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1. Introduction

The objective of this study is to determine whether an evolutionary
automatic programming methodology, Grammatical Evolution (GE), is
capable of uncovering useful technical trading rules for a number of
market indices.

We will begin by providing the background and motivation to this
line of research, followed by descriptions of the problem domain and of
the evolutionary automatic programming approach adopted. A demon-
stration of how GE can be applied to index trading will provided by
conducting experiments on data from three different markets. The
chapter will end with some discussion and conclusions.

1.1 Technical analysis

A market index is comprised of a weighted average measure of the
price of individual shares which make up that market. The value of the
index represents an aggregation of the balance of supply and demand for
these shares. Some market traders, known as technical analysts, believe
that prices move in trends and that price patterns repeat themselves
[Murphy, 1999]. If we accept the premise that there are rules, although
not necessarily static rules, underlying price behaviour, it follows that
trading decisions could be enhanced through use of an appropriate rule
induction methodology such as Grammatical Evolution (GE).

Although controversy exists amongst financial theorists regarding the
veracity of the claim of technical analysts, recent evidence has suggested
that it may indeed be possible to uncover patterns of predictability in
price behaviour. Brock, Lakonishok and LeBaron [Brock, Lakonishok
& LeBaron, 1992] found that simple technical trading rules had pre-
dictive power and suggested that the conclusions of earlier studies that
technical trading rules did not have such power were premature. Other
studies which indicated that there may be predictable patterns in share
price movements include those which suggest that markets do not always
impound new information instantaneously [Chan, Jegadeesh & Lakon-
ishok, 1996], and that stock markets can overreact as a result of ex-
cessive investor optimism or pessimism [Dissanaike, 1997]. The contin-
ued existence of large technical analysis departments in international
finance houses is consistent with the hypothesis that technical analysis
has proven empirically useful.
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1.2 Potential for application of evolutionary
automatic programming

As noted by Iba and Nikolaev [Iba & Nikolaev, 2000] there are a
number of reasons to suppose that the use of an evolutionary automatic
programming (EAP) approach can prove fruitful in the financial predic-
tion domain. EAP can conduct an efficient exploration of the search
space and can uncover dependencies between input variables, leading to
the selection of a good subset for inclusion in the final model. Addition-
ally, use of EAP facilitates the utilisation of complex fitness functions
including discontinuous, non-differentiable functions. This is of partic-
ular importance in the financial domain as the fitness criterion may be
complex, usually requiring a balancing of return and risk. EAP, unlike,
for example, basic neural net approaches to financial prediction, does not
require the ex-ante determination of optimal model inputs and their re-
lated transformations. Another useful feature of EAP is that it produces
human-readable rules that have the potential to enhance understanding
of the problem domain.

1.3 Motivation for study

This study was motivated by a number of factors. Much of the ex-
isting literature concerning the application of genetic algorithms (GA)
or GP to the generation of technical trading rules [Allen & Karjalainen,
1999] [Bauer, 1994] [Neely, Weller & Dittmar, 1997] [Deboeck, 1994] con-
centrates on the US and to a lesser extent the Japanese stock markets.
Published research on this area is both incomplete and scarce. To date,
only a limited number of GA / GP methodologies and a limited range
of technical indicators have been considered. This study addresses these
limitations by examining index data drawn from a number of markets,
that is, the UK, German, and Japanese stock markets, and by adopting
a novel evolutionary automatic programming approach.

The chapter is organised as follows. Section two discusses the back-
ground to the technical indicators utilised in this study. Section three
describes the evolutionary algorithm adopted, Grammatical Evolution
[O’Neill & Ryan, 2001] [O’Neill, 2001] [Ryan et.al., 1998]. Section four
outlines the data and function sets used. The following sections provide
the results of the study followed by a discussion of these results and
finally a number of conclusions are derived.
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2. Background

As with any modelling methodology, issues of data pre-processing
need to be considered. Rather than attempting to uncover useful tech-
nical trading rules for an index using raw current and historical price
information, this information is initially pre-processed. The objective
of these pre-processing techniques is to uncover possible useful trends
and other information in the time series of the raw index data whilst
simultaneously reducing the noise inherent in the series.

2.1 Technical Indicators

The development of trading rules based on current and historic mar-
ket price information has a long history [Brown, Goetzmann & Kumar,
1998]. The process entails the selection of one or more technical indica-
tors and the development of a trading system based on these indicators.
These indicators are formed from various combinations of current and
historic price information. Although there are potentially an infinite
number of such indicators, the financial literature suggests that certain
indicators are widely used by investors [Brock, Lakonishok & LeBaron,
1992][Murphy, 1999] [Pring, 1991].

Four groupings of indicators are given prominence in prior literature:

i. Moving average indicators
ii. Momentum indicators
iii. Trading range indicators
iv. Oscillators

Given the large search space, an evolutionary automatic programming
methodology has promise to determine both a good quality combination
of, and relevant parameters for, trading rules drawn from individual
technical indicators.

We intend to use of each of these groupings as our model is developed.
Our initial study on the FTSE dataset [O’Neill et.al., 2001] included only
a moving average indicator. This study also includes momentum, and
trading range volatility indicators.

Moving Average Indicators.

The simplest moving average systems compare the current share price
or index value with a moving average of the share price or index value
over a lagged period, to determine how far the current price has moved
from an underlying price trend. As they smooth out daily price fluc-
tuations, moving averages can heighten the visibility of an underlying
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trend. A variation on simple moving average systems is to use a moving
average convergence divergence (MACD) oscillator. This is calculated
by taking the difference of a short run and a long run moving average.
In a recursive fashion, more complex combinations of moving averages of
values calculated from a MACD oscillator can themselves be used to gen-
erate trading rules. For example, a nine day moving average of a MACD
oscillator could be plotted against the raw value of that indicator. A
trading signal may be generated when the two plotted moving averages
cross. Moving average indicators are trend following devices and work
best in trending markets. They can have a slow response to changes in
trends in markets, missing the beginning and end of each move. They
tend to be unstable in sideways moving markets, generating repeated
buy and sell signals (whipsaw) leading to unprofitable trading. Trading
systems using moving averages trade-off volatility (risk of loss due to
whipsaw) against sensitivity. The objective is to select the lag period
which is sensitive enough to generate a useful early trading signal but
which is insensitive to random noise.

Momentum.

The momentum of a security is the ratio of a time-lagged price to
the current price (4= Z’"Cff_z )- The belief underlying this indicator is that
strongly trending shares tend to continue to move in that direction for a
period of time as more investors buy or sell the trending share. There is
recent evidence that momentum trading strategies can work, particularly
when investing in smaller firms. Technical analysts consider that price
momentum can foretell a price turning point as momentum will tend to

peak before the price peaks.

Trading Range Breakout systems.

In these systems, a signal is usually generated if a price breaks out
of a defined range. A simple example of a trading rule would be to
buy a share when it exceeds its previous high in the last four weeks
and conversely to sell a share if it falls below its previous four week
low. A more complex approach is to plot an envelope at + 'x’ standard
deviations above and below a moving average. Penetration of the bands
by the current day’s price indicates a possible price trend reversal.

A description of the evolutionary automatic programming system used
to evolve trading rules now follows.
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3. Grammatical Evolution

Grammatical Evolution (GE) is an evolutionary algorithm that can
evolve computer programs in any language [O’Neill & Ryan, 2001] [O’Neill,
2001] [Ryan et.al., 1998]. Rather than representing the programs as
syntax trees, as in GP [Koza, 1992], a linear genome representation
is used. Each individual, a variable length binary string, contains in
its codons (groups of 8 bits) the information to select production rules
from a Backus Naur Form (BNF) grammar. As such, GE adopts a
biologically-inspired genotype-phenotype mapping process.

At present, the search element of the system is carried out by an evo-
lutionary algorithm, although other search strategies with the ability to
operate over variable-length binary strings have been used [O’Sullivan
& Ryan, 2002]. In particular, future advances in the field of evolution-
ary algorithms can be easily incorporated into this system due to the
program representation.

3.1 The Biological Approach

The GE system is inspired largely by the biological process of gener-
ating a protein from the genetic material of an organism. Proteins are
fundamental in the proper development and operation of living organ-
isms and are responsible for traits such as eye colour and height [Lewin,
2000].

The genetic material (usually DNA) contains the information required
to produce specific proteins at different points along the molecule. For
simplicity, consider DNA to be a string of building blocks called nu-
cleotides, of which there are four, named A, T, G, and C, for adenine,
tyrosine, guanine, and cytosine respectively. Groups of three nucleotides,
called codons, are used to specify the building blocks of proteins. These
protein building blocks are known as amino acids, and the sequence of
these amino acids in a protein is determined by the sequence of codons
on the DNA strand. The sequence of amino acids is very important as it
plays a large part in determining the final three-dimensional structure of
the protein, which in turn has a role to play in determining its functional
properties.

In order to generate a protein from the sequence of nucleotides in the
DNA, the nucleotide sequence is first transcribed into a slightly different
format, that being a sequence of elements on a molecule known as RNA.
Codons within the RNA molecule are then translated to determine the
sequence of amino acids that are contained within the protein molecule.
The application of production rules to the non-terminals of the incom-
plete code being mapped in GE is analogous to the role amino acids
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Figure 1.1. A comparison between the grammatical evolution system and a biologi-
cal genetic system. The binary string of GE is analogous to the double helix of DNA,
each guiding the formation of the phenotype. In the case of GE, this occurs via the
application of production rules to generate the terminals of the compilable program.
In the biological case by directing the formation of the phenotypic protein by deter-
mining the order and type of protein subcomponents (amino acids) that are joined
together.

play when being combined together to transform the growing protein
molecule into its final functional three-dimensional form.

The result of the expression of the genetic material as proteins in
conjunction with environmental factors is the phenotype. In GE, the
phenotype is a computer program that is generated from the genetic
material (the genotype) by a process termed a genotype-phenotype map-
ping. This is unlike the standard method of generating a solution (a
program in the case of GE) directly from an individual in an evolu-
tionary algorithm by explicitly encoding the solution within the genetic
material. Instead, a many-to-one mapping process is employed within
which the robustness of the GE system lies.

Figure 1.1 compares the mapping process employed in both GE and
biological organisms.

3.2 The Mapping Process

When tackling a problem with GE, a suitable BNF (Backus Naur
Form) grammar definition must first be decided upon. The BNF can be
either the specification of an entire language or, perhaps more usefully,
a subset of a language geared towards the problem at hand.

In GE, a BNF definition is used to describe the output language to
be produced by the system. BNF is a notation for expressing the gram-
mar of a language in the form of production rules. BNF grammars



8

consist of terminals, which are items that can appear in the language,
e.g. binary operators 4, -, unary operators Sin, constants 1.0 etc.
and non-terminals, which can be expanded into one or more termi-
nals and non-terminals. For example from the grammar detailed be-
low, <expr> can be transformed into one of four rules, i.e it becomes
<expr><op><expr>, (<expr><op><expr>) (which is the same as the
first, but surrounded by brackets), <pre-op>(<expr>), or <var>. A
grammar can be represented by the tuple {N,T, P, S}, where N is the
set of non-terminals, T" the set of terminals, P a set of production rules
that maps the elements of N to 7', and S is a start symbol which is a
member of N. When there are a number of productions that can be
applied to one element of N the choice is delimited with the ’|” symbol.
For example,

N = { <expr>, <op>, <pre_op> }
T=4{8in, +, -, /, *, X, 1.0, (, ) }
S = <expr>

And P can be represented as:

(A) <expr> ::= <expr> <op> <expr> (0)
| ( <expr> <op> <expr> ) (1)
| <pre-op> ( <expr> ) (2)
| <var> (3)
(B) <op> ::= + (0)
| - 1
I/ (2)
| * (3)
(C) <pre-op> ::= Sin
(D) <var> ::= X (0)
| 1.0 (1)

The compilable code produced will consist of elements of the terminal
set T'. The grammar is used in a developmental approach whereby the
evolutionary process evolves the production rules to be applied at each
stage of a mapping process, starting from the start symbol, until a com-
plete program is formed. A complete program is one that is comprised
solely from elements of T'.

As the BNF definition is a plug-in component of the system, it means
that GE can produce code in any language thereby giving the system a
unique flexibility.

For the above BNF, Table 1.1 summarizes the production rules and
the number of choices associated with each.

The genotype is used to map the start symbol onto terminals by read-
ing codons of 8 bits to generate a corresponding integer value, from which
an appropriate production rule is selected by using the following map-
ping function:

Rule = Codon Value MOD No. Rule Choices
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Rule no. | Choices
A 4
B 4
C 1
D 2

Table 1.1. The number of choices available from each production rule.

Consider the following rule from the given grammar i.e., given the
non-terminal op, which describes the set of binary operators that can be
used, there are four production rules to select from.

0)
1)
(2)
(3)

(B) <op> :: =

* N 1+

|
|
[
If we assume the codon being read produces the integer 6, then

6 MOD 4 = 2

would select rule (2) /. Each time a production rule has to be selected
to transform a non-terminal, another codon is read. In this way the
system traverses the genome.

During the genotype-to-phenotype mapping process it is possible for
individuals to run out of codons, and in this case we wrap the individual
and reuse the codons. This is quite an unusual approach in EAs, as
it is entirely possible for certain codons to be used two or more times.
This technique of wrapping the individual draws inspiration from the
gene-overlapping phenomenon that has been observed in many organ-
isms [Lewin, 2000].

In GE, each time the same codon is expressed it will always generate
the same integer value, but, depending on the current non-terminal to
which it is being applied, it may result in the selection of a different pro-
duction rule. We refer to this feature as intrinsic polymorphism. What
is crucial, however, is that each time a particular individual is mapped
from its genotype to its phenotype, the same output is generated. This
is the case because the same choices are made each time. However, it
is possible that an incomplete mapping could occur, even after several
wrapping events, and in this case the individual in question is given the
lowest possible fitness value. The selection and replacement mechanisms
then operate accordingly to increase the likelihood that this individual
is removed from the population.

An incomplete mapping could arise if the integer values expressed by
the genotype were applying the same production rules repeatedly. For
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example, consider an individual with three codons, all of which specify
rule 0 from below,

(A) <expr> :: = <expr><op><expr> (0)
| (<expr><op><expr>) (1)
| <pre-op>(<expr>) (2)
| <var> (3)

even after wrapping the mapping process would be incomplete and
would carry on indefinitely unless stopped. This occurs because the
nonterminal <expr> is being mapped recursively by production rule 0,
i.e., it becomes <expr><op><expr>. Therefore, the leftmost <expr> after
each application of a production would itself be mapped to a
<expr><op><expr>, resulting in an expression continually growing as
follows: <expr><op><expr><op><expr><op><expr> etc.

Such an individual is dubbed invalid as it will never undergo a com-
plete mapping to a set of terminals. For this reason we impose an upper
limit on the number of wrapping events that can occur. It is clearly
essential that stop sequences are found during the evolutionary search
in order to complete the mapping process to a functional program. The
stop sequence being a set of codons that result in the non-terminals
being transformed into elements of the grammars terminal set.

Beginning from the left hand side of the genome then, codon integer
values are generated and used to select rules from the BNF grammar,
until one of the following situations arise:

i. A complete program is generated. This occurs when all the non-
terminals in the expression being mapped are transformed into
elements from the terminal set of the BNF grammar.

ii. The end of the genome is reached, in which case the wrapping op-
erator is invoked. This results in the return of the genome reading
frame to the left hand side of the genome once again. The reading
of codons will then continue, unless an upper threshold represent-
ing the maximum number of wrapping events has occurred during
this individual’s mapping process.

iii. In the event that a threshold on the number of wrapping events
has occurred and the individual is still incompletely mapped, the
mapping process is halted, and the individual is assigned the lowest
possible fitness value.

To reduce the number of invalid individuals being passed from gener-
ation to generation, a steady state replacement mechanism is employed.
One consequence of the use of a steady state method is its tendency
to maintain fit individuals at the expense of less fit, and in particular,
invalid individuals.



Forecasting market indices using Evolutionary Automatic Programming 11

4. Problem Domain & Experimental Approach

We describe an approach to evolving trading rules using GE. This
study uses daily data for the UK FTSE 100, the German DAX, and the
Japanese NIKKEI stock indices.

The FTSE data is drawn from the period 26/04/1984 to 4/12/1997,
the training data set was comprised of 365 days from the first day plus
an additional 75 days at the beginning of this time to allow for the time
lag introduced with technical indicators such as the moving average.
The remaining data is divided into five hold out samples totaling 2125
trading days, see Figure 1.2.

The DAX and NIKKEI data are drawn from the period 01/01/1991
to 03/12/1997, with the initial 440 days becoming the training data set
as before. The remaining data is divided into two hold out samples in
each case. These periods can be seen in Figure’s 1.3 and 1.4

The division of the hold out period into a number of segments is
undertaken to allow comparison of the out of sample results across dif-
ferent market conditions, in order to assess the stability and degradation
characteristics of the developed model’s predictions.

The rules evolved by GE are used to generate one of three signals
for each day of the training or test periods. The possible signals are
Buy, Sell, or Do Nothing. Permitting the model to output a Do Nothing
signal reduces the hard threshold problem associated with production
of a binary output. This issue has not been considered in a number of
prior studies. A variant on the trading methodology developed in Brock
et al. [Brock, Lakonishok & LeBaron, 1992] is then applied.

If a buy signal is indicated, a fixed investment of $1,000 (arbitrary)
is made in the market index. This position is closed at the end of a ten
day (arbitrary) period.

On the production of a sell signal, an investment of $1,000 is sold short
and again this position is closed out after a ten day period. This gives rise
to a maximum potential investment of $10,000 at any point in time (the
potential loss on individual short sales is in theory infinite but in practice
is unlikely to exceed $1,000). The profit (or loss) on each transaction
is calculated taking into account a one-way trading cost of 0.2% and
allowing a further 0.3% for slippage. The total return generated by the
developed trading system is a combination of its trading return and its
risk free rate of return generated on uncommitted funds.

The rate adopted in this calculation is simplified to be the average
interest rate over the entire data set. For the FTSE the rate is 8.5%,
the DAX 6.0% and for the NIKKET it is 1.5%.
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Figure 1.2. A plot of the FTSE 100 over the entire data set (top), over the training
period (middle-left), over the first two test periods. Days 365 to 730 (middle-center),
and days 730 to 1095 (middle-right), and the third, fourth & fifth test periods (bottom
row, from left to right).
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Figure 1.3. A plot of the DAX over the entire data set (top left). Taken from this
data set period illustrated we can see the training period (top right), and the two test
periods (bottom left and right respectively).
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As well as the moving average, the momentum and trading range
volatility technical indicators are adopted in these preliminary experi-
ments, as can be seen in the grammar, given below.

N={<code>,<expr>,<fopbi>,<fopun>,<matbi>,<relbi>,<var>,<int>}
T={p,=,(,),f_and,f_or,f_not,+,-,*,>,<,>=,<=,scale,ma,day,1,2,3,4,5,10}

S=<code>

P={ <code> ::= p = <expr>

<expr> ::= <fopbi> (<expr>, <expr>) | <fopun> (<expr>) | <expr><matbi><expr>
| <expr><relbi><expr> | <var>

<fopbi> ::= f_and | f_or

<fopun> ::= f_not

<matbi> ::= + | - | *

<relbi> ::= > | < | >= | <=

<var> ::= <int> | day | ma(<int>,day) | momentum(<int>,day) | trb(<int>,day)

<int> ::=1 121314151 101}

In addition to the technical indicators the grammar also allows the use
of the binary operators £_and, f_or, the standard arithmetic operators,
and the unary operator £_not, and the current days index value day.
The operations £ _and, f_or, and f_not return the minimum, maximum,
of the arguments, and 1 - the argument, respectively.

The signals generated for each day, Buy, Sell, or Do Nothing, are
post-processed using fuzzy logic. The trading rule, a fuzzy trading rule,
returns values in the range 0 to 1. We use pre-determined membership
functions, in this case, to determine what the meaning of this value is.
The membership functions adopted were as follows:

Buy = Value < .33
DoNothing = .33 >= Value < .66
Sell = .66 >= Value

4.1 Data Preprocessing

The values of the indices changed substantially over the training and
testing period. Before the trading rules were constructed, these values
were normalised using a two phase preprocessing. Initially the daily
values were transformed by dividing them by a 75 day lagged moving
average. These transformed values are then normalised using linear scal-
ing into the range 0 to 1. This procedure is a variant on that adopted by
Allen and Karjalainen [Allen & Karjalainen, 1999] and Iba and Nikolaev
[Iba & Nikolaev, 2000].
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4.2 Selection of Fitness Function

A key decision in applying an EAP methodology to construct a tech-
nical trading system is to determine what fitness measure should be
adopted. A simple fitness measure such as the profitability of the sys-
tem both in and out of sample is inadequate as it fails to consider the
risk associated with the developed trading system. The risk of the sys-
tem can be estimated in a variety of ways. One possibility is to consider
market risk, defined here as the risk of loss of funds due to a market
movement. A measure of this risk is provided by the maximum draw-
down (maximum cumulative loss) of the system during a training or test
period. This measure of risk can be incorporated into the fitness func-
tion in a variety of formats including: (return / maximum drawdown)
or return - ’x’(maximum drawdown), where 'x’ is a pre-determined con-
stant dependent on an investor’s psychological risk profile. For a given
rate of return, the system generating the lowest maximum drawdown is
preferred.

This study incorporates drawdown in the fitness function by subtract-
ing the maximum cumulative loss during the training period from the
profit generated during that period. This is a conservative approach
which will encourage the evolution of trading systems with good return
to risk characteristics. This will provide a more stringent test of trad-
ing rule performance as high risk / high reward trading rules will be
discriminated against.

5. Results

Thirty runs were performed on each of the three datasets using a
population size of 500 individuals over 100 generations. Bit mutation at a
probability of 0.01, and a variable-length one-point crossover probability
of 0.9 was adopted. A comparison of the best individuals evolved for each
dataset to the benchmark buy and hold strategy can be seen in Table
1.2, Table 1.3, and Table 1.4, for the FTSE, DAX and NIKKEI datasets
respectively.

In the case of the FTSE and NIKKEI datasets the evolved rules pro-
duce a superior performance to the benchmark strategy, while perfor-
mance over the DAX dataset is not as strong. The poorer performance
for the DAX market can be attributed to over-fitting of the evolved rules
to the training data. For each of the evolved trading rules the associated
risk is less than that of the benchmark strategy as can be seen in the
average daily investment figures reported.
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Trading Period Buy & Hold | Best-of-run Best-of-run
(Days) Profit (US$) Profit(US$) | Avg. Daily Investment
Train (75 to 440) 3071 3156 3219
Test 1 (440 to 805) 5244 1607 1822
Test 2 (805 to 1170) -1376 4710 3151
Test 3 (1170 to 1535) 1979 2387 6041
Test 4 (1535 to 1900) 1568 -173 3274
Test 5 (3196 to 3552) 3200 2221 3767
Total 13686 13908

Table 1.2. A comparison of the buy and hold benchmark to the best evolved indi-
vidual for the FTSE dataset.

Trading Period Buy & Hold | Best-of-run Best-of-run
(Days) Profit (US$) Profit(US$) | Avg. Daily Investment
Train (440 to 805) 3835 3648 7548
Test 1 (805 to 1170) -41 -1057 8178
Test 2 (1170 to 1535) 3016 469 8562
Total 6831 3060

Table 1.3. A comparison of the benchmark buy and hold strategy to the best evolved
individual on the DAX datatset.

Trading Period Buy & Hold | Best-of-run Best-of-run
(Days) Profit (USS$) Profit(US$) | Avg. Daily Investment
Train (75 to 440) -6285 3227 9247
Test 1 (440 to 805) 59 -1115 7164
Test 2 (805 to 1170) -3824 633 9192
Total -10050 2745

Table 1.4. A comparison of the benchmark buy and hold strategy to the best evolved
individual on the NIKKEI datatset.

6. Discussion

In evaluating the performance of any market predictive system, a num-

ber of caveats must be borne in mind. Any trading model constructed
and tested using historic data will tend to perform less well in a live
environment than in a test period for a number of reasons. Live mar-
kets have attendant problems of delay in executing trades, illiquidity,
interrupted / corrupted data and interrupted markets. The impact of
these issues is to raise trading costs and consequently to reduce the prof-
itability of trades generated by any system. An allowance for these costs
(’slippage’) has been included in this study but it is impossible to deter-
mine the scale of these costs ex-ante with complete accuracy. In addition
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to these costs, it must be remembered that the market is competitive.
As new computational technologies spread, opportunities to utilise these
technologies to earn excess risk-adjusted profits are eroded. As a result
of this technological ’arms-race’, estimates of trading performance based
on historical data may not be replicated in live trading as other market
participants will apply similar technology. This study ignores impact of
dividends. Although a buy-and-hold strategy will generate higher levels
of dividend income than an active trading strategy, the precise impact
of this factor is not determinable ex-ante. It is notable that the dividend
yield on most stock exchanges has fallen sharply in recent years and that
the potential impact of this factor has lessened.

7. Conclusions & Future Work

Grammatical Evolution has been shown to successfully generate trad-
ing rules with a performance superior to the benchmark buy and hold
strategy on two of the three datasets analysed. In addition the risk in-
volved with the adoption of the evolved trading rules is less than the
benchmark.

The risk of the benchmark buy-and-hold portfolio exceeded that of
the portfolio generated by the technical trading rules because, the bench-
mark buy and hold portfolio maintains a fully invested position at all
times in the market, whereas the portfolio generated by the evolved tech-
nical trading system averaged a capital investment of $3,546, $8,096,
and $8,534 over the trading periods on the FTSE, DAX, and NIKKEI
datasets respectively.

The results clearly show that there is much potential in this model and
that there is notable scope for further research utilising GE in this prob-
lem domain. Our preliminary methodology has included a number of
simplifications, for example, we only considered a small set of primitive
technical indicators. The incorporation of additional technical indica-
tors may further improve the performance of our approach. One factor
that can have a large impact on the performance of GE is the choice of
grammar. In this case study only one grammar was investigated, and
thus trading rules conforming to one syntactical structure were evolved.
Future work will involve the investigation of more complex syntactical
structures.

A number of additional extensions of this work are left for future
development. One extension would be to incorporate a more complex
model of learning (forgetting). [Glassman, 1973] suggested that the “fal-
libility of memory” (p. 88) may represent a useful adaptive device when
faced with a dynamic environment. At present in our model, all historic
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data observations are given equal weighting which implicitly assumes
model stationarity. By a suitable modification of the fitness function,
whereby more recent data observations are assigned a higher weighting
in the model construction process, model development could be biased
towards more recent data [Refenes et al., 1997]. The weighting parame-
ter could also be evolved as a component of the developed model.

Another avenue for exploration is the utility of stacked or multi-stage
models [Zhang et al., 1997]. The construction of a single GE trading
model, implicitly assumes that there is a dominant global error minimum
and implicitly hopes that the constructed model approaches this mini-
mum. Given the limitations of a problem domain in which input/output
relationships are dynamic and where input data is incomplete and noisy,
the error surface may not have this property. In such a topology there
may be potential to improve predictive quality by building multiple mod-
els. To implement this approach, a series of GE models could be devel-
oped to produce trading signals, using non-homogeneous inputs. The
predictions of the individual models could then be utilised as inputs
to a second stage model which produces the final trading signal. This
second-stage model could be developed using GE or alternatively could
employ a different methodology such as neural networks.
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