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ABSTRACT
Network operators are struggling to cope with exponentially
increasing demand. Capacity can be increased by densifying
existing Macro Cell deployments with Small Cells. The re-
sulting two-tiered architecture is known as a Heterogeneous
Network or ‘HetNet’. Significant inter-tier interference in
channel sharing HetNets is managed by resource interleaving
in the time domain. A key task in this regard is scheduling
User Equipment to receive data at Small Cells. Grammar-
based Genetic Programming (GBGP) is employed to evolve
models that map measurement reports to schedules on a
millisecond timescale. Two different fitness functions based
on evaluative and instructive feedback are compared. The
former expresses an industry standard utility of downlink
rates. Instructive feedback is obtained by computing highly
optimised schedules offline using a Genetic Algorithm, which
then act as target semantics for evolving models. This pa-
per also compares two schemes for mapping the GBGP parse
trees to Boolean schedules. Simulations show that the pro-
posed system outperforms a state of the art benchmark and
is within 17% of the estimated theoretical optimum. The
impressive performance of GBGP illustrates an opportunity
for the further use of evolutionary techniques in software-
defined wireless communications networks.
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1. INTRODUCTION
Wireless traffic is growing exponentially. Cisco Systems,

Inc. forecast a sixfold rise in demand by 2020 due to the
proliferation of smart devices and the shift from voice to
multimedia traffic [3]. Operators such as Vodafone Group,
plc must increase the capacity of their networks in order to
keep pace with this trend.
In traditional single-tiered networks, data is transmitted

to User Equipments via high-powered antennas called Macro
Cells (MCs) which are distributed on a hexagonal grid pat-
tern. Note that any network-connected device, such as a
smartphone or tablet, is denoted a ‘User Equipment’, or
‘UE’ for short. MCs are susceptible to high load which oc-
curs when too many UEs request data simultaneously. Small
Cells (SCs) have been proposed as a means of offloading
UEs from strained MCs [2]. SCs are low-powered antennas
which absorb UEs from the MC tier in concentrated traffic
hotspots. When operating jointly, SCs and MCs constitute
a Heterogeneous Network (HetNet).
MCs and SCs share the same bandwidth in co-channel

HetNets. Spectral efficiency is valued by operators because
bandwidth is expensive and scarce [1]. However, SCs are
subject to significant interference from stronger MCs in co-
channel mode. Interference is mitigated in HetNets by re-
source interleaving in the time domain which is partitioned
into 1 ms intervals called subframes. Cells can transmit
packets to their attached UEs during a subframe. Now, SCs
can schedule different subsets of their attached UEs to re-
ceive data in successive subframes. Section 2.1 will describe
how capacity is increased by intelligent scheduling.
Operators currently implement greedy heuristics based on

proportionally fair scheduling. Tailoring these highly sub-
optimal methods to corner cases demands significant human
effort. Evolutionary heuristics facilitate the automatic dis-
covery of robust schedulers for arbitrary network configu-
rations. Furthermore, the solutions can be implemented at
negligible cost as a software upgrade on existing hardware.
This paper compares two different fitness functions and

two methods for generating Boolean schedules from the real-
valued outputs of parse trees. We employed Grammar-based
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Genetic Programming (GBGP) [21] with fitness functions
based on evaluative and instructive feedback, as defined in
[24]. The mappers enforced strong and weak constraints on
how much airtime UEs received from their serving cell. Runs
with evaluative feedback and strongly constrained mapping
converged to better solutions earlier. Simulations revealed
that GBGP significantly outperforms a benchmark scheme
from the wireless networks literature [19].
This paper is organised as follows. Section 2 formalises the

problem. Section 3 locates our contribution in the literature.
Our simulation environment is described in Section 4. The
methods and experiments are outlined in Section 5, with
results and discussion following in Section 6. The paper
concludes with directions for future work in Section 7.

2. PROBLEM SPECIFICATION
HetNets are spectrally efficient because both cell tiers

transmit on the same bandwidth. However, two factors
limit capacity when low-powered SCs operate in co-channel
mode alongside stronger MCs. Firstly, SCs struggle to of-
fload UEs from the high-powered MC tier. Secondly, UEs at
the edges of SCs experience severe interference from neigh-
bouring MCs.
The 3rd Generation Partnership Project–Long Term Evo-

lution framework introduced the notion of Cell Range Ex-
pansion to achieve more efficient offloading [4]. To this end,
SCs broadcast a Cell Selection Bias (β) such that βs ≥
0, ∀s ∈ S, the set of all SCs. MCs are typically overloaded
due to their high transmit power, so βm := 0, ∀m ∈ M, the
set of all MCs. Each UE u attaches to cell k:

k := arg max
c

(Signalu,c + βc), ∀c ∈M∪ S, (1)

where Signalu,c, the signal from cell c as perceived by u,
depends on the path losses from environmental obstacles,
cell gain, and shadow fading. Underutilised SCs can either
increase their power or bias to absorb additional UEs.
Cell Range Expansion aggravates the interference issue at

SC edges. Consider a UE u that attaches to s ∈ S because
βs > 0 but would otherwise attach to some m ∈ M. Then,
by definition, the interference from m will exceed the signal
from s. Therefore, u will experience a Signal to Interfer-
ence and Noise Ratio (SINRu) less than unity, resulting in
significant packet losses. The UE is said to reside in the
‘expanded region’ of s. Note that SINRu is defined as the
signal u receives from its serving MC or SC, divided by the
interfering signals from all other cells plus background noise.
SC edge interference is mitigated by forcing MCs to mute

in selected subframes. When a MC mutes we say that it ex-
ecutes an Almost Black Subframe (ABS) because it broad-
casts only minimal control signals. SC attached UEs expe-
rience greatly reduced interference when nearby MCs un-
dergo an ABS. MCs can execute conjunctions of the eight
base ABS patterns displayed in Table 1, where ‘1’ indicates
that the MC transmits and ‘0’ implies an ABS. Note that
a full frame spans |F| = 8 subframes or 8 ms of network
time1. This is a convenient interval over which measure-
ment reports can be collected to assess the network state.
See [6] for a detailed description of the enhanced Inter-Cell
Interference Coordination (eICIC) mechanism.
1For the sake of clarity and WLOG it is assumed that |F| = 8.
Schedules are simply duplicated fivefold if |F| = 40.

Subframe 1 2 3 4 5 6 7 8
Pattern 1 0 1 1 1 1 1 1 1
Pattern 2 1 0 1 1 1 1 1 1
Pattern 3 1 1 0 1 1 1 1 1
Pattern 4 1 1 1 0 1 1 1 1
Pattern 5 1 1 1 1 0 1 1 1
Pattern 6 1 1 1 1 1 0 1 1
Pattern 7 1 1 1 1 1 1 0 1
Pattern 8 1 1 1 1 1 1 1 0

Table 1: Base ABS Patterns.

In summary, inter-tier load is balanced via the Cell Range
Expansion mechanism. Prohibitive interference at SC edges
is then mitigated by MC resource interleaving in the time
domain. Heuristics for optimising SC powers and biases and
setting MC ABS patterns were outlined in [11]. Herein, we
restrict our attention the problem of scheduling SC attached
UEs, where large performance gains are expected [19, 8].

2.1 Scheduling in HetNets
Consider the toy network with two MCs and one SC de-

picted in Figure 1. UE2 and UE7 are located in the SC
centre. However, UE4 resides in the expanded region (as
suggested by gold shading) and is subject to severe interfer-
ence from MC2. Let MC1 execute ABS Pattern 1 and let
MC2 implement the conjunction of Patterns 1 and 2 from
Table 1. Hence, MC1 mutes in subframe {1} and MC2 mutes
in subframes {1, 2}.

MC1
MC2

UE2

UE7 UE4
UE9

UE3

Figure 1: Toy HetNet.

Both MCs mute in subframe {1} so that UE2, UE7 and
UE4 enjoy a high SINR from their serving SC. By also mut-
ing in subframe {2}, MC2 grants extra protected airtime to
UE4 in the SC’s expanded region. In the remaining sub-
frames {3...8} both MCs transmit resulting in high interfer-
ence (and low SINR) for the SC attached UEs. Shannon’s
formula [23] gives the downlink rate (Ru,f ) that will be ex-
perienced by UE u in subframe f via,

Ru,f = B

Nf
×Qu,f , (2)

where B = 20 MHz is the bandwidth, Nf is the number
of UEs scheduled in f (congestion) and Qu,f = log2(1 +
SINRu,f ) is the channel quality experienced by u in f . Ru,f

quantifies the rate at which data can be transferred from
the network to u in f .
Now, the reciprocal term (1/Nf ) in Equation 2 implies

that Ru,f drops linearly with each additional UE that shares
the bandwidth (B) in f . Therefore, it is generally subopti-
mal for SC s to transmit data to all its attached UEs (the set
As) in every subframe. On the other hand, if some u ∈ As is
unscheduled ∀f ∈ F , then it will receive no data. An intel-
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Figure 2: Mapping measurement reports to SC schedules.

ligent SC scheduling heuristic should negotiate the trade-off
between airtime and per-subframe congestion such that a
utility of UE downlink rates is maximised.2
Figure 2 illustrates the scheduling problem which can be

stated as follows. Measurement reports are collected from all
UEs in the network after each frame. Based on these reports,
SCs estimate the channel qualities (Qu,f ) that will be expe-
rienced by their attached UEs (∈ As) over the subsequent
frame. Each SC composes a schedule by mapping features
over the set {Qu,f |u ∈ As, f ∈ F} to a Boolean matrix. The
rightmost panel of Figure 2 depicts a feasible schedule for
the SC of our toy network in Figure 1. For instance, this
schedule states that UE4 will receive data from the SC in
subframes {1, 2} but not in {3 . . . 8}. We instrument GBGP
to learn a mapping from statistics on the set {Qu,f} at SCs
to schedules.
The performance of a scheduler is given by the sum log of

average downlink rates:

sum - log - rates :=
∑

u∈{SC UEs}

lnRavg
u , (3)

where,

Ravg
u = 1

|F|

|F|∑
f=1

Ru,f ,

is the average downlink rate for u over |F| = 8 subframes.
Notice that Ru,f and hence the overall utility depends on
the schedule through the 1/Nf term in Shannon’s formula
(2). Equation 3 expresses the standard proportionally fair
fitness metric for evaluating HetNet controllers [8, 17, 22,
25]. Operators strive for fairness because dropped calls or
slow data speeds are unacceptable from a customer satisfac-
tion standpoint.

3. PREVIOUS WORK
Scheduling problems arise in domains of operations re-

search ranging from rostering [10] and job shop scheduling
[18], to air traffic control [12]. The feasible solution space is
usually explored directly via enumerative heuristics. How-
ever, executable rules that can compute solutions on the fly
are often motivated by practical constraints.
2All UEs attached to m ∈M are simply scheduled in every non-
ABS subframe that m executes.

Jakovocić and Marasović (2012) identified the limitations
of enumerative and search-based techniques when execution
time presents as a constraint [16]. They manually designed
meta-algorithms tailored to specific job-shop scheduling en-
vironments. Evolved priority functions operate within these
meta-algorithms. Thus, domain knowledge informs the so-
lution structure but Genetic Programming automatically
uncovers the complex mapping from statistical features to
schedules. Branke et al. (2015) emphasize the importance
of carefully tailoring meta-algorithms for the application at
hand [5]. However, they acknowledge the tedious nature of
designing problem-specific heuristics and recognise the value
of automated approaches.
In [20], the authors showed that robust human-competitive

SC schedulers could be evolved with GBGP. However, our
literature review has uncovered no other papers address-
ing scheduling in HetNets under the evolutionary paradigm.
Such methods are motivated here because they yield robust
solutions in dynamic environments [27, 9]. Ho and Claussen
(2009) used Genetic Programming to optimise the coverage
of femtocell deployments in enterprise environments [15].
Femtocells are SCs with a range of several meters. Their
study represented a proof of concept that it is possible to
automatically evolve controllers for wireless networks. Hem-
berg et al. (2011-13) used Grammatical Evolution to evolve
symbolic expressions for femtocell coverage optimisation [13,
14]. The best solutions outperformed human designed heuris-
tics on two of the three objectives.
Weber and Stanze (2012) manually designed a ‘strict’ and

‘dynamic’ SC scheduler [26]. The former sacrifices all cell-
centre UEs during protected or ABS subframes. Thus, inter-
fered UEs at cell edges receive extra bandwidth when their
channel quality is highest. Cell-edge UEs are unscheduled
during non-ABS subframes, thereby liberating bandwidth
for cell-centre UEs. The dynamic scheduler allows edge UEs
to receive data during both ABS and non-ABS subframes.
Experiments showed that the dynamic scheduler achieves
a better trade-off between cell-edge rates and spectral effi-
ciency. We will see that GBGP automatically discovers the
same core strategy as this human designed heuristic.
Pang et al. (2012) proposed a scheduling method based

on dynamic programming [22]. Jiang and Lei (2012) mod-
elled the scheduling problem as a two player Nash bargaining
game in which protected (ABS) and normal (non-ABS) sub-
frames compete for UEs [17]. Finally, Deb et al. (2014) for-
mulated the problem as a non-linear programming instance
[8]. Simulation revealed that cell edge UEs gain significantly,
but, the algorithm requires information that is not readily
deduced from measurement reports [19].
GBGP can automatically discover good solutions, even for

corner cases, when guided by an appropriate fitness func-
tion. Sutton and Barto (1998) distinguish between evalu-
ative and instructive feedback [24]. The former evaluates
a solution without indicating how closely it emulates the
optimum. Instructive feedback provides the search heuris-
tic with the correct actions needed to solve a task. Fitness
functions based on both types of feedback are described in
Section 5.2.
López-Peréz and Claussen (2013) proposed the bench-

mark scheme which works as follows [19]. Each SC records
the SINRs received by its attached UEs in subframes over-
lapping and non-overlapping with the nearest MC’s muted
subframes. UEs are placed into either an overlapping queue
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or a non-overlapping queue based on their average SINR
over f ∈ F . The UEs with lowest average SINR are iden-
tified in each queue. The SC computes target queue sizes
which would equalise the rates of those worst performing
UEs. One UE is transferred from the source to destination
queue (subject to constraints) and the target sizes are re-
calculated. The above steps are iterated until the desired
queue sizes stabilise. UEs are finally scheduled according to
their queue type. This heuristic improved the 5th percentile
downlink rates of SC attached UEs by 55% compared to a
baseline method. The paper demonstrated that considerable
gains can be achieved by intelligent scheduling. We adopt
López-Peréz and Claussen (2013) as a benchmark.

4. SIMULATION ENVIRONMENT
A HetNet serving a 3.61 km2 region of Dublin city centre

is simulated. 21 MCs provide blanket coverage on a hexag-
onal grid, with 30 SCs deployed in traffic hotspots, which
materialise at random locations. Cells locations are fixed
but UEs are randomly distributed in each frame. A total
of 1250 UEs are simulated giving an average density of 60
UEs per MC sector. 30 hotspots are placed on the map,
such that they form around a SC with probability 0.9 and
at a random location with probability 0.1. Each hotspot
contains between 5 and 20 UEs. UEs that are not assigned
to hotspots materialise at random locations on the map.
MC powers are fixed at 37 dBm and they do not use bias

such that βm := 0, ∀m ∈ M. SC powers and biases are set
at the beginning of a frame using an evolved heuristic [11].
Each UE then computes the signals received from all cells
c ∈M∪ S in the network via,

Signalu,c = PTX
c +G[c, x, y], (4)

where PTX
c is the transmitting power of c in decibel milli-

watts and G[c, x, y] is the gain from c to u’s location (x, y)
in decibels. G is computed by modelling the distributions
of buildings, waterways and open spaces as they appear on
a Google Maps3 image of the physical terrain.
Each UE determines its serving cell via Equation 1. Next,

ABS patterns are set ∀m ∈ M using a heuristic described
in [11]. In order to achieve a feasible pattern, each MC com-
bines base patterns P1 to P8 of Table 1. Two constraints are
respected; firstly, each MC can neither mute nor transmit
∀f ∈ F , so the minimum duty cycle is 1/8 and the maxi-
mum is 7/8, secondly, muted subframes are ‘front-loaded’.
For example, base patterns P1, P2 and P3 are combined
if the desired duty cycle is 3/8. This second constraint re-
duces channel quality variance between adjacent subframes
[11]. Finally, SINRu,f is computed ∀(u, f) ∈ {All UEs}×F .
The simulation was used to generate the training data so

that individuals could be evaluated in standalone code. This
approach reduced the runtime by two orders of magnitude.
A training set consisting of 200 cases and a validation set
with 100 cases were saved in MAT-files. A case is simply
the SINRu,f values ∀u ∈ As over a single frame for SC s.
These data are sufficient to construct the terminal set for
GBGP and to evaluate the fitness of a candidate scheduler
(see Section 5.2.1). Training cases were saved from seven
different frames to encourage solutions that generalise well.

3https://www.google.ie/maps/@53.3450749,-6.2697249,15.3z

5. METHOD
This section describes how schedules are constructed us-

ing features extracted from channel quality reports. Two
methods for interpreting the real-valued output of the parse
trees are reviewed. Finally, two different learning regimes
based on evaluative and instructive feedback are discussed.

5.1 Construction of Schedules

5.1.1 Terminal Set
Schedulers were evolved as binary classifiers on the do-

main (u, f) ∈ As × F , where As is the set of UEs attached
to s ∈ S. A tree is evaluated for all (u, f) pairs in order to
construct the schedule for s. Twenty hand engineered fea-
tures are provided to the tree in each execution, they are
constructed from measurement reports as follows.
SC s has knowledge of the channel qualities Qu,f that

will be experienced ∀u ∈ As over f ∈ {1...8} of the coming
frame. Shannon’s formula, which was presented in Section
2.1, states that the downlink rate for u in f is proportional
to Qu,f . Therefore, since we seek to maximise a utility of
downlink rates, Qu,f is a sensible feature for inclusion in the
terminal set. Statistics on {Q∗,f} are admitted to contextu-
alise u with respect to other UEs sharing f . Similarly, the
channel qualities for u across all subframes are relevant when
deciding whether to schedule u in a particular subframe. As
such, statistics on the set {Qu,∗} are included. More global
cell-wide information is extracted from the set {Q∗,∗}. Now,
Qu,f ≤ 1 implies that the channel quality will be too low for
u to receive packets in f . The number of times (if any) u
experiences dropped calls is given by | {Qu,f |Qu,f ≤ 1} |. If
a dropped call occurs for u in f then JQu,f ≤ 1K evaluates
to True, where J. . .K denotes the Iverson bracket. Finally,
u ∈ {1 . . . |As|} and f ∈ {1 . . . 8} indicate the UE and sub-
frame being considered in the current execution.
In sum, the terminal set consists of the following features:

• Qu,f ,

•
{

statistics
(
{Q∗,f} , {Qu,∗} , {Q∗,∗}

)}
• | {Qu,f |Qu,f ≤ 1} |, JQu,f ≤ 1K, u ∈ Z, f ∈ Z

• −1.0,−0.9, . . . ,+0.9,+1.0,

where, ‘statistics’ is an operator that returns the maximum,
minimum, mean, 25th and 75th percentiles of its argument.

5.1.2 Mapping Schemes
The parse trees will return a real-valued number when

evaluated on the features for UE u in subframe f . This
signal must be interpreted as a Boolean decision specifying
whether u will be scheduled to receive data from the SC
in f or not. Two different mapping schemes were consid-
ered. Panel 2 of Figure 3 shows the decisions made by a
‘Threshold Mapper’ whereby, if Tree(features)u,f > 0 then
scheduleu,f ← True else scheduleu,f ← False. Notice that
UE2 will not receive any data because Tree(features)2,f ≤
0, ∀f ∈ F . Threshold Mapping was used to good effect in
[20], however, we will see that it gives rise to solutions that
‘play it safe’ at the expense of performance.
Panel 3 of Figure 3 illustrates an alternative mapper which

sets the largest four cells to True in each column. That
is, each UE will receive data in exactly 4 subframes out of

952



|F| = 8. Exploratory experiments suggested that an ‘Air-
time Ratio’ of 4/8 gave the best performance. GBGP need
only learn how best to interleave the T’s and F’s so that con-
gestion is optimally managed. Section 6 outlines how better
solutions emerge earlier in runs when the ‘Constrained Map-
per’ is adopted.
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Figure 3: Mapping schemes.

5.2 Fitness Functions

5.2.1 Evaluative Feedback
Equation 2 implies that Ru,f depends on the congestion in

subframe f (through 1/Nf ) and the known channel quality
Qu,f . Recall that Ru,f denotes the downlink rate or the rate
at which data is delivered from the SC to u in f . Now, since
Nf can be inferred from the schedule, it follows that Ru,f

can be determined ∀(u, f) ∈ As×F . Equation 3 then yields
contribution to the sum - log - rates from SC s. Aggregating
over all SCs in the training set gives the overall fitness of the
scheduler.
GBGP is tasked with maximising Equation 2. The model

composes schedules for all training cases and then it receives
a single scalar reward. Thus, the fitness function guides a
form of reinforcement learning based on evaluative feedback.

5.2.2 Instructive Feedback
A new schedule is required every 8 ms which renders enu-

merative heuristics impractical for real-time optimisation.
Nonetheless, a Genetic Algorithm (GA) can be executed of-
fline to generate highly optimised schedules for all SCs in the
training set. Perhaps intelligent strategies would be tapped
by GBGP if models were trained to approximate the GA-
derived schedules. Let the fitness of a model be defined as
the classification accuracy it achieves over all (u, f) pairs.
Thus, the fitness function guides a form of supervised learn-
ing based on instructive feedback. We hypothesised that
higher sum - log - rates would be realised by models trained
to emulate the GA, which works as follows.
The sum - log - rates for a schedule can be computed based

on Qu,f , ∀(u, f) ∈ As × F . These data are provided to
the GA for each SC in the training set. A GA individual
encodes a SC schedule as an integer valued array of length
8 ∗ |As|. Each codon can assume a value from the range
[1...8]. Fitness is computed by reshaping the array as an
8×|As| matrix. The largest four cells in each column are set
to True and the smallest four cells are set to False. Finally,

Equations 2 and 3 yield the sum - log - rates. The schedule
that realises the highest sum - log - rates is extracted after
75 generations and stored for later use in the GBGP runs.
Table 2 displays the GA’s tuned evolutionary parameters.

5.3 Experiments
Experiments were carried out to compare the Threshold

and Constrained Mapping schemes for models trained on
both evaluative and instructive feedback. Figure 4 presents
the grammar used in Backus-Naur Form. Four non-linear
transforms were admitted including sign(x) which outputs
1 if x ≥ 0, else −1. The logarithm and square root functions
were protected via ln(1 + |x|) and

√
|x|. Protected division,

x%y, returns x if y is zero, else x/y.

<E> ::= <R> | <R> | <R> | <terminal>
<R> ::= <arith>(<E>,<E>) | <arith>(<E>,<E>) |

<arith>(<E>,<E>) | <arith>(<E>,<E>) |
<NL>(<E>) | <NL>(<E>)

<arith> ::= + | - | * | %
<NL> ::= sin | ln | sqrt | sign
<terminal> ::= a feature from the terminal set

Figure 4: Grammar Definition.

The experimental settings for GBGP are displayed in Ta-
ble 2. Each experiment consisted of 50 independent runs.
The space of derivation trees was explored using subtree
crossover and subtree mutation. A global derivation tree
depth limit of 16 was imposed. The best model was se-
lected based on its performance on a validation set consist-
ing of 100 cells. A run with population size = 1000 and
generations = 500 took 6.5 hours on one core of a 3.2 GHz
machine. The experiments were designed to find the best
combination of mapper and feedback type for maximising
the sum - log - rates.

GBGP GA
Pop Size 1000 1500
Generations 200 75
Initialisation Sensible Random
Initial Max. Depth 6 N/A
Global Max. Depth 16 N/A
Selection Fair Tournament Tournament
Tournament Size 1% of pop size 4
Elitism 1% 1%
Crossover Subtree Two Point
Mutation Subtree Bit flip
Crossover Prob (p) p = 0.7 p = 1
Mutation Prob (p) Once per indv p = 0.05 per codon

Table 2: Evolutionary Parameters

The same network configuration with 30 SCs and 21 MCs
was used to generate training and testing data. A case is
simply the channel qualities received by UEs attached to a
SC. The training set consisted of 200 cases sampled from 7
different frames. UEs were randomly re-distributed in each
frame. Model selection was performed using a validation
set of 100 cases sampled from 4 frames. A separate test set
consisting of 3000 cases was saved from 100 frames.

6. RESULTS AND DISCUSSION

6.1 Training and Validation
Figures 5 (a) and (b) display the mean best-of-generation

fitness from 50 independent runs for each experimental set-
up. Shaded regions enclose 95% confidence intervals about
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Figure 5: Mean training and validation fitness over 50 runs with 95% confidence intervals.

Evaluative Instructive
Quantity Threshold Constrained Threshold Constrained

∆sum - log - rates 69.0 ± 7.2 75.1 ± 4.3 48.2 ± 14.3 61.3 ± 1.9
∆5th % - tile [Mbps] 0.159 ± 0.006 0.153 ± 0.008 0.146 ± 0.018 0.147 ± 0.006
∆50th % - tile [Mbps] 0.072 ± 0.026 0.102 ± 0.017 0.019 ± 0.051 0.111 ± 0.007

Table 3: Mean test performance of the 50 best-of-run models.

the means. Solid lines represent the average best fitness on
training data. Dashed lines show the average best sum - log -
rates of individuals on the validation set.
Figure 5 (a) illustrates how runs progress under evaluative

feedback. In the Evaluative-Constrained set-up, runs con-
verge to significantly higher sum - log - rates on the train-
ing and validation sets4. Furthermore, better models are
evolved earlier than in the Evaluative-Threshold experiment.
This suggests that forcing an Airtime Ratio of 4/8 subframes
simplifies the task for GBGP. Model selection is performed
by extracting the fittest individual on validation data. On
average, the best models appear at generations 328 and 357
(black bars) under Constrained and Threshold Mapping re-
spectively. Mild overfitting ensues around generation 400
when the average best fitness on the validation set con-
verges. In conclusion, Figure 5 (a) implies that trees should
be mapped subject to constraints on the schedules when
maximising the sum - log - rates explicitly through an eval-
uative fitness function.
Figure 5 (b) summarises the progress of runs guided by

instructive feedback. Exploratory experiments showed that
instructive models trained with an Airtime Ratio of 4/8
broke on unseen cases. Instead, for best performance, UEs
are scheduled for 6/8 subframes on the validation and test
cases. GBGP models achieve a classification accuracy of 1.0
if they perfectly reproduce the GA-derived schedules. Runs
using Constrained Mapping yield models which achieve an
accuracy of 0.67 on average. Runs using Threshold Map-
ping exhibit large variance and significantly worse fitness.
Nonetheless, for both set-ups, the validation sum - log - rates
increase rapidly within the first 50 generations. Therefore,
GBGP can learn intelligent strategies from the GA through
instructive feedback. Increases in classification accuracy af-
ter generation 50 do not engender higher sum - log - rates,
which plateau abruptly for both experiments. This suggests
that the GA fits highly specialised schedules which gener-
alised GBGP models cannot adequately capture.

4All statistical tests are two-sample t-tests with α = 0.05.

6.2 Test Performance
The 50 best-of-run models were assessed on unseen test

data for each experiment. Table 3 reports statistics on the
sum - log - rates and two standard performance metrics [7].
The 5th % - tile of downlink rates is a measure of the qual-
ity of service experienced by highly interfered UEs at cell
edges. Operators seek to maximise the 5th % - tile rates,
possibly by sacrificing more privileged cell-centre UEs. The
50th % - tile rates is the median downlink rate received by
all UEs. Test performance is reported relative to a baseline
scheduling strategy whereby each UE is scheduled in every
subframe. The baseline represents a naive greedy strategy.
Table 4 displays the baseline statistics on the test set.

sum - log - rates 5th % - tile [Mbps] 50th % - tile [Mbps]
18367.9 0.364 2.64

Table 4: Mean baseline statistics over 100 test frames.

Table 3 reveals that the Evaluative-Constrained runs in-
crease the sum - log - rates over baseline more than the three
other set-ups. This combination also negotiates the best
trade-off between the 5th % - tile and median rates. The clos-
est competitor is the Instructive-Constrained set-up which
exhibits similar percentile rates and lower model variance.
However, this combination yields significantly lower sum -
log - rates, which is the accepted metric for comparing the
performance of HetNet controllers. Finally, runs that use
Threshold Mapping strike a poorer compromise between the
percentile rates and they achieve lower sum - log - rates than
Evaluative-Constrained runs.

Evaluative Instructive
Constrained 150.6 ± 38.2 157.5 ± 51.5
Threshold 175.2 ± 47.0 185.1 ± 51.2

Table 5: Average number of nodes in the 50 best parse trees.

Table 5 displays the average size of the 50 best-of-run
parse trees. A one-way ANOVA implies that Threshold
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Evaluative Instructive Benchmark GA
Quantity Threshold Constrained Threshold Constrained

∆sum - log - rates 79.0 ± 6.0 80.3 ± 4.9 68.0 ± 10.3 65.5 ± 5.8 27.2 ± 12.1 96.3 ± 5.0
∆5th % - tile [Mbps] 0.161 ± 0.044 0.163 ± 0.042 0.150 ± 0.040 0.155 ± 0.040 0.109 ± 0.037 0.181 ± 0.045
∆50th % - tile [Mbps] 0.081 ± 0.044 0.101 ± 0.046 0.036 ± 0.064 0.108 ± 0.045 −0.090 ± 0.063 0.131 ± 0.044

Table 6: Comparison of methods on the test set over 100 frames.

Mapping yields significantly larger parse trees under both
types of feedback. This suggests that fitter yet less complex
models are evolved under Constrained Mapping.
Table 6 compares the best models from each set-up with

the GA and benchmark method [19], which was described
in Section 3. The best model uses Constrained Mapping
and was evolved with evaluative feedback. It achieves sig-
nificantly higher sum - log - rates than the best Instructive-
Constrained model, although the differences between 5th

% - tile and median rates are not significant. Threshold Map-
ping yields models with significantly lower median rates.
The benchmark significantly under-performs GBGP on all
fitness metrics. Notice that the benchmark trades off me-
dian rates for the 5th % - tile rates. GBGP manages to boost
downlink rates for the cell-edge UEs without sacrificing the
median rates, which are in fact increased versus baseline.
That evolved models outperform the benchmark with re-
spect to the 5th % - tile rates is impressive, given that the
benchmark was specifically designed to maximise this met-
ric. GBGP is competitive with the GA on all metrics. We
conclude that GBGP is a powerful heuristic for automati-
cally devising SC schedulers.
The GA computes a schedule for a single SC in about 20

seconds. However, the network updates every 40 ms, render-
ing the GA impractical for online optimisation. The bench-
mark runs in Python code within 1 ms. GBGP models ex-
ecute in under 0.1 ms because they exploit efficient matrix
operations. Section 7 motivates an ensemble type approach
whereby N models propose hypothesis schedules for a SC.
N can be large if each model executes quickly.
The heat maps in Figure 6 aggregate the decisions made

by the best evolved schedulers, benchmark and the GA on
100 SCs with exactly ten attached UEs. Each column repre-

sents a UE and rows represent subframes. UEs are arranged
with respect to their received channel quality, from low to
high. Hence, the first few columns represent cell-edge UEs
and the final columns correspond to cell-centre UEs. Deep
red in square (u, f) indicates that u is scheduled in f for
most of the 100 cases.

6.3 Visualising the Semantics
The heat maps reveal that all methods implement the fol-

lowing basic strategy. Edge UEs are scheduled very often in
the first subframe wherein centre UEs are sacrificed. There-
fore, the SC reserves most of the bandwidth for low chan-
nel quality UEs in the most protected subframe (more MCs
mute in f = 1 that any other subframe). Edge UEs are infre-
quently scheduled during less protected periods when their
achievable rates are low (subframes 3-8). This allows centre
UEs to compensate for the premium airtime that they con-
ceded initially. In this way, the SC fairly balances resources
between all attached UEs over the frame.
There is clearly a close correspondence between the bench-

mark and three of the best evolved models. However, the
Evaluative-Constrained model admits a distinctive tessel-
lated mosaic. These semantics are replicated in most of the
50 runs for this set-up. Therefore, the combination of evalu-
ative feedback and Constrained Mapping supports the evo-
lution of intricate strategies that could not be previsioned
by human designers. Most cells in GA’s heat map take on
a shallow colour. This confirms that the GA fits highly
specialised schedules which may be difficult for generalising
models to replicate.

7. FUTURE WORK AND CONCLUSIONS
Evolved schedulers significantly outperform a benchmark
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Figure 6: Visualising the semantics.
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scheme from the literature on standard performance metrics.
The results illustrate that GBGP is a powerful framework
for automatically discovering effective HetNet controllers.
Solutions are large black box expressions but their semantics
are easily visualised by aggregating their decisions in heat
maps. This perspective reveals a "rob from the rich and give
to the poor" resource interleaving strategy.
Future work should investigate an ensemble approach in

which several independent models generate hypothesis sched-
ules for a SC. Pilot experiments indicate that an ensemble
outperforms a single model by a large margin. Stateful mod-
els, such as recurrent neural networks, may better leverage
instructive feedback by capturing the dependencies between
successive scheduling decisions. Finally, the terminal set was
constructed by hand in this work based on domain knowl-
edge. A follow-up study could investigate the use of unsu-
pervised techniques for feature synthesis.
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