialisation Ramped-half-and-half
generations 100
population size(probleml, 2, & 3) 200, 200, 2000
selection tournament
tournament size 3
replacement generational
elitism 5 individuals
crossover 1-pt 0.7
max wraps 3

n is 250 x 250 pixels. If the target pixels value is different
from the evolved solution we punish fitness by adding one
to the overall fitness. This is a rather simple fitness mea-
sure which does not pay respect to the shapes structure, so
for example, if the target solution contained a single circle
and the evolved solution contained a circle but at a differ-
ent location, the fact that the solution found a circle is not
rewarded in this case. Future work will investigate more
sophisticated fitness measures.

Fitness plots showing both best and average fitness aver-
aged over thirty independent runs on each target are given
in Figures 8, 9 and 10 for the easy, medium and hard in-
stances. As can be observed from the average best fitness
plots, all runs find a solution to each problem with the given
parameter settings.

Samples of successful solutions to each of the targets are
provided in Figure 11. It is worth noting in the easy prob-
lem instance that the target square is not centered at the de-



s2 s3 s2 s3 gro sqr crcl shrnk crcl s2 s3 gro crcl gro s3 s2 sqr

s3 s3 s2 s0 gro s2 crcl sl shrnk s2 sl s3 crcl sO shrnk gro s2
sqr gro s3 gro sqr s2 sO sqr sqr s2 s2 gro s3 shrnk s3 [ crcl ]

gro gro sqr shrnk s2 s3 sqr gro s3 s2 sqr shrnk s2 s3 [ s2 crcl ]
sqr gro s2 s3 sqr gro sl s2 s3 shrnk s2 s3 crcl [ s3 shrnk [ s3 s2

[ [[s3gros2 [sqr] 11171711 s3crcl] s3 sqgr

Figure 11: A sample evolved solution for the easier target (top), for the medium target (middle), and the

hardest target (bottom).

Easy Problem

4000
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Figure 8: Fitness plot of the best and average popu-
lation fitness averaged over thirty independent runs
on the easier target.

Medium Problem

— Best --- Avg

Fitness
2000 3000 4000
I I

1000
|

0
|

Generation

Figure 9: Fitness plot of the best and average popu-
lation fitness averaged over thirty independent runs
on the medium difficulty target.

fault pen starting position. In the simplest case, a successful
solution to this problem must reposition the square before
drawing it, and it must also apply two gro transformations
to create a square of the correct size. In the evolved solution
for the easier problem instance presented in Figure 11 it can
be noted that two circles and three squares are drawn, so

Hard Problem

5000 7000
|

Fitness
3000
I

0 1000

0 20 40 60 80 100

Generation

Figure 10: Fitness plot of the best and average popu-
lation fitness averaged over thirty independent runs
on the harder target.

there is some redundancy in the solution, however all the
shapes fall inside a perfectly sized and positioned square,
and as such it scores perfect fitness.

For the harder problem instance, Figure 12 illustrates ran-
domly generated solutions from generation zero. Figure 13
samples some of the best of generation solutions from a suc-
cessful run. The gradual variation of the solution towards
the target is evident. The leftmost solution is very close to
the ideal target but has some extra structure in the middle
squares. Gradually these extra structures are moved about
until eventually the ideal solution is found.

6. CONCLUSION & FUTURE WORK

We presented a study which examined the utility of Shape
Grammars with Grammatical Evolution for Evolutionary
Design. Much potential exists for the application of Evo-
lutionary Computation and in particular Grammatical ap-
proaches to Genetic Programming to Design, with many
examples of human-competitive and even superior perfor-
mance in the literature. Advantages of Genetic Program-
ming approaches to design problems include its ability to
navigate the space of open-ended structures, its stochastic,
innovative nature, and the ease with which domain knowl-
edge can be incorporated into the generative process.
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gro gro shrnk gro s3 sl sqr s2 s3 s2 s2 s2 crcl shrnk sO s3 s3 sqr s3 sl s3 sqr s3 shrnk sqr s3 crcl crcl

s0 gro s3 shrnk s3 crcl s2 sl gro s2 sqr gro sO sl crcl shrnk s3 sqr gro crcl crcl

gro gro sl s3 gro shrnk crcl shrnk s3 gro s2 s2 sqr sO sO s2 shrnk crcl shrnk gro gro crcl shrnk sO sqr

s2 sqr sq

shrnk s2 gro s3 s2 s3 s2 s3 crcl s0 s3 sO sl gro s2 gro sqr sO s2 sl sO gro shrnk crcl sl s3 gro shrnk
s2 sqr shrnk s2 sl sO crcl s3 s2 s2 crcl shrnk shrnk sqr s2 sqr crcl

Figure 12: Examples of randomly generated generation zero individuals on the harder problem instance (top).
The corresponding phenotypic expressions are also provided in order of appearance of the solutions from left

to right (bottom).

Matching the Image Matching the Image Match, ge Mat mage

Figure 13: Samples of best of generation individuals from a successful run on the harder problem instance.
The target is on the left with the evolved solution on the right of the figure. The gradual progression towards

the target is evident.

This last point is particularly relevant to the grammatical
approaches to Genetic Programming.
Three benchmark problems of increasing complexity were

examined, and Grammatical Evolution adopting Shape Gram-

mars successfully found the target solution in each case.
This study is very encouraging for our continued research
in this area where we will expand upon the primitive shapes
and operators which can be adopted with the grammar,
investigate more sophisticated automated fitness functions
which capture more global information on the shape struc-
tures themselves. In addition, we will examine an interactive
interface which will allow the human designer to directly
interface with the evolving population, acting for the se-
lection operator and also allowing intervention by allowing
modification of the evolving solutions with the subsequent
phenotype-genotype map to enable further evolution. At
the time of writing we are also extending this research to
3D and more realistic design problems.
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