
1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 1

Evolutionary Behavior Tree Approaches
for Navigating Platform Games

Miguel Nicolau, Diego Perez-Liebana, Michael O’Neill and Anthony Brabazon

Abstract—Computer games are highly dynamic environments,
where players are faced with a multitude of potentially unseen
scenarios. In this article, AI controllers are applied to the Mario
AI Benchmark platform, by using the Grammatical Evolution
system to evolve Behavior Tree structures. These controllers are
either evolved to both deal with navigation and reactiveness to
elements of the game, or used in conjunction with a dynamic
A* approach. The results obtained highlight the applicability of
Behavior Trees as representations for evolutionary computation,
and their flexibility for incorporation of diverse algorithms to
deal with specific aspects of bot control in game environments.

Index Terms—Platform Games, Videogames, Benchmarking,
Grammatical Evolution, Behavior Trees, Autonomous Agents.

I. INTRODUCTION

Creating AI controllers for real-time platform games
presents a challenge at multiple levels. An agent must decide
the next move to make in a limited time budget, usually a few
milliseconds. Within this time limitation, the algorithm that
controls the agent must be able to both react to imminent
hazards, and also devise an action plan that allows it to
accomplish the goals that lead to winning the game.

The primary objective of this paper is to investigate the use
of Grammatical Evolution (GE) [1] to evolve Behavior Trees
(BT) [2], to deal with both aspects of real-time agent control.
In the environment employed, the Mario AI Benchmark [3],
the final goal is to reach the end of levels, avoiding enemies or
other hazards that may kill the player. Thus, the avatar (Mario)
must both react to events that happen in its proximity, and
devise a path through the level to make progress.

These two components are strongly related: both make use
of the same set of movement actions (plus, in some cases,
the shooting action). In this study, it is shown how these
can be separated (while keeping their interdependency), by
using a combination of a BT representation and a grammar-
based evolutionary approach. Two different approaches are
compared, one using the same movement actions to face both
issues, and another providing specific re-usable behaviors to
deal with reactiveness and navigation separately. The results
obtained highlight the advantages of the latter approach.

The work described in this paper extends previous studies
on the evolution of BTs for Mario AI [4], [5]; it provides
a unified set of experiments that allows a direct comparison

Miguel Nicolau, Michael O’Neill and Anthony Brabazon are with the
Natural Computing Research and Applications Group, University College
Dublin, Ireland, email Miguel.Nicolau@ucd.ie, M.ONeill@ucd.ie,
Anthony.Brabazon@ucd.ie; Diego Perez-Liebana is with the School of
Computer Science and Electronic Engineering, University of Essex, Colch-
ester, UK, email: dperez@essex.ac.uk

of those two approaches, and provides their in-depth analysis
and comparison in terms of evolvability, generalization, and
complexity of resulting controllers, leading to conclusions and
recommendations in terms of their applicability, both to Mario
AI and other games.

This document first analyzes the relevant literature, in
Section II. The various components of this study are then intro-
duced: the Mario AI Benchmark in Section III, the controller
approaches in Section IV, BT structures in Section V, and GE
and its application in Section VI. Finally, the experimental
design and results are presented in Sections VII and VIII.
Section IX draws conclusions and future work directions.

II. RELEVANT LITERATURE

Platform games are one of the most successful game genres
of all times [6], and the Mario AI environment [7], [3]
has provided an excellent platform for AI research in this
genre, over the past few years. In terms of the creation of
AI controllers that aim to maximize their final game score,
relevant literature includes: the use of rule-based agents with
higher-level, hand-designed conditions and actions [8]; the use
of cuckoo search and its comparison with a standard genetic
algorithm approach, approaching the Mario AI game as an
instance of the Traveling Salesman Problem [9]; the use of Q-
Learning with full game information, and also with minimized
enemy information for reduced search space [10]; the use of
Neural-Networks with Manifold Learning as a dimensionality-
reducing technique [11]; the evolution of finite-state machines
created with genetic algorithms [12], [13]; and the combination
of Monte Carlo Tree Search with appropriate heuristics [14].

The literature is also broad in terms of using path planning
for navigation, both in robotics [15] and in games, such as
Unreal Tournament, Quake III or Half Life [16]. One of
the most commonly used algorithms for path finding is A*,
because of its great performance, accuracy and efficiency [17].
In fact, the literature shows its recurring usage in the Mario
AI environment, such as the use of A* to manage local
navigation on the top three submissions to the 2009 Mario AI
Championship [18]; its use to determine keystrokes for high
level actions [8]; its use for navigation in combination with
Q-learning [19]; and to characterize player behavior and their
deviations from rational actions [20].

Game environments are dynamic environments, and typi-
cally provide noisy fitness. Thus is particularly the case with
Mario AI: maps generated with the same difficulty level still
have a huge range of difficulties, due to the generation of maps
which are physically complex (or even impossible) to navigate.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 2

There is a large body of research in the area of noisy fitness
environments: Jin and Branke [21] and Qian et al. [22] provide
extensive reviews in this area. Authors such as Di Pietro et
al. [23], Mora et al. [24], and Merelo et al. [25], amongst
others, have looked at this issue specifically from the point of
view of computer games as noisy fitness environments.

Grammatical Evolution has been previously applied to gam-
ing environments. Galván-López et al. [26] evolved Ms. Pac-
Man controllers, specifying high-level functions to analyze the
game environment and decide on the best course of action;
Harper [27] co-evolved controllers for Robocode Tanks.

BTs were introduced as a means to encode formal system
specifications [2], but have gained popularity as a way to
encode game AI [28]. They were used in high-revenue com-
mercial games, such as “Halo” [29] and “Spore” [30], smaller
indie games, such as “Façade” [31], and other unpublished
uses [28], illustrating their importance in the game AI world.

The work of Lim et al. [32] specifically dealt with evolving
BTs. It used Genetic Programming (GP) [33] to successfully
evolve AI controllers for the DEFCON game. Some hurdles
were encountered in this work, such as how to deal with the
exchange of typed tree structures between individuals; these,
amongst others, are addressed in the current study.

III. THE MARIO AI BENCHMARK

Super Mario Bros is a 2D platform game where the player
controls an avatar that must reach the far right end of the
level by avoiding enemies, hazards, and collecting bonus
items. Markus Persson implemented an open source version
of this game (Infinite Mario Bros), which was later adapted
by Togelius et al. [7], [3] as a benchmark for game AI, and a
framework for the different Mario AI Competitions [18], [34].

This benchmark was employed for the experiments de-
scribed in this paper (concretely the Gameplay track function-
ality of those competitions). It tests agents in multiple levels,
customizable by difficulty, type (over or underground), length,
time limit, creatures (presence or absence), dead ends, and
random seed for the automatic generation of the level.

A. Environment Information

In order to analyze the environment surrounding Mario,
the agent controller may access two matrices, one of which
provides information regarding the geometry of the level, and
the other indicates the presence of enemies (see Fig. 1).

The benchmark also provides information about the state
of the agent: its location in the level, its mode (Small, Big or
Fire), and boolean flags indicating extra information, such as if
Mario is on the ground, if able to shoot, jump, or if carrying a
turtle shell. Additional information is also available, including
the game status (running, won or lost), the time left before the
game is over, and statistics about enemies killed.

B. Mario Effectors

The agent can perform different actions at each game step.
These actions include three directions (Left, Right and Down
- Up has no meaning in this implementation), Jump, and

Fig. 1: Mario and environmental information. Both matrices
are of size 21× 21, centered in Mario.

Run/Fire. If the agent is moving right or left and the action
Run/Fire is applied, Mario moves faster. Also, when in Fire
mode, it makes the agent shoot a fireball. If Jump and Run/Fire
are applied simultaneously, Mario jumps farther.

These actions are provided by the controller as a boolean
array, allowing an action space of 25 = 32 actions (although
some of these are nonsensical, such as left and right pushed
at the same time). This array must be returned in the method
getAction(), which serves as the interface between the game
and the agent. As the game is played in real-time, the agent
needs to specify an action every 40ms or it will be disqualified.

C. Benchmark Version
Several benchmark versions have been used in the different

Mario AI competitions, with substantial differences between
them. One of the most important distinctions is the presence
of dead ends, a feature of the level that presents more than
one path to move ahead, although at least one of them is a cul
de sac, forcing the player to go back and take another route.

After the success of A* approaches at the 2009 competition,
dead end traps were introduced for the 2010 contest. This was
a clear hazard for an A* algorithm with a foresight no longer
than the size of the matrices that the environment provides.

This paper uses the 2010 version (0.1.5). The experiments
present a way to overcome dead ends, by using a dynamic A*
algorithm (Section IV-B). Karakovskiy and Togelius [3] fully
describe the dynamics of the benchmark.

IV. CONTROLLER APPROACHES

The focus of this work is on the evolution of BTs as
controllers for Mario AI. GE was able to combine the two
required aspects of the agent behavior for this game: reactive-
ness (dealing with close enemies and hazards) and navigation
(determining paths to move across the static elements in the
level). Both were dealt with using basic game movements (left,
right, down, fire) or combinations of these (see Table IV).

To analyze the importance of the navigation component
of the algorithm’s behavior, two different approaches were
studied in this research, each using a different set of routines.
In the first one, ReactiveMario (NoAstar), a combination of
reactiveness and (very basic) navigation routines are employed
to evolve the BTs. The second approach, PlanningMario
(Astar), uses a specific navigation algorithm (A*), allowing
GE to focus primarily on the reactiveness behavior. The overall
structure of the evolved BTs, as well as the integration of
reactiveness and navigation, are detailed in Section VI-A.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 3

A. ReactiveMario (NoAstar)

This first approach employs no explicit path-finding, with
the agent only focused on reacting appropriately to moving
elements in the game. Among these elements, Mario con-
siders the position of goombas, bullets, flying turtles, bonus
mushrooms and fire flowers. For this agent, GE evolves BTs
that react to these entities and navigates the agent through the
levels. This controller was submitted to the 2010 Mario AI
Competition (Gameplay track), ranking 4thout of 8 entries [3].

One of the most difficult navigational hazards are dead ends;
an example is shown in Fig. 1. Two sub-trees (UseRightGap
and AvoidRightTrap, see Table IV) were manually designed to
solve this specific problem. The latter sub-tree detects a dead
end in front of Mario and moves him back until he has left the
trap (i.e. there is no obstacle over his head). Then, the former
routine is used to find a platform which Mario can jump onto,
to overcome the trap by running through the upper part.

B. PlanningMario (Astar)

In order to employ a path finding algorithm such as A*, the
level must be represented as a navigable graph, a structure not
supplied by the benchmark. Also, the resulting graph needs
to be able modifiable, either because changes in the blocks
(which can be destroyed by Mario) or changes in the state of
the agent itself (from Big to Small, or vice-versa) can modify
the validity of old paths. Thus, it is the responsibility of the
agent to generate this graph dynamically at each step.

This section briefly summarizes the graph creation process.
For the complete description of this procedure, the reader is
referred to the previous work of the authors [5].

1) Level structure and nodes: The initial step of the al-
gorithm consists of analysing the environment matrices (de-
scribed in Section III-A). As Mario advances through the level,
the positions of fixed blocks are stored to build the level map.
As Mario is able to stand in all these blocks, a node for the
graph is added for each one of them. This allows the inclusion
of additional meta-data information, such as the type of block
(question or brick), enemies, and/or collectible items, which
can be later used for queries in the BT.

2) Graph edges: Constructing the graph for this game
comes with several challenges. First, the navigation of the level
can depend on the state of Mario (Small or Big). Second, it
must deal with the asymmetry on the edges. As the game
is played sideways, horizontal and vertical edges must be
traversed in different ways (in contrast with a top view,
zenithal perspective). The following types of links are created
for the graph, which are also shown in the example in Fig. 2.

• Walk links: Bidirectional edges that join two horizontally
adjacent nodes.

• Jump links: Unidirectional upward edges that join nodes
vertically separated by no more than 3 cells and horizon-
tally by 1 position.

• Vertical jump links: Unidirectional upward edges join-
ing nodes vertically separated by no more than 3 cells.

• Fall links: Unidirectional downward edges that join
nodes vertically separated by any number of cells and
horizontally by 1 position.

Fig. 2: Navigation graph representation. Different types of
edges: A: Walk link. B: Jump link. C: Fall link. D: Faith jump
link. E: Break jump link.

• Faith jump links: Bidirectional edges that link two nodes
horizontally separated by no more than 4 cells.

• Break jump links: Special case of jump link with a brick
block in the trajectory of the jump. Because this block
can (potentially) be destroyed, this link is included in the
graph as it can become a regular jump link.

The cost of each edge is calculated as the product of
a basic cost (Manhattan distance, i.e. the sum of absolute
differences in cartesian coordinates) and a factor determined
by the link type. As traversing some edges involves more risk
(i.e. jumping is more prone to fail than walking), higher factors
are given to more complex links. A factor of 1.5 is assigned to
any link associated with a jump, and 3.0 to break jump links
due to the extra cost involved in trying to break the brick.

Once A* can be used to generate paths to different positions
in the level, one can design actions and routines for GE to use
during the evolution of BTs. The next section gives a definition
of BTs, and how are they used for this game.

V. BEHAVIOR TREES

A BT is a structure that allows the organization of behaviors
in a hierarchical manner, decomposing an initially broad task
in several sub-trees of reduced complexity. For instance, the
behavior of a game NPC could be decomposed in different
sub-behaviors such as patrolling or attacking, all the way to
low level actions to play sounds or animations.

Fig.3 shows an example BT, such as used in this study.
Nodes can return a success or failure value to their parent
node, and are divided into two major categories: control nodes
and leaf nodes. The first control the flow through the tree,
using values from children nodes to choose the next node
to execute. They include Sequence nodes, which execute
children nodes from left to right until one returns failure;
and Selector nodes, which execute children nodes until one
succeeds. Finally, Filter nodes can modify the execution flow
in different ways (like loops, running a node until failure, etc).

Leaf nodes are Conditions and Actions. Conditions query
situations and features of the current game state, while actions
apply moves in the game. Actions usually return success, as
executing an action is normally always possible, while the
returned value of conditions depends on the query performed.

A. Behaviour Trees for Mario

For this study, the leaf nodes used in BTs are:

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 4

?

C1

A1

A2 A3

F1

Fig. 3: Example BT with sequence (→), selector (?), condition
(C), action (A) and filter (F) nodes.

• Conditions. Provide information about enemies (distance
to Mario and their type) and obstacles (type and position
of the blocks) within the observation range of the agent.

• Actions. The most useful action combinations are pro-
vided to the BT, based on those described previously
(see Section III-B). Examples are Down, Fire, RunRight
(Right and Run both pressed), NOP (no buttons pressed)
or WalkLeft. There are also actions to request paths to
specific locations, when using A*.

• Sub-trees. These indivisible units perform actions that
require a specific sequence of moves to be applied.
Examples are jumps, which require a first cycle without
pressing the jump button, and consecutive repetitions of
the move in order to make longer jumps. Sub-trees are
achieved by combining different filter and action nodes.
Fig. 4 shows the sub-tree to make long jumps to the right.
The NOP action ensures no button is pressed, and then
a Loop filter executes JumpRight a given number of
times. As the BT execution pauses until the next game
cycle when an action is reached, this sub-tree will press
the jump button for a certain number of game cycles.

JumpRight

JumpRightLong

NOP Loop

Fig. 4: Sub-tree for executing long jumps to the right.

Table IV includes all conditions, actions, filters and sub-
trees designed for the agent, and available to the evolutionary
algorithm. Note that some sub-trees are only available for con-
trollers without A*. These are used for navigational purposes,
which are taken care of by A* routines in the other controllers.

B. Behavior Tree XML Structure

The BTs used are stored in XML files. This implies that the
agent must be able to read these files and, more importantly,
there is a concrete file structure that must be generated by GE.

The structure of the XML file is hierarchical, defining the
type of each node and the operation that it represents. Listing 1
shows the (simplified) XML code of the sub-tree in Fig. 4.

<?xml version=”2.0” encoding=”UTF−8”?>
<Node Type=”Sequence”>

<Node Type=”Action” Operation=”NOP”/>
<Node Type=”Filter” Filter Type=”Loop” Times=”9”>

<Node Type=”Action” Operation=”JumpRight”/>
</Node>

</Node>

Listing 1: JumpRightLong sub-tree XML

VI. GRAMMATICAL EVOLUTION

The syntax of the BT controllers can be quite complex, as
seen in Listing 1. Also, the variety of control and leaf nodes
requires a system that can ensure the syntactic correctness
of the evolved controllers, and also incorporate some domain
knowledge if possible (explained below). These are require-
ments easily achievable with the Grammatical Evolution [1]
(GE) system, hence its choice to evolve the BT controllers.

While similar to GP [33], GE evolves linear numerical
strings, and maps these to syntactically-correct solutions,
through the use of a context-free grammar.

GE has comparable performance with GP for symbolic
regression problems [1], but its grammar provides extra control
of the syntax of solutions, both in terms of biases [35], [36]
and data-structures used. This allows GE to be applied to a
variety of problem domains, such as Financial Modeling [37],
animation optimization [38], or game controllers [27].

A. Generating Behaviour Trees with GE
1) BT Structure: The BT (XML) syntax was specified

in the grammar, with all conditions, actions, sub-trees and
filters. In earlier experimentation, GE was free to combine
these, but this approach proved to be too flexible: with no
structural guidelines, most trees were badly structured (such as
sequences of sequences, with NOP actions at their leaves), non
human-readable, and computationally demanding to execute.

To avoid these issues, the syntax of BTs was limited through
the grammar. While still of variable size, BTs are contrived
to follow an and-or tree structure [39], much like a binary
decision diagram [40], which is a recommended [41] way of
building BTs for game AI. The following structure was used:

• The root node is a selector, with a variable number of
Behavior Block (BB) sub-trees, encoding sub-behaviors;

• Each BB consists of a sequence of one or more condi-
tions, followed by a sequence of actions or sub-trees;

• A last (unconditioned) BB, which is either a sequence
of actions and sub-trees, or a default navigation behavior
(when using A*).

Fig. 5 exemplifies the syntax described. At the beginning
of the BT execution, the root selector chooses the leftmost
BB. If its associated conditions fail, the execution follows in
a left-to-right priority order. As the conditions provided are
complex representations of the game state, the grammar limits
the number of associated conditions of each BB to one or two,
leaving the number of actions and sub-trees unlimited.

Fig. 5: Structure of evolved BTs.

The default BB is the right-most block. Thus, it is the one
with the lowest priority, only being executed if all the previous

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 5

blocks were not. Its contents depend on the navigation used:
without A*, it is simply composed of a sequence of actions,
without associated conditions.

If A* is used, however, it is composed of the behavior
DefaultGoRight, a selector with two sub-trees, shown in
Fig. 6. The first (Default Path Planner) establishes if
a new path is required, and calculates that path (with a default
behavior of jumping to the right, if it was not possible to
calculate a new path). The second (Path Follower) checks
if a path was set, and executes actions to follow that path.

Fig. 6: Sub-tree for path planning. It calculates, if needed, the
path to the rightmost position available.

2) Grammar Design: With the syntax described above,
each BB becomes a self-contained structure, and it makes
sense to allow individuals to exchange these between them.
To this end, specific crossover points were encoded in the
grammar, defining blocks for exchange. This technique [42]
uses a special grammar symbol (<GEXOMarker>) to label
crossover points; the search algorithm then only slices an
individual according to these points. It has been used in
previous iterations of this work [4], [5], as well as in the
evolution of 3D projections [43].

We used a two-point crossover, creating an operator similar
to sub-tree crossover in GP, but allowing the exchange of a
variable number of blocks between individuals. Without these
markers, the 1-point crossover used in standard GE would
provide more exploration but less exploitation; given the cost
of the fitness function, this trade-off was necessary.

Finally, an individual is also allowed to crossover with
himself, thus creating a sub-tree swap operation; this works
as a means to modify the priority of a BB: the further to
the left within the root selector, the bigger the likelihood of
execution of a block. Fig. 7 contains part of the grammar used,
specifying the XML syntax, along with the crossover markers.

VII. EXPERIMENTS

A series of experiments were run, to ascertain the evolvabil-
ity of BTs as controllers for Mario AI. BTs were evolved using
GE, and their training and test performance were monitored
over time, along with other statistical measurements.

These experiments also tested the separation of reactiveness
and navigation routines, and whether this leads to improved
results. Finally, a series of different approaches were tested,
to deal with the highly dynamic environment created by the
Mario AI Benchmark. These are discussed in Section VII-B.

A. Fitness Evaluation

To test each evolved controller, a set of Mario AI levels is
generated. Each mapset is composed of 10 levels (5 difficulty
settings, with two types of map each), and is generated
with a single random seed. The resulting fitness value, to
be maximized, is a weighted sum of distance traveled and
other factors, such as enemy kills and collected items (this
is the actual Mario AI Benchmark score). As both Mario AI
maps and BT controllers are deterministic, applying the same
controller to the same map always wields the same fitness.

B. Adaptable Controllers

A difficulty with such a dynamic problem is that of general-
ization performance. In the Mario AI competition, controllers
are tested in a set of random mapsets, where each map ranges
from very easy to physically impossible to terminate (for the
same difficulty level). To improve the generalization of the
evolved controllers, the following approaches were tested (note
that both non-A* and A* versions of these were used):

• Single: always use a single “typical” mapset for eval-
uation (same seed for all independent runs), assuming
that the agent is faced with enough enemy and obstacle
diversity to evolve good reactiveness routines.

• Five: test each controller in five mapsets, which never
change during the evolutionary cycle (and are the same
for all runs); this increases the variety of situations each
controller is evaluated on. This means each controller is
evaluated in five more maps than in the Single approach.

• Change1: use only one mapset for evaluation, but change
it at every generation (same sequence of mapsets for each
run), to increase the variety if situations each controller
trains on, while keeping the evaluation effort small. To
ensure continuity between generations, the parent popu-
lation is reevaluated with the new generation’s mapset.

• Change5: use five mapsets for each evaluation, but
change all five at each generation (same sequence for
all runs), ditching the previous mapsets. The parent
population is reevaluated with the new mapsets at the
start of each new generation.

• Slide: use five mapsets for each evaluation, replacing one
mapset with a new one at every generation, in a 12345,
23456, etc. sliding window manner (same sequence for
all runs). The parent population is reevaluated with the
new five mapsets at the start of each new generation.

C. Experimental Setup

Each of the 10 systems (five approaches, with and without
A*) used the setup shown in Table I. As different approaches
use a different number of mapsets for evaluation, and a single
mapset took anywhere between 0.7s and 6.0s to evaluate (using
a single core of a 2.8 GHz Intel Core i7 processor), different
numbers of generations were used, so that each approach used
the same number of mapsets per run.

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 6

<BT> ::= ’<?xml version="1.0" encoding="utf-8"?>\n’ <XMLPart>
<XMLPart> ::= ’<Behavior>\n’ <RootNode> ’</Behavior>\n’

<RootNode> ::= ’<Node Name="GE_BT3" Type="Root">\n’<RootSelectorNode>’</Node>\n’

<RootSelectorNode> ::= ’<Node Type="Selector" Name="rootSelector" >\n’ <2orMoreSeqAndDefaultBehaviour> ’</Node>\n’
<2orMoreSeqAndDefaultBehaviour> ::= <ConnectorHeader> <SequenceNodes> <GEXOMarker> <FinalSequence> ’</Connector>\n’
<ConnectorHeader> ::= ’<Connector Identifier="GenericChildren">\n’

<SequenceNodes> ::= <SequenceNode> | <SequenceNodes> <SequenceNode>
<SequenceNode> ::= <GEXOMarker> ’<Node Type="Sequence" Name="BehaviourBlock">\n’ <ConnectorHeader>

<1to2Conditions> <FilteredSeqOfActionsAndLUTs> ’</Connector>\n</Node>\n’

<1to2Conditions> ::= <ConditionNode> | <ConditionNode> <ConditionNode> | <ConditionedLUT>
<ConditionNode> ::= ’<Node Name="’<ConditionOp>’" Type="Condition" />\n’

<FilteredSeqOfActionsAndLUTs> ::= <FilterHeader> <ConnectorHeader> <SeqOfActionsAndLUTs>
’</Connector>\n</Node>\n’ | <SeqOfActionsAndLUTs>

<SeqOfActionsAndLUTs> ::= ’<Node Type="Sequence" Name="mySequence" >\n’
<ConnectorHeader> <1orMoreActionsOrLUTs> ’</Connector>\n</Node>\n’

<FinalSequence> ::= ’<Node Type="Sequence" Name="defaultSequence">\n’
<ConnectorHeader> <DefaultBehaviourBlock> ’</Connector>\n </Node>\n’

<1orMoreActionsOrLUTs> ::= <ActionOrLUT> | <1orMoreActionsOrLUTs> <ActionOrLUT>
<ActionOrLUT> ::= <ActionNode> | <LUTNode>

Fig. 7: Extract of the grammar used, showing the incorporation of the XML syntax.

TABLE I: Experimental Setup

Population Size 500
Evaluations 250000
Derivation-tree Depth Range (for initialization) 20. . . 30
Derivation-tree Max Depth unset
Tail Ratio (for initialization) 50%

GE Selection Tournament Size 1%
Elitism (for generational replacement) 10%
Marked 2-point Crossover Ratio 50%
Marked Swap Crossover Ratio 50%
Average Mutation Events per Individual 1

Mario Level Difficulties 0. . . 4
Level Types 0 1
Level Length 320

VIII. RESULTS AND ANALYSIS

A. Training Performance

Fig. 8 plots the mean best controller training score, without
(top) or with (bottom) A*, for all approaches. It also shows
the average performance of the respective reference behaviors:
RunRightSafe without A*, and DefaultGoRight for A* (these
were calculated using a generalization test, described below).

The first evident observation is that all approaches do
substantially better than their respective reference behaviors.
This shows that the BT approach is effective in adding reactive
elements to the controllers, which enhance their performance.

The second observation is the relative performance differ-
ence between controllers without or with A* navigation. The
RunRightSafe controller has an average performance of just
below 22000 points, while DefaultGoRight averages above
31000. This is very close or superior to the average controller
performance for most approaches not using A* (apart from
the Single approach), and highlights the performance boost of
using a dedicated, non-deterministic algorithm for navigation.

As for each of the approaches, their relative performance
is similar with or without A*. The Single approach has the
best training performance; it is quite successful at optimizing
the controller behavior for the single mapset it is trained on,

Fig. 8: Mean best training score across time, for all approaches
not using (top) or using (bottom) A* (results averaged over
30 independent runs).

regardless of the initial random seed. It achieves the best
training score with or without A*, and also exhibits the best
evolvability, with a typical optimization performance curve.

The Five approach exhibits a similar behavior, with a steady
improvement in average performance across the five mapsets

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 7

TABLE II: Least-Squares Analysis of Learning Rates

Approach Intercept Slope Std. E. Res. E.

Tr
ai

n

N
o

A
*

Single 3.49E+4 1.40E-2 4.84E-4 784.5
Five 2.87E+4 1.36E-2 1.00E-3 739.3
Change1 3.24E+4 8.64E-3 3.43E-3 3946
Slide 2.75E+4 1.12E-2 2.03E-3 1383
Change5 2.70E+4 1.25E-2 3.35E-3 1763
RunRightSafe 21790 0.0 0.0 0.0

A
*

Single 5.03E+4 1.69E-2 7.63E-4 1236
Five 4.28E+4 1.41E-2 9.29E-4 680.9
Change1 4.55E+4 -5.81E-3 4.47E-3 5133
Slide 4.16E+4 2.94E-3 2.16E-3 1467
Change5 4.06E+4 4.34E-3 4.50E-3 2369
DefaultGoRight 3.11E+4 0.0 0.0 0.0

Te
st

N
o

A
*

Single 2.12E+4 2.26E-3 2.50E-4 127.7
Five 2.24E+4 3.22E-3 6.29E-4 321
Change1 2.25E+4 1.18E-2 1.25E-3 639.1
Slide 2.29E+4 1.15E-2 1.34E-3 684.2
Change5 2.27E+4 1.17E-2 1.30E-3 667.1
RunRightSafe 21790 0.0 0.0 0.0

A
*

Single 3.50E+4 -3.69E-3 4.53E-4 231.4
Five 3.63E+4 4.45E-4 3.38E-4 172.6
Change1 3.69E+4 1.04E-3 9.59E-4 489.6
Slide 4.06E+4 1.61E-2 1.76E-3 902.7
Change5 3.80E+4 8.16E-3 7.74E-4 395.2
DefaultGoRight 3.11E+4 0.0 0.0 0.0

it was trained on, but with a lower total score; this is due to
optimizing the performance across five mapsets.

The Change1 approach is the noisiest in terms of evolution
across time, as the mapset used for evaluation changes every
generation. This shows the difficulty range of maps generated
with different random seeds, even with the same difficulty
setting. With or without A*, this approach has both the highest
and lowest average score of all approaches, and with A*,
sometimes performs worse than the default behavior.

Finally, the Change5 and Slide approaches exhibit similar
performance. These approaches also suffer from the extreme
range of difficulties of the generated maps, but not to the same
degree as Change1. The Slide approach dampens this effect to
a higher degree, due to its moving window of used mapsets.

In order to analyze the average learning rate of the different
approaches, a linear regression was calculated, with the data
from Fig. 8. This is shown in the top half of Table II. Although
the learning curves are clearly not linear, a simple linear
model allows one to draw some observations: the intercept
roughly represents the starting performance of each controller,
the slope is an approximation of the learning rate of each
approach, and the standard and residual errors are a measure
of the noise present in the average learning performance.

The values measured show that the Single approach exhibits
the best average learning rate across all runs, with Five also ex-
hibiting a good learning rate. Slide and Change5 exhibit lower,
similar learning rates, with higher noise. Finally, Change1
exhibits the lowest learning rate, which is actually negative
when used in conjunction with A* navigation. It also has the
highest residual error, an indication of the range of scores
obtained with different maps. This also highlights how hard it
is to evolve controllers in such a dynamic environment. Videos
of the best controllers of some runs can be checked online1.

1 http://tinyurl.com/gebtMarioAI

B. Test Performance

To measure the performance of evolved controllers in un-
seen scenarios, a generalization test was devised, consisting
of 20 unseen mapsets (seeds 666 to 685), with the same
parameters as training mapsets. The best individual (according
to training performance) was tested every 5000 evaluations; the
average results across all runs are shown in Fig. 9.

Fig. 9: Mean best test score of the best training individual
every 5000 evaluations, for all approaches not using (top) or
using (bottom) A* (averaged across 30 runs).

The first observation is the performance range of all ap-
proaches. While the training performance without A* ranged
from 25000 to 40000 points, in testing it ranges from 21000
to 27000. The same happens with A*, with a training range of
35000-55000, and testing 34000-44000. Given that these are
scores using unseen scenarios, this is to be expected.

The relative performance of all approaches is quite different
from the training performance. The Single approach clearly
overfitted its single training mapset, and has the lowest gen-
eralization score overall, which without A* is actually worse
than the reference RunRightSafe behavior, while with A* its
average generalization score worsens as evolution progresses.

The Five approach does slightly better. It improves its
generalization score over time without A*, albeit with a few
signs of training overfitting. With A*, it reaches its best test
performance early on, and never improves over time. Note
that its performance is once again substantially better with A*
(over 36000 points) than without (around 23000 points).

Change1 steadily improves its generalization performance,

http://tinyurl.com/gebtMarioAI

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 8

TABLE III: Average Test Performance and Std. Deviation

Approach Avg. Score Std. Dev.

N
o

A
*

Single 21668.1 1531.9
Five 23033.3 2210.9
Change1 24910.4 1860.2
Slide 26629.3 1631.7
Change5 25374.7 1609.9
RunRightSafe 21790.2 0.0

A
*

Single 34224.1 1016.8
Five 36350.1 468.6
Change1 37435.2 596.2
Slide 42616.7 731.7
Change5 39282.5 579.9
DefaultGoRight 31173.8 0.0

when used without A*. This is despite its very noisy average
training performance. A reason for this is the large number of
generations it is allowed to evolve, given the reduced number
of mapsets used per generation. When used with A*, it only
slightly improves its generalization performance over time.

Change5 steadily improves its generalization score over
time, particularly when used without A*. The same is true
about the Slide approach, but with a substantially better
average generalization score at all evaluation steps.

Table III shows the test performance of the best training
controllers (averaged across 30 runs). All A* approaches
present significantly better test performance when compared
with their No A* counterparts, and the relative performance
of the different approaches is observable, with mostly non-
overlapping standard deviation intervals.

The bottom half of Table II analyzes the test score rates of
all approaches. It shows very low improvement rates for the
Single and Five approaches, with the former having a negative
rate, when used with A* navigation. Slide and Change5
exhibit good test performance improvement over time, with
the learning rate of Slide with A* being one of the highest
across all sets (training and testing) and approaches (A* or
not). Finally, of interest is also the learning rate of the Change1
approach, when using A*: albeit very low, it is positive, in
contrast to its negative training learning rate.

C. Further Analysis

1) Fitness Breakdown: Fig. 10 plots the test performance
of the best evolved controllers, but monitoring specific fitness
contributions of their actions: number of cells passed, time left
(i.e. time left when Mario dies or finishes a level), and number
of kills (all averaged across the 20 test mapsets).

It is again evident the contribution that A* navigation makes
to the survivability of Mario (and hence to the overall fitness).
The average number of cells passed with the DefaultGoRight
controller is much higher, leading to a higher number of
(random) kills. The time left with A* is also superior, due
mainly to it not getting stuck in difficult to navigate areas.

When controllers are evolved without A*, their test per-
formance is actually worse in terms of total cells passed
than their reference behavior (RunRightSafe), as BT structures
need to be evolved to effectively combine navigation and
reactiveness actions (such as number of kills). Even the poorly
generalizable Single and Five controllers are able to improve

their average number of kills, even though they exhibit little
or no evolution in number of cells passed or total time left.

When A* is used, the BT structures are evolved mainly for
reactiveness, and this is evident from early on: all approaches
produce good reactiveness behavior blocks, which allow the
controllers to improve the good navigation base that the
DefaultGoRight behavior provides, and increase the number
of cells passed, as well as the number of kills (with a much
higher improvement than controllers without A*).

Across all these measures, it is again clear that the Single
approach does not generalize well, and exhibits little or no
improvement (apart from number of kills, when used without
A*). Five performs similarly, at a slightly better level; all other
approaches evolve better generalizable behaviors across time.

Of interest is also the (non-)evolution of total time left when
using A*. Better navigation approaches mean that the maps
will be finished in less time. However, these combined with
complex reactive behaviors also increase the survivability of
the player, and thus the time spent in each map.

Fitness-contributing behaviors such as collecting items were
ignored by the controllers (they are hard to evolve): less than
one item on average was collected by controllers without A*,
and between 1 and 2 items when using A* (not plotted).

2) Genotype Solution Size: Another interesting analysis can
be drawn for the average solution size, plotted in Fig. 11. It
provides further evidence that the Single and Five approaches
overfit their target maps, with average genotype sizes steadily
increasing throughout evolution. This is true to some extent for
all controllers, when used without A*. When A* navigation is
used, however, the solution size is a lot more stable.

3) Behavior Tree Solution Structure: Although the geno-
type size (and hence number of nodes in the BT controllers)
is comparable with or without A*, the actual structure of these
trees is radically different with the two navigation approaches.

Fig. 12 plots the number of Behavior Blocks (BBs) in
the best controllers across time. This number is very stable,
indicating that evolution chooses the number of BBs early on,
and then mostly just optimizes the contents of each BB.

The smaller number of BBs without A* means that each BB
is a very complex structure. In fact, this number is so small, it
limits the effectiveness of the crossover operator, designed for
exchanging BBs. This happens because each BB incorporates
a complex mix of both navigation and reactiveness actions,
which does not mix quite as well in the context created in
BTs evolved by other individuals in the population.

When using A*, each BB is mostly a compact set of condi-
tions and actions evolved for reactiveness, and relying on the
default behavior for navigation. As a result, a larger number
of BBs is evolved by each controller, which can be exchanged
through crossover as independent reactive sequences.

IX. CONCLUSIONS

This article presented an extension of previous work [4],
[5] on the evolution of Behavior Trees for the Mario AI
Benchmark. Two approaches were compared: a typical black-
box approach, where all possible actions were combined to
create one-in-all controllers; and a layered approach, where

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 9

Fig. 10: Breakdown of average test performance of best evolved controllers, without A* (left) and with A* (right). The first
row plots average percentage of passed cells; the second the average number of kills; and the last the percentage of time left.

routines dealing mainly with reactiveness were evolved and
applied with priority, and a lower-priority A* approach was
used for navigation. The latter gave the best results overall.

The combination of GE with BTs provides a flexible
approach to Mario AI. The resulting solutions are human
readable, and easy to analyze and fine-tune, addressing a con-
cern of the game industry regarding evolutionary approaches.
Also, the use of a grammar provides full control over the
complexity of the resulting BT controllers; this facilitates the
application of the current approach to games where BTs have
been used previously (see Section II), as well as games where
decomposition of behaviors is desirable [41], [28]. Finally,
the combination of a carefully designed syntax with specific

crossover locations allows the definition and exchange of
Behavior Blocks, accelerating the evolutionary process.

Another challenge in dynamic game environments is the va-
riety of environments and situations to face (and the disparity
of fitness scores), leading to a risk of over-fitting specific game
scenarios. This is particularly true in the Mario AI Benchmark,
where levels created with the same difficulty setting can be
drastically different, leading to noisy fitness landscapes. In this
study, five approaches were used to deal with this issue.

A. Future Work

There are many avenues of research to improve this study.
The fitness evaluation can be broken down into some of its

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 10

Fig. 11: Genotype solution size without (top) and with (bot-
tom) A*, for the best individuals, averaged across 30 runs.

constituents, such as distance traveled or number of kills; this
information can be exploited with multi-objective approaches.

BB structures also present potential for further optimization.
Frequency of use, number of kills, and complexity can be
recorded for each BB; this would allow the BB-exchange oper-
ator to work more effectively. It would also allow optimization
of each controller, by pruning non-executed BBs.

Finally, other approaches exist to deal with noisy fitness
environments, such as moving average fitness calculations [23]
or memory-based methods [25], amongst others (as pointed
in Section II). Their incorporation into the presented system
could lead to improved fitness.

ACKNOWLEDGMENTS

This research is supported by the Science Foundation Ire-
land, under Grants No. 08/IN.1/I1868 and No. 13/IA/1850.

REFERENCES

[1] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Auto-
matic Programming in a Arbitrary Language, ser. Genetic programming.
Kluwer Academic Publishers, 2003, vol. 4.

[2] R. Colvin and I. Hayes, “A Semantics for Behavior Trees,” ARC Centre
for Complex Systems (ACCS), Technical Report ACCS-TR-07-01, 2007.

[3] S. Karakovskiy and J. Togelius, “The Mario AI Benchmark and Com-
petitions,” IEEE Transactions on Computational Intelligence and AI in
Games, vol. 4:1, pp. 55–67, 2012.

Fig. 12: Mean number of BBs for the best individuals, without
(top) and with (bottom) A*, averaged across 30 runs.

[4] D. Perez, M. Nicolau, M. O’Neill, and A. Brabazon, “Evolving Be-
haviour Trees for the Mario AI Competition Using Grammatical Evolu-
tion,” in EvoApplications, European Conference on the Applications of
Evolutionary Computation, Cecilia Di Chio et al., Ed. Springer, 2011,
pp. 123–132.

[5] ——, “Reactiveness and Navigation in Computer Games: Different
Needs, Different Approaches,” in IEEE Conference on Computational
Intelligence and Games, 2011, pp. 273–280.

[6] D. Boutros, “A Detailed Cross-Examination of Yesterday and Today’s
Best-Selling Platform Games,” http://www.gamasutra.com/view/feature/
130268/a detailed crossexamination of .php?print=1, October 2015.

[7] J. Togelius, S. Karakovskiy, J. Koutnik, and J. Schmidhuber, “Super
Mario Evolution,” in IEEE Symposium on Computational Intelligence
and Games, 2009, pp. 156–161.

[8] S. Bojarski and C. B. Congdon, “REALM: A Rule-based Evolutionary
Computation Agent that Learns to Play Mario,” in IEEE Conference on
Computational Intelligence and Games, 2010, pp. 83–90.

[9] E. R. Speed, “Evolving a Mario Agent Using Cuckoo Search and
Softmax Heuristics,” in Games Innovations Conference (ICE-GIC),
International IEEE Consumer Electronics Society’s, 2010, pp. 1–7.

[10] J.-J. Tsay, C.-C. Chen, and J.-J. Hsu, “Evolving Intelligent Mario
Controller by Reinforcement Learning,” in International Conference on
Technologies and Applications of Artificial Intelligence (TAAI), 2004,
pp. 266–272.

[11] H. Handa, “Dimensionality Reduction of Scene and Enemy Information
in Mario,” in IEEE Congress on Evolutionary Computation, 2011, pp.
1515–1520.

[12] N. C. Hou, N. S. Hong, C. K. On, and J. Teo, “Infinite Mario Bross
AI using Genetic Algorithm,” in IEEE Conference on Sustainable Uti-
lization and Development in Engineering and Technology (STUDENT),
October 2011, pp. 85–89.

[13] A. M. Mora, J. J. Merelo, P. Garcı́a-Sánchez, P. A. Castillo, M. S.
Rodrı́guez-Domingo, and R. M. Hidalgo-Bermúdez, “Creating Au-
tonomous Agents for Playing Super Mario Bros Game by Means of
Evolutionary Finite State Machines,” Evolutionary Intelligence, vol. 6,
no. 4, pp. 205–218, 2014.

http://www.gamasutra.com/view/feature/130268/a_detailed_crossexamination_of_.php?print=1
http://www.gamasutra.com/view/feature/130268/a_detailed_crossexamination_of_.php?print=1

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 11

[14] E. J. Jacobsen, R. Greve, and J. Togelius, “Monte Mario: Platforming
with MCTS,” in GECCO, Genetic and Evolutionary Computation Con-
ference, D. V. Arnold, Ed. ACM, 2014, pp. 293–300.

[15] J.-A. Meyer and D. Filliat, “Map-based Navigation in Mobile Robots: :
II. A Review of Map-Learning and Path-Planning Strategies,” Cognitive
Systems Research, vol. 4, pp. 283–317, 2003.

[16] K. Birdwell, “The CABAL: Valve’s Design Process for Creating Half
Life,” Game Developer, vol. 6 (12), pp. 40–50, 1999.

[17] S. Bandi and D. Thalmann, “Space Discretization for Efficient Human
Navigation,” Computer Graphics Forum, vol. 17, no. 3, pp. 195–206,
1998.

[18] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 Mario AI
Competition,” in IEEE Congress on Evolutionary Computation, 2010,
pp. 1–8.

[19] S. Shinohara, T. Takano, H. Takase, H. Kawanaka, and S. Tsuruoka,
“Search Algorithm with Learning Ability for Mario AI – Combination
A* Algorithm and Q-Learning,” in ACIS, International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel
& Distributed Computing, 2012, pp. 341–344.

[20] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Generative
Agents for Player Decision Modeling in Games,” in Poster Proceedings
of the 9th Conference on the Foundations of Digital Games, 2014.

[21] Y. Jin and J. Branke, “Evolutionary Optimization in Uncertain Envi-
ronments a Survey,” IEEE Transactions on Evolutionary Computation,
vol. 9, no. 3, pp. 303–317, June 2005.

[22] C. Qian, Y. Yu, and Z.-H. Zhou, “Analyzing Evolutionary Optimization
in Noisy Environments,” CoRR, vol. abs/1311.4987, no. 4, 2013.

[23] A. D. Pietro, L. While, and L. Barone, “Learning in RoboCup Keepaway
Using Evolutionary Algorithms,” in GECCO, Genetic and Evolutionary
Computation Conference, W. B. L. et al., Ed. Morgan Kaufmann, 2002,
pp. 1065–1072.

[24] A. M. Mora, A. Fernández-Ares, J. J. Merelo, P. Garcı́a-Sánchez, and
C. M. Fernandes, “Effect of Noisy Fitness in Real-Time Strategy Games
Player Behaviour Optimisation Using Evolutionary Algorithms,” Journal
of Computer Science and Technology, vol. 27, no. 5, pp. 1007–1023,
2012.

[25] J. J. Merelo, P. A. Castillo, A. Mora, A. Fernández-Ares, A. I. Esparcia-
Alcázar, C. Cotta, and N. Rico, “Studying and Tackling Noisy Fitness in
Evolutionary Design of Game Characters,” in International Conference
on Evolutionary Computation Theory and Applications, A. R. et al., Ed.
SCITEPRESS, 2014, pp. 76–85.

[26] E. Galván-López, D. Fagan, E. Murphy, J. M. Swafford, A. Agapi-
tos, M. O’Neill, and A. Brabazon, “Comparing the Performance of
the Evolvable PiGrammatical Evolution Genotype-Phenotype Map to
Grammatical Evolution in the Dynamic Ms. Pac-Man Environment,” in
IEEE Congress on Evolutionary Computation, 2010, pp. 1587–1594.

[27] R. Harper, “Evolving Robocode tanks for Evo Robocode,” Genetic
Programming and Evolvable Machines, vol. 15, no. 4, pp. 403–431,
2014.

[28] A. Champandard, M. Dawe, and D. H. Cerpa, “Behavior Trees: Three
Ways of Cultivating Strong AI,” Game Developers Conference, Audio
Lecture, 2010.

[29] D. Isla, “Managing Complexity in the Halo 2 AI System,” in Game
Developers Conference, 2005.

[30] L. McHugh, “Three Approaches to Behavior Tree AI,” in Game Devel-
opers Conference, 2007.

[31] M. Mateas and A. Stern, “Managing Intermixing Behavior Hierarchies,”
in Game Developers Conference, 2004.

[32] C.-U. Lim, R. Baumgarten, and S. Colton, “Evolving Behaviour Trees
for the Commercial Game DEFCON,” in EvoApplications, European
Conference on the Applications of Evolutionary Computation, ser.
LNCS, Cecilia Di Chio et al., Ed., vol. 6024. Springer, 2010, pp.
100–110.

[33] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection (Complex Adaptive Systems), 1st ed. A
Bradford Book, 1992.

[34] J. Togelius, N. Shaker, S. Karakovski, and G. N. Yannakakis, “The Mario
AI Championship 2009-2012,” AI Magazine, vol. 34, no. 3, pp. 89–92,
2013.

[35] M. Nicolau, “Automatic Grammar Complexity Reduction in Grammat-
ical Evolution,” in GECCO, Genetic and Evolutionary Computation
Conference Workshops, R. P. et al., Ed., 2004.

[36] R. Harper, “GE, Explosive Grammars and the Lasting Legacy of Bad
Initialisation,” in IEEE Congress on Evolutionary Computation, 2010,
pp. 2602–2609.

[37] A. Brabazon and M. O’Neill, Biologically Inspired Algorithms for
Financial Modelling. Springer, 2006.

[38] J. E. Murphy, M. O’Neill, and H. Carr, “Exploring Grammatical Evo-
lution for Horse Gait Optimisation,” in EuroGP, European Conference
on Genetic Programming, ser. LNCS, Leonardo Vanneschi and Steven
Gustafson, Ed., vol. 5481. Springer, 2009, pp. 183–194.

[39] N. J. Nilsson, Artificial Intelligence, A New Synthesis. Morgan
Kaufmann Publishers, 1998.

[40] S. B. Akers, “Binary Decision Diagrams,” IEEE Transactions on Com-
puters, vol. 27, no. 6, pp. 509–516, 1978.

[41] A. Champandard, “Behavior Trees for Next-Gen Game AI,” Game
Developers Conference, Audio Lecture, 2007.

[42] M. Nicolau and I. Dempsey, “Introducing Grammar Based Extensions
for Grammatical Evolution,” in IEEE Congress on Evolutionary Com-
putation, 2006, pp. 2663–2670.

[43] M. Nicolau and D. Costelloe, “Using Grammatical Evolution to Pa-
rameterise Interactive 3D Image Generation,” in EvoApplications, Eu-
ropean Conference on the Applications of Evolutionary Computation,
ser. LNCS, Cecilia Di Chio et al., Ed., vol. 6625. Springer, 2011, pp.
374–383.

Miguel Nicolau is a Lecturer of Business Analytics
in the UCD School of Business, Ireland. He received
his PhD degree from the University of Limerick in
2006, and then worked as an expert engineer at the
INRIA lab in France, and as a Research Fellow with
the Natural Computing Research & Applications
Group In UCD. His main research interests are
Genetic Programming, Grammatical representations,
Data and Business Analytics, and advanced biolog-
ical models.

Diego Perez-Liebana is a Lecturer in Computer
Games and Artificial Intelligence at the University of
Essex (UK), where he achieved a PhD in Computer
Science (2015). He has published in the domain of
Game AI, with interests on Reinforcement Learning
and Evolutionary Computation. He organized several
Game AI competitions, such as the Physical Travel-
ling Salesman Problem and the General Video Game
AI competitions, held in IEEE conferences. He has
programming experience in the videogames industry
with titles published for game consoles and PC.

Michael O’Neill is the ICON Chair of Business
Analytics in the UCD School of Business, and is
a founding Director of the UCD Natural Computing
Research & Applications Group. He has published
in excess of 250 peer-reviewed publications and
has co-authored a number of successful funding
applications with a total value over Euro 9 Million.

Anthony Brabazon is currently Associate Dean
of the School of Business at UCD. His research
interests concern the development of natural com-
puting algorithms and their application to real-world
problems. He is co-founder and co-director of the
Natural Computing Research & Applications Group
at UCD (see http://ncra.ucd.ie). Anthony has pub-
lished in excess of 200 peer-reviewed studies and
has authored / edited thirteen books.

http://ncra.ucd.ie

1943-068X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCIAIG.2016.2543661, IEEE
Transactions on Computational Intelligence and AI in Games

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 12

Name ¬A* A* Description
Conditions

CanIFire X X Checks if Mario is able to shoot fireballs.
CanIJump X X Indicates if Mario is able to jump (if he is on the ground).
IsFollowingPath X X Indicates if Mario is following a path given by A*.
IsStuck X X Checks if Mario has been idle for many cycles.
UnderBrick X X Verifies if there is a brick block directly over Mario.
UnderQuestion X X Indicates if there is a question brick block directly over Mario.
EnemyAhead † X X Checks if there is an enemy ahead of Mario.
EnemyAheadUp † X X Indicates if there is an enemy ahead and over Mario.
EnemyAheadDown † X X Verifies if there is an enemy ahead and below Mario.
JumpableEnemyAhead † X X Checks if there is an enemy that can be killed by stomping on it ahead of Mario.
NoJumpableEnemyAhead † X X Indicates if there is an enemy that cannot be killed by stomping on it ahead of Mario.
IsBulletToHead X X Checks if there is a bullet coming towards Mario at his head’s height.
IsBulletToFeet X X Indicates if there is a bullet coming towards Mario at his feet’s height.
AvailableJumpAhead † X Verifies if there are no obstacles over and ahead of Mario.
HoleAhead † X Indicates if there is a hole ahead of Mario.
IsGapAhead † X Indicates if there is a free space under an obstacle at Mario head’s height, just ahead of him.
IsBreakableUp X Checks if there is a breakable block directly above Mario.
IsBreakableUpAhead † X Indicates if there is a brick block ahead and over Mario.
IsClimbableUp X Verifies if there is a platform that can be reached jumping from below, directly over Mario.
IsClimbableUpAhead † X Checks if there is a climbable platform ahead and above Mario.
IsJumpPlatformUpAhead † X Verifies if there is a platform ahead and over Mario.
IsPushableUp X Indicates if there is a question mark block directly over Mario.
IsPushableUpAhead † X Checks if there is a question brick ahead and over Mario.
ObstacleAhead † X Verifies if there is an obstacle ahead of Mario.
ObstacleHead † X Indicates if there is an obstacle ahead of Mario, but only at his head’s height.

Actions
NOP X X No action.
Down X X Atomic action Down.
Fire X X Atomic action Fire.
WalkRight † X X Atomic action Right.
RunRight † X X Combination of the atomic actions Right and Fire.
GetPathToClosestBrick X Uses A* to get a path to the closest brick block to Mario.
GetPathToClosestQuestion X Uses A* to retrieve a path to the closest question mark block to Mario.
GetPathToClosestItem X Uses A* to get a path to the closest item to Mario.
GetPathToGround X Uses A* to obtain a path to lowest position (or node) found in the grah of the level.
GetPathToTop X Uses A* to get a path to highest position (or node) found in the grah of the level.
GetPathToClosestRightMost X Uses A* to retrieve a path to rightmost position (or node) found in the grah of the level.
GetPathToClosestLeftMost X Uses A* to obtain a path to leftmost position (or node) found in the grah of the level.

Filters
Loop X X Repeats the execution of its child sub-tree N times.
Non X X Negates the result given by its sub-tree.
UntilFails X X Repeats the execution of its sub-tree until it receives the result failure.
UntilFailsLimited X X Repeats the execution of its child sub-tree N times or until it receives the result failure.

Sub-Trees

UseRightGap † X
This sub-tree moves Mario to the right until there is a vertical over him with no blocks. Then, it jumps to
try to reach a higher platform and continue from there.

AvoidRightTrap † X
This sub-tree attempts to overcome a dead end. It first takes Mario back to the point where there was a
bifurcation in the path. Then, it uses UseLeftGap to take a secondary path in order to avoid the dead end.

GoUnderRight † X
This sub-tree detects situations where it is not possible to go further, but there is a gap ahead of Mario,
which could be traversed if Mario would be small, or by running towards the gap, crouching down and
sliding. This sub-tree executes the latter sequence of actions.

DefaultPathPlanner X Calculates the path to the rightmost position on the screen.
PathFollower X Follows the last path calculated.

JumpRightLong † X X
Makes a long jump to the right (see Figure 4). The filter executes the JumpRight action (that enables the
buttons jump and right) for 9 game cycles.

JumpRightShort † X X As JumpRightLong, but the filter executes the JumpRight action during 3 steps.
JumpRightRunLong † X X As JumpRightLong, but the loop action is JumpRightRun (that enables the buttons jump, right and run).
JumpRightRunShort † X X As JumpRightShort, but the loop action is JumpRightRun (that enables the buttons jump, right and run).

WalkRightSafe † X X
Moves Mario to the right, checking for obstacles, enemies and holes. If any of these is detected, the agent
tries to avoid it with a long jump (or short jump, if it is an enemy that can be killed by stomping on it).

RunRightSafe † X X As WalkRightSafe, but the input run is always on.
VerticalJumpLong X X As JumpRightLong, but the loop action is Jump (that only activates the input jump).
VerticalJumpShort X X As JumpRightShort, but the loop action is Jump (that only activates the input jump).

TABLE IV: Actions, conditions, filters and subtrees that can be used by the evolutionary algorithm. †Denotes sub-trees that
have an analogous left (or back) variant. Note that some actions and conditions can be analogous in both the controllers with
and without A* (i.e. IsBreakableUp vs. UnderBrick); they are, however, different: while the A* version checks the nodes in
the graph, the no-A* implementation needs to analyze the contents of each cell. Finally, note that actions use the terms left
and right, which imply movement, while conditions use ahead (for right) and back (for left).

