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Abstract. Inthis paper we propose a new method for implementing thescner
operator in Genetic Programming (GP) called Semantic Siitylbased Crossover
(SSC). This new operator is inspired by Semantic Aware @wass(SAC) [20].
SSC extends SAC by adding semantics to control the chandeeafemantics
of the individuals during the evolutionary process. The wesgsover operator is
then tested on a family of symbolic regression problems angpared with SAC
as well as Standard Crossover (SC). The results from theiexpats show that
the change of the semantics (fitness) in the new SSC is smomthgpared to
SAC and SC. This leads to performance improvement in ternpeiafentage of
succesful runs and mean best fitness.

1 Introduction

Genetic Programming (GP) is an evolutionary algorithmiiregpby biological evolu-
tion to find the solution for an user-defined task. The progimmsually presented in
a language of syntactic formalisms such as s-expressien {f&l], a linear sequence
of instructions, grammars, or graphs [18]. The genetic ajoes in such GP systems
are usually designed to ensure the syntactic closure fsoper, to produce syntacti-
cally valid children from any syntactically valid parent(gsing such purely syntactical
genetic operators, GP evolutionary search is conductedesyintactical space of pro-
grams with the only semantic guidance from an individuatisefss.

Although GP has shown to be effective in evolving progranrssfaving differ-
ent problems using such (finite) behavior-based semanitiagoe and pure syntactical
genetic operators, this practice is somewhat unusual fraralgprogrammers’ perspec-
tive. Computer programs are not just constrained by synt&also by semantics. As
a normal practice, any change to a program should pay hetantian to the change
in semantics of the program. To amend this deficiency in GRjltiag from the lack
of semantic guidance on genetic operators, Uy et al. [20p@sed a semantic-based
crossover operator for GP, called Semantic Aware Cross@&E€). The results re-
ported in [20] show that using semantic information helpgriprove performance of
GP in terms of the number of successful runs in solving relded symbolic regression
problems.

This paper extends the ideas presented in [20]. Our new tmpecalled Semantic
Similarity based Crossover (SSC) is an improvement over 8&Qugh the inclusion
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of additional semantic information to control the changesefantics of individuals
by only allowing swapping of two subtrees which are semailiticsimilar while also
being semantically different. Effectively an upper andéoWwound on semantic differ-
ence is used to determine whether or not subtrees can bermathduring a crossover
event. By doing this, we expect that the change of fitness afdiridual will be less
destructive. This property has been proved to be very inapbih GP [19].

The paper is organised as follows. In the next section, we gixeview of related
work on semantic based crossovers in GP. In Section 3 weidesmuir new crossover
operator and explain how it differs from the crossover ofmerproposed in [20]. The
experiments on the new crossover operator is describedciin8et of the paper. The
results of the experiments are then given and discussedtios®. Section 6 concludes
the paper and highlights some potential future extensibtigsowork.

2 PreviousWorks

There has been a number of work in the literature on how torparate semantic in-
formation into GP. There are at least three ways in which s¢iggacan be represented,
extracted and used to guide GP: (a) using grammars [21, h)3lising formal meth-
0ds [9-11,13, 12], and (c) based on GP tree-like structdrds| 20].

In the first category, the most popular formalism used tolipeate semantic in-
formation into GP is Attribute Grammars. By using an atttdbgrammar and adding
some attributes to individuals, some useful semantic médgron obtained from indi-
viduals during the evlutionary process can be obtaineds irtiormation then can be
used to remove bad individuals from the population as reoirt [3] or to prevent
generating semantically invalid individuals as in [21,Phe attributes used to present
semantics are problem dependent and it is not always eassigrdthe attributes for
each problem.

Within the second category, Johnson has advocated for disingal methods as
a way of adding semantic information in GP [9-11]. In these¢hwods, the semantic
information extracted by using formal methods (e.g., Adodtinterpretation and Model
Checking) is used to measure individuals’ fithnesses in sawtagms which are difficult
to use a traditional sample point based fithess measure.afathis co-workers used
a model checking with GP to solve the Mutual Exclusion probl[@3, 12]. In these
works, semantics is also used to calculate the fitness ofithdils.

Finally, with expression trees, semantic information hasrbincorporated mainly
by modifying the crossover operator. Early work focusedhmngyntax and structure of
individuals. In [8], the authors modified the crossover aeparto take into account the
depth of trees. Other work modified crossover taking intmaotthe shape of the indi-
viduals [17]. More recently, context has been used as extoarhation for determining
GP crossover points [6, 15]. However, all these methods twagay extra time costing
for evaluating the context of all subtrees within each ifdinal in the population.

In [1], the authors investigated the effects of directlyngssemantic information
to guide GP crossover on Boolean domains. The main idea welseitk the seman-
tic equivalence between offspring and parents by trandfggrnthe trees to Reduced
Ordered Binary Decision Diagrams (ROBDDs). Two trees haeeseame semantic in-
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formation if and only if they both are reduced to the same ROBDhe semantic
equivalence checking is then used to determine which oftfligiduals participating in

crossover will be copied to the next generation. If the affapare semantically equiv-
alent to their parents, then the parents are copied into ¢lepopulation. By doing

s0, the authors argue that there is an increase in the sendarersity of the evolving

population and as a consequence an improvement in the Gétiparice.

Uy et al. [20] proposed a new crossover operator (SAC), basethe seman-
tic equivalence checking of subtrees. The approach wasdtest a family of real-
value symbolic regression problems (e.g., polynomial fioms). The empirical results
showed that SAC improves GP performance. SAC differs frojin[fwo ways. Firstly,
the test domain is real-valued rather than Boolean. Foivaake domains, checking se-
mantic equivalence by reduction to common ROBDDs is no lopgssible. Secondly,
the crossover operator is guided not by the semantics of ti@enprogram tree, but
by subtrees. This is inspired by recent work presented i fdrécalculating subtree
semantics.

3 Semantic Similarity based Crossover

Semantic Similarity based Crossover (SSC) presentedsrs#ution is an extension of
SAC [20]. In SAC, the semantic equivalence of two subtreeetermined by compar-
ing them on a set of random points in the domain. If the outpfitke two subtrees on
the set is close enough (subject to a parameter cadlethntic sensitivijjthen they are
designated as semantically equivalent. This informasdheén used to guide crossover
by preventing the swap of two equivalent subtrees in eactsorer operation.

The method proposed in this paper differs from SAC in two wa&ystly, the con-
cept of semantically equivalent subtrees is replaced bgdheept of semantically sim-
ilar subtrees. As in [20], the similarity of two subtrees iscachecked by comparing
them on a set of random points in the domain. If the output ef¢hsubtrees on the
set is within an interval, then they are considered as séoadigtsimilar subtrees. As-
suming that we need to check if two subtr&sand Sk are similar or not, then the
pseudo-code for doing it is as follows:

If a<Abs(Val ue_On_RandomSet (St;)- Val ue_On_RandomSet (St2))<B then

Return St1 is semantically sinilar to Sto.
where Absis the absolute function anal and 3 are two predefined valuea. is the
lower bound semantic sensitivit§ is theupper bound semantic sensitivityerhaps,
the best value folower bound semantic sensitivismdupper bound semantic sensitiv-
ity are problem dependent. However, we strongly believe tleaetis a range of values
that is good for almost every symbolic regression problesae Gection 5). In this pa-
per, we conducted the experiment with a range of differehtesafor both thdower
bound semantic sensitivignd theupper bound semantic sensitivitysee how our new
crossover performs.

The second difference between SSA and SAC is the way in wiietsémantic
similarity is used to guide crossover operation. In [20&, élguivalent semantics is used
to guide crossover by trying to select other subtrees to dssover only one time when
two subtrees are semantically equivalent. In SSC, when titrses are considered
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Algorithm 1: Semantic Similarity based Crossover

select Parent P;;

select Parent P»;

Count=0;

while counMax Attemptdo

choose at random crossover pointSabtree in Py;
choose at random crossover pointSabtree in Py;

if Subtree is not similar with Subtreethen
execute crossover;

add the children to the new population;
return true;
else
| Count=Count+1;

if Count=MaxAttemptthen
choose at random crossover pointSabtree in Py;

choose at random crossover pointSabtree in Py;
execute crossover;
return true;

as not similar, we try a number of times to pick up two othertsés. The reason is
that picking up two similar subtrees is more difficult thafeséing two non-equivalent
subtrees in [20]. Algorithm 1 shows how SSC works.

In our experiments, MaAtempt is set at 3. The motivation for SSC is that while
encouraging GP individuals to exchange semantically diffesubtrees as in SAC [20],
it is also desirable to prevent exchanging subtrees whersdmantic difference is too
large since it might cause substantial or even unboundewehia the semantics of the
individuals after being crossed over. In other words, wfilkeing a change in the se-
mantics of the individuals in the population, we also warkdep this change bounded
and small. It is expected that a smoother change in fithedseoindividuals will be
obtained. For instance, consider an individual with the rmmle as the arithmetic mul-
tiplication (*) and its left and right subtrees have retuaiues (semantics) of 10 and 3
respectively. Then, this individual has the return valu8@{=10*3). If the right sub-
tree is replaced by a semantically similar subtree such eseturn value is 3.2, the
return value of the individual is only slightly changed to*3@2=32. However, if it is
replaced by a semantically different subtree, with therretalue of 100 for example,
the semantics of the individual will change dramaticallyl@100=1000. This likely
causes a big change in the fithess of the individual.

4 Experimental Setup

To investigate the possible effects of SSC and to comparighit$AC and SC, we used
four real-valued symbolic regression problems of incregsiifficulty. The underlying
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Table 1. Symbolic Regression Functions

F1=X3+XZ+X Fs =X+ XA+ X3+ X2+ X
Fo=X* 4+ X3 X2 X[F = XO+ XP - XA+ XZ £ X2+ X
Table 2. Run and Evolutionary Parameter Values

Parameter Value Parameter Value
Generations 50 Population size 500
Selection Tournamenfournament size |3
Crossover probability 0.9 Mutation probabilit;@.l

Initial Max depth 6 Max depth 15
Non-terminals +, -, *,/, sin, cos, exp, log (protected versions)
Terminals X, 1

Number of samples 20 random points from+1...1]

Successful run sum of absolute error on all fitness case6.1
Termination max generations exceeded

Lower semantic sensitivitigs.02,0.04,0.06,0.08

Higher semantic sensitivitieg 10,12

Trials per treatment 100 independent runs for each value.

functions, from [7], are shown in Table 1, and the parametses for our experiments
are shown in Table 2. The reason for choosingltiveer bound semantic sensitivities
of SSC as theemantic sensitivitiesf SAC is these values helped to improve the per-
formance of SAC over SC as shown in [20]. The reason for ggttie upper bound
semantic sensitivitiegalues is inspired from the results of our experiments. €hves
ues are sufficient to demonstrate the performance of SSC.

5 Resultsand Discussion

We present the results of two experiments undertaken toretaofel the behaviour of Se-
mantic Similarity based Crossover (SSC), the earlier SéimAware Crossover (SAC),
with both benchmarked against standard crossover (SQ)elfirst instance we exam-
ine the classic performance metrics of mean best fithesshendumber of successful
runs, followed by an analysis of the locality of each operato

5.1 Mean Fitness and Success Rates

Table 3 shows the percentage of successful runs. Figureittsi¢ipe cumulative fre-
quency using three different crossover operators, nar8€ly,SAC, SSC (withower
bound semantic sensitivigndupper bound semantic sensitiveag 0.02 and 8, respec-
tively). It can be seen from Table 3 that in almost all cas&S Sutperforms both SAC
and SC. The exceptions mostly happen when solving the probi¢h target function
F1, which may simply be far too easy a problem to benefit from sgiménformation.
Figure 1 shows that SSC usually find the perfect solutionefaélsan SAC and SC.
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Table 3. Comparison of the percentage of successful runs.

sensitivities F1 F Fs3 Fa
low| high |[SCSAC|SSGSCSAC|SSGSCSACISSGSCSAC(SSC
8 |62| 70 | 65|28| 33|42 |15/ 22 | 34 |10| 14 | 26
0.02 10 [62| 70| 75 (28| 33 | 47 |15 22 | 27 [10] 14 | 23
12 [62| 70 | 67 (28| 33 | 37 |15 22 | 29 [10| 14 | 17
8 |62| 70 | 64|28| 34 | 38|15/ 20| 32 {10| 19| 23
0.04 10 |62 70| 73 |28| 34 | 47 |15] 20| 25 |10] 19 | 27
12 [62| 70 | 62 (28| 34 | 36 |15/ 20 | 31 [10] 19| 20
8 |62| 71 |63|28| 32|39 |15/ 20| 32 |10| 17 | 27
0.0§ 10 |62 71| 73 (28| 32| 45|15 20| 29 |10| 17 | 25
12 [62| 71|59 (28| 32| 33|15/ 20 | 32 [10] 17| 19
8 62| 70|70 |28| 35| 42 |15/ 20| 26 |10| 17 | 16
0.0§ 10 [62| 70 | 70 (28| 35 | 35 |15/ 20 | 25 {10| 17 | 23
12 |62| 70 | 70 |28| 35 | 37 |15 20 | 24 |10| 17 | 17

Table 4 gives the average of best solutions found in all rdrallcGP systems.
In this table, we use the shorhasdnfor sensitivity In Figure 2 we also show the
average of best fithess and the average of average fithegsl@¥euns) in each of
50 generations witfower boundandhigh upper bound semantic sensitititias 0.02
and 10 respectively. It is noted that, in these figure, we shiyw the statistics from
the 18" generation onwards. The reason is that at some first gemesathe values of
those statistics are usually big (which is expected as thed#t of individuals at the
early stage of evolution is usually very bad). Thereforis, difficult to scale the graphs
to highlight the difference. Moreover, at these early gatiens, the statistics on fitness
values were almost similar in all of GP systems regardlesghi¢h crossover operator
is used.

The results in Table 4 are consistent with those in Table Bah$SC is also supe-
rior than both SAC and SC finding solutions with better gyaMoreover, it can be ob-
served from this table that the more difficult problem, thédreperformance achieved
by SSC in comparison with SAC and SC. The results in Table 4sis \ery solid as
there is no exception in it. It expresses that SSC is alsebithn SAC and SC when
they are compared by the average best fithess with the dbaee boundandupper
bound semantic sensitivitieBigure 2 shows that SSC not only outperforms than SAC
and SC in terms of best fitness of runs but also better in tefrtfeanean best fithess
at each generations.

To measure the statistical significance of the results ineTdpwe also conducted
some statistical tests. Here the t-test was used to sedififrevement over the average
best fitness of SSC is significant. The t-test results of SA€mparison with SC done
in [20] is also transfered to this paper for the ease of comspar The result of t-test
(p-values) of both SSC and SAC in comparison with SC is shawfable 5. In this
table, if the improvement is remarkable, p-value is lesa th@5, and that value is bold
faced as in the previous tables.
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F1 F2

Cumulative frequency
S
Cumulative frequency

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Generations Generations
F3 F4

Cumulative frequency
Cumulative frequency

5 10 15 20 25 30 35 40 a5 50 5 10 15 20 25 30 35 40 a5 50

Generations Generations

Fig. 1. Cumulative frequencg=0.02,3=8.

It can be seen from Table 5 that while the improvement in teofrithe average
best fithess of runs of SAC over standard crossover is eititesignficant or borderline
marginal, regardless of the upper and lower bounds explondd, F3 and K there is
almost always a significant difference is observed with SB@. exceptions mostly lie
in the easy-to-learn functiomFON the contrary, in the most complicated target func-
tions, F3, F4, there is no exception, whereas there are two exceptions ifitfe results
support the confirmation that the more difficult problem, ltie¢ter GP performance is
gained by using SSC.

5.2 Operator Locality

The next set of experimental results are for the investigati the locality property of
SSC. It is well known that using a high-locality represeiota{small change in geno-
type corresponds to small change in phenotype) is impoftarfficient evolutionary
search [5]. Itis also widely admitted that designing andeaperator for GP that could
correspond a small change in syntax (genotype) to a smafigenem semantics (phe-
notype) is very difficult. Therefore, nearly all current Gdpresentations and operators
are low-locality, meaning that a small (syntactic) changa parent can cause a big or
even uncontrollable (semantical) change in their child@ur new crossover operator
is different with other crossover operators in the literatin that it attempts to achieve
high-locality.
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Table 4. Comparison of the average best fithess over 100 runs.

sen F1 F> F3 F4

low |high| SC|SAC|SSC SC|SAC|SSQ SC|SAC|SSQ SC|[SAC|SSC
8 (0.130.130.11|0.260.24/0.16(0.300.280.20{0.400.33 0.24
0.02 10 |0.130.13]0.09{0.260.24/0.14|0.300.280.21|0.400.33 0.23
120.130.130.09(0.260.24/0.18/0.3(00.28/0.19{0.40 0.33 0.27
8 (0.130.130.11|0.260.230.16(0.300.27/0.21|0.400.33 0.25
0.04 10 ]0.130.13]0.09{0.260.230.13|0.300.27/0.21|0.400.33 0.23
120.130.130.10(0.260.23/0.19{0.3(00.27/0.19{0.40 0.33/ 0.26
8 (0.130.10/0.11|0.260.230.15(0.300.27,0.20{0.400.32 0.24
0.06 10 ]0.130.12/0.08(0.260.230.16|0.300.27/0.21|0.400.32/0.23
1210.130.120.10(0.260.23/0.19/0.3(00.27/0.20{0.40 0.32/0.27
8 [0.130.14/0.08|0.260.22/0.17(0.300.280.21|0.400.33 0.26
0.04 10 ]0.130.14{0.09|0.260.22/0.17|0.300.280.21|0.400.330.26

1210.130.140.11{0.260.22/0.16/0.3(0/0.28/0.23{0.400.33/0.26
Table 5. T-test result (p-values).

sen =1 F> F3 Fa
low [high|SAC|SSGSAC|SSGSAC|SSGSAC| SSC
8 10.68/0.860.46/0.00{0.41/0.00{0.12 0.00
0.02 10 (0.680.440.46/0.00{0.41)0.00{0.12 0.00
12 |10.680.360.46/0.02(0.41{0.00({0.12/0.00
8 10.93/0.940.36/0.00{0.30(0.00{0.12 0.00
0.04 10 (0.930.290.36/0.00{0.30/0.00{0.12 0.00
12 10.930.580.36/0.050.30({0.00{0.12/0.00
8 10.980.960.22/0.00|0.26/0.00{0.08 0.00
0.06 10 (0.980.21/0.220.00{0.26/0.01{0.08 0.00
12 |0.98/0.77/0.22/0.050.26/0.00|0.08| 0.00
8 10.60/0.080.25/0.00|0.490.01|0.15/0.00
0.08 10 (0.600.400.25/0.00{0.490.00{0.150.00
12 |0.60/0.940.25/0.00|{0.49/0.02|0.15/0.00

To compare the locality property of SSC with SAC and SC, aregrpent was con-
ducted where the fithess change of individuals before armd afossover is measured.
For example, if two individuals having fithess of 10 and 15 setected for crossover,
and that after the crossover operation their children haneds of 17 and 9. Then, the
change of fithess of these individualsAbg17 — 10) + Abg9 — 15) = 13. HereAbs
is again the absolute function. This value is then averagedwhole population and
over 100 runs as well as for 50 generations. The results dbeatverage of the fitness
change of individuals before and after crossover is showraisle 6. Again, in this
table, the best results (the smallest values) are bold faced

In the Figure 3 we show the change of the average of fithessmmwvieof 100 runs
for each of 50 generations wilbwer bound and upper bound semantic sensitivities
as 0.04 and 10. Table 6 and Figure 3 show that the step of tlesgitthange of our
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F1 F2

The average of best fitness
The average of best fitness

10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Generations Generations
F4

F3

The average of best fitness
The average of best fitness

10 15 20 25 30 35 20 3 50 10 15 20 25 30 35 20 3 50
Generations Generations

Fig. 2. Average of best fitness wiihh=0.02,3=10.

new crossover operator (SSC) is smaller than both SAC andr'Bi€.means that the
change of fithess over generations of SSC is smoother thareBAGC. The table and
figure also show that the fitness change of SAC is only sliggtipother than SC. These
results explain why SSC is much better than SAC and SC on thitdgans tried, while
SAC is also better than SC but only slightly.

6 Conclusion and Future Work

In this paper, we have proposed a new semantic based crosgmmator for GP, Se-
mantic Similarity based Crossover (SSC). The new operass t@sted and analysed
on a class of real-valued symbolic regression problemslamdesults were compared
using Semantic Aware Crossover (SAC) and standard GP ares68C). The experi-
mental results show that SSC helps to improve the performmahGP in comparison
with SAC and SC both in terms of the percentage of succeasfisland the average of
best fitness over a number of runs. The results from the expets also show that this
operator not only helps to encourage the exchange of sghiri¢ie different semantics
as in [20], but also makes a smaller change of fithess durimg\blutionary process,
by only allowing exchange of subtrees which have a contlallegree of similarity, en-
suring a more well-behaved operator in terms of locality.afgue that this is the main
reason why SSC outperformed SAC and SC on the problems tried.

In the near future, we are planning to extend the work preseint this paper in
a number of ways. Firstly, we are aiming to apply SSC on moffecdit symbolic
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Table 6. The average individual fitness change before and afteravessperation

sen F1 F F3 Fa
low |high|SCSACISSG SC[SAC|SSQ SC|SAC|SSG SC|SAC|SSC
8 |18.8 8.6(/6.9(10.1 8.7|6.0|10.310.3 6.8(11.§ 9.7| 7.5
0.02 10 (8.8 8.6|6.1|10.1) 8.7|5.8|10.310.3 6.6 |11.8§ 9.7 | 7.3
12 8.8 8.6|6.5(10.1 8.7|5.9(10.310.3 7.2(11.8 9.7| 7.5
8 |18.8 8.7(/6.7(10.1 85| 6.1|{10.310.1] 7.4 {11.§ 9.7| 8.0
0.04 10 8.8 8.7/ 6.0(10.1{ 8.5(5.3|10.310.1 6.8|11.§ 9.7 | 7.2
12 8.8 8.7|6.0(10.1 8.5| 5.8 (10.310.1 7.3 ({11.8 9.7| 7.4
8 18.88.2/6.8(10.1 7.3|59|10.39.3|7.2(11.§9.5|7.8
0.0§ 10 (8.8 8.2|6.2|10.1) 7.3|/6.1|10.3 9.3|6.8|11.8§ 9.5| 74
12 8.8 8.2|5.7(10.1 7.3| 5.8 |10.3 9.3|7.4(11.8 9.5| 7.3
8 18.8 8.3/6.6(10.1 7.4|53(10.39.4|7.3(11.8§9.6|7.9
0.08 10(8.8 8.3|59(10.7{ 7.4|{5.1|10.39.4|6.8|11.§ 9.6 (7.5
12 8.8 8.3|54|10.1 7.4(6.1|10.39.4|74|11.8§ 9.6| 6.9

regression problems (the problems that are multi-variablgé more complex in the
structure of the solutions). For these problems, we pretatt making small change
in semantics is more difficult and also more important. Sdber8SC could be used
to enhance some previous proposed crossover operatoraréhptirely based on the
structure of trees such as crossover with bias on the deptioaés [8] or one point
crossover [17]. Another potential research direction iagpply SSC on other kind of
problem domains such as on Boolean problems that have beestigated in [16]. It

could be even more difficult to generate the children thatédferent from their parents
in terms of semantics. Last but not least, we are planninguestigate the range of
lower bound semantic sensitivigndupper bound semantic sensitivitglues that are
good for a class of problems. In this paper, these valuesaneially and experimentally
specified, however, it may be possible to allow these valaeself-adapt during the
evolutionary process [4].

Acknowledgements

This paper was funded under a Postgraduate Scholarshigtierish Research Coun-
cil for Science Engineering and Technology (IRCSET).

References

1. L. Beadle and C. Johnson. Semantically driven crossovgemetic programming. IRro-
ceedings of the IEEE World Congress on Computational igtaice pages 111-116. IEEE
Press, 2008.

2. R. Cleary and M. O'Neill. An attribute grammar decodertfoe 01 multi-constrained knap-
sack problem. IfProceedings of the Evolutionary Computation in Combinialadptimiza-
tion, pages 34-45. Springer Verlag, April 2005.



Semantic Similarity based XOR in GP for real-valued functiegression 11

F1 F2

The average of fitness movement
The average of fitness movement

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Generations Generations

F3 Fa

The average of fitness movement

The average of fitness movement

5 10 15 20 25 30 35 40 a5 50 5 10 15 20 25 30 35 40 a5 50

Generations Generations

Fig. 3. The average fitness movement before and after crossoveaw(94,3=10

3. M. delaCruz Echeanda, A. O. de la Puente, and M. Alfong&ttabute grammar evolution.
In Proceedings of the IWINAC 200pages 182-191. Springer Verlag Berlin Heidelberg,
2005.

4. K.Deb and H. G. Beyer. Self-adaptation in real-paranggeetic algorithms with simulated
binary crossover. IProceedings of the Genetic and Evolutionary Computationf€ence
pages 172-179. Morgan Kaufmann, July 1999.

5. J. Gottlieb and G. Raidl. The effects of locality on the ayrics of decoder-based evolution-
ary search. IProceedings of the Genetic and Evolutionary Computationf€ence page
283290. ACM, 2000.

6. S. Hengpraprohm and P. Chongstitvatana. Selectiveareisg genetic programming. In
Proceedings of ISCIT International Symposium on Commtinitzsiand Information Tech-
nologies pages 14-16, November 2001.

7. N. X. Hoai, R. McKay, and D. Essam. Solving the symbolicresgion problem with tree-
adjunct grammar guided genetic programming: The comparaésults. InProceedings
of the 2002 Congress on Evolutionary Computation (CEC2002)es 1326-1331. IEEE
Press.

8. T. Ito, H. Iba, and S. Sato. Depth-dependent crossovegdoetic programming. |Rro-
ceedings of the 1998 IEEE World Congress on Computationealligence pages 775-780.
IEEE Press, May 1998.

9. C. Johnson. Deriving genetic programming fithess pragsetiy static analysis. [Rro-
ceedings of the 4th European Conference on Genetic Progiagn(BuroGP2002) pages
299-308. Springer, 2002.

10. C. Johnson. What can automatic programming learn fr@or#tical computer science. In
Proceedings of the UK Workshop on Computational Intellggeldniversity of Birmingham,



12

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

Authors Suppressed Due to Excessive Length

2002.

C. Johnson. Genetic programming with fitness based orelnebécking. InProceedings
of the 10th European Conference on Genetic Programmingo@&B2002) pages 114-124.
Springer, 2007.

G. Katz and D. Peled. Genetic programming and model angcBynthesizing new mutual
exclusion algorithmsAutomated Technology for Verification and Analysis, Lexilotes in
Computer Scien¢é311:33-47, 2008.

G. Katz and D. Peled. Model checking-based genetic anogring with an application
to mutual exclusion.Tools and Algorithms for the Construction and Analysis ct&ys
4963:141-156, 2008.

J. Koza.Genetic Programming: On the Programming of Computers byuhN&tSelection
MITPress, MA, 1992.

H. Majeed and C. Ryan. A less destructive, context-as@resover operator for gp. Pro-
ceedings of the 9th European Conference on Genetic Proghagnipages 36—48. Lecture
Notes in Computer Science, Springer, April 2006.

N. McPhee, B. Ohs, and T. Hutchison. Semantic buildinghd in genetic programming.
In Proceedings of 11th European Conference on Genetic Pragiag pages 134-145.
Springer.

R. Poliand W. B. Langdon. Genetic programming with ooe¥pcrossover. IfProceedings
of Soft Computing in Engineering Design and Manufacturirapférence pages 180-189.
Springer-Verlag, June 1997.

R. Poliand W. L. N. McPhed Field Guide to Genetic Programmingttp://lulu.com, 2008.
F. Rothlauf and M. Oetzel. On the locality of grammatieablution. InProceedings of
the 9th European Conference on Genetic Programimiragies 320—-330. Lecture Notes in
Computer Science, Springer, April 2006.

N. Q. Uy, N. X. Hoai, and M. ONeill. Semantic aware crogsdor genetic programming:
the case for real-valued function regressionPtoceedings of EuroGP0Springer.

M. L. Wong and K. S. Leung. An induction system that leggragrams in different pro-
gramming languages using genetic programming and logioma's. InProceedings of the
7th IEEE International Conference on Tools with Artificiatélligence 1995.



