
Semantic Similarity based Crossover in
GP for Real-valued Function Regression

Nguyen Quang Uy1, Michael O’Neill1, Nguyen Xuan Hoai2,
Bob Mckay2, and Edgar Galván-López1

1Natural Computing Research & Applications Group, University College Dublin, Ireland
2School of Computer Science and Engineering, Seoul NationalUniversity, Korea

quanguyhn@yahoo.com

Abstract. In this paper we propose a new method for implementing the crossover
operator in Genetic Programming (GP) called Semantic Similarity based Crossover
(SSC). This new operator is inspired by Semantic Aware Crossover (SAC) [20].
SSC extends SAC by adding semantics to control the change of the semantics
of the individuals during the evolutionary process. The newcrossover operator is
then tested on a family of symbolic regression problems and compared with SAC
as well as Standard Crossover (SC). The results from the experiments show that
the change of the semantics (fitness) in the new SSC is smoother compared to
SAC and SC. This leads to performance improvement in terms ofpercentage of
succesful runs and mean best fitness.

1 Introduction

Genetic Programming (GP) is an evolutionary algorithm inspired by biological evolu-
tion to find the solution for an user-defined task. The programis usually presented in
a language of syntactic formalisms such as s-expression trees [14], a linear sequence
of instructions, grammars, or graphs [18]. The genetic operators in such GP systems
are usually designed to ensure the syntactic closure property, i.e., to produce syntacti-
cally valid children from any syntactically valid parent(s). Using such purely syntactical
genetic operators, GP evolutionary search is conducted on the syntactical space of pro-
grams with the only semantic guidance from an individual’s fitness.

Although GP has shown to be effective in evolving programs for solving differ-
ent problems using such (finite) behavior-based semantic guidance and pure syntactical
genetic operators, this practice is somewhat unusual from areal programmers’ perspec-
tive. Computer programs are not just constrained by syntax but also by semantics. As
a normal practice, any change to a program should pay heavy attention to the change
in semantics of the program. To amend this deficiency in GP, resulting from the lack
of semantic guidance on genetic operators, Uy et al. [20] proposed a semantic-based
crossover operator for GP, called Semantic Aware Crossover(SAC). The results re-
ported in [20] show that using semantic information helps toimprove performance of
GP in terms of the number of successful runs in solving real-valued symbolic regression
problems.

This paper extends the ideas presented in [20]. Our new operator, called Semantic
Similarity based Crossover (SSC) is an improvement over SACthrough the inclusion



2 Authors Suppressed Due to Excessive Length

of additional semantic information to control the change ofsemantics of individuals
by only allowing swapping of two subtrees which are semantically similar while also
being semantically different. Effectively an upper and lower bound on semantic differ-
ence is used to determine whether or not subtrees can be exchanged during a crossover
event. By doing this, we expect that the change of fitness of anindividual will be less
destructive. This property has been proved to be very important in GP [19].

The paper is organised as follows. In the next section, we give a review of related
work on semantic based crossovers in GP. In Section 3 we describe our new crossover
operator and explain how it differs from the crossover operator proposed in [20]. The
experiments on the new crossover operator is described in Section 4 of the paper. The
results of the experiments are then given and discussed in section 5. Section 6 concludes
the paper and highlights some potential future extensions of this work.

2 Previous Works

There has been a number of work in the literature on how to incorporate semantic in-
formation into GP. There are at least three ways in which semantics can be represented,
extracted and used to guide GP: (a) using grammars [21, 2, 3],(b) using formal meth-
ods [9–11,13, 12], and (c) based on GP tree-like structures [1, 16, 20].

In the first category, the most popular formalism used to incorporate semantic in-
formation into GP is Attribute Grammars. By using an attribute grammar and adding
some attributes to individuals, some useful semantic information obtained from indi-
viduals during the evlutionary process can be obtained. This information then can be
used to remove bad individuals from the population as reported in [3] or to prevent
generating semantically invalid individuals as in [21, 2].The attributes used to present
semantics are problem dependent and it is not always easy to design the attributes for
each problem.

Within the second category, Johnson has advocated for usingformal methods as
a way of adding semantic information in GP [9–11]. In these methods, the semantic
information extracted by using formal methods (e.g., Abstract Interpretation and Model
Checking) is used to measure individuals’ fitnesses in some problems which are difficult
to use a traditional sample point based fitness measure. Katzand his co-workers used
a model checking with GP to solve the Mutual Exclusion problem [13, 12]. In these
works, semantics is also used to calculate the fitness of individuals.

Finally, with expression trees, semantic information has been incorporated mainly
by modifying the crossover operator. Early work focused on the syntax and structure of
individuals. In [8], the authors modified the crossover operator to take into account the
depth of trees. Other work modified crossover taking into account the shape of the indi-
viduals [17]. More recently, context has been used as extra information for determining
GP crossover points [6, 15]. However, all these methods haveto pay extra time costing
for evaluating the context of all subtrees within each individual in the population.

In [1], the authors investigated the effects of directly using semantic information
to guide GP crossover on Boolean domains. The main idea was tocheck the seman-
tic equivalence between offspring and parents by transforming the trees to Reduced
Ordered Binary Decision Diagrams (ROBDDs). Two trees have the same semantic in-



Semantic Similarity based XOR in GP for real-valued function regression 3

formation if and only if they both are reduced to the same ROBDD. The semantic
equivalence checking is then used to determine which of the individuals participating in
crossover will be copied to the next generation. If the offspring are semantically equiv-
alent to their parents, then the parents are copied into the new population. By doing
so, the authors argue that there is an increase in the semantic diversity of the evolving
population and as a consequence an improvement in the GP performance.

Uy et al. [20] proposed a new crossover operator (SAC), basedon the seman-
tic equivalence checking of subtrees. The approach was tested on a family of real-
value symbolic regression problems (e.g., polynomial functions). The empirical results
showed that SAC improves GP performance. SAC differs from [1] in two ways. Firstly,
the test domain is real-valued rather than Boolean. For real-value domains, checking se-
mantic equivalence by reduction to common ROBDDs is no longer possible. Secondly,
the crossover operator is guided not by the semantics of the whole program tree, but
by subtrees. This is inspired by recent work presented in [16] for calculating subtree
semantics.

3 Semantic Similarity based Crossover

Semantic Similarity based Crossover (SSC) presented in this section is an extension of
SAC [20]. In SAC, the semantic equivalence of two subtrees isdetermined by compar-
ing them on a set of random points in the domain. If the outputsof the two subtrees on
the set is close enough (subject to a parameter calledsemantic sensitivity) then they are
designated as semantically equivalent. This information is then used to guide crossover
by preventing the swap of two equivalent subtrees in each crossover operation.

The method proposed in this paper differs from SAC in two ways. Firstly, the con-
cept of semantically equivalent subtrees is replaced by theconcept of semantically sim-
ilar subtrees. As in [20], the similarity of two subtrees is also checked by comparing
them on a set of random points in the domain. If the output of these subtrees on the
set is within an interval, then they are considered as semantically similar subtrees. As-
suming that we need to check if two subtreesSt1 andSt2 are similar or not, then the
pseudo-code for doing it is as follows:

If α<Abs(Value On Random Set(St1)- Value On Random Set(St2))<β then
Return St1 is semantically similar to St2.

whereAbs is the absolute function andα and β are two predefined values.α is the
lower bound semantic sensitivity, β is theupper bound semantic sensitivity. Perhaps,
the best value forlower bound semantic sensitivityandupper bound semantic sensitiv-
ity are problem dependent. However, we strongly believe that there is a range of values
that is good for almost every symbolic regression problems (see section 5). In this pa-
per, we conducted the experiment with a range of different values for both thelower
bound semantic sensitivityand theupper bound semantic sensitivityto see how our new
crossover performs.

The second difference between SSA and SAC is the way in which the semantic
similarity is used to guide crossover operation. In [20], the equivalent semantics is used
to guide crossover by trying to select other subtrees to do crossover only one time when
two subtrees are semantically equivalent. In SSC, when two subtrees are considered



4 Authors Suppressed Due to Excessive Length

Algorithm 1: Semantic Similarity based Crossover

select Parent 1P1;
select Parent 2P2;
Count=0;
while count<Max Attemptdo

choose at random crossover points atSubtree1 in P1;
choose at random crossover points atSubtree2 in P2;
if Subtree1 is not similar with Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

if Count=MaxAttemptthen
choose at random crossover points atSubtree1 in P1;
choose at random crossover points atSubtree2 in P2;
execute crossover;
return true;

as not similar, we try a number of times to pick up two other subtrees. The reason is
that picking up two similar subtrees is more difficult than selecting two non-equivalent
subtrees in [20]. Algorithm 1 shows how SSC works.

In our experiments, MaxAtempt is set at 3. The motivation for SSC is that while
encouraging GP individuals to exchange semantically different subtrees as in SAC [20],
it is also desirable to prevent exchanging subtrees where the semantic difference is too
large since it might cause substantial or even unbounded change in the semantics of the
individuals after being crossed over. In other words, whileforcing a change in the se-
mantics of the individuals in the population, we also want tokeep this change bounded
and small. It is expected that a smoother change in fitness of the individuals will be
obtained. For instance, consider an individual with the root node as the arithmetic mul-
tiplication (*) and its left and right subtrees have return values (semantics) of 10 and 3
respectively. Then, this individual has the return value of30 (=10*3). If the right sub-
tree is replaced by a semantically similar subtree such as the return value is 3.2, the
return value of the individual is only slightly changed to 10*3.2=32. However, if it is
replaced by a semantically different subtree, with the return value of 100 for example,
the semantics of the individual will change dramatically to10*100=1000. This likely
causes a big change in the fitness of the individual.

4 Experimental Setup

To investigate the possible effects of SSC and to compare it with SAC and SC, we used
four real-valued symbolic regression problems of increasing difficulty. The underlying



Semantic Similarity based XOR in GP for real-valued function regression 5

Table 1. Symbolic Regression Functions

F1 = X3 +X2+X F3 = X5 +X4+X3+X2+X
F2 = X4 +X3+X2+X F4 = X6 +X5+X4+X3+X2+X

Table 2. Run and Evolutionary Parameter Values

Parameter Value Parameter Value
Generations 50 Population size 500
Selection TournamentTournament size 3
Crossover probability 0.9 Mutation probability0.1
Initial Max depth 6 Max depth 15
Non-terminals +, -, *, /, sin, cos, exp, log (protected versions)
Terminals X, 1
Number of samples 20 random points from[−1. . .1]
Successful run sum of absolute error on all fitness cases< 0.1
Termination max generations exceeded
Lower semantic sensitivities0.02,0.04,0.06,0.08
Higher semantic sensitivities8,10,12
Trials per treatment 100 independent runs for each value.

functions, from [7], are shown in Table 1, and the parametersused for our experiments
are shown in Table 2. The reason for choosing thelower bound semantic sensitivities
of SSC as thesemantic sensitivitiesof SAC is these values helped to improve the per-
formance of SAC over SC as shown in [20]. The reason for setting theupper bound
semantic sensitivitiesvalues is inspired from the results of our experiments. These val-
ues are sufficient to demonstrate the performance of SSC.

5 Results and Discussion

We present the results of two experiments undertaken to understand the behaviour of Se-
mantic Similarity based Crossover (SSC), the earlier Semantic Aware Crossover (SAC),
with both benchmarked against standard crossover (SC). In the first instance we exam-
ine the classic performance metrics of mean best fitness and the number of successful
runs, followed by an analysis of the locality of each operator.

5.1 Mean Fitness and Success Rates

Table 3 shows the percentage of successful runs. Figure 1 depicts the cumulative fre-
quency using three different crossover operators, namely,SC, SAC, SSC (withlower
bound semantic sensitivityandupper bound semantic sensitivityas 0.02 and 8, respec-
tively). It can be seen from Table 3 that in almost all cases, SSC outperforms both SAC
and SC. The exceptions mostly happen when solving the problem with target function
F1, which may simply be far too easy a problem to benefit from semantic information.
Figure 1 shows that SSC usually find the perfect solutions faster than SAC and SC.



6 Authors Suppressed Due to Excessive Length

Table 3. Comparison of the percentage of successful runs.

sensitivities F1 F2 F3 F4

low high SCSAC SSCSCSAC SSCSCSAC SSCSCSAC SSC

0.02
8 62 70 65 28 33 42 15 22 34 10 14 26
10 62 70 75 28 33 47 15 22 27 10 14 23
12 62 70 67 28 33 37 15 22 29 10 14 17

0.04
8 62 70 64 28 34 38 15 20 32 10 19 23
10 62 70 73 28 34 47 15 20 25 10 19 27
12 62 70 62 28 34 36 15 20 31 10 19 20

0.06
8 62 71 63 28 32 39 15 20 32 10 17 27
10 62 71 73 28 32 45 15 20 29 10 17 25
12 62 71 59 28 32 33 15 20 32 10 17 19

0.08
8 62 70 70 28 35 42 15 20 26 10 17 16
10 62 70 70 28 35 35 15 20 25 10 17 23
12 62 70 70 28 35 37 15 20 24 10 17 17

Table 4 gives the average of best solutions found in all runs of all GP systems.
In this table, we use the shorhandsen for sensitivity. In Figure 2 we also show the
average of best fitness and the average of average fitness (over 100 runs) in each of
50 generations withlower boundandhigh upper bound semantic sensitititiesas 0.02
and 10 respectively. It is noted that, in these figure, we onlyshow the statistics from
the 10th generation onwards. The reason is that at some first generations, the values of
those statistics are usually big (which is expected as the fitness of individuals at the
early stage of evolution is usually very bad). Therefore, itis difficult to scale the graphs
to highlight the difference. Moreover, at these early generations, the statistics on fitness
values were almost similar in all of GP systems regardless ofwhich crossover operator
is used.

The results in Table 4 are consistent with those in Table 3 in that SSC is also supe-
rior than both SAC and SC finding solutions with better quality. Moreover, it can be ob-
served from this table that the more difficult problem, the better performance achieved
by SSC in comparison with SAC and SC. The results in Table 4 is also very solid as
there is no exception in it. It expresses that SSC is also better than SAC and SC when
they are compared by the average best fitness with the abovelower boundandupper
bound semantic sensitivities. Figure 2 shows that SSC not only outperforms than SAC
and SC in terms of best fitness of runs but also better in terms of the mean best fitness
at each generations.

To measure the statistical significance of the results in Table 4, we also conducted
some statistical tests. Here the t-test was used to see if theimprovement over the average
best fitness of SSC is significant. The t-test results of SAC incomparison with SC done
in [20] is also transfered to this paper for the ease of comparison. The result of t-test
(p-values) of both SSC and SAC in comparison with SC is shown in Table 5. In this
table, if the improvement is remarkable, p-value is less than 0.05, and that value is bold
faced as in the previous tables.



Semantic Similarity based XOR in GP for real-valued function regression 7

0

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40 45 50

C
um

ul
at

iv
e 

fr
eq

ue
nc

y 

Generations 

F1 
SC 

SAC 
SSC 

0

10

20

30

40

50

5 10 15 20 25 30 35 40 45 50

C
um

ul
at

iv
e 

fr
eq

ue
nc

y 

Generations 

F2 
SC 

SAC 
SSC 

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40 45 50

C
um

ul
at

iv
e 

fr
eq

ue
nc

y 

Generations 

F3 
SC 

SAC 
SSC 

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

C
um

ul
at

iv
e 

fr
eq

ue
nc

y 

Generations 

F4 
SC 

SAC 
SSC 

Fig. 1. Cumulative frequencyα=0.02,β=8.

It can be seen from Table 5 that while the improvement in termsof the average
best fitness of runs of SAC over standard crossover is either not signficant or borderline
marginal, regardless of the upper and lower bounds exploredon F2, F3 and F4 there is
almost always a significant difference is observed with SSC.The exceptions mostly lie
in the easy-to-learn function F1. On the contrary, in the most complicated target func-
tions, F3, F4, there is no exception, whereas there are two exceptions in F2. The results
support the confirmation that the more difficult problem, thebetter GP performance is
gained by using SSC.

5.2 Operator Locality

The next set of experimental results are for the investigation of the locality property of
SSC. It is well known that using a high-locality representation (small change in geno-
type corresponds to small change in phenotype) is importantfor efficient evolutionary
search [5]. It is also widely admitted that designing an search operator for GP that could
correspond a small change in syntax (genotype) to a small change in semantics (phe-
notype) is very difficult. Therefore, nearly all current GP representations and operators
are low-locality, meaning that a small (syntactic) change in a parent can cause a big or
even uncontrollable (semantical) change in their children. Our new crossover operator
is different with other crossover operators in the literature in that it attempts to achieve
high-locality.



8 Authors Suppressed Due to Excessive Length

Table 4. Comparison of the average best fitness over 100 runs.

sen F1 F2 F3 F4

low high SC SAC SSC SC SAC SSC SC SAC SSC SC SAC SSC

0.02
8 0.13 0.13 0.11 0.26 0.24 0.16 0.30 0.28 0.20 0.40 0.33 0.24
10 0.13 0.13 0.09 0.26 0.24 0.14 0.30 0.28 0.21 0.40 0.33 0.23
12 0.13 0.13 0.09 0.26 0.24 0.18 0.30 0.28 0.19 0.40 0.33 0.27

0.04
8 0.13 0.13 0.11 0.26 0.23 0.16 0.30 0.27 0.21 0.40 0.33 0.25
10 0.13 0.13 0.09 0.26 0.23 0.13 0.30 0.27 0.21 0.40 0.33 0.23
12 0.13 0.13 0.10 0.26 0.23 0.19 0.30 0.27 0.19 0.40 0.33 0.26

0.06
8 0.13 0.10 0.11 0.26 0.23 0.15 0.30 0.27 0.20 0.40 0.32 0.24
10 0.13 0.12 0.08 0.26 0.23 0.16 0.30 0.27 0.21 0.40 0.32 0.23
12 0.13 0.12 0.10 0.26 0.23 0.19 0.30 0.27 0.20 0.40 0.32 0.27

0.08
8 0.13 0.14 0.08 0.26 0.22 0.17 0.30 0.28 0.21 0.40 0.33 0.26
10 0.13 0.14 0.09 0.26 0.22 0.17 0.30 0.28 0.21 0.40 0.33 0.26
12 0.13 0.14 0.11 0.26 0.22 0.16 0.30 0.28 0.23 0.40 0.33 0.26

Table 5. T-test result (p-values).

sen F1 F2 F3 F4

low high SAC SSCSAC SSCSAC SSCSAC SSC

0.02
8 0.68 0.86 0.46 0.00 0.41 0.00 0.12 0.00
10 0.68 0.44 0.46 0.00 0.41 0.00 0.12 0.00
12 0.68 0.36 0.46 0.02 0.41 0.00 0.12 0.00

0.04
8 0.93 0.94 0.36 0.00 0.30 0.00 0.12 0.00
10 0.93 0.29 0.36 0.00 0.30 0.00 0.12 0.00
12 0.93 0.58 0.36 0.05 0.30 0.00 0.12 0.00

0.06
8 0.98 0.96 0.22 0.00 0.26 0.00 0.08 0.00
10 0.98 0.21 0.22 0.00 0.26 0.01 0.08 0.00
12 0.98 0.77 0.22 0.05 0.26 0.00 0.08 0.00

0.08
8 0.60 0.08 0.25 0.00 0.49 0.01 0.15 0.00
10 0.60 0.40 0.25 0.00 0.49 0.00 0.15 0.00
12 0.60 0.94 0.25 0.00 0.49 0.02 0.15 0.00

To compare the locality property of SSC with SAC and SC, an experiment was con-
ducted where the fitness change of individuals before and after crossover is measured.
For example, if two individuals having fitness of 10 and 15 areselected for crossover,
and that after the crossover operation their children have fitness of 17 and 9. Then, the
change of fitness of these individuals isAbs(17−10)+ Abs(9− 15) = 13. HereAbs
is again the absolute function. This value is then averaged over whole population and
over 100 runs as well as for 50 generations. The results aboutthe average of the fitness
change of individuals before and after crossover is shown inTable 6. Again, in this
table, the best results (the smallest values) are bold faced.

In the Figure 3 we show the change of the average of fitness movement of 100 runs
for each of 50 generations withlower bound and upper bound semantic sensitivities
as 0.04 and 10. Table 6 and Figure 3 show that the step of the fitness change of our



Semantic Similarity based XOR in GP for real-valued function regression 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f b

es
t f

itn
es

s 

Generations 

F1 
SC 

SAC 
SSC 

0

0.5

1

1.5

2

10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f b

es
t f

itn
es

s 

Generations 

F2 
SC 

SAC 
SSC 

0

0.5

1

1.5

2

10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f b

es
t f

itn
es

s 

Generations 

F3 
SC 

SAC 
SSC 

0

0.5

1

1.5

2

2.5

10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f b

es
t f

itn
es

s 

Generations 

F4 
SC 

SAC 
SSC 

Fig. 2. Average of best fitness withα=0.02,β=10.

new crossover operator (SSC) is smaller than both SAC and SC.This means that the
change of fitness over generations of SSC is smoother than SACand SC. The table and
figure also show that the fitness change of SAC is only slightlysmoother than SC. These
results explain why SSC is much better than SAC and SC on the problems tried, while
SAC is also better than SC but only slightly.

6 Conclusion and Future Work

In this paper, we have proposed a new semantic based crossover operator for GP, Se-
mantic Similarity based Crossover (SSC). The new operator was tested and analysed
on a class of real-valued symbolic regression problems and the results were compared
using Semantic Aware Crossover (SAC) and standard GP crossover (SC). The experi-
mental results show that SSC helps to improve the performance of GP in comparison
with SAC and SC both in terms of the percentage of successful runs and the average of
best fitness over a number of runs. The results from the experiments also show that this
operator not only helps to encourage the exchange of subtrees with different semantics
as in [20], but also makes a smaller change of fitness during the evolutionary process,
by only allowing exchange of subtrees which have a controlled degree of similarity, en-
suring a more well-behaved operator in terms of locality. Weargue that this is the main
reason why SSC outperformed SAC and SC on the problems tried.

In the near future, we are planning to extend the work presented in this paper in
a number of ways. Firstly, we are aiming to apply SSC on more difficult symbolic



10 Authors Suppressed Due to Excessive Length

Table 6. The average individual fitness change before and after crossover operation

sen F1 F2 F3 F4

low high SCSAC SSC SC SAC SSC SC SAC SSC SC SAC SSC

0.02
8 8.8 8.6 6.9 10.1 8.7 6.0 10.3 10.3 6.8 11.8 9.7 7.5
10 8.8 8.6 6.1 10.1 8.7 5.8 10.3 10.3 6.6 11.8 9.7 7.3
12 8.8 8.6 6.5 10.1 8.7 5.9 10.3 10.3 7.2 11.8 9.7 7.5

0.04
8 8.8 8.7 6.7 10.1 8.5 6.1 10.3 10.1 7.4 11.8 9.7 8.0
10 8.8 8.7 6.0 10.1 8.5 5.3 10.3 10.1 6.8 11.8 9.7 7.2
12 8.8 8.7 6.0 10.1 8.5 5.8 10.3 10.1 7.3 11.8 9.7 7.4

0.06
8 8.8 8.2 6.8 10.1 7.3 5.9 10.3 9.3 7.2 11.8 9.5 7.8
10 8.8 8.2 6.2 10.1 7.3 6.1 10.3 9.3 6.8 11.8 9.5 7.4
12 8.8 8.2 5.7 10.1 7.3 5.8 10.3 9.3 7.4 11.8 9.5 7.3

0.08
8 8.8 8.3 6.6 10.1 7.4 5.3 10.3 9.4 7.3 11.8 9.6 7.9
10 8.8 8.3 5.9 10.1 7.4 5.1 10.3 9.4 6.8 11.8 9.6 7.5
12 8.8 8.3 5.4 10.1 7.4 6.1 10.3 9.4 7.4 11.8 9.6 6.9

regression problems (the problems that are multi-variableand more complex in the
structure of the solutions). For these problems, we predictthat making small change
in semantics is more difficult and also more important. Secondly, SSC could be used
to enhance some previous proposed crossover operators thatare purely based on the
structure of trees such as crossover with bias on the depth ofnodes [8] or one point
crossover [17]. Another potential research direction is toapply SSC on other kind of
problem domains such as on Boolean problems that have been investigated in [16]. It
could be even more difficult to generate the children that aredifferent from their parents
in terms of semantics. Last but not least, we are planning to investigate the range of
lower bound semantic sensitivityandupper bound semantic sensitivityvalues that are
good for a class of problems. In this paper, these values are manually and experimentally
specified, however, it may be possible to allow these values to self-adapt during the
evolutionary process [4].

Acknowledgements

This paper was funded under a Postgraduate Scholarship fromthe Irish Research Coun-
cil for Science Engineering and Technology (IRCSET).

References

1. L. Beadle and C. Johnson. Semantically driven crossover in genetic programming. InPro-
ceedings of the IEEE World Congress on Computational Intelligence, pages 111–116. IEEE
Press, 2008.

2. R. Cleary and M. O’Neill. An attribute grammar decoder forthe 01 multi-constrained knap-
sack problem. InProceedings of the Evolutionary Computation in Combinatorial Optimiza-
tion, pages 34–45. Springer Verlag, April 2005.



Semantic Similarity based XOR in GP for real-valued function regression 11

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f f

itn
es

s 
m

ov
em

en
t 

Generations 

F1 
SC 

SAC 
SSC 

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f f

itn
es

s 
m

ov
em

en
t 

Generations 

F2 
SC 

SAC 
SSC 

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f f

itn
es

s 
m

ov
em

en
t 

Generations 

F3 
SC 

SAC 
SSC 

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

T
he

 a
ve

ra
ge

 o
f f

itn
es

s 
m

ov
em

en
t 

Generations 

F4 
SC 

SAC 
SSC 

Fig. 3. The average fitness movement before and after crossover withα=0.04,β=10

3. M. de la Cruz Echeanda, A. O. de la Puente, and M. Alfonseca.Attribute grammar evolution.
In Proceedings of the IWINAC 2005, pages 182–191. Springer Verlag Berlin Heidelberg,
2005.

4. K. Deb and H. G. Beyer. Self-adaptation in real-parametergenetic algorithms with simulated
binary crossover. InProceedings of the Genetic and Evolutionary Computation Conference,
pages 172–179. Morgan Kaufmann, July 1999.

5. J. Gottlieb and G. Raidl. The effects of locality on the dynamics of decoder-based evolution-
ary search. InProceedings of the Genetic and Evolutionary Computation Conference, page
283290. ACM, 2000.

6. S. Hengpraprohm and P. Chongstitvatana. Selective crossover in genetic programming. In
Proceedings of ISCIT International Symposium on Communications and Information Tech-
nologies, pages 14–16, November 2001.

7. N. X. Hoai, R. McKay, and D. Essam. Solving the symbolic regression problem with tree-
adjunct grammar guided genetic programming: The comparative results. InProceedings
of the 2002 Congress on Evolutionary Computation (CEC2002), pages 1326–1331. IEEE
Press.

8. T. Ito, H. Iba, and S. Sato. Depth-dependent crossover forgenetic programming. InPro-
ceedings of the 1998 IEEE World Congress on Computational Intelligence, pages 775–780.
IEEE Press, May 1998.

9. C. Johnson. Deriving genetic programming fitness properties by static analysis. InPro-
ceedings of the 4th European Conference on Genetic Programming (EuroGP2002), pages
299–308. Springer, 2002.

10. C. Johnson. What can automatic programming learn from theoretical computer science. In
Proceedings of the UK Workshop on Computational Intelligence. University of Birmingham,



12 Authors Suppressed Due to Excessive Length

2002.
11. C. Johnson. Genetic programming with fitness based on model checking. InProceedings

of the 10th European Conference on Genetic Programming (EuroGP2002), pages 114–124.
Springer, 2007.

12. G. Katz and D. Peled. Genetic programming and model checking: Synthesizing new mutual
exclusion algorithms.Automated Technology for Verification and Analysis, Lecture Notes in
Computer Science, 5311:33–47, 2008.

13. G. Katz and D. Peled. Model checking-based genetic programming with an application
to mutual exclusion.Tools and Algorithms for the Construction and Analysis of Systems,
4963:141–156, 2008.

14. J. Koza.Genetic Programming: On the Programming of Computers by Natural Selection.
MITPress, MA, 1992.

15. H. Majeed and C. Ryan. A less destructive, context-awarecrossover operator for gp. InPro-
ceedings of the 9th European Conference on Genetic Programming, pages 36–48. Lecture
Notes in Computer Science, Springer, April 2006.

16. N. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks in genetic programming.
In Proceedings of 11th European Conference on Genetic Programming, pages 134–145.
Springer.

17. R. Poli and W. B. Langdon. Genetic programming with one-point crossover. InProceedings
of Soft Computing in Engineering Design and Manufacturing Conference, pages 180–189.
Springer-Verlag, June 1997.

18. R. Poli and W. L. N. McPhee.A Field Guide to Genetic Programming. http://lulu.com, 2008.
19. F. Rothlauf and M. Oetzel. On the locality of grammaticalevolution. InProceedings of

the 9th European Conference on Genetic Programming, pages 320–330. Lecture Notes in
Computer Science, Springer, April 2006.

20. N. Q. Uy, N. X. Hoai, and M. ONeill. Semantic aware crossover for genetic programming:
the case for real-valued function regression. InProceedings of EuroGP09. Springer.

21. M. L. Wong and K. S. Leung. An induction system that learnsprograms in different pro-
gramming languages using genetic programming and logic grammars. InProceedings of the
7th IEEE International Conference on Tools with Artificial Intelligence, 1995.


