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Abstract. Heterogeneous Cellular Networks are multi-tiered cellular
networks comprised of Macro Cells and Small Cells in which all
cells occupy the same bandwidth. User Equipments greedily attach to
whichever cell provides the best signal strength. While Macro Cells
are invariant, the power and selection bias for each Small Cell can be
increased or decreased (subject to pre-defined limits) such that more or
fewer UEs attach to that cell. Setting optimal power and selection bias
levels for Small Cells is key for good network performance. The appli-
cation of Genetic Programming techniques has been proven to produce
good results in the control of Heterogenous Networks. Expanding on
previous works, this paper uses grammatical GP to evolve distributed
control functions for Small Cells in order to vary their power and bias
settings. The objective of these control functions is to evolve control
functions that maximise a proportional fair utility of UE throughputs.

1 Introduction

Recent technological advancements have created a paradigm shift in the way
that mobile phones are used. The advent of large screens on handheld devices
has prompted a shift from voice traffic to video and data streaming [1]. Until
recently network operators have prioritised power management and cost min-
imisation over capacity maximisation [2,3]. However, the recent surge in high
data-rate traffic [1] has prompted a switch from cost minimisation to capac-
ity maximisation as carriers and operators struggle to cope with the increased
demand.

Traditional network deployments are characterised by a distribution of high-
powered transmitters (known as Macro Cells) placed on a hexagonal grid pattern
to maximise coverage [4]. User Equipments (UEs) greedily attach to whichever
cell provides the strongest signal. Cells then transmit data to all attached UEs by
sub-dividing available bandwidth amongst them. A higher number of attached
UEs per cell results in higher congestion, thus reducing the bandwidth. Con-
sequently, each UE receives less data as congestion increases [4]. A standard
c© Springer International Publishing Switzerland 2016
G. Squillero and P. Burelli (Eds.): EvoApplications 2016, Part I, LNCS 9597, pp. 219–234, 2016.
DOI: 10.1007/978-3-319-31204-0 15



220 M. Fenton et al.

method for dealing with increased demand is to increase the density of cells in
the network.

Heterogenous Networks (HetNets) are multi-tiered cellular network deploy-
ments comprised of Macro Cells (MCs) and Small Cells (SCs) where both cell
tiers operate on the same bandwidth. SCs transmit at a lower power and have a
smaller operational range than MCs. They are employed to supplement the MC
tier by offloading User Equipments (UEs), thus easing network congestion. SCs
are often deployed in an ad-hoc manner by business owners in high-traffic areas
such as restaurants, cafés, and shopping malls. As such, network operators may
not necessarily have control over their placement [5].

Since SCs will be sub-optimally distributed, network operators seek to vary
cell parameters in order to optimise the overall state of the network. One method
of network optimisation is the notion of control algorithms [2,3,6–8]. These con-
trol algorithms either operate locally on individual cells or globally through a
central server to manage the state of the network. In this study we expand
on previous works by the authors [9] which used Grammatical Evolution (GE)
[10,11] to evolve optimal SC settings for network load balancing. While results
were highly optimal, the major limitation of this work was that it was necessary
to do a full evolutionary run to find good settings. In this paper we adopt a sym-
bolic regression approach to search the space of SC control functions, allowing
for optimisation of SC settings on the fly, in a fraction of the time.

The remainder of this paper is structured as follows. A detailed definition of
the problem is given in Sect. 2. Section 3 will give an overview of HetNet opti-
misation under the 3GPP standard, including a description of grammatical GP.
Our approach summary is detailed in Sect. 4, including descriptions of our sim-
ulation environment (Sect. 4.1), grammatical representation (Sect. 4.2) and our
fitness function (Sect. 4.3). Experimental studies are described in Sect. 4.4, and
the results are discussed in Sect. 5. Finally, our conclusions and recommendations
for future work are given in Sect. 6.

2 Problem Definition

Optimization of HetNets involves varying parameters of the network such that
some objective is satisfied, usually the maximisation of overall UE throughput
(with fairness). While MCs are invariant, SCs have adjustable parameters that
can affect UE attachment [5]. Each SC s can vary its power Ps in order to
modulate its operational range (the area in which it is the strongest serving cell).
However, under the 3rd Generation Partnership Project - Long Term Evolution
(3GPP-LTE) framework [4], SCs have an additional variable parameter that
affects UE attachment, namely the Cell Selection Bias (CSB), βs.

The CSB is a mechanism which artificially increases the effective range of the
SC. UEs in this “expanded region” of the SC will attach to the cell in deference
to their better serving MC for the global good of the network. A UE u will
therefore attach to a cell k in accordance with the attachment rule in Eq. 1:
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k = arg max
i

(Sui + βi). (1)

where Sui is the perceived signal strength of cell i for UE u, βi = 0,∀i ∈ M,
the set of all MCs, and βi ≥ 0,∀i ∈ S, the set of all SCs [8]. Note that Pi (the
transmitting power of cell i) is subject to path loss such that the signal strength
perceived by u is given by:

Sui = Pi[dBm] + Gui[dB], (2)

such that Gui is the signal gain from cell i to u, see Sect. 4.1.
Cells transmit data during 1 ms intervals with each interval referred to as a

subframe (f). During each subframe, a cell will transmit data across the available
bandwidth to all attached UEs. Transmitted data primarily consists of packets
of data, along with some minimal control signals. A full frame F consists of 40
subframes (i.e. 40 ms of network run-time).

The performance of UE u in any given subframe f is quantified by the down-
link rate Ru,f (in bits/sec, bps) from a cell i to u. Shannon’s formula gives the
downlink rate for wireless transmission in the presence of noise as [12]:

Ru,f =
Bi

Ni,f
∗ log2(1 + SINRui,f ) (3)

where Bi is the available bandwidth, Ni,f is the total number of scheduled UEs
attached to cell i for subframe f , and SINRui,f is the Signal to Interference and
Noise Ratio (the ratio of the received signal strength to the sum of all interfering
signal strengths from all other cells in the network including background thermal
noise) from source cell i to UE u in subframe f . Note that the available band-
width across which the cell can transmit is divided by the total number of UEs
attached to that particular cell. Therefore, the greater the number of attached
UEs to a cell, the less bandwidth will be available to each individual UE [13].

Since by definition any UE within the expanded region of a SC (the addi-
tional area served by the SC due to its non-zero CSB) must experience significant
interference from their strongest serving MC, provision has been made in recent
3GPP releases [4] for an enhanced Inter-Cell Interference Coordination (eICIC)
mechanism for HetNets implementing CSBs. This mechanism mitigates inter-tier
cell edge interference by employing Almost Blank Subframes (ABSs) [8]. With
ABSs, MCs periodically mute across their entire bandwidth (save for some neg-
ligible but necessary control signals), thus giving nearby SCs quiet subframes in
which they can transmit with greatly reduced interference. UEs in the expanded
region of SCs (those UEs who are most vulnerable to interference from neighbor-
ing MCs) experience greatly improved SINR during ABSs and, therefore, receive
greater throughput. Unfortunately, UEs attached to MCs that are implementing
ABSs will receive no data transmissions during muted SFs.

Control algorithms which adjust SC power and bias settings have been used to
optimise HetNets [6]. Increasing or decreasing the operational range of individual
SCs can change the number of attached UEs, thereby affecting global network
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performance. Control algorithms can be designed to operate centrally across
an entire network or independently on individual cells [6,7]. This study will
focus on generating control algorithms for individual SCs. Each SC will run the
same algorithm that is capable of adjusting both power and bias settings based
measurement reports collected by the SCs.

3 Previous Work

Release 10 of 3GPP [4] describes eICIC conceptually but does not specify meth-
ods for configuring ABS patterns, setting SC powers and CSBs or scheduling
UEs, as these are non-trivial tasks. Deb et al. prove (Sect. 4-A) that optimising
ABS patterns alone is an NP-hard problem, even for minimal networks with a
single MC and multiple SCs [8]. Huge growth forecasts [14] for the SC market
motivate algorithms which can maximise the benefits from eICIC. The litera-
ture describes three resource allocation problems which jointly determine the
performance of HetNets implementing eICIC [15]. They are:

1. setting SC powers and CSBs to ensure optimal offloading from the MC tier,
2. setting ABSrs to protect UEs at SC edges, and
3. scheduling SC attached UEs so that protected resources (ABSs) are optimally

utilised.

A number of contributions address one or multiple components of this joint
optimisation problem.

Tall et al. proposed a stochastic approximation technique to optimise SC
CSBs and the ABSrs of MCs [3]. They first derived a Self Organising Net-
work (SON) load balancing update function that minimised the load imbalance
between MCs and SCs. It computed CSB adjustments based on averaged load
statistics and operated in a distributed manner across SCs. Stochastic Approxi-
mation theorems from Combes et al. [16] proved that their SON converges to the
set of optimal CSBs. The authors also derived update equations from a propor-
tional fair utility of UE throughputs in order to optimise MC ABSrs. Simulations
showed that the load balancing SON, in combination with the ABSr optimisation
SON from the second implementation above, achieved the best tradeoff between
overall network throughput and cell edge throughput (i.e. fairness).

Deb et al. formulated the eICIC optimisation problem as a non-linear pro-
gramming (NLP) problem [8]. They adopted the proportional fair sum logarithm
of UE throughputs used by [3]. This utility function negotiates a tradeoff between
fairness for cell edge UEs and maximisation of overall network throughput [17].
The authors simulated their algorithm using a realistic HetNet deployment in
Manhattan. The 5th percentile of UE throughputs was improved by more than
50 % under eICIC without significant throughput losses for MC attached UEs.
However, their algorithm requires measurement statistics from each UE’s best
serving SC and MC, but in reality UEs only attach to one cell [18].

As the problem is NP-hard and the structure of the solution is unclear it
presents an opportunity for Genetic Programming (GP), a heuristic technique
in Evolutionary Computation (EC).
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3.1 Grammatical Genetic Programming

Grammatical Genetic Programming is a subset of GP techniques which use a for-
mal grammar to define the terminal sets [19]. The use of a grammar means that
programs can be generated in an arbitrary language [10,11,20]. Grammatical
GP methods draw metaphorical inspiration from the principles of evolutionary
and molecular biology to create machine executable solutions for a diverse spec-
trum of problems [20]. In contrast to canonical GP [21], where solutions are
represented directed by parse trees, Grammatical GP techniques use a formal
grammar to map from genotype to phenotype. Solutions can be generated using
derivation trees [19,22] or using variable-length integer strings (chromosomes)
[10,11] to map to programs (phenotypes) using a Backus-Naur Form (BNF) [23]
grammar definition [24]. A key strength of these grammar-based techniques is
that bias can be incorporated into the grammar to guide the search towards
more desired solutions.

Grammatical GP methods such as Context-Free Grammatical GP (CFG-GP)
[19,22] and Grammatical Evolution (GE) [10,11] have been successfully applied
to financial modelling [25], structural engineering [26–28] and indeed HetNet opti-
misation [2,9,29,30]. Such flexibility is possible because problem specific domain
knowledge can be incorporated into the grammars. This heuristic approach is
appropriate for problems that do not easily admit analytic treatment, i.e. those
where complete domain knowledge is lacking, or for dynamic environments [20].

3.2 Coverage Optimisation

A number of EC techniques have been applied in the field of telecommunications
networks [31], but there have been relatively few in the area of coverage optimi-
sation. Ho et al. applied GP to optimise the coverage of femtocell deployments
(SCs with a range of several meters that are designed to support plug-and-play
deployment) in enterprise environments [6]. Cell powers must be set in order to
achieve load balancing and minimisation of coverage gaps and signal leakage.
This problem is multi-objective with conflicting objectives since, for example,
increasing power to reduce coverage gaps may increase leakage. The authors
evolved programs that adjusted the power on individual femtocells based on
local measurement statistics. Solutions responded sensibly to network conditions.
This study represents a proof of concept that controllers can be automatically
generated for wireless networks.

Hemberg et al. also examined a variety of different grammars on the related
HetNet coverage optimisation problem [2,29,30]. In these instances, the three
conflicting objectives of mobility minimisation (number of UE hand-overs), load
balancing, and cell power minimisation (leakage) were jointly optimised for var-
ious indoor femtocell deployment scenarios using the multi-objective optimisa-
tion algorithm NSGA-II [32]. The authors found in [29] that the weighted fitness
function used in [6] caused premature convergence to local optima, and they
employed a symbolic regression approach in [2] to evolve femtocell power con-
trol equations. The grammar combined smooth and non-linear functions so that
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a wide range of non-trivial behaviours were accessible to evolved solutions. In
[30] the authors compared a symbolic regression grammar, a grammar consisting
exclusively of conditional statements and a hybrid combining both conditionals
and functions. The purely conditional grammar allowed discrete power changes
and was found to converge faster than the less constrained symbolic regression
grammar. The combined grammar was slowest to converge and evolved solutions
exhibited significantly worse fitness over all scenarios. It was noted that less
domain knowledge is required for symbolic regression grammars but engineers
favour the easily interpretable conditional solutions [6]. Finally, the utilities of
control programs evolved using GE were found to match and sometimes exceed
those achieved by partial enumeration of the search spaces.

There are two main differences between coverage optimisation and eICIC
optimisation problems. Firstly, the objective function is univariate in eICIC
because our goal is simply to maximise network capacity with fairness, while
coverage optimisation observes a multivariate objective. Secondly, we currently
have three degrees of freedom in eICIC: SC powers, SC CSBs and MC ABS
patterns, as opposed to the single variable of SC powers. With this in mind, we
now describe our simulation environment for a HetNet that implements eICIC.

4 Experimental Setup

4.1 Simulation

The simulation environment covers a 3.61 km2 area of Dublin City Centre
(Fig. 1), with a resolution of 2 m2. A total of 21 MCs are placed on a hexagonal
grid, with 79 SCs scattered randomly across the map. The random placement of
SCs accounts for their ad-hoc deployment, since the manufacturer (or indeed the
carrier) may have little control over their placement. UEs are distributed on the
map with an average density of 60 UEs per MC sector, giving a total of 1,260
UEs. UE hotspots are modeled as dense congregations of between 5 to 25 UEs,
such that 20 % of all UEs are located in hotspots. Hotspots are distributed at
randomly selected SC locations with a probability of 90 %. Otherwise they are
placed randomly on the map, thus simulating the tendency of business owners
to deploy SCs in high-traffic areas.

An environmental encoding is generated from a Google Maps [33] screenshot
of the region served by the network. The encoding recognises four environmental
categories: buildings, bodies of water, parks, and roads/footpaths. UEs and SCs
are not placed in bodies of water, but their placement in all other locations
respects a uniform distribution (subject to the distribution of hotspots). A 2-
dimensional signal gain path loss matrix Gi is then calculated for each cell i.
Path loss is based on cell location, cell gain, shadow fading, and environmental
obstacles such as buildings. The signal gain from a cell i to a location [x, y] is thus
indexed by G[i, x, y]. UE locations do not change throughout the optimisation
procedure, with all UEs requesting data constantly (a “full-buffer” model).

The power range for a SC is 23–35 dBm, while the bias βs can vary from
0–15 dBm. No cell can be completely turned off/muted. In this study we allow
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Fig. 1. Simulated coverage area of network deployment.

SCs to adopt non-zero CSB only if their power is already at a maximum, thus
minimising the number of SC expanded regions, more formally defined in Eq. 4:

βs =

{
0 if Ps ≤ Ps max

≥ 0 if Ps = Ps max

,∀s ∈ S. (4)

The set of UEs attached to a cell i is denoted by Ai. The set of UEs for
whom cell i is the strongest serving cell of its tier based solely on received power
(those UEs that have the potential to attach to i, i.e. Eq. 1 when βi = 0) is
denoted by Pi. The set of UEs attached to SC s who are in the expanded region
of s is denoted by Es. Note that Ai ⊂ Pi and Es ⊂ As. We denote by NX the
cardinality of the set X .

ABS. The ratio of the number of ABSs to non-ABSs in a full frame is known
as the ABS ratio (ABSr) [3]. This is defined as:

ABSrm =

⎡
⎢⎢⎢⎢

∑

s∈S
N(Es∩Pm)

(
∑

s∈S
N(Es∩Pm)

)

+NAm

× 8

⎤
⎥⎥⎥⎥

8
. (5)

Note that this ratio is sensitive only to the ratio of UEs within a single MC
sector.

Release 10 of the 3GPP-LTE framework [4] cites eight distinct ABS patterns
that can be used (shown in Table 1). While these patterns can be combined in
any fashion to suit given ABSrs, since there are only eight patterns ABS ratios
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must consequently be multiples of 0.125. A MC can never be completely blanked
for a full frame (i.e. no MC can run an ABSr of 1; the maximum ABSr is 0.875),
and for this study a minimum ABSr of 0.125 is set for all MCs (i.e. no MC can
run an ABSr of 0).

Table 1. There are eight possible ABS patterns [4]. The patterns are isomorphic to a
full frame of 40 SFs. 1 indicates MC transmission, 0 indicates an ABS.

ABS pattern 1 0111111101 1111110111 1111011111 1101111111

ABS pattern 2 1011111110 1111111011 1111101111 1110111111

ABS pattern 3 1101111111 0111111101 1111110111 1111011111

ABS pattern 4 1110111111 1011111110 1111111011 1111101111

ABS pattern 5 1111011111 1101111111 0111111101 1111110111

ABS pattern 6 1111101111 1110111111 1011111110 1111111011

ABS pattern 7 1111110111 1111011111 1101111111 0111111101

ABS pattern 8 1111111011 1111101111 1110111111 1011111110

For the purposes of this study, each UE u attached to cell i is scheduled to
receive data transmissions in all subframes within a full frame for which they
have an SINRui,f > 1 for every subframe f ∈ F , the full frame (i.e. they are
receiving more signal from their host cell than interference from the rest of the
network). Note that muting of MCs during ABSs affects SINR for all UEs as
the sum of all interfering signals diminishes. A UE u can not be scheduled to
receive data transmissions from a cell i during a subframe f if their SINRui,f is
less than 1 as this would result in a transmission outage and their data packets
would be dropped. Since intelligent scheduling can have a significant effect on UE
downlink performance [34], we wish to remove any variability in the simulation so
that any performance improvement may be definitively ascribed to the evolved
optimisation algorithm.

Finally, since the Shannon formula defined in Eq. 3 gives the downlink rate
(in bits/sec)for a UE for one particular subframe, the total received downlink
for a UE across a full frame F is averaged across all 40 subframes in the frame:

Ru avg =

∑
f∈F

Ru,f

40
. (6)

4.2 Grammar

Since MC powers are invariant, it is desirable that SCs should operate
autonomously and regulate their output in accordance with some measurements
about their environment. SCs obtain this environmental information through
reports from both attached UEs and local MCs. Each UE u attached to a SC s
reports specific information back to the SC:
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– SINRus,F , the array of all SINRs across the full frame for UE u
– the id of the UE’s strongest serving MC
– Ru avg (Eq. 6)

With this information the SC has a profile of its surrounding environment.
The SC collates a list of the nearby MCs from all attached UEs. The SC area
is then sub-divided into individual MC sectors (i.e. areas where individual MCs
are the strongest serving MCs).

Each MC m within the SC s region is then queried for further information:

NAm
, (7)

the number of m attached UEs,

N(Pm∩As), (8)

the number of s attached UEs who are in the MC m sector,

avg Rm, (9)

the average downlink rates of all m attached UEs,∑
u∈Am

log(Ru avg), (10)

the sum of the log of the downlink rates of all m attached UEs (a logarithmic
scale is used to reward solutions that achieve fairness; changes in the throughput
of the worst performing UEs will be highlighted but decreases in performance of
the best UEs are less critical),

avg R(Pm∈As), (11)

the average downlink rates of all s attached UEs who are in the MC m sector,
and ∑

u∈(Pm∩As)

log(Ru avg), (12)

the sum of the log of the downlink rates of all s attached UEs who are in the
MC m sector.

Furthermore, each SC s can provide further information about itself:

NAs
, (13)

the number of s attached UEs,

avg Rs, (14)

the average downlink rates of all s attached UEs, and
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∑
u∈As

log(Ru avg), (15)

the sum of the log of the downlink rates of all s attached UEs.
A grammar (as shown in Fig. 2) was then written for a typical symbolic

regression application [21]. The grammar is capable of producing formulae
using basic mathematical expressions: +,−,×,%, sin, cos, tan, log, sqrt. These
are used to build arithmetic compositions of the SC-specific values defined in
Eqs. 7 to 15, as outlined in Table 2.

Since the values given in Table 2 are defined per MC in a SC sector, evaluation
of the function derived from the grammar generates a numerical value for each
MC sector within the SC region. The sum of all such generated values per SC is
then used as an update value Us for the power and bias of SC s (as defined in
Eq. 16, subject to Eq. 4).

<expr> ::= <reg> | <reg> | <val> <op> <val> | <val>

<reg> ::= (<expr> <op> <expr>) | <fn>(<expr>)

<op> ::= + | - | * | %

<fn> ::= sin | cos | tan | log | sqrt

<val> ::= <epsilon> | N_m | N_s | N_ms |

s_log_R | m_log_R | ms_log_R |

avg_R_s | avg_R_m | avg_R_ms

<epsilon> ::= 0.000<n><n><n>

<n> ::= 0|1|2|3|4|5|6|7|8|9

Fig. 2. Grammar for evolution of HetNet control algorithms.

Table 2. Cell-dependent grammar elements

Grammar element Meaning

N m NAm

N s NAs

N ms N(Pm∩As)

avg R m avg Rm

avg R s avg Rs

avg R ms avg R(Pm∩As)

s log R
∑

u∈As

log(Ru avg)

m log R
∑

u∈Am

log(Ru avg)

ms log R
∑

u∈(Pm∩As)

log(Ru avg)

epsilon Constant, from 0.000000 to 0.000999
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Us =
∑

m∈M
eval(exprm). (16)

All SCs are initialised with minimum power levels and bias of 0 in order to
fairly compare solutions between individuals. Note from Eq. 4 that the power
and bias of a SC can be treated as a single entity, as any increase in power past
the upper power limit of a SC is translated as an increase in bias.

The objective of this grammar is to provide a single optimization algorithm
which can be applied to all SCs in the network deployment (rather than indi-
vidual algorithms tailored for specific cells). This control algorithm will set the
power or bias of the SC based on the evolved parameters. The same algorithm
will be run on all SCs across the entire network (i.e. solutions must be generalized
and not tailored to individual cells).

4.3 Fitness Function

The performance of a network instance (i.e. a network state with fixed powers,
biases, and UE attachments, running for a single full frame) is calculated from
the data throughputs of the UEs via:

Performance =
∑
u∈U

log(Ru avg). (17)

A logarithmic scale is used in order to magnify the changes in Ru avg of the
worst performing UEs. Any decrease in throughput of the best performing UEs is
deemed relatively unimportant by this fitness metric, as the focus is on improving
the performance of those worst performing UEs. The objective of evolved control
algorithms is to maximise this performance metric. The fitness of an individual
solution is given by the change in the performance of the network from its initial
state to its optimized state after the algorithm is run:

Fitness = avg

(∑
u∈U

log(Ru avg)post opt
−

∑
u∈U

log(Ru avg)pre opt

)
(18)

This fitness is averaged across multiple scenarios in order to evolve solutions
which are generalisable.

4.4 Evolutionary Setup

Experiments in this paper adhere to the recommendations of Hemberg et al. [2].
Each individual is evaluated across 10 different scenarios in order to ensure general-
izability of solutions. Each scenario is characterized by a different UE distribution
(subject to the distribution of hotspots, as described in Sect. 4.1). Evolutionary
parameters are shown in Table 3. SC powers and biases for each scenario were ini-
tialized at 23 dBm and 0 dBm respectively.
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Table 3. Evolutionary parameter settings

Number of runs: 50

Pop. Size: 100

Generations: 100

Initialisation: Sensible

Max tree depth: 10

Crossover type: Subtree

Crossover probability: 70 %

Mutation types: Subtree & Point

Selection: Tournament

Tournament size: 2

Replacement: Generational with Elites

Elite size: 1

A list of all previously evaluated phenotypes per evolutionary run is retained.
If a phenotype has already been evaluated in the evolutionary process then
it is discarded and a new randomly initialised individual is inserted into the
population in its place. This ensures that all 10,000 evaluations in a single run
are unique. The net result of this is that a much wider search area is covered,
since the evolutionary process does not waste time re-evaluating known solutions
as the best of these exist in the form of elites [29,35].

5 Results and Discussion

The results of the evolutionary runs are shown in the graph in Fig. 3, which
displays the average of the best fitnesses across each run as generations progress.

The best evolved algorithm is described in Eq. 19. Note that the control
algorithm is run independently on each SC s ∈ S, and that it must be run once
for each MC m ∈ M which intersects with the area of influence of s (as described
in Sect. 4.2).

Us =
∑

m∈M

( ∑
u∈(Pm∩As)

log(Ru avg)

)
+ N(Pm∩As)

NAs

(19)

The primary method to evaluate success of a strategy is through analysis of a
Cumulative Distribution Function (CDF) graph of the log of the downlink of all
UEs in a scenario of the network. Figure 4 compares the evolved strategy against
a number of benchmark methods of setting SC powers and biases. A number of
observations can be made from Fig. 4:
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Fig. 3. Average best fitness across all runs, including standard deviation of average
best fitness across all runs.

– The height of the lowest portion of any curve represents the total number of
UEs in the network for whom SINRmax < 1 and, thus, cannot be scheduled
for any data transmissions.

– The red curve (minimum power, and bias of 0 dBm) represents the CDF of
pre-optimised log Ru avg,∀ u ∈ U . It can be seen to begin not at the origin
of the y-axis, but at a level of y = 0.0722. This indicates that there are 91
UEs in the original pre-optimised network for whom SINRmax < 1 and, thus,
cannot be scheduled for any data transmissions.

– Since log 0 is undefined, the performance metric of a network state (as
described in Eq. 17) does not account for those UEs who cannot be scheduled
to receive any data transmissions (i.e. those UEs that have a data through-
put of 0 bps). Thus, easy improvements can be made to the fitness of the
network by increasing the number of scheduled UEs. The evolved algorithm
generates significant improvement in fitness by increasing the overall number
of scheduled UEs, more than any of the benchmark methods.

– Since the fitness function (as defined in Eq. 18) operates on a logarithmic
scale, the greatest gains can be made by increasing the throughput of the
worst performing UEs in the network. It can be seen that the black curve
lies to the right of and below the majority of the other curves, indicating
a significant increase in performance for all UEs. This desirable behaviour
emerges automatically and is not explicitly rewarded by the fitness function.

– While setting all powers and biases to maximum levels (as shown by the
dashed green line) results in marginally improved performance for the majority
of UEs over the evolved method, the evolved method can schedule more UEs
overall, leading to a better fitness.
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Fig. 4. Cumulative Distribution Function graph of logRu avg, ∀u ∈ U , the set of all
UEs. The black line represents the performance of all UEs under the evolved algorithm.
Red, orange, green, and blue lines represent various baseline methods of setting powers
and biases(Color figure online).

6 Conclusions and Future Work

Grammatical GP has been shown to be capable of successfully evolving con-
trol algorithms for HetNets which give acceptable performance. Analysis of the
performance of best evolved algorithm shows that not only does it improve the
throughput of the worst performing UEs in the network, but that it also recon-
figures the network such that the number of UEs who cannot be scheduled (due
to SINRu,max < 1) is minimised. This is a critical issue, as fairness is a desirable
quality in cellular network performance [4].

A number of areas for further study have been identified as a result of this
work:

– At present, all UEs are scheduled to receive data transmissions from their
hosting cell in every subframe f where they have an SINRui,f > 1. Significant
improvements in UE throughput are expected by more intelligent scheduling
methods.

– The function for describing ABS is a simple model. It is possible that further
network improvements can be made by evolving optimal ABS functions.

– Optimisation of networks for minimal transmission outages (i.e. minimise the
number of UEs for whom SINRmax < 1) has been described in this paper,
but has not been fully realised here as this was not the main objective of
the fitness function. The evolution of control algorithms for minimisation of
transmission outages would be a worthwhile study.
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