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a b s t r a c t

Traditional CAD tools generate a static solution to a design problem. Parametric systems allow the user to
explore many variations on that design theme. Such systems make the computer a generative design tool
and are already used extensively as a rapid prototyping technique in architecture and aeronautics.
Combining a design generation tool with an analysis software and an evolutionary algorithm provides
a methodology for optimising designs. This work combines NASA's parametric aircraft design tool (OpenVSP)
with a fluid dynamics solver (OpenFOAM) to create and analyse aircraft. An evolutionary algorithm is then
used to generate a range of aircraft that maximise lift and reduce drag while remaining within the
framework of the original design. Our approach allows the designer to automatically optimise their chosen
design and to generate models with improved aerodynamic efficiency. Different components on three
aircraft models are varied to highlight the ease and effectiveness of the parametric model optimisation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Parametric systems are changing the conceptual design process
in the same way as spreadsheets changed finance. Both operate on
the same principle. The user defines the relationships in a system
and then changes variables in that system to rapidly explore
alternative possibilities. Instead of manually creating a CAD model
by dragging and dropping components, the parametric design is
specified using variables and functions. Just as changing the value
in a cell causes the spreadsheet to recalculate all related values,
changing a variable that defines part of a model will adapt all
the connected components so as to maintain a coherent design.
Although there is a longer lead time to implement the initial
model, once it is encoded the user can easily create endless
variations on the original.

Evolutionary algorithms (EAs) have shown their ability to
optimise the shape and form of designs [1,2]. One of the primary
considerations when applying an evolutionary algorithm to a
design problem is the representation used. The representation
limits the search space by defining all the designs the algorithm
could possibly generate. Poor representations generate designs
that are invalid (internal faces, unconnected parts), infeasible
(wrong scale) or missing the desired functionality. Creating a

suitable representation is a difficult task that requires knowledge
of both programming and of the specific domain.

Parametric systems provide a novel solution to the representa-
tion problem. A well-implemented parametric system will only
generate valid designs and incorporates domain knowledge. It also
allows a designer with no formal programming experience to
define the representation for the evolutionary algorithm. The
designer provides the initial model and specifies the range limits
so as to generate appropriate variations of their design. Parametric
models make evolutionary optimisation directly accessible to the
designer and allows them to use their domain knowledge to create
a representation that generates feasible designs.

This work combines NASA's parametric aircraft system (OpenVSP)
and a computational fluid dynamics solver (OpenFOAM) with an
evolutionary algorithm to generate a variety of optimised and novel
designs. Section 2 gives an overview of parametric design systems
and their application in industry. Section 3 describes the fluid
dynamics solver used to generate the fitness values for the model.
Section 4 discusses previous aircraft optimisation examples that used
evolutionary approaches. Three parametric aircraft models are opti-
mised in this work. The settings consistent for all the experiments
are shown in Section 5. Section 6 describes the experiments carried
out on the blended wing body model where the airfoil and the
wing were varied. Section 7 describes the experiments carried out
on the Cessna 182 model where the wing was exclusively varied.
Section 8 describes the experiments carried out on the MIG 21 model
where the wing and the tail section were optimised simultaneously.
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Finally Sections 9 and 10 discuss the results of the experiments and
the conclusions that can be drawn from them respectively.

2. Parametric design

Parametric design defines the relationships between compo-
nents in a design. Generating a model consisting of hierarchical
and geometric relations allows for exploration of possible varia-
tions on the initial design while still limiting the search space.
Instead of manually placing and connecting components as is done
in traditional CAD, component generating algorithms are linked
with user definable variables. Defining the relationship between
the components prevents invalid design generation. A change
to one component will automatically effect a change on any
connected component.

Parametric systems traditionally consist of basic components
tailored for a particular design problem. An example of this would
be the wing, fuselage and engine components in OpenVSP. Pre-
defined components allow for domain knowledge to be embedded
in the software and simplifies the design process. Although
the user can explicitly define design components by programming
them, normally model creation is done by combining existing
components using a graphical interface. Many parametric design
systems, such as grasshopper [3], are implemented using a drag
and drop interface, shown in Fig. 1. The user can then manipulate
the input and evaluate the benefit of the component to the overall
design. An important aspect of parametric design is that the user
observes the effects caused by manipulating a variable in real time,
allowing the user to treat the underlying algorithm as a black box.
Showing the effect of changing input to the system means that
the user does not require an understanding of the underlying
mechanics of the system, but instead gives them an intuitive
understanding of how the components in a system are related to
each other (Fig. 2).

Parametric design tools have now been introduced into main-
stream design software. There is the Grasshopper parametric
design tool plug-in for the Rhino modelling system [3], Bentley
Systems have implemented a program called Generative Compo-
nents [4] based on the parametric design paradigm and Dassault
Systems have developed CATIA, a CAD system combined with a
parametric design tool. Parametric functionality was introduced to
AutoCAD 2010 to allow for algorithmic manipulation of a design.

Combining parametric systems with structural analysis allows
the user to make informed decisions about the geometric altera-
tions during the conceptual design stage [5]. EIFForm is a para-
metric design system that optimises lattice structures by using a
structural analysis and a simulated annealing algorithm. The
results have been used to design a structure in the inner courtyard
of Schindler house [6]. Bollinger et al. [7] have developed para-
metric design systems that incorporate structural considerations
and have used it to generate roofing structures for the BMW Welt

Museum, Munich and the Rolex learning centre, EPFL, Lausanne.
CATIA was combined with GSA structural analysis software [8] to
evolve roofing structures for a football stadium [5].

The software used in this work is open vehicle sketch pad
(OpenVSP). It was originally developed by NASA and Sterling
Software as a rapid geometry modeler for conceptual aircraft [9]
and has since developed into a stand-alone aircraft modelling tool.
It was released as open-source software in 2012 under the NASA
open source agreement. This work combines aerodynamic analysis
with OpenVSP to analyse the lift and drag of the models. The next
section discusses how the aerodynamic analysis was performed
and the solver that was used.

3. Computational fluid dynamics

Computational Fluid Dynamics (CFD) uses numerical methods
to solve how liquids and gases interact with surfaces. Although the
calculations are computationally intensive, the dramatic increase
in the power of standard hardware enables basic CFD analysis to
be carried out on standard desktop machines. OpenFOAM (open-
source field operations and manipulation) [10] is used as the CFD
solver in the experiments. Although primarily used for fluid
dynamics simulations, it provides a toolbox of different solving
techniques for applications such as combustion, electromagnet-
ism, solid mechanics and heat transfer. It is designed for parallel
execution due to the high processor demand of CFD modelling. It is
highly extensible and has been adapted for calculating transonic
aerodynamics [11], marine cavitation models [12] and orthotropic
solid mechanics [13].

The solver used in the experiments is the semi-implicit method
for pressure linked equations (SIMPLE) algorithm [14]. It is a
steady state numerical solver for efficiently solving the Navier–
Stokes equations that describe fluid motion. The algorithm forms
the basis of CFD software and has been adapted to calculate the
transfer of mass and momentum in a discretised three dimen-
sional environment. The solver iteratively calculates the pressure
and the velocity within the system. Post-processing then calcu-
lates the lift and drag forces generated by the model and these are
used as the fitness value.

Fig. 1. The GUI for the Grasshopper parametric system. The variables are shown in the purple boxes on the left and are connected to the shape generating functions. The
output design is on the right. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 2. The relative wind velocity and turbulence caused by the blended wing
body model.
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4. Evolutionary aircraft optimisation

“Since design problems defy comprehensive description and
offer an inexhaustible number of solutions the design process
cannot have a finite and identifiable end. The designer's job
is never really done and it is probably always possible to do
better.” [15].

Design problems inevitably involve some trade off between
desirable attributes [16]. In aircraft design there is a trade off
between lift and drag which is known as aerodynamic efficiency.
A design must have not only a minimal cross-sectional area to
reduce drag but also a large wing to maximise lift. Conflicting
objectives mean there is no one perfect solution, instead there is a
pareto front of equally viable designs. Multi-objective problems
are difficult to optimise but the population based approach
of evolutionary algorithms has been shown to be a successful
approach [17]. Multi-objective evolutionary algorithms (MOEAs)
have been shown to be a useful approach for finding the best
compromise when tackling a multi-objective problem [18].

Accordingly there have been several MOEA approaches to
evolving aerodynamically efficient aircraft. Due to the computa-
tional expense of CFD analysis most approaches focus on 2D
optimisation of airfoils [19,2,20]. Different components have been
optimised individually, such as the wing [21] or the turbine blade
positions [22]. Although some large-scale optimisation examples
have been carried out [23,24] the difficulty in defining such a
complex representation has limited its application. The next
section describes the aircraft model that is the basis for optimisa-
tion and the multi-objective algorithm used to optimise the
aerodynamic efficiency.

5. Experimental settings

A standard genetic algorithm (GA) was used in all the experi-
ments. The settings used by the GA are shown in Table 1. The
source code is freely available to download at [25] under the GNU
public license. A context free grammar mapping [26] was used to
convert the integer values of the GA representation into values for
the parametric model. As the grammar was changed for different
optimisation tasks, each grammar is shown in its respective
section. Both lift and drag are being used as fitness values to
evaluate the designs. The SIMPLE algorithm discussed in Section 3
returns the coefficients of lift (the force perpendicular to the
oncoming flow direction) and drag (the force parallel to the flow
direction) in Newtons for a particular design. The two values are
then used by the NSGA2 algorithm to calculate the fitness value for
that design.

In order to evolve designs that incorporated both of these
features, the non-sorting genetic algorithm II (NSGA2) multi-
objective fitness function was used for selection and replacement
[18]. Multi-objective search algorithms do not assume that there is

a globally optimal solution but that there is a set of non-
dominated solutions. The non-dominated solutions are solutions
that are better than the rest of the population for at least a single
constraint and at least equivalent for all other constraints. This can
be stated mathematically as f which is the set of fitness functions:
f ¼ ½f o;…; f n� such that 8 f Af where f non�domr f dom and ( f Af
where f non�domo f dom.

The parent and child populations are combined and the NSGA2
algorithm selects the non-dominated solutions from the Pareto
front. It then selects the least dominated solutions incrementally
until the population size has been reached. The new population of
non-dominated solutions is used as the parent population for the
next generation. Elitism is implemented by comparing the adult
and child populations and selecting the best of both for the new
adult population.

In order to evaluate the performance of the evolutionary
algorithm, the results were compared against randomly generated
designs from the search space, essentially a brute force approach.
This comparison examines if any useful genetic information is
being transferred between individuals and whether the para-
metric representation is amenable to evolutionary search. Due to
limited available computing power only two runs were carried out
for each experiment. Although this does not constitute a sufficient
sample size to support the efficacy of stochastic methods such as
an EA, the intention of this work is to examine if the aerodynamic
efficiency of a parametric model can be optimised. As such the
pareto-efficiency of the individuals in the final population will
be used to judge the effectiveness of the algorithm as an active
design tool.

6. Optimisation of blended wing body design

In traditional aircraft the fuselage provides little or no lift to the
craft. Originally developed by NASA, the blended wing body (BWB)
flattened the fuselage into the shape of an airfoil so that the entire
craft generates lift. The BWB model has been used extensively as a
test case for multidisciplinary design optimisation (MDO) [27]. MDO
uses optimisation techniques to solve design problems that span
multiple disciplines. A parametric model of the BWB design was
used as a test case due to the simplicity of the model. It consists of a
single wing component that is made up of three sections. In total
the model contains 1104 facets which means that it is processed
quickly in a CFD analysis. The model is shown in Fig. 3.

One of the main advantages of parametric design optimisation
is that it is easy to optimise specific features of a design. In order to
highlight this two separate experiments were carried out. The
first experiment solely optimised the airfoils while maintaining
the predefined wing shape, so as to improve the design while
remaining visually the same. The second experiment varied the

Table 1
Experimental settings.

Property Setting

Population size 50
Generations 50
No. of Runs 2
Mutation operator Per codon
Mutation rate 1.5%
Crossover operator Single point
Crossover rate 70%
Selection & Replacement NSGA2
Random number generator Mersenne twister

Fig. 3. The blended wing body model.
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shape of the wing sections and their airfoil shape simultaneously,
allowing the algorithm to alter the entire model and explore many
different wing configurations.

The initial experiment only allows variation of the airfoil
sections off the wing. The airfoil is defined by a National Advisory
Committee for Aeronautics (NACA) profile system [28]. The NACA
profile combines mean lines and thickness distribution to obtain
the desired airfoil shapes. The NACA system allows the airfoil to be
defined using only three parameters: thickness, camber and
camber location. The wing on the BWB consists of three distinct
wing sections. Only the camber and the thickness were varied
while the camber location remained fixed. Fixing the camber
location of the airfoils means that the overall shape and the
configuration of the aircraft remain close to the original model
(Fig. 4).

The second experiment increases the number of variables in
the representation to include the span, sweep, tip chord,
root chord and dihedral angle of the wing. These features of the
wing are illustrated in Fig. 5. Although changing this
many features means that the model will vary greatly from the
original design, it examines if the optimiser can be used as an
explorative tool. Increasing the amount of variability in the
representation will generate more infeasible design but does
open up the possibility of finding an improved yet unexpected
configuration. A grammar was used as an interface to describe
the components of the parametric model. Fig. 6 shows the
grammar used for optimising the airfoil components while Fig. 7
shows the grammar for optimising the wing and airfoil
components.

6.1. BWB optimisation results

A scatter plot of airfoil optimisation results is shown in Fig. 8(a).
The graph shows how well the design maximised lift on the x-axis
and how well it reduced drag on the y-axis. The original model
is shown in black. The evolved solutions and the brute force

Upper
Camber Chord

Lower Camber

Thickness

Fig. 4. NACA profile of an airfoil.

Root Chord

Tip Chord

Span

Sweep

Dihedral Angle

Fig. 5. The features of a wing section.

Fig. 6. The encoding used to describe the camber and the thickness of each airfoil
on the wing.

Fig. 7. The encoding used to vary each section and airfoil of the wing.

Fig. 8. The pareto front for the final generation of aircraft. The results from the airfoil optimisation are shown in blue in the wing optimisation for comparison: (a) airfoil
optimisation and (b) wing optimisation. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)
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solutions are shown in red and green respectively with a line
connecting individual on the pareto front. Overall the pareto front
of the evolved solutions is equivalent to the randomly generated
solutions, indicating that no benefit was provided by the genetic
information.

That an evolutionary approach did not outperform a brute force
approach could be the result of the constrained nature of the
representation. Each of the three airfoil sections had two variables.
Although each individual was encoded by 30 integers, the range
of each variable was limited to viable designs. Such a representa-
tion could generate good solutions purely by random variation,
indicating that it is too constrained. This conclusion would be
supported by the fact that both approaches generated
pareto optimal designs that outperformed the original model. A
sample of individuals from the pareto front is shown in Fig. 9.
Limiting the evolvable representation to the airfoils produced
optimised solutions that maintained the same overall design as
the BWB aircraft.

A scatter plot of wing and airfoil optimisation is shown in
Fig. 8(b). Again the original model is shown in black and the

evolved and brute force solutions are shown in red and green
respectively. The graph shows how well the design maximised
lift on the x-axis and how well it reduced drag on the y-axis.

Fig. 9. Airfoil optimisation in the order of increasing lift (and increasing drag) from top left to bottom right. The overall shape of the design remains the same.

Fig. 10. The change in average lift/drag during the course of the run: (a) average lift maximisation and (b) average drag minimisation.

Fig. 11. Wing optimisation in the order of increasing lift (and increasing drag) from the top left to the bottom right. The increased number of variables resulted in different
wing configurations.

Fig. 12. The Cessna 182 model. The optimised sections are highlighted in red.
(For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)
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The increased variability of the representation greatly increased the
range of the Pareto fronts when compared to the airfoil optimisation
results, shown in blue.

The evolved pareto front is distinct from the brute force approach.
The randomly generated individuals tend to cluster around minimal
drag designs as it is easy to find a design with a smaller wing, all the
algorithm has to do is reduce the size of the aircraft. It is more difficult
to find a designwith an aerodynamically viable wing and this is where
the evolutionary algorithm excels.

This result is highlighted by examining the average population
fitness during the course of a run, as shown in Fig. 10. The NSGA2
selection operator compares child and adult populations and takes
the best of both to create a new adult population. This requires
two populations to be generated before evaluation can take place
and so the graphs start at the second generation. The evolutionary
algorithm is already populated with high-fitness designs at this
point while the selection pressure quickly builds up the elite
population of the brute force approach, thus improving the
average fitness. In both drag and lift graphs the brute force
approach plateaus after five generations. The evolutionary
approach on the other hand continues to improve lift (while
sacrificing drag efficiency) for the duration of the run as shown
in Fig. 10(a) and (b). Fig. 11 shows a sample of optimised designs
from the pareto front.

The relaxing of the evolvable representation resulted in
many different wing configurations being generated. The amount
of variation shows that such design problems are highly
open-ended with no single optimal design configuration. It also
suggests that allowing the algorithm to evolve more components
of the representation could result in novel yet highly efficient
designs.

Fig. 13. The encoding used for the Cessna 182. The dihedral angle was not altered
to maintain the overall theme of the design.

Fig. 14. The respective pareto fronts of the evolved and randomly selected designs. The
original Cessna 182 model is shown in black.

Fig. 15. The change in average lift/drag during the course of the run: (a) average lift maximisation and (b) average drag minimisation.

Fig. 16. A sample of the optimised Cessna 182 designs from the pareto front.
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7. Optimisation of the Cessna 182 wing

This section demonstrates the selective optimisation possible
with the parametric representation. Only the wing structure of a
Cessna 182 aircraft is optimised. The section and the airfoil of the
wing are varied while the fuselage, propeller, tail section and
undercarriage remain fixed. The Cessna 182 is the second most
popular Cessna variant in production. The model is more complex
than the BWB design as it is composed of 13,476 facets. Although
the increased complexity affects the amount of time taken to
analyse the model, the parametric model has a similar number of
components to the BWB representation. The wing component is
defined as two separate sections, each of which has its own
distinct airfoil. The grammar in Fig. 13 describes the representation
of the Cessna 182 wing.

An additional advantage of a parametric representation is that
a component may be analysed in conjunction with the total
structure. A single component cannot be analysed in isolation.
For example, a wing optimised separately from the aircraft could
perform differently when fixed to the aircraft. It may cause eddies
or turbulence on other surfaces directly behind it, such as the
fuselage or tail section. Optimising a component as part of a total
structure generates a more realistic analysis. The optimised area of
the Cessna 182 is shown in red in Fig. 12.

7.1. Cessna 182 wing optimisation results

The scatter plot of the Cessna wing optimisation results is
shown in Fig. 14. The graph shows how well the design maximised
lift on the x-axis and how well it reduced drag on the y-axis. The
original model is shown in black. The results for the average
objective fitness during the run are shown in Fig. 15. As the
amount of variation allowed for the overall design is less, both
approaches start with similarly performing aircraft designs. The
evolutionary approach again increases lift performance during the
course of the run while sacrificing drag minimisation.

The brute force approach generates little improvement in
either drag or lift during the course of the run. There is significant

overlap of the drag results for both evolutionary and brute force
approaches in Fig. 15(b), indicating that the difference is statisti-
cally insignificant, although more runs will have to be carried out
before this can be conclusively shown (Fig. 16).

8. Optimisation of the MIG 21 wing and tail sections

As an extension of the previous experiment multiple surfaces of
the MIG 21 model are optimised simultaneously. The MIG 21
model was chosen as it is composed of 26,600 facets, highlighting
the complexity of aircraft models it is possible to optimise.
Different components of a design cannot be optimised individually
and be expected to perform similarly when combined. The wing
and the tail section of the MIG 21, as shown in red in Fig. 17, are
varied in this experiment. One additional limitation is placed on
the model. As the vertical stabiliser does not provide any lift an
optimiser might remove this structure altogether. The variable
ranges of the vertical stabiliser are reduced to prevent this
happening. The grammar describing the changes to the MIG 21
model is shown in Fig. 18.

8.1. MIG 21 wing and tail section optimisation results

The scatter plot of the MIG 21 optimisation results is shown in
Fig. 21. The graph shows how well the design maximised lift on
the x-axis and how well it reduced drag on the y-axis. The original
model is shown in black (Fig. 19). Once again both brute force and
evolutionary approaches generate design that outperform the
original design. There is an overlap of the pareto fronts for drag
minimisation designs but the evolutionary approach generates
aircraft with better lift optimisation.

Fig. 20(a) and (b) shows more clearly what is happening.
Similar to the Cessna experiments, both approaches start with

Fig. 17. The MIG 21 model. The optimised sections are highlighted in red. (For
interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 18. The encoding used for the MIG 21. Three different components of the design were evolved simultaneously.

Fig. 19. The respective pareto fronts of the evolved and randomly selected designs.
The original MIG 21 model is shown in black.
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comparable performance. This is due to only parts of the design
being optimised. Overall the brute force approach only generates
some limited improvement before the results plateau. The evolu-
tionary approach, on the other hand, generates a greater lift improve-
ment in its designs while sacrificing drag performance.

9. Discussion

The results from the experiments, with the exception of the
BWB airfoil optimisation results, indicate that an evolutionary
approach generates more aerodynamically efficient aircraft than
a brute force approach. Although more runs will have to be
conducted before this can be conclusively shown, it is a promising
result. One unexpected result was that a brute force approach still
produced designs that surpassed the original design. Normally a
random approach generates poor optimisation results but as the
parametric representation constrains the amount and type of the
variation, even randomly selected designs were still airworthy and
found a niche on the pareto front.

10. Conclusions

A parametric system allows the designer, not the programmer,
to specify the design to be evolved. Three different aircraft
modelled using the OpenVSP design tool were optimised. The
experiments showed that the level of design optimisation could be
varied. Specific components of the model can be optimised or the

model can be used as the basis for generating entirely different
aircraft configurations. Although the sample size of the experi-
ment is too small to draw any significant conclusions, initial results
indicate that the parametric representation is capable of being
optimised by an evolutionary algorithm. Even in experiments
where brute force approaches performed comparably to evolu-
tionary approaches, both generated designs that outperformed
the original parametric model. This approach could potentially be
applied to any existing parametric design to generate optimised
solutions, turning the computer into an active design tool in the
conceptual design process.
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