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Abstract

The Genotype-Phenotype Map (GPM) is an important aspect of the representation in

Evolutionary Computing (EC). The GPM decouples the search space of the EC algorithm

into a many-to-one mapping, allowing an abstraction of the search and solution spaces,

which can bring a number of benefits to search. Grammatical Evolution (GE) is a grammar

based form of Genetic Programming (GP) that incorporates a GPM at its core, which is

loosely inspired by nature.

This thesis investigates whether di↵erent approaches to the GPM can have a positive

e↵ect on GE’s performance. By examining a range of GPMs that use di↵ering expan-

sion order principles it was found the one approach, Position Independent Grammatical

Evolution (⇡GE) presented a viable alternative to the canonical GE GPM.

⇡GE, while showing good performance, uses a variable expansion order controlled by

evolution. This variable ordering increases the size of the search space that must be

navigated by ⇡GE during evolution. It is found that ⇡GE gains a significant increase

in connectivity by using an evolvable order, while also providing ⇡GE with additional

neutrality.

Knowing what orders ⇡GE uses during evolution may provide insight into new GPM

approaches. With this in mind a set of measures are devised, that allow for the monitoring

of ⇡GE’s population during an evolutionary run. What is found is that ⇡GE doesn’t

converge to a single order but rather a distribution of GPM orders.

The addition of the evolvable order in ⇡GE provides an added degree of freedom in the

mapping that is not exploited by standard genetic operations. A mutation operation is

presented that will allow the algorithm to focus mutation on certain aspects of the ⇡GE

chromosome. It is found that with this ability the performance of ⇡GE is increased.
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raghy. Towards Adaptive Mutation in Grammatical Evolution. In Terry Soule, Anne

Auger, Jason Moore, David Pelta, Christine Solnon, Mike Preuss, Alan Dorin, Yew-

Soon Ong, Christian Blum, Dario Landa Silva, Frank Neumann, Tina Yu, Aniko

Ekart, Wil Browne, Tim Kovacs, Man-Leung Wong, Clara Pizzuti, Jon Rowe, Tobias

Friedrich, Giovanni Squillero, Nicolas Bredeche, Stephen Smith, Alison Motsinger-

x



Rei, Jose Lozano, Martin Pelikan, Silja Meyer-Nienber, Christian Igel, Greg Hornby,

Rene Doursat, Steve Gustafson, Gustavo Olague, Shin Yoo, John Clark, Gabriela

Ochoa, Gisele Pappa, Fernando Lobo, Daniel Tauritz, Jurgen Branke, and Kalyan-

moy Deb, editors, GECCO Companion ’12: Proceedings of the fourteenth interna-

tional conference on Genetic and evolutionary computation conference companion,

pages 1481–1482, Philadelphia, Pennsylvania, USA, 7-11 July 2012. ACM

9. David Fagan, Erik Hemberg, Michael O’Neill, and Séan McGarraghy. Fitness Re-

active Mutation in Grammatical Evolution. In Radomil Matousek, editor, 18th In-

ternational Conference on Soft Computing, MENDEL 2012, pages 144–149, Brno,

Czech Republic, 27-29 June 2012. Brno University of Technology

10. David Fagan, Erik Hemberg, Michael O’Neill, and Séan McGarraghy. Understand-
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Chapter 1

Introduction

This thesis is set in the research field of Evolutionary Computing (EC), a field that takes

inspiration from evolutionary principles and turns them into computational problem solving

tools. Genetic Programming is one of the most prominent methods of EC. GP breeds

populations of parse trees that are subjected to neo-Darwinian principles of evolution,

leading to the evolution of fitter solutions to the desired problem over time.

The adoption of a genotype-phenotype map for Genetic Programming (GP) [91, 140]

has demonstrated performance advantages over traditional tree-based GP [2, 9, 83, 90, 102].

One of the most popular grammar-based forms of GP [101], Grammatical Evolution (GE),

adopts a genotype-phenotype map which has been argued to provide a number of advan-

tages over standard GP [124]. The Genotype-Phenotype Map (GPM) provides GE with

the ability to search both genotypic space and solution space in a many-to-one relationship,

unlike traditional GP which has a one-to-one mapping. The many-to-one mapping allows

for multiple solutions to have the same performance, but be structured di↵erently. This

feature allows for neutral search, which allows the Evolutionary Algorithm to search with

zero impact on performance amongst the di↵erent variants of the same solution, and has

been shown to allow GPM-based variants of GP to resist getting stuck at locally optimal
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solutions [2]. Whilst these results are encouraging, it has yet to be established what e↵ect

the Genotype-Phenotype mapping has on an Evolutionary Algorithm (EA) such as GE.

How does changing the order in which the mapping is done a↵ect the EA? Can further

inspiration be taken from biology, which first inspired the Genotype-Phenotype Map in

GP, to improve the EA? Recently these topics have started to be tackled by myself and

others [1, 26, 38, 39, 40, 42, 126], details of which are outlined in Chapter 2, but many more

avenues of exploration remain, as the interpretation of mapping used by GE is simplistic

and lacking in some of the desired advanced features of the GPM that exist in nature [3].

1.1 Genotype-Phenotype Map and EC

Evolutionary Computing (EC) is computing using evolutionary principles. In EC a popu-

lation of possible solutions is generated. Each of these possible solutions is then evaluated

and assigned a fitness value. At this point a host of so-called genetic operations are carried

out on the population, based on neo-Darwinian principles of evolution, such as mutation,

selection, crossover and elitism. These processes help move the population of solutions

towards the current best solution found, whilst exploring other possible solutions gener-

ated through the application of variation operations to the population. The population is

then evaluated and the operators applied again. This process continues until the optimal

solution is found or a generation limit is reached.

There exists many forms of EC, amongst the most popular is Genetic Programming

(GP) [91, 140]. Traditional GP, like many types of EC algorithms, uses a one-to-one

mapping from search space to the solution space. This rigid mapping to the solution

search space allows for fast location of optimal solutions, however shows a tendency to

get stuck at local optima. The mapping also has another shortfall, in nature it is possible

to arrive at the same solution two a problem but using di↵erent approaches, while with
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1.1. GENOTYPE-PHENOTYPE MAP AND EC

traditional GP and its direct mapping this is not possible. To overcome this shortfall,

inspiration was taken from the DNA to Protein Mapping model put forward by Crick [21],

and the idea of a Genotype-Phenotype Mapping (GPM) was applied.

The GPM would split the search space into two parts, a Genotype search space and a

Phenotype search space. This enables a many-to-one mapping from genotype (individual)

to phenotype (solution) as is seen in nature. This many-to-one mapping brings with it some

added benefits, as shown by Kimura [86]. The many-to-one mapping adds degeneracy, or

redundancy, to the individuals of a population, and allows for neutral search within the

genotypic search space. Neutral search consists of moving position within the genotypic

search space, without a↵ecting the fitness of the solution. Kimura argued that this was

the core idea behind evolution, that this ability to search around current optimal values,

without a↵ecting fitness would lead to the discovery of a better solution if it existed. This

theory was investigated in the context of EC by Banzhaf [2] in which it was also claimed

that the use of a GPM leads to better diversity within the population. The GPM has been

applied in a broad range of EA’s, for example in [2, 9, 25, 41, 51, 66, 82, 83, 84, 85, 97,

100, 102, 103, 133, 157].

GE is the EA that I use to examine the GPM. The GPM used in GE is a simple abstrac-

tion first established by O’Neill and Ryan [133], and provides an appropriate environment

to use for my research. GE has many desirable features such as its use of grammars

which provide great expressive power [66, 124] and this will add to the complexity we

can achieve within the GPM. The mapping in GE has been subject to some investigation

already [38, 39, 40, 42, 126], and O’Neill [124] highlighted some of the benefits of a GPM

for GP.

4



1.2. AIM OF THESIS

1.2 Aim of Thesis

The aim of this thesis is to perform an investigation into the GE GPM. Specifically this

research focuses on two core mapping approaches. The traditional GE GPM, that uses

a fixed order or mapping, and a position independent variant, ⇡GE [126]. ⇡GE leaves

the order of expansion under the control of evolution. To aid in the investigation some

ancillary mapping approaches are also examined, this provides a spectrum of approaches

to the GPM. The intention of this thesis is to try and understand how the ⇡GE GPM

works, and from this can ⇡GE be improved upon.

1.2.1 Research Questions

The core aim of this thesis is to explore how the addition of a position independent GPM

a↵ects GE’s ability to search. To this end, a number of research questions are proposed.

Question 1: Do other GPMs exist for GE that provide comparable or better performance?

Question 2: How does ⇡GE present good performance given the added search space of

having an evolvable GPM order?

Question 3: What GPM orders is ⇡GE actually using during evolution?

Question 4: Do genetic operations exist that may take advantage of these new GPMs?

1.3 Contributions

Many of the contributions provided by this thesis have been published. These publications

are enumerated on page ix. The main contributions of this work are listed by order of

appearance in this thesis here, noting what research questions they address:
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Literature Review

An extensive review of Grammatical Evolution is presented in Chapter 2. The topics

cover: investigations into the algorithm’s behaviour, extensions to GE, application

of GE, before a comprehensive list of implementations is finally compiled.

Suite of Genotype-Phenotype Maps (GPM) for GE

Several variants to the GE GPM are required for comparison of mapping approaches

in this thesis. To this end a suite of GPMs for GE are detailed in Chapter 3 (Research

Question 1).

Performance Comparison of Di↵erent Approaches to the GPM

Chapter 3 presents a detailed comparison of mapping approaches performed on a

range of benchmark problems. The comparison is the foundation on which this

thesis is based (Research Question 1).

Analysis of Genotype-Phenotype Map connectivity

Connectivity of a GPM relies heavily on the representation underpinning the ap-

proach. Chapter 4 provides an in-depth analysis of the two most promising GPMs

from this thesis, examined in Chapter 3. Visualisation of the comparison was aided

by the usage of graphs and adjacency matrices (Research Question 2).

Methods of Monitoring Expansion Order in ⇡GE

⇡GE has a variable order of expansion in the genotype-phenotype map. Understand-

ing what orders are being used by the population, or a subset of its individuals, can

provide valuable insights into the algorithm. Chapter 5 presents two metrics that

can measure distance from known mapping orders (Research Question 2).
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Analysis of Population Order Dynamics

Some GPMs use a variable expansion order during the mapping from genotype to

phenotype. The order dynamics of one such mapping, ⇡GE, are explored over a set

of benchmark problems in Chapter 5 (Research Question 3).

Identification and Analysis of an Advanced Mutation Operation

Through investigation of other variants of the GPM, it is possible to discover added

degrees of freedom in the mapping approach. These degrees of freedom may be

exploited to improve the performance of the GPM. Chapter 6 sees the realisation

of one such operator, Focused Mutation. The operator’s behaviour is analysed, and

di↵erent setups of the operator are compared across a range of problems (Research

Question 4).

Publication of the work presented in this thesis

Each of the experimental chapters in this thesis is based on a corresponding publi-

cation. These works, in order of publication, are listed here:

• David Fagan, Michael O’Neill, Edgar Galván-López, Anthony Brabazon, and

Séan McGarraghy. An Analysis of Genotype-Phenotype Maps in Grammatical

Evolution. In Anna Isabel Esparcia-Alcazar, Aniko Ekárt, Sara Silva, Stephen

Dignum, and A. Sima Uyar, editors, Proceedings of the 13th European Con-

ference on Genetic Programming, EuroGP 2010, volume 6021 of LNCS, pages

62–73, Istanbul, 7-9 April 2010. Springer (Chapter 3),

• David Fagan, Miguel Nicolau, Michael O’Neill, Edgar Galván-López, Anthony

Brabazon, and Séan McGarraghy. Investigating Mapping Order in ⇡GE. In

2010 IEEE World Congress on Computational Intelligence, pages 3058–3064,

Barcelona, Spain, 18-23 July 2010. IEEE Computational Intelligence Society,

IEEE Press (Chapter 6),
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• David Fagan, Erik Hemberg, Michael O’Neill, and Séan McGarraghy. Under-

standing Expansion Order and Phenotypic Connectivity in ⇡GE. In Krzysztof

Krawiec, Alberto Moraglio, Ting Hu, A. Sima Uyar, and Bin Hu, editors, Pro-

ceedings of the 16th European Conference on Genetic Programming, EuroGP

2013, volume 7831 of LNCS, pages 37–48, Vienna, Austria, 3-5 April 2013.

Springer Verlag (Chapter 4 and 5).

1.4 Limitations

The investigations in this thesis covered a broad range of topics. Owing to this, all avenues

of exploration were not covered. Within the context of the genotype-phenotype maps

chosen for exploration in Chapter 3, the GPMs chosen were selected so as to provide a

spectrum of mapping orders. Similarly the thesis is restricted in scope to the canonical

GE’s context free grammar. Only the GPM that fit these criteria were selected from.

Throughout the thesis comparisons are made based parameters commonly used in the

GE literature unless otherwise stated. No exhaustive parameter sweep was performed.

Finally, limitations based on available computational power have impacted the scope of

investigation in this thesis, specifically Chapter 4, where the combinatorial explosion when

dealing with ⇡GE prevented a more complex network from being constructed.

1.5 Thesis Summary

The goal of this thesis is to investigate the genotype-phenotype map used in Grammatical

Evolution. The investigation focuses on identifying di↵erent mapping orders for the GPM,

and investigating interesting behaviours the di↵ering approaches present. Through the

work contained within this thesis insight into how these novel GPM behave during the
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evolutionary process is gained, and methods to take advantage of new degrees of freedom

in the GPM are investigated. The thesis consists of the chapters outlined below:

Chapter 1

The chapter introduces the main ideas behind the genotype-mapping process and

its usage in EC. The chapter also sets out the aims, research questions, objectives,

contributions, and limitations of the thesis.

Chapter 2

The chapter introduces Grammatical Evolution (GE), the main focus of the research

in this thesis. The inner workings of the GE algorithm are described and a literature

review of GE is provided.

Chapter 3

Chapter 3 marks the beginning of the experimental research in the thesis. Several

variants of the GE genotype-phenotype mapping process are proposed, and their

performance compared on a set of benchmark problems.

Chapter 4

Chapter 4 contains the first avenue of investigation into how ⇡GE works. Having

presented itself as a very competitive GPM, ⇡GE’s phenotypic connectivity is ex-

plored to understand how an algorithm with such a massive increase in search space

complexity can maintain a good search performance level. This is done by visualising

the relevant search spaces, and comparing with the connectivity of GE.

Chapter 5

The third experimental chapter tackles the task of exploring how the evolvable GPM

ordering in ⇡GE behaves during a run. A suite of metrics are introduced to help

track the orders being evolved in relation to known fixed order mapping approaches.
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Chapter 6

The final experimental chapter presents a new mutation operator for ⇡GE. This

operator is designed to exploit the added degree of freedom that ⇡GE provides. A

range of setups are compared to identify what performance gains can be discovered

by using the new operator over the traditional GE mutation operator.

Chapter 7

The final chapter of this thesis presents a summary of each chapter in the thesis, and

draws conclusions from the experimentation and analysis performed within. Finally it

outlines a number of questions raised during the course of this research, and proposes

future work to continue the research presented in the thesis.

We now go on to introduce, and review the current state of the art for Grammatical

Evolution (GE) in Chapter 2.
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Chapter 2

Grammatical Evolution

This chapter introduces Grammatical Evolution (GE) [25, 133], the Evolutionary Comput-

ing (EC) algorithm used to conduct the research in this thesis. GE is a very powerful and

expressive form of grammar-based Genetic Programming (GP) [100]. The modular design

of GE allows for easy manipulation of the algorithm, whilst the use of grammars allows for

evolution of solutions to problems in any language that can be represented with a gram-

mar [25, 133]. Section 2.1 provides the reader with an introduction to GE. The section

outlines GE’s unique features, and notes how GE di↵ers from GP. Section 2.2 outlines the

GE algorithm and control flow. Sections 2.3 and 2.4 provide a more in depth explanation

of some of the ideas expressed in Section 2.2. Section 2.5 provides an overview of previous

work carried out on GE, covering examinations and extensions of the algorithm, as well as

applications of GE to real world problems, and concluding with a list of implementations

of GE. Finally the chapter concludes with a brief summary section in Section 2.6.
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2.1 Grammatical Evolution - Overview

GE uses principles of Neo-Darwinian evolution to evolve automatically generated solutions

to problems. GE is commonly referred to as a grammar based form of Genetic Programming

(GP). However this description can prove inaccurate once the inner workings of GE are

examined. Genetic Algorithms (GA) [49] and Genetic Programming (GP) [89, 140] are

two of the most popular forms of EC. A GA uses a population of bit string individuals,

and evolves this population of strings until the desired solution is found. The bit strings

of a GA can represent a multitude of solutions depending on the encoding used. GP on

the other hand uses a population of parse tree individuals. At their core both algorithms

share similar workings. GE takes inspiration from both these classic EC algorithms, while

also harnessing the added power of grammars.

GE di↵ers substantially from GP in many areas of the algorithm. GP uses a population

of parse tree individuals and performs variation operations on these trees. GE, on the other

hand, uses a population of variable length integer array chromosomes, that are evolved

using GA style operations on the chromosome. It is worth noting that some advanced

versions of GE [129] now feature GP style operations, that work directly on the derivation

tree. These chromosomes are mapped to solutions via a biologically inspired mapping

process, referred to as the Genotype-Phenotype Map (GPM). The GPM is modelled on

the DNA to Protein transcription process, as shown in Figure 2.1. In the figure it can be

seen how DNA changes during the transcription process. A similar transcription process

can be seen in GE, and is governed by a Backus-Naur Form (BNF) context-free grammar

specified for the problem. This mapping process is examined in more detail in Section 2.3.

Whereas GP has a one-to-one mapping between parse tree and solution (although

it could be argued that the genotype and phenotype are essentially the same thing in

canonical GP), GE gains a many-to-one mapping by adopting the genotype-phenotype
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Figure 2.1: Comparison of the transcription of DNA to Proteins and the Genotype-
Phenotype mapping process in GE.

map. In this many-to-one mapping many chromosomes will map to the same program. The

usage of grammars in GE allows for the evolution of problems in a domain representable

by a grammar, unlike canonical GP and its implicit grammar, where limitations such as

the closure property have to be dealt with.

2.2 Grammatical Evolution - Algorithm

The main steps in the GE algorithm mirror those of a canonical GP or GA algorithm.

The primary common ideas are to initialise a fixed sized population of individuals, and

evaluate the population using some form of fitness measure. Once the population is eval-

uated, check if a stopping condition has been reached, if not then vary the population
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and re-evaluate. The variation and re-evaluation of the population will be repeated until

a stopping condition is met. This process is shown in Figure 2.2 and the terms explained

below. A control flow algorithm is outlined in Algorithm 2.1.

Algorithm 2.1 The GE control flow algorithm - The algorithm mirrors that of many
evolutionary algorithms. The population is defined, then initialised, and following this
enters the evolution loop. In this loop the population is evaluated and varied repeatedly
until a termination condition is reached.
Population = new population(pop size)
Generations = num gens
Solution Found = false
Initialise(Population)
while Generations � 0 do
Evaluate(Population)
if Solution Found then
Return Solution
End

else
Perform Variation Operations(Population)

Generations��
Return Best Solution Found

1. Initialisation It is desirable to start with a population of dispersed individuals, so

as to sample as many points in the search space as possible. There have been many

ideas of how to do this, but the two main initialisation methods in GE are, Ramped

Half and Half (RHH), and Random. These methods are explained in more detail in

Section 2.4.1.

2. Evaluation Evaluation is where the individuals of the population are assigned a

value or fitness. Individuals are candidate solutions to a problem. By measuring

how well these solutions perform at a desired task, it is possible to assign them a

value representative of how well they have performed the task. In GE this process

is performed by a fitness function that returns a fitness value, indicative of how

well the individual performs on the given test criteria. This is an integral step in all

14
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Figure 2.2: The diagram displays how GE works, starting by initialising the population,
before entering the GE Generation Cycle, and exiting the algorithm once a stopping con-
dition has been reached.

evolutionary algorithms as it provides the information used to rank the population for

selection. This is of paramount importance to the performance of the other operators

that rely on selection to function. Selection can be considered as the mechanism that

drives evolutionary search. Selection is generally modelled upon the idea of survival

of the fittest in nature.

3. Termination When to stop is an important part of the algorithm, as some domains

provide problems that may never be solved. With this in mind there are two main

ways to stop GE. Firstly, before the run starts a limit to the number of generations

can be set. This provides an explicit limit to how long the algorithm will run. The

desired outcome is that an acceptable solution is found before this limit is reached.

Secondly, in GE the norm is to minimise fitness values such that the program will
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halt once a fitness of zero is reached. In certain cases the minimum value may be

changed to be a limit, such as in certain symbolic regression problems where a limit

of 0.05 might be viewed as the acceptable fitness for a solution.

4. Operators The operators in GE all concern the variation of the population through

variation, selection, and replacement operations. Firstly selection of individuals for

variation is important and is discussed in Section 2.4.4. Once the individuals are

selected the variation operators crossover (Section 2.4.2) and mutation (Section 2.4.3)

are applied. Variation of the population will result in there being more individuals

than our population can hold. To resolve this issue the population is passed to the

replacement operator, which trims the population down to size, and is discussed in

Section 2.4.5.

2.3 Mapping

The mapping process in GE is the conversion of a chromosome (genotype), to a solution

(phenotype). In canonical GE this is done by taking a chromosome and a BNF context free

grammar, and using the mod rule (Equation 2.1) a derivation tree is constructed. From

this derivation tree the solution can be extracted for evaluation. This mapping process is

outlined in Figure 2.3. The key aspect of the mapping in canonical GE is the construction

of the derivation tree. What follows is an explanation of this process in more detail.

New Node = Codon value % Number of rules for Non Terminal (2.1)

2.3.1 Mapping Example

In GE the mapping process starts by identifying the start symbol in the grammar and

using the mod rule (Equation 2.1), the derivation tree is constructed by expanding all non
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Figure 2.3: The diagram highlights the main idea behind mapping in GE. Taking a chro-
mosome consisting of a list of integers, evolved similarly to a GA, and a grammar for input,
the mapping process combines these two items using the mod rule (Equation 2.1), resulting
in a phenotype or output being generated.

terminal symbols (NT) in a leftmost NT first expansion, until no more NT’s remain. In

the case of the grammar shown in Figure 2.4, which generates an arithmetic expression,

that start symbol would be <e>. This NT is then evaluated using Eq. 2.1. By taking

the first codon value of the GE chromosome 12, shown in Figure 2.4, and the number

of expansions possible for the NT <e> 2, the first expansion of the tree results in <e>

expanding to <e><o><e> as 12%2 = 0, as <e><o><e> is the 0th choice for <e> (from the

grammar shown in Figure 2.4). The process iterates from this point on, always expanding

the leftmost NT in the derivation tree. This mapping process will continue until no NTs

remain to be expanded in the derivation tree, or there are no codons remaining in the

chromosome. Mapping termination is discussed in detail in Section 2.3.2. An example of

this mapping is shown in Figure 2.5 based on the example grammar shown in Figure 2.4,

where the order of expansion is indicated by a set of numbers on the arrows between the

blocks on the diagram, in the form of 1(12%2) where 1 is the expansion order and 12%2 is

the application of Equation 2.1.
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<e> ::= <e> <o> <e> | <v>

<o> ::= + | -

<v> ::= 0.5 | 5

Chromosome = 12,8,3,11,7,6,11,8,4,3,3,11,15,7,9,8,10,3,7,4

Figure 2.4: Example Grammar and Chromosome.

<e>

<e> <o> <e>

 1(12%2)

<e> <o> <e>

 2(8%2)

<v>

 13(15%2)

*

 12(11%2)

<e> <o> <e>

 6(6%2)

<v>

 3(3%2)

*

 5(7%2)

<v>

 7(11%2)

<v>

 10(3%2)

+

 9(4%2)

5

 4(11%2)

0.5

 8(8%2)

5

 11(3%2)

5

 14(7%2)

Figure 2.5: Standard GE Genotype to Phenotype Mapping, based on the example grammar
shown in Figure 2.4, the order of expansion is indicated by the sets of numbers on the arrows
between the blocks on the diagram, in the form of 1(12%2) where 1 is the expansion order
and 12%2 is the application of Equation 2.1.

2.3.2 Mapping Termination

The mapping process in GE provides no guarantee that all chromosomes will lead to

evaluable derivation trees. There are many factors that can lead to an incomplete mapping.

Poor grammar design can lead to recursive derivation sequences that never finish, and

a derivation sequence can use up all available codons in a chromosome resulting in an
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incomplete mapping. Canonical GE has methods to try and alleviate this termination

problem. Codon reuse, or wrapping as it is called in GE, allows for the mapping process to

wrap back around to the start of the chromosome and reuse the chromosome again to try to

complete mapping. There is however a user defined limit in place to prevent the wrapping

from entering an infinite loop, and thus never completing the mapping process [115]. One

drawback to wrapping is that a single codon mutation results in multiple mutations.

A second approach to aid with termination is that of chromosome tails. Chromosome

tails consist of a certain percentage of random codons added by the initialiser, at the tail

of the chromosome. While the tails may not be expressed at that specific point in time,

during variation they may become expressed codons. Nicolau et al. [115] noted that the

addition of tails to GE, provided a higher probability of generating terminating individuals.

Finally, if after reaching the wrapping limit a chromosome still does not map to a complete

tree, the chromosome is set as an invalid chromosome and will receive the worst fitness

possible during evaluation. Nicolau et al. [115] performed an in-depth investigation into

termination in GE, noting a link between poor grammar design and termination issues in

GE, and also the benefits of tail usage.

2.4 Operators

Operations in evolutionary algorithms are the driving forces behind exploration and ex-

ploitation of the search space of the problem in question [49]. Initialisation strives to

provide the initial population with a diverse sampling of possible individuals. Variation

operations enable the algorithms to vary the population, thus exploring the search space.

Selection and replacement operations, on the other hand, allow the algorithm to guide the

population of solutions to perceived fitter locations in the search space to explore. Next is

an overview of the most widely used Operations in Grammatical Evolution is given.
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2.4.1 Initialisation

The quality of the population at the start of an evolutionary run can have a huge a↵ect

on the success of the run. If a population consists of individuals too small to represent the

desired solution to a problem, the EA will fail to find valid solutions, unless a variation

operation such as crossover has had time to increase the size of the individuals. Similarly if

the population is located in too narrow a region of the solution space, then convergence to a

local optimum can be increased significantly, and thus degrade performance. Harper [52, 56]

has performed a very comprehensive investigation of initialisation in GE. Harper found

that initialising to certain distributions of tree shape and size, proved beneficial to GE’s

performance. A brief introduction follow next, to the two main initialisation methods used

in canonical GE.

Random Initialisation

Random Initialisation represents one of the most basic initialisation methods available.

Before the run an initial length of chromosome is specified by the end user for the indi-

viduals. The initialiser then randomly generates chromosomes to that length and assigns

them to the individuals. The strength of a random initialiser rests with the random num-

ber generator used for the initialisation. The number generator used should guarantee a

uniform distribution of codon values from all possible values. While random initialisation

provides a population of varied chromosomes, it has no consideration of the phenotype

space or the size and shape of trees generated.

Ramped Half and Half Initialisation

While random initialisation can provide a good variety of chromosomes, it doesn’t guar-

antee a widespread distribution of derivation trees. To address this, GE has borrowed

from the GP literature and can use what is called Ramped Half and Half Initialisation

20



2.4. OPERATORS

(RHH) [89]. RHH provides GE with a population consisting of a varied distribution of

individuals with di↵erent sized and shaped derivation trees. To do this GE first partitions

the population into two pools of individuals. Using a predetermined maximum and min-

imum depth, the algorithm proceeds to further divide each pool into pools of individuals

with di↵erent depth limits, increasing up to the maximum depth (called ramping). For one

half of the population these pools of individuals are created using the Full method of tree

growth, where the derivation tree is constructed to be as fully expanded as possible, with

all recursive branches reaching the depth limit (Figure 2.6). The other half of the popula-

tion is then created using the Grow method of tree generation, where the derivation tree

is randomly created with no constraint on expanding all branches to the maximum depth

(Figure 2.7). The genotype, or chromosome, for each derivation tree is created during the

construction of the derivation trees, in the full and grow methods. Using RHH results in

a population with trees of a variety of sizes, shapes, and node densities. RHH also shows

no consideration for the phenotype space in its initialisation.

<e>

<e> <o> <e>

<e> <o> <e> <e> <o> <e>*

<v> <v>+ <v> <v>+

X X Y Y

Figure 2.6: The full method of tree
growth is displayed. Note that all recur-
sive branches have reached the depth limit
of 4, unlike the grow method in Figure 2.7

<e>

<e> <o> <e>

<e> <o> <e> <v>*

<v> <v>+ Y

X X

Figure 2.7: The grow method of tree
growth is displayed. Note that not all re-
cursive branches have reached the depth
limit of 4, unlike the full method in Fig-
ure 2.6
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2.4.2 Crossover

Crossover is the process of exchanging information between members of the population,

with the intention that this exchange of information will result in fitter o↵spring. Crossover

in GE can also be viewed as an operation that can vary the size of the chromosome. In

traditional GP, which uses program trees, crossover is simply the exchanging of sub-trees.

Two parents are selected for crossover from the population and then two exchangeable

sub-trees are located in the respective programs trees. These trees are then exchanged and

the individuals re-evaluated.
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Figure 2.8: Single Point Crossover in GE where the selection point is not fixed, to allow
for growth and shrinkage of the chromosome.

GE on the other hand performs all of its operations on the chromosome. Crossover in

GE is handled in the same manner as in a GA. In GE two parents are selected from the

population. Once each parent is selected, a point on the chromosome of each is chosen,
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and then the chromosomes are split at these points and separated sections of chromosome

are exchanged by the parents resulting in two new individuals, or children. This process is

described visually in Figure 2.8. As GE uses a variable length chromosome the selection

points for single point crossover can be allowed to vary in order to promote variation in

the size of the chromosomes.

What has been described above is single variable point crossover. This method is the

sole method of crossover used in the experimental sections of this thesis. Several other

variants of crossover exist for GE [54, 55, 56, 81, 122, 134, 135]. These methods are briefly

mentioned in Section 2.5.1.

2.4.3 Mutation

Mutation allows for slight variation of an individual, this variation intends to allow for

individuals to take a small step towards the best solution [49]. In GP this process is done

by selecting a node from the program tree and then replacing it with another node from

the function or terminal set of nodes as required. This process can result in a single node

being changed or at most the subtree that is rooted at the selected node will be changed

from the resulting mutation.
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Figure 2.9: Integer Mutation in GE

In GE mutation is again heavily influenced by GA. As GE uses a chromosome of integer

values the main mutation type is the so-called Integer Mutation, where every codon in the

chromosome changes to a new randomly generated integer, depending on the probability

of mutation. This mutation probability is set by the end user before the start of a GE
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run. An example of this can be seen in Figure 2.9. The codon highlighted has simply

been changed, this change is mutation in GE. However unlike GP the scope for change

in a single mutation is very large in GE. Due to the linear nature of the chromosome in

GE if the mutation event changes the number of non terminal tree nodes, this will result

in a di↵erent expression of all codons following the mutation site. This is known as the

GE ripple e↵ect [13, 15, 25, 66, 68, 69, 81, 133]. Integer mutation is the only method of

mutation explored in the experimental sections of this thesis. However other methods of

GE mutation exist and are briefly mentioned in Section 2.5.1.

2.4.4 Selection

Selection is the mechanism used by EC to select parents for reproduction. The selection of

parents for o↵spring is a delicate matter that requires some thought. Selecting parents, in

nature, from too similar a gene pool results in inbreeding and a weakening of the genetic

pool, that can lead to problems such as deformities. In EC just selecting the fittest indi-

viduals for reproductions is not desirable as this leads to premature convergence and is not

a very e�cient way to search the genotypic space. While it is possible that two fit parents

may produce a fitter o↵spring, it is also possible that a fit parent and a less fit parent will

also produce a fitter o↵spring. The main reason for allowing imperfect selection, such as

between a fit and unfit individual, is that it helps to maintain genetic diversity within the

population. With this idea of imperfect selection in mind the following is a brief overview

of two popular selection methods in EC, which are also the main selection methods used

with GE.

24



2.4. OPERATORS

Roulette Wheel Selection

Roulette Wheel Selection, or Fitness Proportionate Selection to use the more formal name,

is a selection method whereby the relative fitness of the candidate individual in relation

to the sum of the population’s fitness values is used to derive a selection probability.

Specifically an individual i has a probability of selection P
i

, where P
i

= fiPN
j=1 fj

and f
i

represents the fitness of the individual i. By assigning each individual in the population

a probability of selection, this probability conceptually represents a wedge on the roulette

wheel. By spinning this conceptual wheel an individual is selected for variation, where

individuals with the larger wedges on the wheel are more likely to be selected.

Tournament Selection

Tournament selection is a simpler and faster method of selection to that of roulette wheel

selection, in that it does not require knowledge of the fitness of the whole population. In

tournament selection a fixed number of individuals, referred to as the tournament size, are

randomly selected from the population. From this tournament, or subset of the population,

the fittest solution is selected for use. This process is repeated every time an individual is

required to be selected. Tournament Selection has the ability to vary its selection pressure.

Selecting a tournament size of one equates to just randomly selecting a member of the

population, whilst a tournament size equal to the population size guarantees selection of

the fittest individual in the population. Tournament selection is viewed as a good selection

method as it prevents the best individual from immediately dominating the population

causing premature convergence. Finally it is a tuneable and easy to implement method of

selection [140].
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2.4.5 Replacement

Applying variation operations to the population brings with it the issue of an expanding

population. In EC the population is generally a fixed size. Due to this, a mechanism is

needed to decide how to construct a new population from all the available parents and

o↵spring, that fit within this size constraint. The two most common replacement methods

used in GE are outlined below.

Steady State Replacement

The steady state replacement strategy is simply survival of the fittest. After each new

individual is generated via the variation operations, it is immediately evaluated. If the

new individual’s fitness is better than the worst in the population, it is inserted into the

population and the population’s worst individual is deleted. This method does carry with

it a very high selection pressure and can cause premature convergence to local optima.

Originally GE used steady state replacement as a way to combat invalid individuals in the

population [150].

Generational Replacement

In Generational Replacement the population is made up of new individuals every genera-

tion, with the children replacing the parents. This allows for more wide spread exploration

of the search space as the majority of the children generated during variation are included

in the new population. The new individuals may not be as fit as those in the previous

generation and thus impede convergence. To counter the fact that the population’s fitness

values can worsen, the generational approach uses an elite population to maintain the best

individuals that have been encountered during evolution, that may be used to improve

the population. While generational replacement has a slower convergence rate than steady

state replacement, the size of the elite population can vary this convergence rate greatly.
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2.5 Advances in GE

GE has established itself as a widely used [166] EC method within a very diverse ecosystem

of methodologies. Previous sections in this chapter have outlined how the algorithm works.

In this section an overview of state of the art in GE is given. Firstly, previous research

focused on examining the behaviour of GE is described in Section 2.5.1. Following this an

overview of extensions to GE is given in Section 2.5.2. Finally a summary of applications

and implementations of GE, in Sections 2.5.3 and 2.5.4 respectively, concludes this section.

2.5.1 Examinations

The examination of any EA is of interest as researchers strive to find out how a system

works, so as to then improve its performance. GE is no di↵erent and has had many aspects

of the algorithm fall under the scrutiny of researchers. The initial examination of GE was

performed by O’Neill [124] and covered the canonical form of GE. Presented in this section

is an overview of some of the other areas examined.

Crossover is one area where GE and GP di↵er significantly, and has fallen purview to in

depth analysis. Works by O’Neill et al. [122, 134, 135] and Keijzer [81] have examined GE

crossover and established the term Ripple Crossover. Ripple Crossover is similar to ripple

mutation in that the crossover produces a change that e↵ects everything that follow from

the point of crossover. Ripple Crossover was found to provide a slower rate of convergence

than canonical GP subtree crossover. Harper [54, 55] examined many crossover variants

and established a non destructive method of GE crossover, and went on to further examine

a self-selecting crossover mechanism, whereby the system itself can decide the best type of

crossover to use.

Mutation is another area that has been examined in much detail. Murphy et al. [108]

have examined and visualised the mutation landscape of canonical GE, and other gram-
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matical variants of GE. Byrne et al.[13, 15] examined canonical GE mutation and identified

two types of mutation, nodal and structural, before carrying out an extended examination

using the two types of mutation. Hugosson et al. [68, 69] examined di↵erent chromosome

representations and how they a↵ect mutation, with the hopes of finding a smooth mutation

operation. Fagan et al. [34, 33] examined the possibility of adding a self-adapting mutation

parameter to GE, that reacts to the rate of change in the fitness of the population.

Initialisation methods also fell under scrutiny by Harper [52]. Harper found that poor

initialisation can lead to a reduction in the performance of GE, and that poor grammar

construction can lead to a serious explosion in tree sizes. In a similar vein, Murphy et

al. [105] examined how di↵erent grammars and initialisation methods can produce sig-

nificantly di↵erent results, and looked to match the distribution of individuals that the

initialisers provided regardless of the grammar type. In related work Nicolau et al. [115]

examined the issue of poor grammar construction and how it can significantly reduce the

probability of successfully mapping a chromosome.

Grammars have been examined in some depth. Keijzer et al. [79] examined the us-

age of logic grammars. Murphy et al. [105, 107, 108, 109] explored the usage of tree-

adjoining grammars that always guarantee a successful mapping from genotype to phe-

notype. Hemberg investigated probabilistic grammars and meta-grammars [66] that al-

lowed for the grammars to evolve over time. Attribute grammars have been examined by

Cleary [18, 19, 128] and more recently by Karim et al. [74, 75, 76, 77, 78].

Finally, some other research to note with respect to GE is that of Keijzer et al.’s exami-

nation of the GE mod rule and an alternate approach called the bucket rule [80]. O’Neill et

al. [136] examined grammars, introns and bias in GE. O’Neill found that GE was suscep-

tible to a bias towards certain rule productions. However allowing for a grammar defined

intron to skip codons, or by changing the arity of the production rules in the grammar,

this bias could be negated. Hemberg et al. [62] furthered this research by studying the
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e↵ect of grammars, implementing di↵erent arithmetic notation types and examining their

e↵ect on bias. Hemberg et al. [65] also performed an investigation into representing ADF’s,

Automatically Defined Functions, in GE in di↵erent ways. Hemberg [66] also presented

a formal theory of disruption in GE. Hemberg investigated every type of change that

could be made via GE’s operators, and formally defined the disruption to the phenotype

that occurred with each change. Swa↵ord extensively examined the idea of modularity in

GE [158, 159, 160, 161, 162]. O’Neill et al. [131] have also begun examining GE and its

performance in dynamic environments.

2.5.2 Extensions

The modular design present in GE allows for easy manipulation and extension of the

system. What follows is an overview of extensions of GE that reinforce the idea that GE

is a very adaptable and expandable platform.

SEOIGE

Fenton et al. have built on the foundational work of the addition of shape grammars

to GE by O’Neill et al. [130] and the doctoral studies of Byrne [11, 12], in inter-

active evolutionary design, to produce the Structural Engineering Optimisation in

GE system. The system allows users to generate structures and use real world objec-

tives such as minimising material costs, using certain material types, and maximising

structural soundness of designs. There is also an interactive component to the design

where the user is able to design a structure through an interactive GE process before

handing the design o↵ to be fine tuned by multi objective search criteria, such as the

real world objective mentioned above.
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PODI

Program Optimisation with Dependency Injection is the work of McDermott et

al. [98]. McDermott uses the ideas behind GE to produce a very general EA that

can be easily adapted to suit many needs. Instead of the fixed grammar derivation

process of GE, PODI can use any non-deterministic program (NDP). The NDP’s pos-

sible outputs are the feasible solution space, i.e. the possible phenotypes. The NDP

can then be viewed as a mapping from an integer-array genotype to a phenotype.

TAGE

Tree Adjunct GE is a system designed by Murphy et al. [105, 107, 108, 109]. TAGE

uses Tree Adjunct Grammars instead of canonical GE’s context-free grammars to

construct solutions to problems. This work has since been extended further to in-

corporate a Gene Regulatory Network (GRN) to guide the construction of TAGE

solutions and allow for a developmental approach to TAGE [106].

CGE

Constituent Grammatical Evolution (CGE) by Georgiou [45, 47] is a version of GE

that has been extended to incorporate constituent genes and conditional behaviour

switching. These features are claimed to reduce genotype bloat, narrow the search

space during evolution to more favourable sites and reduce the impact of destructive

crossover events.

mgGE

Incorporating meta-grammars into GE was the doctoral work of Hemberg [57, 58,

63, 64, 66]. Hemberg presented two systems, Grammatical Evolution of Grammatical

Evolution (GE2) and mGGA. GE2 used GE to evolve the grammar that was then

passed into GE to be used to solve the problem specified. mGGA used a meta-

grammar approach to modularity in a GA system similar to GE.
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Modular GE

Swa↵ord et al. [158, 159, 160, 161, 162] focused on extending GE to identify modules

during a GE run. Once these modules have been identified they are assessed and the

best modules are incorporated into the grammar for use in the run.

⇡GE

Position Independent GE by O’Neill et al. [127] strives to remove the positional

dependency in the canonical GE mapping process. In ⇡GE two codons are used for

each expansion of the derivation tree. One codon is used to determine the position in

the current tree where expansion will take place, while the second codon is then used

in the standard GE way to determine what the expansion will be. Further study of

⇡GE makes up a significant portion of this thesis and is explained in much further

detail in Chapters 3, 4, 5 and 6.

Chorus

Chorus is a position independent encoding system for grammar based EA’s. Unlike

⇡GE above, where the position of the mapping varies during construction of the

derivation tree, in Chorus the reading of codons from the chromosome is what is

subject to positional change. Chorus uses a modified mod rule, where every produc-

tion choice is considered, unlike GE where only the relevant production choices are

considered. This modified mod rule, in conjunction with a concentration table, is

used to construct derivation trees in a depth first manner similar to GE but using

the concentration table to jump around the chromosome selecting codons as needed.

The use of this table allows for Chorus to not leave any unused genetic introns in the

chromosome that would occur if using the modified mod rule exclusively. This work

is explained in detail in the doctoral work of Azad [1, 146, 147].
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GAuGE

Genetic Algorithms using Grammatical Evolution was the doctoral work of Nico-

lau [26, 113, 114, 116, 117, 118, 119, 148, 149]. GAuGE uses GE and attribute

grammars to evolve what each gene positions in the GA codes for. The system fea-

tures position independent genetic algorithms, and uses the mod operation on codon

values allowing for redundant coding, to mention but a few features.

2.5.3 Applications

GE has been applied to a wide variety of fields. The following overview of some of these

applications serves to highlight the adaptability of GE to any problem domain.

The financial problem domain has received a lot of attention from a GE point of view.

Dempsey [24] used the financial domain as a way to examine GE in dynamic environments.

Brabazon et al. have published a book on the application of GE to financial problems [8].

GE has been used on a wide variety of financial problems, including identifying corporate

stability [7], evolving trading strategies [22, 23], bankruptcy predictions [5], and generating

credit ratings [6].

Subjective Design is another area where GE has been used in a significant body of

work. Hemberg et al. [67] used GE to design Digital Surfaces using Genr8. O’Neill et

al. [125] applied GE to the task of logo design. GE has also been applied to architectural

design. O’Neill et al. [130] introduced shelters designed using GE. Byrne et al. [11, 12]

designed bridges and other structures, whilst Ortega et al. [137] evolved fractal curves of

given dimensions. GE has also been applied to the field of music generation. Reddin et

al. [141] evolved elevator music whereas Shao et al. [155] used GE in his JIVE system to

interactively evolve music.

Computer games represents another area of exploration. Murphy et al. [110, 111, 112]

focused on using GE to evolve horse gait animation for graphical models. Galvan-Lopez
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et al. [42, 43] explored designing Ms Pacman game controllers using GE. More recently

the Super Mario Bros game has been the focus of GE applications in games. Perez et al.

investigated evolving decision trees to play the game [138], before examining a hybrid A*-

GE approach [139]. Moving away from controlling the player, Shaker et al. used GE to

evolve levels for Mario [153] and personalised content for the game [154]

The above represents three areas of significant GE application. However GE has been

applied to many more domains. Some application of note in the hardware domain are,

Hemberg et al. [59, 60, 61] used GE to manage femtocell coverage. O’Neill et al. [132]

evolved caching algorithms for computer processors. Colmenar et al. [20] evolved multi-

objective dynamic memory managers. Jones et al. [70] evolved electronic circuit designs.

GE has also been used in the software domain. Cebrian et al. [16] evolved plagiarism

tool validation methods. Sen et al. [151] and Wilson [167] both evolved techniques for

intrusion detection but on di↵ering network topologies. McIntyre et al. [99] evolved a

multi classifier through crowding. Harper [53] evolved Robocode tank controllers. Tavares

et al. [163] evolved ant colony optimisation algorithms. Drake et al. [27] applied GE to

vehicle routing, evolving the variable neighbour search. Burke et al. [10] evolved hyper

heuristics for the bin packing problem. Drchal et al. [28] evolved weights and topologies

for neural networks. Escula et al. [31] captured protein structures. Georgoulas et al. [48]

focused on classifying fetal heart rate data. Nicolau et al. [120] used GE to evolve models of

the Net Ecosystem CO2 Exchange. Chen [17] used GE to aid in reservoir inflow forecasting.

In summary this section provided a brief overview of GE applications and demonstrates

its versatility as a problem solving methodology.

2.5.4 Implementations

There are now many open source implementations of GE available for use by the general

public. What follows is a brief summary of some of those available.
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ECJ

Developed by Luke [96] and recently reviewed by White [165]. ECJ provides an

implementation of GE, and many other EC methods, in Java and is freely available

from http://cs.gmu.edu/~eclab/projects/ecj.

GEVA

Grammatical Evolution in Java (GEVA) by O’Neil et al. [129], developed by the

UCD Natural Computing Research and Applications group is an implementation of

GE in Java. GEVA is available from http://ncra.ucd.ie/Site/GEVA.html.

JCLEC

The Java Class Library for Evolutionary Computation (JCLEC) by Ventura et.

al. [164] provides a suite of EC methods including GE. This library is freely available

from http://jclec.sourceforge.net

jGE

jGE by Georgiou and Teahan [46] is another implementation of GE in Java. jGE can

be downloaded from http://pages.bangor.ac.uk/~eep201/jge

libGE

libGE by Nicolau and Slattery [121] is a C++ implementation of GE. libGE is avail-

able at http://bds.ul.ie/libGE.

GEM

Grammatical Evolution in Matlab (GEM) by Hemberg is an implementation of GE

that runs inside Matlab. The software is available from http://ncra.ucd.ie/GEM.

ponyGE

ponyGE is a very compact implementation of GE in Python. The software by Hem-

berg et al. is available from http://code.google.com/p/ponyge.
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PyNeurGen

Python Neural Genetic Algorithm Hybrids (PyNeurGen) contains an implementation

of GE in Python. PyNeurGen is freely available for download at http://pyneurgen.

sourceforge.net.

DRP

Directed Ruby Programming (DRP) by McKeon, contains an implementation of GE

in Ruby. The software is available from http://drp.rubyforge.org.

GERET

The GE Ruby Exploratory Toolkit (GERET) by Suchmann is an GE implementation

in Ruby. The software is available from http://geret.org.

PODI

Program Optimisation with Dependency Injection (PODI) by McDermott et al. [98]

provides an implementation of GE, and other EC methods, in Python. The software

is available from http://www.github.com/jmmcd/PODI.

For the most up to date and comprehensive list of GE implementations available, the reader

can consult http://www.grammatical-evolution.org and http://ncra.ucd.ie/Site/

Software.

2.6 Summary

What has been presented in this chapter serves as an introduction to GE, which is ex-

clusively used in the experimental part of this thesis. The main idea behind GE was

introduced, and compared and contrasted against GP. Following this the workings of the

algorithm were presented before finishing the chapter with an overview of the research,

applications and implementations of GE that exist.
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Experimental Research
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Chapter 3

Exploring the Genotype-Phenotype

Map in GE

This chapter presents an analysis of the genotype-phenotype map (GPM) in Grammatical

Evolution (GE). The standard map adopted in GE is a depth-first, left-to-right, expansion

of the non-terminal symbols during the derivation sequence. Earlier studies have indicated

that allowing the order of the derivation tree expansion to be evolved during evolution

produces performance gains [127]. This study extends the previous study to include a

breadth-first and random approach to derivation tree construction. Investigation of the

di↵erent approaches is performed on a selection of benchmark problems. It is concluded

that it is possible to improve the performance of grammar-based Genetic Programming,

such as GE, by the manner in which the genotype-phenotype map is performed. This

chapter presents a more in-depth examination of work presented by Fagan et al. [40].

The chapter is structured as follows. An introduction motivating this research is pre-

sented in Section 3.1. Various approaches to the GPM are described in Section 3.2. Sec-

tion 3.3 outlines the experimental setup, and the results are outlined in Section 3.4. Sec-

tion 3.5 presents a discussion, before the chapter concludes with a summary in Section 3.6.
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3.1 Introduction

Within the field of Genetic Programming (GP) [91, 140] the use of a genotype-phenotype

map is not new [2, 41, 51, 82, 83, 85, 97, 157], and a number of variants to the stan-

dard tree-based form of GP exist, amongst which some of the most popular are Linear

GP [9], Cartesian GP [103] and Grammatical Evolution (GE) [25, 133]. GE is a grammar-

based form of GP which adopts a mapping from a linear genotype to phenotypic GP trees.

O’Neill [124] presented a series of arguments for the adoption of a genotype-phenotype map

for GP as it can provide a number of advantages. These include a generalised encoding

that can represent a variety of structures allowing GP to generate structures in an arbitrary

language, e�ciency gains for evolutionary search (e.g. through neutral evolution), mainte-

nance of genetic diversity through many-to-one maps, preservation of functionality while

allowing continuation of search at a genotypic level, reuse of genetic material potentially

allowing information compression, and positional independence of gene functionality.

Previous studies into enhancing the GPM in GE have focused on how the genotype

is interpreted. Nicolau [26] and Azad [1] put forward methods that enhanced the GPM

by determining how each codon would be interpreted, whilst maintaining a fixed order of

derivation tree expansion. ⇡GE first presented by O’Neill et al. [127] provided GE with a

GPM that was not constrained by the linearity of the GE genotype. ⇡GE used the linear

GE genome, but allowed for variation of the location of derivation tree expression. This

variation of location was left under the control of evolution. With ⇡GE, O’Neill aimed

to break the dependency of the linear GE genome, and instead provide smaller fragments

of genetic material that may be exchanged with di↵erent area’s of the derivation tree by

using the evolvable expansion positions in ⇡GE. This process would have an e↵ect akin to

that of sub tree crossover in GP, where small building blocks of a tree structure can be

changed.
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This study aims to verify the claims that ⇡GE’s GPM presents a performance gain over

the traditional GE GPM. The study also sets out to investigate if other expansion orders

can provide a similar performance benefit over the traditional GPM.

3.2 Genotype-Phenotype Maps

Four alternative mappers are examined in this study. The standard mapper adopted in

GE we refer to as Depth-first. The name reflects the path this mapper takes through

the non-terminal symbols in the derivation tree. The opposite Breadth-first strategy

was implemented, which maps all of the non-terminal symbols at each successive level

of the derivation tree before moving on to the next deepest level. The ⇡GE mapper as

first described by O’Neill et al. [127] is the third mapper analysed. ⇡GE lets the evolving

genome decide which non-terminal to expand at each step in the derivation sequence.

Finally we adopt a Random control strategy, which randomly selects a non-terminal to

expand amongst all of the non-terminals that currently exist in an expanding derivation

sequence. This is equivalent to a randomised ⇡GE approach where the order of expansion

is not evolved, rather it is chosen at random each time it is performed.

A sample grammar is outlined in Figure 3.1, including an example chromosome. Fig-

ure 3.2 outlines the depth-first order of expansion of the non-terminal symbols of the

standard mapping process in GE. Potentially this introduces a structure bias to the search

process as the focus of search is directed towards the left-hand branches of an individual

structure. Alternatively if a breadth-first expansion was adopted, Figure 3.3 illustrates

how the order changes and thus the focus of evolutionary search takes a di↵erent direction

towards broader tree structures. With the ⇡GE approach [127] the order of expansion is

itself evolvable with the genome being consulted as to which non-terminal to expand at

each point of the derivation sequence.
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<e> ::= <e> <o> <e> | <v>

<o> ::= + | -

<v> ::= X | Y

Chromosome = 2,12,7,9,3,15,23,1,11,4,6,13,2,7,8,3,35,19,2,6

Figure 3.1: An example grammar and chromosome. This grammar and chromosome will
be used in all the GPM examples in this chapter.

3.2.1 GE - Depth-First GPM

Depth-First GPM represents the first mapping that will be examined. This GPM is im-

portant as it is the method of mapping used in canonical GE. In GE the derivation tree is

expanded in a depth first manner by always selecting the leftmost NT to expand. The GE

mapping process was explained in detail in Section 2.3. The genotype-phenotype map of

GE operates as follows. An example of a depth-first mapping using the example grammar

and chromosome in Figure 3.1 is displayed in Figure 3.2. A pseudo-code outline of the

depth-first mapping process is also shown in Algorithm 3.1.

3.2.2 Breadth-First GPM

The breadth-first approach to mapping presents a slight variation to that of the traditional

GE GPM. In breadth-first mapping as in depth-first, the mod rule is utilised to dictate

what each NT will be expanded to. Breadth-first however will expand the derivation tree

level by level in a left to right manner. This is where the mapping di↵ers to GE’s depth-first

approach.

Figure 3.3 shows the breadth-first GPM mapping the example grammar and chromo-

some shown in Figure 3.1. The figure shows that the tree is expanded level by level until

the tree is completed. Changing the mapping order of a derivation tree can have some large

e↵ects. In the canonical GE mapping the codons that specifically control the leaf nodes
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<e>

<e> <o> <e>

 1 (2%2=0) 

<e> <o> <e>

 2 (12%2=0) 

<v>

 9 (11%2=1) 

-

 8 (1%2=1) 

<v>

 3 (7%2=1) 

<v>

 6 (15%2=1) 

-

 5 (3%2=1) 

Y

 4 (9%2=1) 

Y

 7 (23%2=1) 

X

 10 (4%2=0) 

Figure 3.2: Example of the depth-first mapping process, which will be referenced ta as
the GE mapping process. In the depth-first GPM the derivation tree is expanded in a
depth-first left-most order. In this figure the expansion order is indicated on the arrowed
edges between the tree nodes. 3(7%2 = 1), indicates that this was the third expansion in
the mapping and that 7%2 = 1 dictates what the third expansion will entail.

can be distributed evenly over the chromosome. In the breadth-first approach however all

these codons will tend to be clustered towards the end of the chromosome. This makes it

more likely that a crossover or mutation event will result in the changing of all the leaf

nodes, due to the ripple e↵ect of these operators in GE. Changing the GPM ordering can

also a↵ect the expression of the grammar. Hemberg [66] investigated this and found that

some problem domains may benefit from the usage of a certain grammar notation and a

certain mapping order, while others might not, due to biases that exist in the grammars

and mappings. A pseudo-code outline of the breadth-first mapping process is also shown

in Algorithm 3.2.
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Algorithm 3.1 GE Depth-First Genotype-Phenotype Map Algorithm. The approach
shown builds a derivation tree by always expanding the left-most NT, by always adding
new productions to the start of the list we can guarantee this ordering. The generation of
the phenotype has been extracted to a single method call at the end of the pseudo-code
for clarity.

listNT {List to store NT’s seen}
Add start symbol from grammar to listNT
wraps = 0
while listNT is not empty do
if reached end of chromosome then
wraps++
if wraps > max wraps allowed then
return false

reset chromosome iterator
currentNT = get head of listNT
currentCodon = get next codon value
newProduction = currentCodon % number of productions for currentNT
set currentNT 0s children = newProduction
{This is the key to depth first mapping}
add newProduction to head of listNT {Only adds NTs}

Generate Phenotype by traversing the leaf nodes of the derivation tree.
return true

3.2.3 ⇡GE - Position Independent GPM

The ⇡GE GPM [127] di↵ers from the traditional GE mapping in one way. While the

expansion of the NTs is performed identically in both approaches the order in which these

expansions take place is di↵erent. GE adopts a fixed order mapping, while ⇡GE uses

evolution to control the order of NT expansions.

Before any mapping can be done in ⇡GE, there are some changes that need to be

made to the chromosome. ⇡GE’s mapping process di↵ers from that of GE in that each

expansion of a NT requires two codons. The standard GE chromosome is essentially split

into a chromosome of pair values. The first codon of the pair (The Order Codon), is used

to choose which NT to expand and the second (The Content Codon), is used to choose

what the production, based on the rules available for a NT of that type, just like in GE.
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<e>

<e> <o> <e>

 1 (2%2=0) 

<e> <o> <e>

 2 (12%2=0) 

<v>

 4 (9%2=1) 

-

 3 (7%2=1) 

<v>

 5 (3%2=1) 

<v>

 7 (23%2=1) 

-

 6 (15%2=1) 

Y

 9 (11%2=1) 

X

 10 (4%2=0) 

Y

 8 (1%2=1) 

Figure 3.3: Example of the breadth-first mapping process. The derivation tree is expanded
level by level in a left to right direction. In this figure the expansion order is indicated
on the arrowed edges between the tree nodes. 2(12%2 = 0), indicates that this was the
second expansion in the mapping and that 12%2 = 0 dictates what the second expansion
will entail.

The chromosome shown in Figure 3.1 can be viewed as a list of paired values such as

((2,12),(7,9)...).

⇡GE Mapping Example

The mapping process begins from the embryonic start symbol of the grammar. Taking

the simple grammar provided in Figure 3.1 this is < e >. < e > is then added to the

list of possible expansions, [< e >]. Selecting the first ⇡GE codon from the chromosome

(Figure 3.1) yields the codon (2, 12). The order codon, 2 is then passed to Equation 3.1,

that results in selecting the NT to be expanded from the NT list, [(< e >)] as 2%1 = 0.

Now for the second half of the ⇡GE expansion we have to perform the standard GE

expansion on the selected NT. In this case there are two possible transformations which

can be applied to < e >. Either it will be replaced with < e >< o >< e >0 or with < v >1.
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3.2. GENOTYPE-PHENOTYPE MAPS

Algorithm 3.2 Breadth-First Genotype-Phenotype Map Algorithm. This algorithm is
similar to the depth-first algorithm (Algorithm 3.1). The only di↵erence is that when
adding the new productions to the NT list, the new production is added to the tail of
the list. This simple step guarantees a breadth-first ordering, instead of the depth-first
ordering that appending to the head of the list provides.

listNT {List to store NT’s seen}
Add start symbol from grammar to listNT
wraps = 0
while listNT is not empty do
if reached end of chromosome then
wraps++
if wraps > max wraps allowed then
return false

reset chromosome iterator
currentNT = get head of listNT
currentCodon = get next codon value
newProduction = currentCodon % number of productions for currentNT
set currentNT 0s children = newProduction
{This is the key to breadth first mapping}
add newProduction to tail of listNT {Only adds NTs}

Generate Phenotype by traversing the leaf nodes of the derivation tree.
return true

To decide what rule is taken, the content codon 12 and the number of choices available are

used in conjunction with Equation 3.2. In this case 12%2 = 0 so < e > will be transformed

into < e >< o >< e >, and the NT list will be updated, [< e >,< o >,< e >].

NT to expand = Order Codon % |NT list| (3.1)

Expansion Choice = Content Codon % Number of rules for NT (3.2)

The second expansion of the ⇡GE derivation tree follows a similar process, first the

next ⇡GE codon is read, (7, 9). The order codon of the pair is used to select the next NT

to expand, < o > is chosen as 7%3 = 1. Next the content codon is used to select what the

expansion becomes. Similarly to the first expansion < o > has two possible productions,
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3.2. GENOTYPE-PHENOTYPE MAPS

+0 or �1, and � is chosen in this case as 9%2 = 1. As � is a terminal it is not added to

the NT list and so the list now consists of [< e >,< e >]. When a NT production results

in the generation of new NTs, these NTs are placed at the same location in the NT list of

possible expansions, that the initial NT was selected from.

1. [(e)] => 2%1=0

2. [e,(o),e] => 7%3=1

3. [e,(e)] => 3%2=1

4. [e,(v)] => 23%2=1

5. [(e)] => 11%1=0

6. [(e),o,e] => 6%3=0

7. [v,o,(e)] => 2%3=2

8. [v,o,(v)] => 8%3=2

9. [v,(o)] => 35%2=1

10. [(v)] => 2%1=0

(a) ⇡GE order choice list.

<e>

<e> <o> <e>

 1 (12%2=0) 

<e> <o> <e>

 5 (4%2=0) 

<v>

 3 (15%2=1) 

-

 2 (9%2=1) 

<v>

 6 (13%2=1) 

<v>

 7 (7%2=1) 

-

 9 (19%2=1) 

X

 10 (6%2=0) 

Y

 8 (3%2=1) 

Y

 4 (1%2=1) 

(b) ⇡GE derivation tree example

Figure 3.4: Example of the ⇡GE mapping process. The derivation tree is expanded in the
order that is dictated by the chromosome and Equation 3.1. This process is outlined in
Figure 3.4a. In this figure the expansion order is indicated on the arrowed edges between
the tree nodes. 5(4%2 = 0), indicates that this was the fifth expansion in the mapping and
that 4%2 = 0 dictates what the fifth expansion will entail.

This expansion process is repeated until the tree is completed or the derivation process

reaches the end of the chromosome. If all the codons have been used the mapper will

either return an invalid individual or else wrap around to the start of the chromosome and

continues mapping (if wrapping is enabled). Figure 3.4 provides the complete derivation

example, with Figure 3.4a showing the NT list at each step of the derivation, and Figure

3.4b showing the completed derivation tree. The number associated with each branch of

the tree is a reference to the numbered steps shown in Figure 3.4a, which show how each
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Algorithm 3.3 ⇡GE Genotype-Phenotype Map Algorithm. The addition of the order
codons are highlighted. It can now be seen how the order codons are used to pick an
index in the NT list. It is also worth noting how the new productions are then added to
the index where the parent NT was taken from originally. This preserves the ordering of
the derivation string, which is of importance in relation to the experiments performed in
Chapter 5.

listNT {List to store NT’s seen}
Add start symbol from grammar to listNT
wraps = 0
while listNT is not empty do
if reached end of chromosome then
wraps++
if wraps > max wraps allowed then
return false

reset chromosome iterator
{This is where the ⇡GE order comes in}
currentOrderCodon = get next codon value
nextProductionIndex = currentOrderCodon % size of listNT
currentNT = get listNT [nextProductionIndex]
currentContentCodon = get next codon value
newProduction = currentCodon % number of productions for currentNT
set currentNT 0s children = newProduction
{The new NT’s are added where the parent NT was removed from}
insert newProduction at listNT [nextProductionIndex] {Only adds NTs}

Generate Phenotype by traversing the leaf nodes of the derivation tree.
return true

choice of NT to expand comes about. A pseudo-code outline of the ⇡GE mapping process

is also shown in Algorithm 3.3.

3.2.4 Random Order GPM

Random Order GPM is a mapping where the expansion order of the derivation tree is

under no form of ordering control at all, unlike the previous mapping examples. At each

expansion step the mapping algorithm is free to choose from any of the NTs available.

This random mapping approach is non deterministic, running the GPM twice will result

in two di↵erent orders of derivation tree expansion.
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<e>

<e> <o> <e>

 1 (2%2=0) 

<e> <o> <e>

 2 (12%2=0) 

<v>

 6 (15%2=1) 

-

 4 (9%2=1) 

<v>

 3 (7%2=1) 

<v>

 5 (3%2=1) 

+

 10 (4%2=0) 

Y

 7 (23%2=1) 

Y

 9 (11%2=1) 

Y

 8 (1%2=1) 

Figure 3.5: Example of the random position mapping process. In the random GPM the
choice of what NT to expand next is selected at random, resulting in a non deterministic
GPM. In this figure the expansion order is indicated on the arrowed edges between the
tree nodes. E.g. 7(23%2 = 1) indicates that this was the seventh expansion in the mapping
and that 23%2 = 1 dictates what the seventh expansion will entail.

Figure 3.5 shows an example of a random GPM. The example uses the grammar and

chromosome shown in Figure 3.1. The random GPM serves two purposes in this study.

Firstly it provides for a base level of performance of GE, as with the random GPM the

algorithm is randomly selecting derivation trees and is essentially random search. Secondly

the random GPM provides a control for ⇡GE. The ⇡GE and random mappings di↵er only in

that ⇡GE has its ordering under the control of evolution whilst the random GPM does not.

A pseudo-code outline of the random order mapping process is also shown in Algorithm 3.4.
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Algorithm 3.4 Random Genotype-Phenotype Map Algorithm is very similar to the ⇡GE
algorithm. In the random mapping instead of using the second codon for the order, a
random index is selected for each expansion. The generated NT’s are again inserted into
the list at the same position as the parent NT was removed from.

listNT {List to store NT’s seen}
Add start symbol from grammar to listNT
wraps = 0
while listNT is not empty do
if reached end of chromosome then
wraps++
if wraps > max wraps allowed then
return false

reset chromosome iterator
{This is where the random order comes in}
nextProductionIndex = random index within bounds of listNT size
currentNT = get listNT [nextProductionIndex]
currentCodon = get next codon value
newProduction = currentCodon % number of productions for currentNT
set currentNT 0s children = newProduction
{The new NT’s are added where the parent NT was removed from}
insert newProduction at listNT [nextProductionIndex] {Only adds NTs}

Generate Phenotype by traversing the leaf nodes of the derivation tree.
return true

3.3 Experimental Setup

We wish to test the null hypothesis that there is no di↵erence in performance when alterna-

tive mapping strategies are adopted with GE. Performance will be measured both in terms

of the number of successful solutions found to each problem instance, and by examining

the average best fitness. The problems examined are outlined in Section 3.3.1.

GEVA v2.0 [129] was adopted for the experiments conducted in this study. The evo-

lutionary parameters adopted on all problems are presented in Table 3.1. Note that a

relatively small population size of 100 was deliberately used, compared to the standard

500 that would typically be adopted for these problem instances. This was to make it

harder for the mappers to find a perfect solution, and therefore provide the possibility to
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Table 3.1: Parameter settings adopted on all problems examined.

Parameter Value
Generations 100
Population size 100
Replacement strategy generational with elitism (3 individuals)
Selection tournament (tsize=3)
Mutation probability 0.01 (integer mutation)
Crossover probability 0.0 & 0.9 (ripple)
Initial chromosome length 200 codons (random init), ⇡GE 400 codons

more precisely distinguish performance di↵erences on these benchmark problems. Elitism

was restricted to a size of 3 to prevent the population from converging too quickly. For

all approaches except one an initial chromosome length of 200 codons was selected to pro-

vide all mappings with a similar amount of randomly created genetic material. ⇡GE uses

two GE style codons for a single ⇡GE codon, because of this it was provided an initial

chromosome length of 400.

3.3.1 Problems Examined

Four standard GP benchmark problems [166] were examined, and 250 independent runs

performed for each setup on each problem. The grammar adopted in each case appear in

Figure 3.6.

Even-5-Parity

Even-5-Parity [89] is a classic benchmark problem in which evolution attempts to find the

five input even-parity boolean function. The optimal fitness is obtained when the correct

output is generated for each of the 32 test cases.
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Symbolic Regression

Symbolic Regression [89] is a type of problem where the goal is to evolve a function that fits

to a set of test cases. The classic quartic polynomial function is used here x+ x2 + x3 + x4

with 20 input-output test cases evenly spaced between the range -1 to 1. Fitness is the root

mean square error. Success on the problem is measured using the notion of hits, where a

hit is achieved when the error is less than 0.000001. A bivariate version of the problem,

x4
0 + x2

1 is also examined over the same range.

Santa Fe Ant Trail

In the Santa Fe Ant Trail problem [88] the objective is to evolve a program to control the

movement of an artificial ant on a toroidal grid of size 32 by 32 units. 89 pieces of food

are located along a broken trail, and the ant has 600 units of energy to find all the food.

A unit of energy is consumed when the ant uses one of the following operations: move(),

right() or left(). The ant also has the capability to look ahead into the square directly

ahead to determine if there is food present.

Max

The aim of the max problem [44] is to evolve a tree that evaluates to the largest value within

a set depth limit (6 in this study). A minimal function set of addition and multiplication

is provided alongside a single constant (0.5). The optimal solution to this problem will

have addition operators towards the leaves of the tree to create as large a variable as

possible greater than 1.0 in order to exploit multiplication operators towards the root of

the tree. This problem is considered di�cult for GP as the population tends to converge

on suboptimal solutions which can be di�cult to escape from as is shown by Langdon et

al. [95].
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<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= + | *

<var> ::= 0.5

(a) Max.

<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= + | - | * | /

<var> ::= x0 | x1 | 1.0

(b) Symbolic Regression A.

<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= + | - | *

<var> ::= x0 | 1.0

(c) Symbolic Regression B

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr>

| ( <expr> <op> <expr> )

| <var>

| <pre-op> ( <var> )

<pre-op> ::= not

<op> ::= "|"

| &

| ^

<var> ::= d0 | d1 | d2 | d3 | d4

(d) Even 5 Parity.

<prog> ::= <code>

<code> ::= <line> | <code> <line>

<line> ::= <condition>\n

| <op>\n

<condition> ::= if(food_ahead()==1){

<opcode>

}

else { <opcode> }

<op> ::= left();|right();|move();

<opcode> ::= <op> | <opcode> <op>

(e) Santa Fe Ant.

Figure 3.6: Grammars used for the problems in this chapter are presented above. There
were five grammars used during the course of this investigation.

3.3.2 Statistical Tests

The quantities of interest are average best fitness and number of successful solutions found.

For the successful solutions a simple head count approach will be used. Examination of

the average best fitness values will require the addition of a statistical test.

In this thesis the Wilcoxon Rank-Sum test will be used. The Wilcoxon Rank-Sum was

chosen as it is valid on normally and non-normally distributed data. The Wilcoxon Rank-

Sum test is used to determine if two samples are drawn from the same distribution. The

null hypothesis is that the samples are the same, and the test returns a p-value indicating

the probability that this data could have arisen by chance, when drawing from the same

distribution. For this thesis a p-value < 0.05 will be taken to indicate that the samples
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are drawn from di↵erent distributions. As multiple samples of data are being compared

pairwise, a Bonferroni correction will be applied to the threshold. This correction entails

dividing the threshold by the number of pairwise tests. In this chapter there are four

datasets, hence six pairwise tests. This results in a new threshold of 0.0083.

3.4 Results

The following section presents the findings of the study. Section 3.4.1 presents a com-

parison of the performance of the di↵erent GPM approaches on the benchmark problems.

Section 3.4.2 investigates the e↵ect the crossover operation has on the di↵erent GPMs,

before the discussion is focused on the performance of the random GPM in Section 3.4.3.

3.4.1 Overall Performance

Table 3.2 presents the general findings for this study, while Tables 3.3 and 3.4 display the

p-values of each GPM compared to the other GPM approaches, with and without crossover

respectively. Plots of the average best fitness, with and without crossover, across the 250

runs are displayed in Figures 3.7 and 3.8 respectively.

Examining the tables there are 10 problem instances displayed (five problems with and

without crossover). Looking at the number of successful solutions it can be seen that ⇡GE

finds a larger number of successful solutions than the other GPM approaches, in seven of

the ten instances, and in one other case is only a single solution away from the best GPM

approach. The closest competitive GPM only achieved the best in two of the ten instances.

Examining solely the average best fitness it can bee seen that ⇡GE is the most consistent

GPM as it has displays the best average best fitness, or is statistically similar to the best

fitness, in nine of the ten problem instances.
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Table 3.2: This table shows the results for the di↵erent genotype-phenotype mapping
approaches on a range of benchmark problems. 250 runs for each setup were performed
and the results are shown below. In the table SS denoted the number of solution found
during the 250 runs. The average of the best fitness is presented with the standard deviation
shown in brackets, and also the average of the average population fitness is also presented.
The highlighted cells indicate the best performing approach. In the case where multiple
approaches are highlighted, there is no statistical di↵erence between the approaches.

Approach SS Avg. Best Avg. Avg. SS Avg. Best Avg. Avg.
Crossover 0.0 Crossover 0.9

Even 5 Parity
BF 123 3.596 (3.853) 6.274 (3.256) 158 2.464 (3.596) 5.639 (3.191)
GE 157 2.348 (3.403) 5.449 (3.057) 166 2.108 (3.192) 5.444 (2.746)
⇡GE 156 2.66 (3.612) 8.085 (3.189) 170 2.392 (3.595) 8.341 (2.759)

Random 83 4.928 (3.736) 15.691 (0.121) 90 4.628 (3.796) 15.698 (0.113)
Max 6

BF 0 11.93 (1.71) 12.12 (1.51) 1 9.49 (2.35) 10.26 (1.93)
GE 0 11.83 (1.62) 12.03 (1.46) 0 9.93 (2.49) 10.60 (2.09)
⇡GE 0 11.67 (1.39) 12.35 (0.98) 0 11.39 (1.22) 12.38 (0.75)

Random 0 12.69 (0.45) 15.28 (0.08) 0 12.46 (0.47) 15.30 (0.07)
Santa Fe Ant

BF 2 41.09 (13.13) 45.94 (12.02) 6 34.11 (13.46) 41.55 (11.75)
GE 2 39.41 (13.23) 44.60 (12.05) 8 31.39 (13.99) 39.09 (12.38)
⇡GE 9 31.11 (14.46) 46.02 (11.53) 8 26.86 (14.30) 44.79 (10.65)

Random 3 28.66 (11.18) 82.74 (0.814) 2 27.12 (13.09) 82.98 (0.79)
Symbolic Regression A

BF 8 0.584 (0.348) 0.795 (0.778) 13 0.37 (0.237) 2.36 (11.93)
GE 8 0.576 (0.329) 1.76 (14.969) 34 0.291 (0.219) 1.88 (12.78)
⇡GE 20 0.453 (0.328) 2.59 (12.34) 37 0.285 (0.246) 16.98 (166.5)

Random 1 0.627 (0.215) 3.235 (15.39) 0 0.642 (0.189) 3.59 (21.78)
Symbolic Regression B

BF 143 0.087 (0.113) 0.347 (0.245) 200 0.033 (0.067) 1.97 (17.49)
GE 120 0.115 (0.146) 0.347 (0.221) 195 0.037 (0.072) 185.9 (29.25)
⇡GE 200 0.035 (0.074) 0.64 (0.318) 223 0.017 (0.052) 1.73 (9.77)

Random 100 0.111 (0.104) 1.301 (0.133) 95 0.115 (0.102) 1.36 (0.33)
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3.4. RESULTS

Table 3.3: The table displays the p-values resulting from comparing each pair of setups us-
ing the Wilcoxon Rank-Sum test. p-Values < 0.0083 are highlighted. The setups compared
are the for the results seen in Table 3.2 without crossover.

Crossover 0.0
Even 5 Parity

Approach BF GE ⇡GE Random
BF - 5.56E-05 0.0045 0.0001
GE 5.56E-05 - 0.2222 4.93E-12
⇡GE 0.0045 0.2222 - 8.03E-10

Random 0.0001 4.93E-12 8.03E-10 -
Max

Approach BF GE ⇡GE Random
BF - 0.4157 0.0024 4.00E-10
GE 0.4157 - 0.1877 6.53E-11
⇡GE 0.0024 0.1877 - 9.26E-23

Random 4.00E-10 6.53E-11 9.26E-23 -
Santa Fe Ant

Approach BF GE ⇡GE Random
BF - 0.1675 3.41E-15 3.28E-22
GE 0.1675 - 3.64E-10 2.27E-17
⇡GE 3.41E-15 3.64E-10 - 0.0405

Random 3.28E-22 2.27E-17 0.0405 -
Symbolic Regression A

Approach BF GE ⇡GE Random
BF - 0.9783 1.28E-05 7.02E-02
GE 0.9783 - 8.33E-05 3.94E-02
⇡GE 1.28E-05 8.33E-05 - 1.89E-10

Random 7.02E-02 3.94E-02 1.89E-10 -
Symbolic Regression B

Approach BF GE ⇡GE Random
BF - 0.0371 1.14E-08 2.00E-04
GE 0.0371 - 5.79E-14 3.65E-01
⇡GE 1.14E-08 5.79E-14 - 3.57E-20

Random 2.00E-04 3.65E-01 3.57E-20 -
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Table 3.4: The table displays the p-values resulting from comparing each pair of setups us-
ing the Wilcoxon Rank-Sum test. p-Values < 0.0083 are highlighted. The setups compared
are the for the results seen in Table 3.2 with crossover.

Crossover 0.9
Even 5 Parity

Approach BF GE ⇡GE Random
BF - 0.2828 0.8741 5.49E-09
GE 0.2828 - 0.1753 2.57E-12
⇡GE 0.8741 0.1753 - 1.53E-09

Random 5.49E-09 2.57E-12 1.53E-09 -
Max

Approach BF GE ⇡GE Random
BF - 0.0445 3.63E-21 1.19E-39
GE 0.0445 - 9.35E-13 5.42E-35
⇡GE 3.63E-21 9.35E-13 - 1.79E-28

Random 1.19E-39 5.42E-35 1.79E-28 -
Santa Fe Ant

Approach BF GE ⇡GE Random
BF - 0.0253 1.40E-09 9.06E-09
GE 0.0253 - 0.0002 2.00E-04
⇡GE 1.4E-09 0.0002 - 7.49E-01

Random 9.06E-09 2.00E-04 7.49E-01 -
Symbolic Regression A

Approach BF GE ⇡GE Random
BF - 6.80E-05 2.30E-05 2.27E-26
GE 6.80E-05 - 0.5039 2.73E-35
⇡GE 2.30E-05 0.5039 - 1.00E-30

Random 2.27E-26 2.73E-35 1.00E-30 -
Symbolic Regression B

Approach BF GE ⇡GE Random
BF - 0.7362 0.001 1.95E-19
GE 0.7362 - 0.0023 6.13E-18
⇡GE 0.001 0.0023 - 2.07E-25

Random 1.95E-19 1.13E-25 2.07E-25 -
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Taking Even Five Parity without crossover, GE and ⇡GE present very similar perfor-

mance levels, with GE slightly out performing ⇡GE. Examining Table 3.3 adds that GE

doesn’t significantly outperform ⇡GE, however both setups are significantly better than

the BF and Random approaches. The addition of crossover to the algorithms improves

performance with ⇡GE now finding more successful solutions and GE maintaining the best

fitness. BF has improved and by examining Table 3.4 it is evident that now all setups are

significantly better than the Random approach.

The Max problem presents an interesting result. ⇡GE has marginally the best fitness

in the no crossover setup, however there is only a significant di↵erence with respect to

the Random GPM. The addition of crossover results in BF achieving the best result and

significantly outperforming the other approaches.

On the Santa Fe Ant problem, without crossover, the random GPM achieves the best

fitness, in contrast with its relatively poor performance on most of the other problem

instances. This may be down to the fact that random sampling has been shown to be good

at solving the ant problem [94]. ⇡GE presents as finding the most successful solutions. The

⇡GE and Random approaches are significantly better than the GE and BF approaches when

examining the p-values. The addition of crossover to the problem results in ⇡GE achieving

a tie with GE for the most solutions found, but has significantly better best fitness. The

result is significant when compared to the GE and BF approaches, however the Random

approach again shows good performance.

The Symbolic Regression problems represent a clean sweep for ⇡GE, significantly out-

performing all other approaches. On all four problem instances ⇡GE has the most successful

solutions, and statistically the lowest average best fitness.

Looking back at the results as a whole, a trend can be seen by comparing the di↵erence

between the average best fitness and the mean average fitness in Table 3.2. ⇡GE seems

to maintain a much wider di↵erence between the two then those of its closest rivals, GE
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3.4. RESULTS

and BF. This gap gives an indication of how converged a population is fitness wise. The

correlation between this and the performance gains seen cannot be ignored. ⇡GE appears

to provide a larger di↵erence between best and average fitness during a run, indicating a

less converged population fitness wise.

3.4.2 Crossover Performance

GE has been shown to take very good advantage of the crossover operation [135]. This is

due to GE being able to take advantage of the genetic tails of the GE genotype. These

sequences of unmapped codons, at the end of the genotype, provide the crossover operation

with an increased probability of generating an individual that has a complete mapping

sequence [115]. Consulting Table 3.2 it is evident that the fixed order mappings of GE and

BF exhibit more of a performance increase with the use of crossover when compared to

their variable order counterparts. In every problem domain both mapping approaches show

marked improvement with crossover in terms of fitness and successful solutions found. ⇡GE

does not get as much of an increase in performance, for example in the Even 5 Parity and

Max problems the ⇡GE setups shows little improvement in average best fitness. However

it can be seen that the number of successful solutions does increase with crossover in the

majority of cases.

Figure 3.7 shows the average best fitness without crossover for four of the problem

instances. Figure 3.8 shows the performance for the same problems with crossover. By

comparing the graphs the increase in performance that GE and BF achieve can be seen.

Figures 3.7c and 3.8c really emphasise this increase in performance.
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(d) Symbolic Regression A - No Crossover

Figure 3.7: This figure shows the graphs for the average best fitness of the di↵erent GPM’s
on the problems examined without crossover.
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(d) Symbolic Regression A - Crossover

Figure 3.8: This figure shows the graphs for the average best fitness of the di↵erent GPM’s
on the problems examined with crossover
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3.5. DISCUSSION

3.4.3 Random Performance

The random GPM has provided some interesting insight. The random GPM has provided

a baseline for the study. However by looking at the mean average fitness and the used

codon lengths of the GPMs used in this study, we can see the benefit for all other GPMs

of retaining the mapping order in the GPM. Figure 3.9 shows the mean average fitness of

the GPMs on two of the problem instances. Figure 3.10 shows the average used genes for

the same two problem instances.

These figures show how the structure of the expansion orders, that is maintained by

the genotype in ⇡GE and inherently in the fixed order mappings, allows for the GPM to

retain knowledge. The random GPM discards all this information every time it maps an

individual, so it reaches a level of performance similar to that of random sampling.

The Santa Fe Ant problem is an exception to this pattern of poor performance by the

random GPM. Langdon [94] noted than randomly generating solutions provided very good

performance on the ant problem. In Figure 3.8b it can be seen that the random GPM

achieves a very good best fitness value. However, Figure 3.10b shows that random does

not improve the average fitness of the population. This is because individuals created using

the random GPM are e↵ectively inheriting little genetic information, so mean performance

can be very poor even while best performance is good. The good performance of the

random GPM on the Santa Fe problem has negated the need for the GPM to retain the

order information.

3.5 Discussion

Overall ⇡GE has distinguished itself as viable alternative to the traditional GE GPM. This

is extremely encouraging considering the added search space that it has to overcome. The

ability of this GPM to find solutions forms the bulk of the next two experimental chapters
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(d) Symbolic Regression A - Crossover

Figure 3.9: This figure shows the graphs for the mean average fitness of the di↵erent GPM’s
on the problems examined. Examining the graphs it can be seen that ⇡GE has a worse
mean average fitness than GE and BF. Random in contrast has a very large mean average
fitness, indicative of its random sampling approach to search. The graph for symbolic
regression is included for completeness, however the variation in fitness, due to outlier
individuals of very bad fitness, makes it unreadable.
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(d) Symbolic Regression A - Crossover

Figure 3.10: This figure shows the graphs for the average number of used genes of the
di↵erent GPM’s on the problems examined. It is interesting to note how the random
mapping uses less genes than the other approaches, and seems to have di�culty building
larger individuals.
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of this thesis, where the inner workings of ⇡GE will be explored.

While the results show that ⇡GE did not perform as well on the Max problem, relative

to the other problems, it is worth noting that solving the Max problem is more about

refining the content of the tree not the structure [14]. The Max problem is more suited

to a systematic pre-order (Depth-first) or level-order (Breadth-first) traversal of the tree,

leading to better results faster than ⇡GE.

3.6 Summary

An analysis of the genotype-phenotype map in Grammatical Evolution was presented,

comparing performance of the standard depth-first approach to breadth-first, ⇡GE, and

random variations. Across the benchmark problems analysed we observed that the adoption

of the more flexible ⇡GE map, which is under the control of evolution, provided a viable

alternative to the GE GPM. In some cases ⇡GE presented significant performance gains.

The ⇡GE GPM increases the genotypic search space, as the derivation sequence is in-

corporated into the genotype. This results in ⇡GE having to search for orders of derivation

as well the actually derivation expansions, therefore the results are even more impressive.

The e↵ect of crossover on di↵erent mappings was also investigated and found to vary in

e↵ectiveness with di↵erent GPMs and problem domains. The fundamental e↵ect of a fixed

or preserved order of expansion was also investigated. The following chapters aim to in-

vestigate the inner workings of ⇡GE and present new insights into our understanding of

the algorithm.
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Chapter 4

Phenotypic Connectivity in ⇡GE

This chapter explores how ⇡GE can remain a competitive search method when compared

to GE (as explored in Chapter 3), considering that it has to overcome the additional search

space of expansion orders. Understanding how an algorithm navigates its search landscape

can aid in explaining the performance of the algorithm. Furthermore, visualising this land-

scape has been shown to aid in this understanding [71, 92, 108]. The phenotypic landscape

is selected for examination in this chapter. A phenotype is defined as the concatenation

of the leaf nodes of the derivation tree in GE and ⇡GE. A phenotype represents candidate

solution to a problem, and is evaluable to produce a fitness value for the phenotype. By

examining how the connections between phenotypes di↵er in GE and ⇡GE, it becomes

clearer how ⇡GE can match GE’s performance, given the added search overhead of ⇡GE.

This chapter presents an in depth examination of work presented by Fagan et al. [35].

The chapter is structured as follows. Section 4.1 outlines the increase in search complex-

ity ⇡GE adds, and introduces the landscape model used. Section 4.2 explains the methods

used to conduct this experiment. Section 4.3 presents the visualisations of the phenotypic

landscapes and discusses how the connectivity di↵ers between the setups, before concluding

the chapter with a summary in Section 4.4.
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4.1 Introduction

Chapter 3 presented an exploration of genotype-phenotype map (GPM) variants for GE.

The results of this study highlighted ⇡GE as a viable alternative to the traditional GPM.

However this finding raised many questions. In GE the ideal outcome is to find the correct

genotype that generates a solution to a given problem. ⇡GE also has to find this genotype,

but in addition to the correct node expansions in the derivation tree, the ⇡GE genotype

also has to encode the correct ordering of NTs to expand in the derivation tree. GE does

not encounter this issue as it possesses a fixed-order GPM process. The addition of this

order search drastically increases the size of the search space that needs to be traversed.

Does this also carry with it some benefits not available to GE’s fixed order mapping? This

forms the key question of this chapter: how does the addition of variable order, and an

increased search space, still allow for the competitive search performance of ⇡GE?

The addition of variable order was stated above to lead to a drastic increase in the

number of possible genotypes to search. Consider a simple demonstration: a GE derivation

tree that starts o↵ with three expansions. At each of these expansions, a grammar allows

for two possible expansion choices, and each choice produces two NT’s and consumes

one NT, e.g., E ::= EE|EE. This results in a branching factor (the number of possible

expansions at a tree node) at each expansion of two for GE, that leads to a requirement

of 23 genotypes that map to the trees needed to fully explore the first three expansions, as

shown in Figure 4.1.

⇡GE for these same three expansions presents a di↵erent situation. The first expansion

has a single NT so ⇡GE has a choice of one NT to expand. This NT then presents two

possible choices for the grammar exactly like GE. This choice results in the consumption

of one NT and the creation of two new NTs. Now for the second expansion ⇡GE has the

choice of two NTs, and then from this it will then have two choices from the grammar for
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Figure 4.1: This figure shows the minimum possible genotypes needed by GE, to map
to every possibility for the first 3 expansions of a grammar, consisting of the rule E ::=
EE|EE. Note that with 3 expansions 8 (23) genotypes are needed.

whichever NT it selected. The second expansion consumed one NT but produced two new

ones so there is now three NTs. The final of the three expansions for ⇡GE results in a

choice between the three unexpanded NT’s. Finally the expansion of the NT results in a

choice of two from the grammar. To model these three expansions ⇡GE has to cover 48

(1 ⇤ 2 ⇤ 2 ⇤ 2 ⇤ 3 ⇤ 2) possible combinations of genotypes that can generate the eight possible

derivation trees, as demonstrated in Figure 4.2. ⇡GE has 40 more genotype combinations

than GE, and if we were to carry this on to a fourth expansion GE would have 16 (24)

possible trees that requires 16 genotypes, while ⇡GE is facing 384 (1 ⇤ 2 ⇤ 2 ⇤ 2 ⇤ 3 ⇤ 2 ⇤ 4 ⇤ 2)

possible genotypes to generate the same 16 trees.

Given that GE and ⇡GE share a common grammar, the phenotypes that can be derived

by both systems are identical, given the same amount of codons, where a ⇡GE codon is

a pair. This shared phenotypic space, called the phenotypic landscape, allows for the

direct comparison of how each respective system can search the landscape. Modelling each

algorithm’s interaction with this landscape may shed light on how ⇡GE can overcome the
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massive overhead of order search. Koza and Poli [92] noted that understanding how an

algorithm operates can be aided by visualising the program space, i.e., the phenotype space

in GE and ⇡GE.

4.1.1 Search Landscapes

Landscapes are an idea that can be employed to aid in the understanding of complex sys-

tems [72, 92]. Good visualisation of a landscape can facilitate study of an aspect of interest

in the system. This visualisation may allow the user to gain increased understanding of the

process in question, thus allowing for the deduction of solutions to observed behaviours

in the system being examined. The doctoral thesis of Jones [71], focused on trying to

understand and define landscapes in terms of EC methods. Jones stated:

“A landscape is a metaphor by which we hope to imagine some aspect of the

behaviour of an algorithm [71].”

He put forward the idea that an algorithm contains many landscapes dependent upon

the operator performing search, such as mutation, and crossover in EC. Jones hypothesised

that there was not one landscape, but rather a combination of these individual landscapes

that provides a complete model of the system [72].

The landscape model, as outlined in detail in Jones’ thesis [71], was employed for this

study. What follows is a brief description. In the model, a landscape can be described as

a five tuple (Equation 4.1).

L = (R,�, f, F,>
F

) (4.1)

• R denotes the representation space of the search algorithm.

• � denotes the operator acting on the landscape.

• f a function that maps a multiset of R (M(R)) to F , the fitness space, f : M(R) ! F .
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4.2. EXPERIMENTAL DESIGN

• F the fitness space

• >
F

represent a partial ordering over the fitness space.

The landscape L can be visualised as a labelled directed graph G
L

= (V,E), where

the vertices V are a subset of M(R), V ✓ M(R), and the edges E are a subset of the

cross product of V , E ✓ V ⇥ V . An edge E between two vertices, v and w, can be said

to exist if and only if there is a connection between v and w via an application of �,

(v, w) 9E () �(v, w) > 0.

This model was further defined by Murphy et al. [108] for usage in a comparison of

grammars in GE, and a similar definition is used for this experiment. The landscapes to

be examined in this study are defined by the representation space R, that combines the

chromosome space, and a GE GPM or ⇡GE GPM resulting in the phenotype space. The

phenotype space represents all the valid phenotypes that can be derived from the grammar

within a given chromosome length, this is the object space O. Single int-flip mutation

represents �, and f is the GE fitness function. For this landscape the graph G
L

= (V,E)

can be viewed as having set of vertices V , where V ✓ M(R) and V ✓ O, meaning the

vertices are genotypes, but also valid phenotypes. Given that GE and ⇡GE share the same

phenotype space, V will be the same regardless of what GPM is used. The edges between

the vertices may di↵er, due to how � interacts with the representation space R. Through

these di↵erences in E, GE and ⇡GE will be compared.

4.2 Experimental Design

The aim of this experiment is to compare the phenotypic landscapes of GE and ⇡GE with

respect to the mutation operator. The experiment is to ascertain how ⇡GE is able to

display comparable performance to GE, even though it has to search a substantially larger

search space, owing solely to the addition of a position independent GPM.
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4.2. EXPERIMENTAL DESIGN

In this experiment GEVA [129] is extended to incorporate the “mutate and store”

operation, as described in Section 4.2.1. This operation allows for the construction of the

phenotypic landscapes. In EC an explicit solution to a problem is not known a priori.

This results in GE using grammars that can recurse and grow solutions as large as needed.

This recursiveness in the grammars leads to an infinitely large search space. Due to this,

modelling of the landscape will require a chromosome limit to be set, to guarantee a

complete landscape is achieved. Another factor that needs to be catered for is the increase

in search space size ⇡GE is subject to, as noted in Section 4.1. To deal with these issues both

GE and ⇡GE will be given su�cient chromosome length to express the same phenotypic

space. GE and ⇡GE will be given the same number of respective GE and ⇡GE codons. Note

that a ⇡GE codon consists of two parts. Finally both GE and ⇡GE will have their respective

phenotypic landscapes compared using two example grammars outlined in Section 4.2.2.

4.2.1 Mutate and Store

Mutate and Store (MS), originally introduced by Murphy et al. [108], and modified to

meet the requirements of this study, allows for exploration and mapping of any grammar’s

phenotypic landscape. MS maps the phenotypic landscape via single int flip mutation

events, where by exactly one codon is mutated per mutation event. MS requires a fixed

length chromosome of all zero codons. MS then takes the desired grammar and this initial

chromosome and builds the phenotypic landscape. MS does this by starting at the first

codon, and finding all the possible choices for that codon, by checking the grammar.

Once all the possible choices for the codon are known, MS generates new genotypes for

each choice and stores them in a neighbourhood. Having stored all possible neighbours,

MS evaluates these neighbours and records what mutations resulted in chromosomes with

valid phenotypes. These valid phenotypes are then added to the population for mutation

at the next codon index. This process is repeated until all codon indices in the genotype
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4.2. EXPERIMENTAL DESIGN

have been fully explored. Once this process is done, all the individual neighbourhoods of

valid phenotypes are compressed into a single neighbourhood of phenotype connections.

This final neighbourhood is then represented as a graph for analysis. Pseudocode for the

algorithm can be seen in Algorithm 4.1.

Algorithm 4.1 The Mutate and Store algorithm. The algorithm starts at the first codon
of the chromosome and finds all possible neighbours. For each of these neighbours the
algorithm then find all the possible neighbours at the second codon and so on until all
possible genotypes have been found. The algorithm then constructs a graph from all the
unique phenotypes found in the neighbourhood.

Population pop {Population to store individuals with valid phenotypes}
Population neighbours {Population to store neighbours}
Individual init {Individual with all zero chromosome of size N}
List edges {Container to Store connections}
Add init ! pop
for i = 0 ! init chromosome length do
for j = 0 ! pop size do
current ind = pop get individual j
Reset neighbours
Generate and Store all possible valid genotypes for codon at index i ! neighbours
Get edges from neighbours ! edges

Add neighbours ! pop
Generate graph info file from pop

MS removes all degeneracy in the genotypes by only allowing the codon values at each

point of the chromosome to represent the choices available thus removing the degeneracy

and neutral mutations that GE can take advantage of. Degeneracy in GE is provided by

the mod rule. Consider the following: a GE codon valued 62 is mutated to 64. When

this codon is applied to a binary grammar rule, the mutation results in no change to the

expansion of the tree. Removing the degeneracy is important as it significantly limits the

number of possible phenotypes. If MS allowed codons values between 0 and 255, and a

chromosome was limited to a size of just 3 codons, that would results in over 16 million

possible genotypes that would need to be explored regardless of the arity of the grammar.

MS when investigating a grammar with an arity of 2, leads to only 8 possible genotypes
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4.2. EXPERIMENTAL DESIGN

to explore 3 codons.

⇡GE presented an extra layer of exploration that needed to be added to MS, for the

mapping of ⇡GE phenotypes. In the above explanation, at each codon of the genotype,

the grammar was consulted for the possible expansion choices, for that codon. For ⇡GE

this process took place at every even valued codon index. ⇡GE required that for every

odd codon index the NT list size was consulted, so that every possible expansion point in

the partial ⇡GE derivation tree be explored. This resulted in an increase in the number

of possible genotypes, and restricted the size of genotype that could be explored in this

study. The degeneracy for the expansion order codons was removed, as it was for standard

GE codons.

4.2.2 Grammars

Initial setup tests highlighted a computational constraint for grammar usage with ⇡GE.

Usage of grammars with high arity production rules resulted in MS not being able to model

the phenotype landscape of ⇡GE. This was due to the increase in possible genotypes that

⇡GE has to explore, as explained in Section 4.1, and in Figures 4.1 and 4.2. A simple

grammar was designed to enable modelling to take place. This grammar (Figure 4.3a)

is a binary grammar that has two choices for every rule. The grammar shares the same

core rules as the commonly used symbolic regression grammar (Figure 4.3c). Finally in

order to provide an understanding of how the landscapes scale, an enhanced version of the

initial grammar is applied (Figure 4.3b). This grammar adds a third variable to the initial

grammar. All grammars are displayed in Figure 4.3.
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<expr> ::= <op> <expr> <expr> (0)

| <var> (1)

<op> ::= + (0)

| * (1)

<var> ::= x0 (0)

| 1.0 (1)

(a) Example grammar 1, binary
grammar.

<expr> ::= <op> <expr> <expr> (0)

| <var> (1)

<op> ::= + (0)

| * (1)

<var> ::= x0 (0)

| x1 (1)

| 1.0 (2)

(b) Example grammar 2, 3 vari-
able variant.

<expr> ::= <op> <expr> <expr> (0)

| <var> (1)

<op> ::= + (0)

| * (1)

| - (2)

| \ (3)

<var> ::= x0 (0)

| x1 (1)

| 1.0 (2)

(c) Example grammar for Sym-
bolic Regression.

Figure 4.3: The figure presents the grammars used for the study. Figure 4.3a shows the
initial binary style grammar used in the first experiment. Figure 4.3b displays the extended
three variable grammar used in experiment 2 to show how the phenotypic connectivity
scales. Figure 4.3c show a grammar used for a symbolic regression, used in other chapters
of this thesis. This grammar is provided to show that the example grammars used in the
experiment are related to actual grammars used in GE to solve problems.

4.3 Phenotypic Landscape Visualisations

This section visualises the phenotypic landscapes of both GE and ⇡GE. Firstly both rep-

resentations are examined from the compressed viewpoint of adjacency matrices. These

matrices show which of the possible phenotypes are connected via a single mutation event.

The adjacency matrix representation disregards any possibility of phenotypes being con-

nected to another phenotype in more than one way. Following this the graphs of the

phenotypic landscapes for both are displayed and discussed. The graph representation

allows for visualisation of multiple connections between phenotypes, e.g., where a pair of

phenotypes are connected via both order, and content codon mutation events in ⇡GE. The

two visualisation methods are performed on the example grammars shown in Figures 4.3a

and 4.3b.

73



4.3. PHENOTYPIC LANDSCAPE VISUALISATIONS

4.3.1 Experiment 1 - Simple Grammar

The first examination of the connectivity of ⇡GE versus GE was performed by converting

the connections to a graph and representing the graph as an adjacency matrix or con-

nectivity map. Adjacency matrices are good for showing clearly what each phenotype is

connected to, as graphs can be cluttered and di�cult to interpret. An algorithm whose

phenotype space has a densely populated adjacency matrix will have a greater amount of

freedom moving from phenotype to phenotype. This freedom can aid in increasing the

search performance.

Figure 4.4 shows the adjacency matrices for all possible phenotypes achievable with a

maximum derivation tree of 7 NTs, for the simple grammar (Figure 4.3a), for both types

of GPM. This limit of derivation tree size was the highest common tree size that could

be generated for GE and ⇡GE on the hardware available for this experiment. Figure 4.4a

displays the connections between phenotypes for GE, while Figure 4.4b shows the connec-

tivity of ⇡GE for the same phenotypic landscape. Comparing Figures 4.4a and 4.4b it

can be seen that ⇡GE’s phenotype space is more densely connected than GE’s phenotype

space. GE presents a total of 28 connections, whilst ⇡GE has 70 connections among the

same phenotypes.

It is interesting to see how GE has no neutral mutation due to MS, but with the addition

of order to the GPM, ⇡GE exhibits neutral mutation on nearly all phenotypes. The neutral

mutations are evident along the diagonal, from the bottom right corner of the matrix to

top left corner. Figure 4.4c shows the connections between phenotypes exclusive to ⇡GE,

and Figure 4.4d shows these 42 connections highlighted amongst all the ⇡GE connections

including the 42 connections common to GE.

Phenotypes of a single variable, such as (x1), cannot exhibit neutral mutations other

than via the mod rule, eliminated earlier. This is due to the NT list for such a tree never

exceeding a size of one, thus the left-most non terminal is always picked. When the tree
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(a) Adjacency matrix showing connections between
phenotypes possible with GE.
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(b) Adjacency matrix showing connections between
phenotypes possible with ⇡GE.
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(c) Adjacency matrix showing connections only
possible with ⇡GE.
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(d) Adjacency matrix for ⇡GE. The connections ex-
clusive to ⇡GE highlighted in blue.

Figure 4.4: Comparison of phenotype adjacency matrices of GE and ⇡GE on the simple
binary style grammar shown in Figure 4.3a. In 4.4a the adjacency matrix for GE is
shown, whilst 4.4b shows the matrix for ⇡GE. Figure 4.4c displays a matrix containing
the phenotype connections unique to ⇡GE, note the presence of neutral mutations along
the diagonal of the matrix, that are only possible by ⇡GE’s evolvable order. Finally 4.4d
shows the adjacency matrix for ⇡GE with connections exclusive to ⇡GE highlighted in red.
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sizes of individuals grow to permit a varied ordering in ⇡GE, it is seen that a mutation

in the order codons results in neutral mutations. This behaviour is not possible in GE, as

MS removes codon degeneracy, and GE doesn’t possess variable orderings in the GPM.

The adjacency matrix representation is good for quickly showing connectivity but it

lacks the ability to show multiple connections between the same phenotypes. In order to

gain a more in-depth understanding of the landscape, and how each GPM interacts with it,

we must be able to visualise the whole landscape and all its connections. This is important

in the case of GE and ⇡GE, as ⇡GE can mutate from phenotype to phenotype using both

the mutations that e↵ect the productions of the NT like in GE, and also the connections

made possible via mutating the order of the tree expansion in the GPM. These mutations

may not be represented on the adjacency matrix, as it only takes into account the existence

of a connection between a pair of phenotypes, and not how many connections exist.

Figure 4.5a shows the phenotypic landscape graph for GE. Each vertex represents a

valid phenotype and each edge represents a connection between two phenotypes via a single

mutation event. It is interesting that every vertex has a degree of four and that there are

no extra paths between vertices. There are no neutral mutations visible as this is not

permitted via the MS operator.

Figure 4.5b shows the ⇡GE landscape over the same phenotypic space. The first thing

that stands out when comparing the two setups is the increased number of edges between

vertices. These vertices are purely from the addition of the variable ordering in ⇡GE. The

neutral mutations seen previously in Figure 4.4b, added by the variable ordering can be

seen in vertices like (⇤1.01.0), with a little loop edge shown. The increased number of edges

lead to an increased degree for each vertex. This comparison is summarised in Table 4.1

and also shown in Figure 4.6, where the edges common to GE and ⇡GE are displayed in

blue, while the ⇡GE exclusive edges are displayed in red.
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*1.0 x0
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Figure 4.6: The connectivity of ⇡GE using the grammar in Figure 4.3a is displayed. Each
vertex represents a phenotype and the edges represent the ability for ⇡GE to move from one
phenotype to another in a single mutation. The edges in red represent the connections that
are only available to ⇡GE. The blue edges shown the common paths shared by ⇡GE and
GE. This graph is useful to fully understand the addition to connectivity that a variable
ordering in the GPM adds. In Figure 4.4d a total of 70 connections are visible for ⇡GE,
but this increases to 90 connections in this figure. These extra connections are a direct
result of the ⇡GE GPM, as the same phenotypes being connected in multiple ways is due
to the addition of evolvable order. The number of connections common to GE is the same
in both figures.
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The reason for examining the actual graphs of the adjacency matrices becomes evident

when the number of connections are compared. In Figure 4.4b a total of 70 connections

are visible for ⇡GE, but this increases to 90 connections in Figure 4.5b. These extra

connections are the result of mutations to the tree content like GE, or a mutation of the

ordering of the GPM, resulting in the same phenotypes being connected in multiple ways.

4.3.2 Experiment 2 - Expanded Grammar

The second examination of the connectivity of ⇡GE versus GE was performed using the

three variable version of the binary grammar (Figure 4.3b). This grammar variant was

used to show how the landscapes scale. The addition of just one extra variable, increasing

the total number of variables from two to three, results in a 110% increase in the number

of vertices needed to represent the phenotypic landscape (from 10 to 21).

Fig. 4.7 shows the adjacency matrices for the expanded grammar (Figure 4.3b), for both

types of GPM. Figure 4.7a shows the connections between phenotypes for GE. Figure 4.7b

shows the connectivity of ⇡GE. Figure 4.7c shows the connections between phenotypes

exclusive to ⇡GE, and Figure 4.7d shows these connections highlighted amongst all the

⇡GE connections including the ones common to GE. The findings from the initial study

showed an increased number of connections in ⇡GE over GE. Also ⇡GE was shown to add

neutral mutations via its variable order. These finding are again present with the enhanced

grammar with ⇡GE having 42 more connections than GE.

Focusing on the graph representation of the landscape, it can be seen how the size of

the landscape has increased. Figure 4.8 shows the phenotypic landscape graph for GE.

Each vertex represents a valid phenotype and each edge represents a connection between

the phenotypes via a single mutation event. Figure 4.9 shows the ⇡GE landscape over

the same phenotypic space. The two setups still produce a vastly di↵erent number of

edges between vertices. The neutral mutations and multiple paths between the same
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(a) Adjacency matrix showing connections between
phenotypes possible with GE.
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(b) Adjacency matrix showing connections between
phenotypes possible with ⇡GE.
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(c) Adjacency matrix showing connections only
possible with ⇡GE.
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(d) Adjacency matrix for ⇡GE. The connections ex-
clusive to ⇡GE highlighted in blue.

Figure 4.7: Comparison of phenotype adjacency matrices of GE and ⇡GE on the expanded
binary style grammar shown in Figure 4.3b. In 4.7a the adjacency matrix for GE is
shown, whilst 4.7b shows the matrix for ⇡GE. Figure 4.7c displays a matrix containing
the phenotype connections unique to ⇡GE, note the presence of neutral mutations along
the diagonal of the matrix. Finally 4.7d shows the adjacency matrix for ⇡GE with the
connections exclusive to ⇡GE highlighted in red.
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vertices also remain present as expected. This comparison is summarised in Table 4.1 and

also compared against the initial setup. The table shows that the addition of position

independence to the mapping process increases the connections between phenotypes in the

landscape. With both the grammars there is slightly more than a 100% increase in the

number of connections between phenotypes. The average degree of a vertex in the graph

does’t quite match the increase in nodes, indicating that some nodes get more than a

doubling of edges. Figure 4.10 displays a hybrid graph to help show how the addition of

variable order to GE produces a more connected landscape. In the graph the edges common

to GE and ⇡GE are displayed in blue, while the ⇡GE exclusive edges are displayed in red.

Table 4.1: Table outlining features of the connectivity graphs shown for both experiments.
The table notes the total number of vertices and edges, the total degree of the graph and
the average degree for a vertex for each GPM approach on both grammars used. From the
number it is clearly evident that ⇡GE has more connectivity than GE.

Graph Features GE Grammar 1 ⇡GE Grammar 1

# V ertices 10 10
P

n

i=1 DegreeV ertex(i) 42 90

# Edges 21 45

V ertexDegree 4.2 9.0

GE Grammar 2 ⇡GE Grammar 2

# V ertices 21 21
P

n

i=1 DegreeV ertex(i) 98 198

# Edges 49 99

V ertexDegree 4.67 9.43

4.3.3 Limitations

This study is limited to the exploration of the phenotypic connectivity in terms of the

mutation operation. The decision to focus only on mutation was made based on several

factors. The most important reason behind this was complexity. The methods used to
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generate the landscapes above pushed the available resources to the limits. MS when given

more than a chromosome length used in this experiment would consume the 24GB of ram

available when trying to store possible genotypes to explore. Similarly if MS was given

a grammar of higher arity than the ones used in this experiment, the ram resources were

again exhausted with the increase in genotypes possible, that need to be investigated.

Crossover, being the other main operation used by GE, was not explored due to the fact

that it represents such a complex landscape to model. It has been shown that ⇡GE has a

significantly increased search space with the addition of the evolvable order (Section 4.1).

Modelling crossover in this space presents a challenge not only in computational resources

but also in complexity. A crossover event in ⇡GE can happen at any codon, order or

content, leading to large combinatorial increase. Consider two genotypes of 10 codons in

size. A single point crossover with variable crossover points, such as the method used

in GE, using these two genotypes would lead to the exploration of nearly 100 possible

individuals. The average vertex degree in this study is between 4 and 10 for just mutation.

The addition of crossover to MS would exceed the computational power available, so a

reimplementation of MS would be required.

4.3.4 Discussion

The goal of this experiment was to examine phenotypic landscapes of ⇡GE and GE. Vi-

sualising the landscapes was done with the intention of gaining further insight into how

the ⇡GE algorithm works. ⇡GE introduces an increase to the search space of genotypes

with its variable ordered GPM. With this increase in the search space how can ⇡GE still

maintain good search performance? ⇡GE and GE were compared using a simple grammar.

From this comparison certain aspects of the ⇡GE algorithm became evident. ⇡GE has a

much more connected phenotypic landscape, that allows for a better ability to explore the

search space. ⇡GE also introduces pure neutral mutations via the varying of the expansion
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order of the GPM. These neutral mutations are not possible with GE except via codon

degeneracy.
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Figure 4.11: This figure displays the relative performance of both ⇡GE and GE on the
quartic polynomial symbolic regression problem. The graphs show performance over 100
runs using the grammar in Figure 4.3a. The problem was performed with no crossover to
ensure that only the mutation connectivity seen in this chapter would be used for search.
Figure 4.11a shows the average best fitness of the population averaged over the 100 runs.
⇡GE is showing performance advantages over GE. Figure 4.11b shows the mean average
fitness of the 100 runs. It can be seen that ⇡GE maintains a higher average fitness within
its population providing greater fitness diversity. GE’s mean average fitness is much closer
the mean best fitness, while ⇡GE maintains a mean average fitness of around 0.5, while its
mean best fitness tends to 0. This can be linked to how connected the ⇡GE phenotypic
space is as it shows the population does not converge to a local optimum. ⇡GE also shows
a 96% success rate in comparison to GE’s 90%.

⇡GE increases the genotypic search space that it must navigate by introducing an

evolvable expansion order as shown in Section 4.1. This evolvable expansion order also

brings with it some unforeseen benefits. The addition of variable order to the GPM has

resulted in an algorithm that exhibits far more connectivity in the phenotypic space than

standard GE. ⇡GE’s variable order GPM allows for phenotypes to neutrally mutate back to
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themselves. Neutral mutations of this nature are only seen in GE through the degeneracy

gained via the use of codon values and the mod rule in the GPM. ⇡GE will not only enjoy

the benefit of standard GE’s degeneracy, but will also gain additional degeneracy via the

use of a mod rule to control the variable order GPM, and the natural neutral mutations it

gains from the usage of the variable order GPM.

Figure 4.11 shows the performance of ⇡GE and GE on 100 runs of the quartic polyno-

mial symbolic regression problem, using the reduced binary grammar of Figure 4.3a. GE

and ⇡GE where given 200 and 400 codon respectively to allow for that same landscape to

be generated. The rest of the setting where in line with the setting used in Chapter 3.

The runs were performed using only mutation so as to use only the connectivity shown

in this chapter for search. The graphs show that ⇡GE exhibits better performance than

GE in terms of average fitness and also maintains a greater range of fitness values in the

average population fitness. ⇡GE also shows a 96% success rate in comparison to GE’s

90%. These runs were performed to demonstrate that the grammar used to model the

phenotypic landscapes is capable of solving a problem. The runs also are in keeping with

the results reported in Chapter 3.

Redundancy, neutral mutation, and degeneracy can have a drastic e↵ect on the perfor-

mance of an EA [4, 86, 87, 124, 142, 143, 144, 145]. This may provide more insight into

how ⇡GE can maintain performance under the strain of order search. ⇡GE presents a very

redundant GPM, with order redundancy, and the codon redundancy on both the NT choice

and tree expansion choice. Ebner et al. [29] have shown that a GPM that exhibits high

redundancy increases evolvability (the ability for random variation to produce a fitness im-

provement). The added redundancy in the ⇡GE GPM also leads to a substantial amount

of neutral mutation, as seen in the number of potential genotypes that MS explored to

generate the phenotypic landscapes. This explosion of genotypes is the reason why ⇡GE

could only be modelled on such a limited landscape.
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Kimura [86, 87] argued that in the neutral theory of evolution, most mutation events

are neutral mutations, and that only a small number of non-neutral mutations are actually

beneficial. Kimura also studied neutral networks in nature, and noted how most mutations

simply navigate this neutral network until a beneficial mutation occurs. Ebner et al. [30]

examined the idea of neutral mutations and neutral networks in GPM. Shackleton et

al. [152] and Shipman [156] also explored this avenue of research into redundancy and

neutral mutations, highlighting again how a many to one GPM was beneficial over a one

to one mapping due to redundancy.

Many others have investigated redundancy in GPM and found it to be a key compo-

nent to driving evolution. Kargupta [73] provided a theoretical examination of a simple

redundant mapping in a search space, that underpins a lot of the research in this area.

Rothlauf [142, 143, 144, 145] has also undertaken significant research in the area as have

Banzhaf [4] and O’Neill [124]. Rothlauf believed that redundancy was a good this only if

the optimum solution is over represented in the search space. This represents a sampling

of research in the area, and in the majority of cases redundancy and neutral mutation

is viewed as a beneficial property in a mapping from genotype to phenotype. ⇡GE has

a larger search space than GE to explore, and the added connectivity, redundancy and

neutral mutations that the evolvable ordering of the GPM provided ⇡GE is the only dif-

ference between the two algorithms. Therefore it is argued that the increased connectivity

and redundancy in ⇡GE, must be responsible for ⇡GE’s ability to achieve comparable

performance to GE.
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4.4 Summary

Given the search overhead the evolvable order GPM gives to ⇡GE, it was decided to

investigate this to see what impact it had on ⇡GE. Did the order add anything to ⇡GE?

This chapter undertook the study of the phenotypic connectivity of ⇡GE to gain further

understanding into how ⇡GE works.

Visualising the phenotypic landscape of single mutation events in GE and ⇡GE using a

graph representation, it was shown that the addition of order led to a significant increase

in connectivity for ⇡GE. A more densely connected algorithm has the benefit of easier

movement within the search space.

The addition of order also added degeneracy and neutral mutation, unlike GE that

relies upon the mod rule to provide this. ⇡GE benefits from both GE’s neutral mutations

and the ones it gains from the use of variable order. In conclusion it can be said that the

overhead of the added search space does not represent a problem for ⇡GE to search the

solution space. In fact the increased redundancy allows for added neutral mutation which

is the driving force behind evolution.

In the next chapter we go on to explore the orders present in a ⇡GE population during

evolution. Some measures are presented that monitor the orders present in the population

and examples of the orders seen are also presented.
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Chapter 5

Examining Order in ⇡GE

⇡GE uses evolution to guide the order of how to construct derivation trees. It was hy-

pothesised that this would allow evolution to adjust the order of expansion during the run

and thus help with search. This chapter investigates the behaviour of the orders in a ⇡GE

population during evolution. By comparing the expansion order of the ⇡GE derivation

process to known orders it is possible to see if ⇡GE exhibits a bias towards any sort of

fixed ordering in the derivation tree expansion process. It is concluded that within ⇡GE

we do not evolve towards a specific order but rather as distribution of orders, and that

⇡GE is using its variable order to sample the solution space. This chapter presents a more

in depth examination of work presented by Fagan et al. [35].

The chapter is structured as follows. Section 5.1 provides an introduction to the problem

outlining the need for investigation into the order of expansion in ⇡GE. In Section 5.2, the

suite of metrics used to measure order in ⇡GE are introduced before being outlined in

detail in Sections 5.2.1 and 5.2.2. Following on from the metrics, Section 5.3 outlines the

experimental setup for the study, before the results are shown in Section 5.4. Finally the

chapter is concluded with a summary of the work carried out in Section 5.5.
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5.1 Introduction

O’Neill et al. [127] proposed in their original ⇡GE paper that introducing an evolvable

expansion order to the standard GE genotype-phenotype map would allow for search to be

performed in the derivation order space of solutions, overcoming the left-most expansion

bias exhibited by GE [66]. O’Neill et al. hypothesised that by breaking the strict left to

right expansion linkage in GE, and instead adopting an approach where the expansion

order was not known a priori, ⇡GE would allow for movement of better building blocks

within the derivation tree than what is possible within GE. This might mean using an

order that only slightly deviates from the fixed GE order or it might come about from an

order with no distinguishable known ordering.

Chapter 4 investigated how ⇡GE could still perform on par with GE, considering the

massive search overhead ⇡GE has to overcome due to this order. It was observed that the

addition of order to the derivation process led to an increase in connectivity in the search

space allowing for more neutral mutation and easier traversal of the search space. While

there have been several studies pertaining to ⇡GE [25, 38, 39, 40, 42, 127], this chapter

presents the first in-depth look into the behaviour of the expansion order in ⇡GE.

This chapter aims to take the investigation of ⇡GE into the domain of what is happening

to the orders during a run of the ⇡GE system. What orders are actually explored? How

does the order of ⇡GE change over a run? Does the algorithm evolve towards a certain

order? To answer these questions some form of metrics must be used to determine the

distance from a known order. A suite of Order Bias Distance Metrics are proposed for this

undertaking, where ⇡GE orders are monitored and compared against known expansion

orders, and then used to examine how ⇡GE behaves.
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5.2 Order Bias Distance Metrics

Before any metric can be defined it must first be decided what expansion orders are possible

for a derivation tree in GE. A taxonomy of expansion orders is presented below. Expansion

orders can be classified as deterministic, where the behaviour is known a priori, or non-

deterministic, where the order cannot be determined before the expansion process. There

are four main types of expansion orders possible in GE.

• Depth-First Order is a deterministic tree expansion order where the tree is expanded

as deep as possible before coming back up the tree to go down all remaining branches

of the tree. This method can be performed in two variations. The Tree can be

expanded with left-most first priority, or with right-most first priority. GE adopts

a left-most first, depth-first mapping approach. GE starts at the root and then

recursively goes down the left-most child node, until no child nodes are present at

which point it goes up a level and tries the next left most child. This process of

expansion was outlined in detail in Section 2.3.1.

• Breadth-First Order is another deterministic tree expansion order. In breadth-first

order the tree is expanded at each level as fully as possible before moving on to the

next level of the tree. This method is similar to depth-first in that the expansion

can be done with left-most or right-most priority. A left-most breadth-first mapping

approach was outlined in detail in Section 3.2.2.

• Heuristic Order is an ordering that can be deterministic or non deterministic. The

expansion of the tree is under the control of some user defined rule that dictates

the expansion order of the tree, such as ⇡GE. These heuristics can take the from of

expanding certain types of nodes first, or perhaps switching between depth-first and

breadth-first every couple of expansions for example. Some elements of randomness

can be added that would make the process a non deterministic one.
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• Random Order is a non-deterministic ordering of tree expansion. Random order

randomly picks any possible expansion site, expands the derivation tree. This process

is repeated until no expansion sites remain. This approach retains no knowledge of

previous orders. Section 3.2.4 outlines in detail a random order approach to derivation

tree expansion order.

For the purpose of investigating what orders ⇡GE is using, this study will focus on deter-

mining a distance from known orders. This dictates that only Depth-First and Breadth-

First orderings will be considered from the above taxonomy, as they present the only

guaranteed deterministic orderings of tree expansion. In the following sub-sections the two

metrics used in this study to monitor these orderings are presented and explained in detail.

5.2.1 Depth First Order Bias

We propose Depth First Order Bias (DFOB) as a measure that shows how far away from

a depth first derivation order a ⇡GE order is. Depth first order of expansion is important

as it represents the standard GE expansion order of a derivation tree. The measuring

of a distance from a depth first ordering is possible, by exploiting a feature of the ⇡GE

algorithm’s implementation.

In ⇡GE, all non terminals encountered during the derivation process are added to a

list of possible expansion sites. At each step in the derivation process a selection from this

list is made, and this selection is controlled by the chromosome. When a non terminal is

expanded any non terminals generated from the expansion are then placed in the list in

the position the parent NT was taken from, as seen in Figure 5.2a. A reminder of the ⇡GE

derivation process is explained in Figure 5.2.

NT to expand = Codon value % Number of NT 0s (5.1)
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Figure 5.2a shows the state of the ⇡GE NT queue during each step of the tree expansion

process. This process can be viewed as a string construction process, disregarding the tree

representation. Figure 5.2b shows the same NT queue, represented as a derivation string.

In the figure the terminal symbols have been added to the NT’s in the queue. This process

provides the current state of the derivation string at each expansion, and shows how the NT

queue maintains the left to right ordering of the NT’s as seen in Figure 5.1b. Figure 5.2b

has been formatted in such a way as to display the approximate tree structure for easier

<e> ::= <e> <o> <e> | <v>

<o> ::= + | -

<v> ::= X | Y

Chromosome ::= 2,12,7,9,3,15,23,1,11,4,

6,13,2,7,8,3,35,19,2,6

(a) Example grammar and chromosome

<e>

<e> <o> <e>

 1 (12%2=0) 

<e> <o> <e>

 5 (4%2=0) 

<v>

 3 (15%2=1) 

-

 2 (9%2=1) 

<v>

 6 (13%2=1) 

<v>

 7 (7%2=1) 

-

 9 (19%2=1) 

X

 10 (6%2=0) 

Y

 8 (3%2=1) 

Y

 4 (1%2=1) 

(b) Example of the ⇡GE mapping process

Figure 5.1: This figure shows the ⇡GE mapping process as seen in detail in Section 3.2.3.
The chromosome shown in Figure 5.1a can be viewed as a list of paired values such as
((12, 8), (3, 11)........), where the first value of the pair (The Order Codon) is used to de-
termine the next NT to expand by using Equation 5.1 and this will return which NT to
choose from a list of unexpanded NTs. Once the NT to be expanded has been chosen, the
second codon (Content Codon) is used in conjunction with the standard GE expansion rule
to determine what the NT expands to; and if this node happens to be an NT, it is added
to the list of unexpanded NTs. Figs. 5.2a and 5.1b show the expansion of the example
grammar in Figure 5.1a using the ⇡GE mapping process. The number associated with
each branch of the tree is a reference to the numbered steps shown in Fig. 5.2a which show
how each choice of NT to expand comes about.
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5.2. ORDER BIAS DISTANCE METRICS

1. [(e)] => 2%1=0

2. [e,(o),e] => 7%3=1

3. [e,(e)] => 3%2=1

4. [e,(v)] => 23%2=1

5. [(e)] => 11%1=0

6. [(e),o,e] => 6%3=0

7. [v,o,(e)] => 2%3=2

8. [v,o,(v)] => 8%3=2

9. [v,(o)] => 35%2=1

10. [(v)] => 2%1=0

(a) NT selection process in ⇡GE.

1. [<e>]

2. [<e>,<o>,<e>]

3. [<e>, - ,<e>]

4. [<e>, - ,<v>]

5. [<e>, - , Y ]

6. [<e>,<o>,<e>, - , Y ]

7. [<v>,<o>,<e>, - , Y ]

8. [<v>,<o>,<v>, - , Y ]

9. [<v>,<o>, Y , - , Y ]

10. [<v>, - , Y , - , Y ]

(b) NT selection process as a derivation string.

Figure 5.2: Figure 5.2a shows the state of the NT queue in ⇡GE during the derivation
tree expansion process. The NT selected in each step is underlined. Figure 5.2b shows the
same thing as Figure 5.2a, represented as a derivation string. From this we can see how it
is possible to track a depth-first ordering using the ⇡GE NT queue.

comparison. The queue can now be used to determine how close to a traditional GE

mapping order (left-most depth-first) a ⇡GE ordering is.

DFOB is measured in terms of the average percentage distance away from a traditional

GE left-most depth-first ordering. To ascertain how far from a depth-first order the current

order is, the position selected by Equation 5.1, NT Choice, at each step of the ⇡GE

derivation is converted into a percentage using Equation 5.2.

ExpansionDistance =
100

| NT list | ⇥NT Choice (5.2)

The idea is that the left-most depth-first order, or 0% distance, is always to select the

first item in the list and then 100% distance would be selecting the last item in the list.

The distance at each expansion is noted and at the end averaged to provide the percentage

distance from the desired order for each individual. A distance of 0% represents a left-most

depth first, while a value of 100% for represent a right-most depth first ordering. A value

around 50% would represent an ordering that was not biased towards either left-most or

right-most expansion, and also deviated from a depth first approach.
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5.2. ORDER BIAS DISTANCE METRICS

Accuracy of Depth First Order Bias

Upon examination of the metric there was one noted issue. As the metric measures distance

from the left of the list there is a slight bias the metric places as the first and last expansion

have to be 0% as when there is only one element in the list the left most is always selected.

This means that the maximum possible distance away from the ideal order is dependent

on the number of nodes. Equation 5.3 displays a formula that can show a maximum

percentage value based on the number of nodes in the derivation tree. A tree cannot have

a distance unless there is more than two nodes in the derivation tree.

Max % Distance =
(Num Nodes� 2)⇥ 100

Num Nodes
(5.3)

0 20 40 60 80 100

0
20

40
60

80
10

0

Number of Nodes

M
ax

 %
 D

is
ta

nc
e

Figure 5.3: This figure displays the maximum distance that can be observed. Due to the
first expansion and last expansion always recording a zero value, the maximum distance
value increases with the number of nodes. The inclusion of these values is done to fairly
represent all the expansions in the derivation process.

From Equation 5.3 it is clear that as the number of nodes increases the maximum
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5.2. ORDER BIAS DISTANCE METRICS

percentage approaches 100 quickly. This presents an important characteristic that needs

to be considered when interpreting results. One can choose to leave these two nodes out of

the metric thus removing the slight bias, or include them and represent a true picture of

the order. For the study that follows it was decided to include all expansions as solutions

to the problems to be examined would require significant number of nodes in the derivation

tree thus minimising the e↵ect of the first and last expansion values.

5.2.2 Breadth First Order Bias

The second expansion order that can be used as measure for ⇡GE is the breadth-first order

expansion. Recording of the tree depth at each step of the ⇡GE mapping process allows

for a distance from a pseudo breadth-first ordering to be obtained, called Breadth-First

Order Bias (BFOB). Consider the ⇡GE derivation tree in Figure 5.1b. The derivation tree

has four levels. Level 0 contains the root node and then the level increases by one with

each subsequent depth, up to a maximum value in this example of 3.

The first step required for BFOB is that each node is looked at in order of expansion.

Using Figure 5.1b as an example, at each expansion the tree depth is noted. Once this pro-

cess is finished what remains is an ordered list of expansion depths, [0, 1, 1, 2, 1, 2, 2, 3, 2, 3].

A breadth first order of this same tree would have resulted in the GPM visiting nodes in

the following order, [0, 1, 1, 1, 2, 2, 2, 2, 3, 3]. By sorting the ⇡GE list from smallest depth

to highest depth value, it is possible to achieve a similar result. Sorting the depths in this

way, results in the loss of all left to right ordering at each depth as seen in a breadth first

mapping. What can be said to be produced from such a sorting of the list is a level-first

ordering. This level-first order serves as an excellent indicator that a breadth-first order

has been evolved.

Figure 5.4 shows a graph that displays the ideal order of tree levels a breadth first

mapping would take in blue. The places where the observed expansion tree levels di↵ers
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Figure 5.4: This figure shows the di↵erence between a ⇡GE expansion order and a breadth
first expansion order. By taking the depth of each expansion in a ⇡GE tree and sorting
them, a breadth first ordering can be seen. Comparing the actual order and the ideal
order using a Hamming distance approach, it is possible to observe if ⇡GE is tending to
a breadth first ordering. The ideal order is displayed in blue, while the red dashed line
shows where ⇡GE deviates from the ideal.

from this is shown in dashed red. Assigning a distance based on these regions in red will

provide an indication towards how far from a breadth first ordering a ⇡GE order is. Three

methods for assigning this distance were explored during the course of this study. The

following sections outline each approach and outline the pros and cons of each method.

Manhattan Distance Approach

The Manhattan Distance [93] approach was to take each expansion, and then use the

absolute value of the di↵erence between the expansion tree level and the sorted ideal

expansion level, for each expansion and sum the di↵erences. This total would then be

divided by the number of points to provide the average distance per point from a level first

order (Equation 5.4).
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5.2. ORDER BIAS DISTANCE METRICS

Average Manhattan Distance =

nP
i=1

|i
actual

� i
ideal

|

n
(5.4)

The drawback of this approach was that it did not normalise across di↵erent tree sizes.

A small tree with many errors would be considered closer then a large tree with one error

that involved a larger distance for that error. Also there exists no upper bound for this

type of distance.

Next Best Distance Approach

Next Best Distance (NBD) tried to compensate for the problems of the Manhattan ap-

proach by penalising the current choice to what should be the next correct expansion, e.g.

with breadth first that would mean the NT with the lowest depth value. This approach

meant that previous incorrect choices would not be penalised doubly. NBD used a stack

approach where each level was provided a stack and then each occurrence of an expansion

would be pushed onto the stack for its level. Then for each actual expansion, by compar-

ing the current expansion level to the lowest level stack that had an expansion it could

be determined what the next breadth first expansion should be. Summing these errors,

and then dividing by the total number of expansions, produced an average distance per

expansion.

This approach provided a more complex method of measuring a distance. The mistakes

of previous expansions had little bearing on the current expansion’s error. This method

however still su↵ered from the same issues as the Manhattan distance approach above,

su↵ering from the lack of ability to normalise the data across all tree sizes, and the lack of

a distance limit.
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5.2. ORDER BIAS DISTANCE METRICS

Hamming Distance Approach

The Hamming Distance [50] approach was the final approach investigated. The Hamming

distance is essentially a binary distance measure. In the Hamming distance approach if

the expansion is at the correct level then a value of 0 is added to the total. An expansion

that has the incorrect tree depth will result in a 1 being added to the total (Equation 5.5).

The total distance would then be divided by the total number of expansions to provide

an average distance per expansion for the individual being monitored, as shown in Equa-

tion 5.6.

Hamming(i) =

8
>><

>>:

0, if i
actual

== i
ideal

1, else

(5.5)

Average Hamming Distance =

nP
i=0

Hamming(i)

n
(5.6)

The Hamming approach was chosen as it provided a distance that was limited between

0 and 1 that allowed for normalised reporting of distances on all tree sizes and problems.

A distance of 0 for an individual will indicate an expansion order in a level first expansion

manner, while a value near 1 represents a random level ordering. When used in conjunction

with DFOB it will be possible to see if the orders in a ⇡GE run evolve towards either of

the known fixed orders of tree expansion for GE.
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5.3 Experimental Setup

For all experiments reported here GEVA v2.0 [129] was used and modified as needed to

produce the required output.

To ascertain what is happening to the ⇡GE expansion order during evolution, a method

of recording the expansion process is needed. For this it was decided to store the NT list

choice that was taken to first select the parent NT for expansion and the list length when

this was taken as well as the tree depth of the parent in every child node. Once this was

done the parsing of the data was undertaken and the information was outputted to a file

for post processing after the run had finished. For each individual both DFOB and BFOB

were calculated. Population distance histograms were generated for every generation of

the run.

The general settings for the experiments is displayed in Table 5.1. These setups were

then applied to the four problem domains from Chapter 3, Santa Fe Ant Trail, Even 5

Parity, Max and Symbolic Regression. The experiments were then repeated using a fixed

order initialisation as explained in Section 5.3.1, and then examined to see how the order

would change starting from a fixed order. Would it maintain the order or remain close to

it, or would it follow the behaviour of standard ⇡GE?

Table 5.1: Parameter settings adopted for the order experiments.

Parameter Value

Generations 100

Population 100

Replacement strategy Generational with elitism (10%)

Selection Tournament size=3

Mutation probability 0.01 (integer mutation)

Crossover probability 0.0 & 0.9 (variable single point)

Initial chromosome length 200 codons (random init & GE order init)

Runs 100 per setup & problem
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5.3.1 Initialisation Methods - GE Order Initialisation

Random initialisation was initially chosen for the study to observe how the orderings on

⇡GE tree changed during evolution. However after the initial results for the study were

examined it was determined that a fixed order initialisation method was needed for ⇡GE.

This fixed order initialisation would allow for comparisons to be drawn between a known

order, and also allow for investigation into ⇡GE evolving away from a known order. Both

questions that couldn’t be answer by random initialisation alone.

GE Order Initialisation (GOI) was devised to provide ⇡GE with such an initialisation

method. By taking advantage of the ordered queue that ⇡GE uses, as discussed in Sec-

tion 5.2.1, it is possible to initialise the population to a GE-style derivation order. Setting

⇡GE to a GE order requires that every order codon in the chromosome be set to 0. This

guarantees that the ⇡GE mapping process will always select the left most NT to expand

next, just like traditional GE. GOI can be applied to both RHH (Section 2.4.1) and ran-

dom (Section 2.4.1) initialisation methods, allowing ⇡GE to be initialised to a GE order

for each. For the purposes of this study only the random initialisation method was used.

5.4 Results

The initial focus of the study is to observe the population over 100 runs and examine the

behaviour of the DFOB, Section 5.4.1. Following this the study moves onto the results

observed using the BFOB, Section 5.4.2. Section 5.4.3 presents the results of the investiga-

tion of how grammar complexity may a↵ect orders, while Section 5.4.4 examines crossover’s

e↵ect. Finally the section is concluded with a trio of discussions in Section 5.4.5.
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5.4.1 DFOB Results

Figure 5.5 displays the distance histogram from a depth first ordering for a randomly

initialised ⇡GE population over 100 runs at five fixed intervals during evolution. By ex-

amining the figure it can be seen that ⇡GE starts o↵ with a large amount of individuals

that have a very GE-like mapping order. This anomaly comes from the fact that ⇡GE and

GE generate a lot of small individuals at the start of a randomly initialised run due to the

grammar structure. It can be observed by following the sub-figures from left to right in

chronological order, that there are fewer of these small individuals after 100 generations.

This trend was seen across all setups and problems initialised using the Random ordering.

In general the population tends to maintain a distribution of orders centred heavily in the

30%� 40% range of the histogram. The speed at which this distribution is reached varies

with the problem and could be linked to the di↵erent grammars. This is investigated in

more detail in Section 5.4.3.

Figure 5.6 reports the results for DFOB on a population that has been initialised to

a known order, GE depth-first. This setup was proposed to see if providing ⇡GE with

a known order would result in the algorithm maintaining the order, or would it diverge.

Examining the figure it can be seen how the whole population now starts in the left-most

column of the histograms denoting a depth-first order. Over time it can be seen that

the population starts to adapt the initial order and the population can be seen to slowly

diverge. The population’s drift away from the GE order was slow in the problems examined

but there is no way to stop this drift in ⇡GE. This drift is due to the ripple e↵ect in ⇡GE,

that is discussed further in Section 5.4.5. In the setups shown again the speed of divergence

varies slightly between setups but the diverging trend is very evident.

It can be seen from these results that ⇡GE maintains a distribution of orders during

evolution and does not converge to a specific order. Providing a known fixed order, via

the GE order initialisation, shows that ⇡GE will modify and explore around an order, and
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over time will resist order convergence and continue to explore.

Further examination was done into DFOB by examining the top 10% of the population

during evolution, and the results are in Appendix A. The trends observed in the whole

population of drifting towards a distribution of orders, from a random and fixed order

initialisation, are seen in those figures. This proves that the population dynamics observed

here, provide a good indication for the elite populations behaviour. The trends were also

seen in the successful runs reported in Appendix B.

5.4.2 BFOB Results

Figures 5.7 and 5.8 display the distance from a breadth-first mapping order, for random

initialisation and GE order initialisation respectively. The main di↵erence between the two

figures can be seen in the initial population of each run. The GE order initialisation does

not provide ⇡GE with as varied a range of orders in relation to breadth-first ordering. The

distributions are heavily biased toward the left and right. The left most column of the

histogram can be discounted in this case as it contains short individuals as was seen in the

previous section.

Another interesting observation can be made by examining the populations at genera-

tion 100. In the case of the Santa Fe and Symbolic Regression A problems, there is a trend

towards a wider range of orders at the final generation then seen in the other problems.

This could be due to the grammars and how they a↵ect order distributions. This will be

explored further in Section 5.4.3.

As was the case in the previous section the whole population results provided a very

good indication for performance of the elite individuals and the successful run only orders.

These results can be found in Appendix A and B respectively.
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5.4.3 The Grammar E↵ect

In Chapters 3 and 4 it has been shown how the changing of the complexity of the grammar

used for a problem can have an e↵ect on the performance and connectivity of ⇡GE. In

Sections 5.4.1 and 5.4.2 some concerns were raised that suggested perhaps the complexity

of the grammars used for the problems could be e↵ecting the distribution of orders. To

answer this question a second variant of the symbolic regression grammar was used that

had reduced arity in some of the production rules. This second grammar variant (SR B)

was then used to solve the same target function, and the orders analysed. The grammars

used are displayed in Figure 5.9.

<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= + | - | * | /

<var> ::= x0 | x1 | 1.0

(a) Symbolic Regression A.

<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= + | - | *

<var> ::= x0 | 1.0

(b) Symbolic Regression B

Figure 5.9: Grammars used for the grammar complexity comparison are presented above.

Figures 5.10 and 5.11 present the comparison of the two grammar variants for random

initialisation and GE order initialisation respectively. Looking at each figure it is evident

that the reduction in the grammar complexity, and as a result the search space explorable,

does in fact narrow the distribution of orders for both metrics. This helps to explain the

di↵erence seen in previous sections where a di↵erence was noted between problems and

suggests that it could be due to the di↵erence in grammar. However the general trends

observed in the previous sections can be seen in this example, with a distribution of orders

evolving over time.
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5.4.4 The Crossover E↵ect

In Chapter 3 it was seen that ⇡GE did not get as significant a performance boost from

crossover, as was observed in GE. Crossover in ⇡GE looked to provide additional search but

did not contribute much to overall best fitness or average population fitness. This section

examines what impact crossover may have on order in ⇡GE. Does crossover increase the

rate at which ⇡GE’s order diverges? Does it help to maintain a diversity of orders?

Figures 5.12 and 5.13 show results for both initialisation methods on the Santa Fe ant

problem. In Figure 5.12 the DFOB and BFOB is displayed with and without crossover.

There is only a very slight di↵erence in the order histograms when crossover is turned o↵.

In Figures 5.12a and 5.12b crossover leads to the distribution being centred in 30 � 40%

rather than 20 � 30% without crossover, and no discernible increase in divergence can be

seen in Figures 5.12c and 5.12d. This leads to the conclusion that switching crossover on

or o↵ does not have much of an e↵ect on order in ⇡GE. The e↵ect of crossover in ⇡GE

could be being limited by the fact that mutation can have such a destructive ripple e↵ect

in ⇡GE.
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5.4.5 Discussion

The experiments in this chapter have raised questions that warrant further discussion. The

following sections aim to answer these question. Section 5.4.5 takes a further look at the

orders being discovered during evolution for uniqueness. Section 5.4.5 examines the tree

bias in ⇡GE derivation trees, comparing against GE’s tree bias. Finally, Section 5.4.5 ends

the discussion section with a look at limiting order drift in ⇡GE.

Orders

The results section have displayed how ⇡GE tends towards a distribution of orders. This

distribution approach does not show if the orders in each bar of the graphs are the same

orders or di↵erent. It was decided to perform an additional experiment that would analyse

the orders, and identify the unique orders being discovered by ⇡GE

Taking the data from the 100 runs used in previous sections, the data was examined

and the following reported. Figure 5.14 displays the orders encountered by ⇡GE during

evolution. Figure 5.14a shows the average total number of orders found over 100 genera-

tions. Figure 5.14b displays the average new orders found per generation. After the initial

generation there is a sharp decline in the number of new orders found. The behaviour of

the two problems di↵er slightly. Symbolic Regression shows a sharp decline in the number

of new orders found but this is then followed by a continual increase in the number of new

orders found. Even 5 Parity though su↵ers a sharp decline, followed by a quick increase

in the number of orders found, before peaking and then showing signs of a decline in the

number of new orders seen. These results show that ⇡GE is continually finding new orders

every generation, with an average of 20 � 30% of the orders per generation being never

before encountered orders.
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(b) New orders found per generation

Figure 5.14: This figure displays the orders encountered by ⇡GE during evolution. Fig-
ure 5.14a displays the total number of orders found averaged over 100 runs for two problems.
Figure 5.14b displays the new orders found per generation, again averaged over 100 runs
on the same two problems. It can be seen that after the initial generation there is a sharp
fall in new orders found before this figure climbs over the following generations. These
figures show that ⇡GE continues to find new orders during the course of the run.

Tree Bias

Hemberg [66] has reported that grammar design can lead to a certain bias in the derivation

trees produced by GE. Does the addition of a position independent mapping change the

bias? Up to this point orderings in ⇡GE have been compared to a fixed order-initialised

⇡GE. However the change in initialiser could result in the two populations starting out

with di↵erently biased initial populations. This presents an interesting question that must

be investigated to see if the bias in the initial population could be a↵ecting the results

above.

To answer this question a small experiment was designed to compare the initial popu-

lations of GE and ⇡GE, from the perspective of tree shape. Does one approach result in

trees with a certain bias towards a left branch (where the di↵erence between the depths of
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the right branches of the roots subtree is smaller than the left branches), a right branch

bias, or a balanced tree shape?

1, 000, 000 derivation trees were generated using random initialisation. The initialiser

was modified to exclude derivation trees of a single variable (x), and a single expression

(e.g. x + 1.0). This limitation was imposed as the binary nature of the grammar would

produce too many of these types of trees, generally only present in the initial population,

as noted above. The chromosome length was set at 50 codons.

The symbolic regression grammar seen in Figure 5.9b was also changed to an infix

notation. This change was imposed to provide a neutrally biased grammar. The change

consisted of replacing <expr> ::= <op> <expr> <expr>, that adds a right tree expansion

bias, with <expr> ::= <expr> <op> <expr>.

The bias of a tree was calculated by first translating the leaf nodes of the derivation

tree to points p = (x, y). If there was a tree with n leaf nodes, the leftmost leaf would

receive an x value of 1, and next left most would be given a value of 2, and this value would

increment by 1 until leaf node n in reached. y represented the depth of the leaf node in

the tree. Once the nodes have been translated to points, the slope (S) of the line of best

fit is calculated for the points using Eq. 5.7. This slope will indicate the bias of the tree

shape. If a tree is left-heavy it would have a negative slope value.

S =

P
n

i=1 xi

y
i

� ((
P

n

i=1 xi

)⇥ y)P
n

i=1 x
2
i

� ((
P

n

i=1 xi

)⇥ x)
(5.7)

Figure 5.15 shows the distribution of slopes for both GE and ⇡GE. From the figure

there are two things of note. Firstly both GE and ⇡GE display the exact same distribution

of tree shapes. The addition of position independence results in no change in derivation

tree bias. The second interesting observation is the symmetry that is visible in the plot.

It indicates that for every tree that has a right-heavy there is a similarly left-heavy tree.
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Figure 5.15: This figure displays the distribution of derivation tree slopes for 1,000,000
derivation trees of both GE and ⇡GE. The figure indicates there is no di↵erence in the bias
of trees generated in the initial populations of GE and ⇡GE

The initial study by Hemberg [66] examined the bias present in GE with respect to

performance. In the study a preferential bias could be found that impacted performance.

This study examined bias within the initial population of GE and ⇡GE. In this examination

no left-right bias was observed in either algorithm. Also no di↵erence in bias was observed

between the two algorithms.

Restricting Order Drift in ⇡GE

It has been shown in the experimental section of this chapter that ⇡GE does not evolve

towards a specific mapping order. ⇡GE instead evolves to a population of individuals with

a distribution of mapping orders. However is there a way to limit this drift and force ⇡GE

to maintain a mapping order?

In previous work [39], a mutation operation was proposed that could focus on order
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codons or content codons of a ⇡GE chromosome and the algorithm could be setup in such

a way as to turn o↵ mutation of the order codons completely. Upon further inspection

of how the mapping process works for ⇡GE, even if the mutation of order codons is not

allowed, the order of the individual will change with the mutation of the content codons. In

⇡GE the order of the individual is linked to not only the order codon but also the number

of NT’s left to be expanded. If a content mutation changes the number of NT’s in the

⇡GE NT list, then this may change the expansion order that follows from that point on.

This is a similar ripple e↵ect to that noted in standard GE mutation [11], but in this case

the ripple is caused by the change in the number of NT’s to be expanded.

Consider the following example. There is a section of chromosome and the algorithm

is currently pointed at the codon with the value 5, Chromosome : [3, 5, 9, 7, 8] , and a

current NT list mid run: NT 0s = [e, o, e, o, v]. Applying the ⇡GE order rule, 5%5 = 0,

leads to the mapper selecting NT zero in the list to expand, NT 0s = [e, o, e, o, v]. Applying

the GE expansion rule, 9%2 = 0, results in this e being replaced by v and sets the NT

list for the next expansion in the derivation tree, NT 0s = [v, o, e, o, v]. Next the mapper

selects index 2, 7%5 = 2, and continues on from there. However if the codon valued 9,

that controls what the first e expanded to, is mutated to 4 the list now looks drastically

di↵erent, NT 0s = [e, o, e, o, e, o, v] and so when we apply the ⇡GE NT selection equation

to choose the next codon, 7%7 = 0, the NT at position zero is now selected and thus the

ripple is started and all the following order choices will be a↵ected.

In general it can be shown that if a content codon is mutated and this mutation results

in the number of NT’s available for expansion being changed then a resulting ripple will

change the order of expansion for ⇡GE. This mutation operation and ripple is further

explored in Chapter 6.
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5.5 Summary

The main aim of this chapter was to further investigate what happens within ⇡GE with re-

gards to the expansion orders used in the algorithm. The orders of ⇡GE individuals during

evolution were recorded, from a random order initialisation and a fixed order initialisation,

on a range of setups and problems. It was shown that ⇡GE drifts towards a distribution

of orders rather than one particular order. Two di↵erent metrics where defined and used

to explore order in ⇡GE. The e↵ect that grammar complexity has on the distribution of

orders was discussed and it was found that more complex grammars lead to a wider distri-

bution of orders. Crossover was examined and found to have limited impact on the orders

observed within ⇡GE. The orders discovered during evolution were examined to verify that

⇡GE continued to search the order space, and encountered new orders during evolution.

Derivation tree bias was also examined and it was found that the addition of the variable

expansion order in ⇡GE did not change the bias in the initial population. Finally the

idea of restricting the order drift in ⇡GE was discussed and the ripple e↵ect of ⇡GE was

outlined.

In the following chapter we will explore a new mutation operation that may help deal

with this ripple e↵ect.
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Chapter 6

Focused Mutation with ⇡GE

Chapter 3 has shown ⇡GE to exhibit comparable performance, and in some cases slightly

better performance, to standard Grammatical Evolution (GE). The chapters that followed

investigated certain aspects of ⇡GE in the quest to understand the inner workings and

behaviours of ⇡GE. These studies all relied upon the traditional GE int flip mutation

operation. GE uses a leftmost non terminal expansion GPM, while ⇡GE evolves the order

of mapping as well as the content. In this chapter, the idea of focused mutation search is

introduced and used to examine which aspect of the ⇡GE mapping process provides the

lift in performance over standard GE. By examining di↵erent setups of focused mutation

on a set of benchmark problems, a purely content focused int flip mutation was shown to

exhibit a performance gain over the other setups.This chapter presents a more in depth

examination of work presented by Fagan et al. [39].

The chapter is structured as follows. Section 6.1 outlines the motivation for this vein

of research. Section 6.2 describes the focused mutation operation, before the experimental

setup is stated in Section 6.3. The results are reported and discussed in Section 6.4. The

chapter is concluded with a discussion in Section 6.5 and a summary in Section 6.6.
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6.1 Introduction

The earlier studies in this thesis have relied upon the application of standard GE mutation

operations in ⇡GE. Chapter 3 examined performance across a range of GPM using the GE

mutation operation. Chapter 4 mapped the phenotypic connectivity of the GE mutation

operation and highlighted order and content mutations. Finally Chapter 5 looked at the

orders being evolved during a ⇡GE run, with the GE mutation operation being used again.

Through careful examination of the ⇡GE’s mapping process, questions have arisen as

to what e↵ect mutation has on the mapping process of ⇡GE and if there exists a better

solution to applying mutation in ⇡GE, than the int flip mutation used so far. These are:

• Should mutation occur on the part of the chromosome that controls which of the

unexpanded Non-Terminal Nodes (NT) will be selected for expansion next? If so

what e↵ects does this have?

• Should mutation focus only on what a selected NT expands to?

• Is some form of adjustable dual mutation rate required to extract maximum perfor-

mance from the ⇡GE mapper?

This study presents an examination of performance of ⇡GE, and through the idea

of focused mutation introduces new ideas as to how best to utilise mutation for finding

the optimum solution in the search space by adjusting the mapping process. Through

these new approaches it is hoped to gain a deeper insight into the behaviour of ⇡GE,

firstly by establishing a baseline of performance with only Content Focused Mutation and

Order Focused Mutation, and then by examining if certain mixtures of mutation can yield

performance increases not previously encountered.
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6.2 ⇡GE Focused Mutation Operation

The addition of the evolvable order with ⇡GE presents a new degree of freedom in the

GPM process, that is not currently utilised with GE operations. ⇡GE has a codon that

controls the order of derivation, and also the subsequent NT expansion. By focusing on

each of these codons it is possible to produce a mutation operation that can be tuned as

desired. In the standard ⇡GE setup, the rate of search performed on the order and content

codons relative to each other in general is on a basis of 1:1. If this search is allowed to be

rebalanced, will this confer an advantage?

For example, it may be that the rate of search directed towards the order of the map

should be undertaken at a lower rate than that of the content. This may allow the current

order’s content to be evolved for a number of generations before the order is changed. In

standard ⇡GE, an unknown amount of order and content codons are mutated, as GE’s

mutation operation is noisy and relies on probabilities and a random number generator,

thus giving a fluctuating mix of mutation between codon types across the population. This

can have a drastic e↵ect on the mapping process.

Consider the e↵ect changing one of the order codons has on the mapping, compared

to changing one content codon. The act of changing a content codon will change what

the current non-terminal becomes. While this will e↵ect any subsequent mapping in the

sub-tree emanating from this non-terminal (the ripple e↵ect). Changing one order codon

on the other hand, will in most cases move the position of expansion on the tree to a

new position. This will a↵ect both expansion on the sub-tree emanating from the original

position in the tree and the new position that is to be expanded based on the changing of

one codon.

Four experimental setups are examined where the order of the search being undertaken

is explicitly defined.
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1. Order: Mutation events are restricted to codons responsible for determining the

mapping order. The content codons are fixed in this setup with the exception of the

operation of the crossover operator which may exchange the content codons between

individuals. The results observed on this setup relative to the others will allow us

to determine the contribution of the search focused on the order codons towards the

success of ⇡GE.

2. Content: Mutation events are restricted to codons responsible for production rule

selection. The order codons are fixed here (with the exception of the shu✏ing of

order codons between individuals by crossover). When compared to a standard GE

mapping, in e↵ect the mapping order is largely randomised here upon initialisation

of the order codons in the first generation.

3. ⇡GE: Mutation events are allowed on both order and content codons.

4. Order : Content: Two variations on ⇡GE are examined where the ratio of order

to content mutation events are varied to examine the situation where the search is

allowed to continue on both the order and content codons, but at di↵erent relative

rates (namely, 2:1 and 1:2, in contrast to the 1:1 of ⇡GE). This will allow us to

determine if there may be an advantage in rebalancing the relative rate of codon and

order search.

By undertaking this investigation it is hoped to gain an understanding into which aspect

of the ⇡GE mapping process is responsible for the performance gain over GE and also to

see if the current ⇡GE setup can be refined for greater performance at finding solutions to

problems through the application of focused mutation to the chromosome.
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6.3 Experimental Design

We wish to test the null hypothesis that there is no di↵erence in performance when we

focus mutation on di↵erent parts of the chromosome in ⇡GE. Performance in these cases

will be assessed in terms of the number of successful solutions found for each problem

instance, and by examining the average best fitness.

GEVA v2.0 [129] was adopted and tailored for the experiments conducted in this study,

in order to perform the ⇡GE mapping. The evolutionary parameters adopted on all prob-

lems are presented in Table 6.1. Note that a relatively small population size of 100 was

deliberately used, compared to the standard 500 that would typically be adopted for these

problem instances. This was to make it harder for the mappers to find a perfect solution,

and therefore provide the possibility to more precisely distinguish performance di↵erences

on these benchmark problems. Elitism was restricted to a size of 3 to prevent the popu-

lation from converging to quickly. For all approaches an initial chromosome length of 200

was selected to provide all mappings with a similar amount of randomly created genetic

material.

Table 6.1: Parameter settings adopted on all problems examined.

Parameter Value
Generations 100
Population size 100
Replacement strategy generational with elitism (3 individuals)
Selection tournament (tsize=3)
Mutation probability 0.01 (integer mutation)
Crossover probability 0.0 & 0.9 (ripple)
Initial chromosome length 200 codons (random init)

The problems used for this study mirror those seen in previous chapters. The Even Five

Parity Problem, Max, Santa Fe Ant Trail and Quartic Polynomial Symbolic Regression,

represent the problem domains examined. The grammars used are displayed in Figure 6.1.
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<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= + | *

<var> ::= 0.5

(a) Max.

<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= + | - | * | /

<var> ::= x0 | x1 | 1.0

(b) Symbolic Regression A.

<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= + | - | *

<var> ::= x0 | 1.0

(c) Symbolic Regression B

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr>

| ( <expr> <op> <expr> )

| <var>

| <pre-op> ( <var> )

<pre-op> ::= not

<op> ::= "|"

| &

| ^

<var> ::= d0 | d1 | d2 | d3 | d4

(d) Even 5 Parity.

<prog> ::= <code>

<code> ::= <line> | <code> <line>

<line> ::= <condition>\n

| <op>\n

<condition> ::= if(food_ahead()==1){

<opcode>

}

else { <opcode> }

<op> ::= left();|right();|move();

<opcode> ::= <op> | <opcode> <op>

(e) Santa Fe Ant.

Figure 6.1: Grammars used for the problems in this chapter are presented above. There
were five grammars used during the course of this investigation.

6.3.1 Mutation Rates

In the four experimental setups proposed, we are modifying the e↵ective rate of mutational

search, by varying the rate of mutation between content and order codons. In standard

⇡GE, each codon is mutated at the specified rate, but when mutation is restricted to order

or content codons (or any order:content ratio), specific mutation rates for the order and

content codons have to be applied. These rates are needed to normalise the e↵ective rate

of mutation per individual. These have been calculated using the following equations:

p
o

=
o

o+ c
⇥ p

mut

⇥ 2 p
c

=
c

o+ c
⇥ p

mut

⇥ 2
p
o

+ p
c

2
= p

mut
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where o and c are the ratios for order and content mutations (as in o:c), and p
o

and p
c

are

the required mutation rates for content and order codons, respectively.

Table 6.2: Mutation Rates for Experimental Setups

Setup Order Rate Content Rate
1:1 ratio (GE) 0.01 0.01
1:0 ratio (all order) 0.02 0.00
0:1 ratio (all content) 0.00 0.02
2:1 ratio (double order) 0.0133 0.0067
1:2 ratio (double content) 0.0067 0.0133

Note that these equations are applicable to any sort of ratios, including 1:1 (i.e. standard

⇡GE), 1:0 (i.e. order only), and 0:1 (i.e. content only). The calculated probabilities of

mutation used are shown in Table 6.2.

6.4 Results

The results for the four experimental setups described in Section 6.3 are now presented.

We divide their exploration into two parts by focusing in the first instance on the scenarios

where search is restricted to either the content or order codons, before examining the results

for the alternative relative rates of order:content search. The Wilcoxon rank-sum test was

again used to test for statistical significance between setups. As in Chapter 3, a Bonferroni

correction will be applied to the threshold. In this chapter there are three datasets, hence

three pairwise tests. This will result in a newp-value threshold of < 0.01666.
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6.4.1 Results for Standard GE Mutation, Order-only Mutation

and Content-only Mutation

Table 6.3 displays the number of successful solutions found to the four problems, as well

as the mean best fitness, and the standard deviation, over the 250 runs performed for each

setup. Table 6.4 shows the p-values for each setup compared against the other setups.

Figure 6.2 plots the mean best fitness for the results displayed in Table 6.3.

Table 6.3: This table shows the results for the content and order only mutation approaches
on a range of benchmark problems. 250 runs for each setup were performed and the results
are shown below. In the table success denoted the number of solution found during the
250 runs. The average of the best fitness is presented with the standard deviation shown
in brackets. The highlighted cells indicate the best performing approach. In the case
where multiple approaches are highlighted, there is no statistical di↵erence between the
approaches.

Problem Mutation Mean Best Fitness (stdev) Successes
Even 5 GE 2.78(3.82) 156

Order 4.43(3.86) 90
Content 1.80(3.06) 179

Santa Fe GE 27.32(14.48) 11
Order 28.16(13.35) 13
Content 28.54(15.00) 14

Sym Reg A GE 0.27(0.21) 37
Order 0.41(0.28) 18
Content 0.27(0.21) 37

Max GE 11.42(1.39) 0
Order 11.94(0.89) 0
Content 11.44(1.33) 0

In the Even 5 Parity problem content mutation outperforms the other setups in both

measured categories, and this result can be viewed as significantly better when the p-

values of Table 6.4 consulted. The Santa Fe Ant problem displays varied results. Content
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(a) Even 5 Parity - Crossover
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(b) Santa Fe Ant - Crossover
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(c) Max - Crossover
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(d) Symbolic Regression A - Crossover

Figure 6.2: This figure shows the graphs for the average best fitness of the di↵erent mu-
tation approaches on the problems examined with crossover. These graph represent the
average of the best fitness at each generation over 250 runs. It can be seen that the order
only approach to mutation su↵ers in performance from an early stage in the runs, in three
out of four test problems. While the content only approach actually improves early search
performance.
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Table 6.4: The table displays the p-values resulting from comparing each pair of setups
using the Wilcoxon Rank-Sum test. p-Values < 0.01666 are highlighted. The setups
compared are the for the results seen in Table 6.3.

Even Five Parity
GE Content Order

GE - 1.50E-03 1.09E-05
Content 1.50E-03 - 7.19E-13
Order 1.09E-05 7.19E-13 -

Santa Fe Ant
GE Content Order

GE - 0.422 0.405
Content 0.422 - 0.843
Order 0.405 0.843 -

Symbolic Regression A
GE Content Order

GE - 0.944 2.49E-08
Content 0.944 - 2.47E-05
Order 2.49E-08 2.47E-05 -

Max
GE Content Order

GE - 0.068 5.12E-11
Content 0.068 - 8.52E-06
Order 5.12E-11 8.52E-06 -

mutation has the most number of successful solutions. However, the p-values indicate

that the results for best fitness are too similar to draw significant conclusions from, thus

all setups are deemed equal with respect to average best fitness performance. Looking

at the Symbolic Regression problem it is impossible to distinguish a di↵erence between

the GE and content mutation approaches. However both are significantly better than

the order approach. Finally the Max problem presents another problem where there is

no identifiable di↵erence between GE and content mutations, but once again the slightly

worse performance of order mutation is deemed significantly worse.

These results show that focusing the search purely on the order codons (1:0 setup)

tends to significantly give the worst results, with the Santa Fe Ant problem being the
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exception. There is however still evolution in terms of fitness over time, which suggests

that merely by shu✏ing the mapping order, the change of context of the content codons

will in e↵ect generate new content material (or rather change the function of the existing

content material) due to the ripple e↵ect of ⇡GE.

The results obtained with content-only mutation (0:1 setup) tend to give the best results

in terms of solutions found and fitness. When mutation events are restricted to the content

codons, the amount of search on the order setup is e↵ectively reduced, which suggests that

alternative (and initially random) mapping orders are superior to the fixed GE order.

6.4.2 Results for 2:1 and 1:2 Ratios of Mutation

In order to investigate the contribution of the order search to the success of ⇡GE, di↵erent

ratios of order:content mutation have been explored, and are presented in this section.

Table 6.5 (with crossover) shows the results obtained, while Table 6.6 displays the p-values

indicating if there is significant di↵erence between the di↵erent setups.

Examining the results, it is seen that content mutation outperforms the two mixed ratio

setups on the Even Five problem, in terms of fitness and successful solutions found. The

result is significantly better when Table 6.6 is consulted. On the Santa Fe Ant problem

it is apparent that the order biased setup performs the best, but not significantly better

than the other setups. It is worth noting that when comparing the 2:1 setup, to the order

only approach in Table 6.3, that the addition of some content mutation has resulted better

performance. Symbolic Regression presents a set of very similar results. There is little to

separate the setups with respect to fitness and this is backed up by the p-values. However

one thing to note is how the content biased setup found more successful solutions.

One final observation from the results has to come from the performance on the Max

problem. In both the 1:2 and 2:1 setups, the average best fitness observed is competitive

with the best results seen in Chapter 3. The surprising observation is that both the setups
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Table 6.5: This table shows the results for the 2:1 and 1:2 balanced mutation approaches
on a range of benchmark problems. 250 runs for each setup were performed and the results
are shown below. In the table success denoted the number of solution found during the
250 runs. The average of the best fitness is presented with the standard deviation shown
in brackets. The highlighted cells indicate the best performing approach. In the case
where multiple approaches are highlighted, there is no statistical di↵erence between the
approaches.

Problem Setup Mean best fitness (stdev) Successes
Even 5 Content 1.80(3.06) 179

1:2 2.32(3.45) 150
2:1 2.31(3.43) 123

Santa Fe Content 28.54(15.00) 14
1:2 24.74(14.33) 11
2:1 21.43(13.33) 16

Sym Reg A Content 0.27(0.21) 37
1:2 0.24(0.22) 43
2:1 0.24(0.22) 36

Max Content 11.44(1.33) 0
1:2 9.95(2.32) 0
2:1 9.20(1.75) 0

exhibit such good performance, when the previous content and order only setups failed to

make the same impact.

The two ratio mixes presented were designed to see what e↵ect refining the ratio of

search has in ⇡GE. What is interesting to note is that the 1:2 and 2:1 ratios both show

good performance levels. However the variance in performance between the two ratio

setups suggest, that trying to find the universal best setup for a set of problems using a

ratio technique of search is quite hard. It is evident in that the 1:2 ratio setup outperforms

the 2:1 setup, and vice versa, in di↵erent problems. This volatility however is not present in

the purely content based setup, that has what can be deemed consistent good performance

across all examined problems.

132



6.5. DISCUSSION

Table 6.6: The table displays the p-values resulting from comparing each pair of setups
using the Wilcoxon Rank-Sum test. p-Values < 0.01666 are highlighted. The setups
compared are the for the results seen in Table 6.5.

Even Five Parity
Content 1:2 2:1

Content - 0.0015 1.09E-05
1:2 0.0015 - 7.19E-13
2:1 1.09E-05 7.19E-13 -

Santa Fe Ant
Content 1:2 2:1

Content - 0.014 0.473
1:2 0.014 - 0.130
2:1 0.473 0.130 -

Symbolic Regression A
Content 1:2 2:1

Content - 0.861 0.339
1:2 0.861 - 0.438
2:1 0.339 0.438 -

Max
Content 1:2 2:1

Content - 0.574 0.095
1:2 0.574 - 0.237
2:1 0.095 0.237 -

While the 1:2 and 2:1 ratio setups were designed to see if more biased order search and

content search would be advantageous, both setups are similar to a standard GE mutation

operation (1:1). It would be of interest to see what the addition of a small amount of

order mutation may have had to the content-only setup, rather than trying to balance the

mutation rates to keep an e↵ective mutation across the board.

6.5 Discussion

In Chapter 5 the idea of trying to limit the order drift seen in ⇡GE was broached. The

mutation operator described in this chapter, provides a way to focus the mutation. With

this in mind the content only and order only mutation operations were tested on the Santa
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Fe Ant problem. Using the DFOB from Chapter 5 the orders were monitored over 100

runs, Figure 6.3 displays the results of this experiment.

Looking at the random initialisation setup, there appears to be no discernible di↵erence

between the distributions observed. However when the GE order initialisation runs are

investigated some trends are seen. It can be clearly seen that with the content only

setup there is little to no divergence from the initial ordering. This shows that the ⇡GE

ripple e↵ect hasn’t had a big e↵ect on the orders observed. The order only setup shows a

distribution that diverges slightly more than that seen in Chapter 5. Both setups however

show good performance as was seen in Table 6.3. From this it is evident that the balancing

of the mutation rates does allow for some control over ⇡GE’s orderings, that was previously

not available to the system.

6.6 Summary

⇡GE provides GE with a GPM that exhibits a degree of freedom in its representation that

has not been investigated for possible exploitation. Knowing this, a mutation operation was

proposed that could focus mutation on a specific type of codon, or rebalance the standard

GE mutation. This rebalancing can provide ⇡GE with a more favourable mutation balance

between order and content codons.

The results provide evidence that a better mutation operation has been found for

⇡GE. The results support a rebalancing of the search towards the content codons. This

rebalancing provides an comparable performance to standard mutation, while also o↵ering

increased performance on some problem domains. In other words a slower rate of search

on mapping order is desirable relative to the content rate of search. It is hypothesised that

this presents an advantage by allowing each mapping order a fair chance to be sampled by

alternative content sets. It was also observed that the use of a rebalanced mutation can
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6.6. SUMMARY

address two issues noted in previous chapter. Firstly, rebalancing the mutation rate has

narrowed the performance drop o↵ seen in the Max problem. Secondly, the new mutation

operation can control the order drift seen in Chapter 5.

This chapter brings to an end the experimental section of this thesis. The next chapter

will address the conclusions of this thesis and outline future work.
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Fin.
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Chapter 7

Conclusions and Future Work

Having examined a variety of GPM approaches in GE, and investigated the reasons why

certain GPMs may exhibit good performance even against an increasing search space, the

conclusions are now discussed. A summary of the thesis is presented in Section 7.1. The

contributions of the thesis are presented in Section 7.2, and future work is outlined in

Section 7.3.

7.1 Thesis Summary

The aim of this thesis was to perform an investigation into the GE GPM. Specifically this

research focused on two core mapping approaches, GE and ⇡GE. To aid in the investigation

some ancillary mapping approaches are also examined to give a spectrum of GPM expansion

orders. The research questions tackled are outlined below.

Do alternative GPMs exist for GE that provide comparable or better performance? -

Chapter 3 deals with this question in full. A comparison of four GPM approaches was

performed, and from this it was deemed that ⇡GE could be seen as a competitive with

GE. The study displayed a slight issue for ⇡GE with its performance on the Max problem.
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A solution to this was seen in Chapter 6 through the use of focused mutation. Also of note

was the fact the ⇡GE exhibited very good performance without crossover, although it was

not able to take as full an advantage of crossover as GE.

How does ⇡GE present good performance given the added search space of having an

evolvable GPM order? - Chapter 4 covered this question. The increase in search space

size caused by ⇡GEs evolvable order was quantified. A large increase in search space size

was found. To understand ⇡GEs good performance despite this increase, the search space

connectivity of ⇡GE and GE were compared. The addition of an evolvable order in ⇡GE

results in ⇡GE exhibiting neutral mutations through order and showing a much higher

degeneracy than GE. The number of connections between individuals via single mutations

that ⇡GE has when compared to GE is also significantly larger. As the only di↵erence

between GE and ⇡GE is the increase in connectivity and degeneracy that the evolvable

order in ⇡GE adds to the algorithm, it is argued that this is what allows ⇡GE to maintain

competitive performance to GE.

What GPM orders is ⇡GE actually using during evolution? - Chapter 5 provided the

answer to this question. Two metrics were developed and used to monitor how far a ⇡GE

population was away from depth-first and breadth-first orders. It was found that ⇡GE

does not evolve towards a known order but rather a distribution of orders. Following this,

a fixed order initialisation method was used to determine whether, if the population was

initialised to a specific order, the population would diverge from this order. It was seen

that the population did diverge, but at a slow rate.

Do genetic operations exist that may take advantage of these new GPMs? - Chapter 6

answered this question. The idea of focusing mutation on a specific type of ⇡GE codon

was implemented. This new operator was applied to the test problems with a variety of

setups. It was seen that a focused mutation on only content codons provided ⇡GE with

a performance boost. This operator also allowed ⇡GE to limit its ripple e↵ect to content
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codons. This is akin to GE’s ripple e↵ect and tries to allow ⇡GE to maintain a close to

fixed order during evolution. Some of the other setups with a ratio of order to content

codon mutations showed promise in closing the performance gap ⇡GE exhibited on the

Max problem in Chapter 3.

7.2 Contributions

The contributions directly emanating from the experimental section of the thesis are out-

lined below. The research questions they address are noted at the end of each contribution.

Literature Review

An extensive review of Grammatical Evolution is presented in Chapter 2. The topics

cover: investigations into the algorithm’s behaviour, extensions to GE, application

of GE, before a comprehensive list of implementations is finally compiled.

Suite of Genotype-Phenotype Maps (GPM) for GE

Several variants to the GE GPM are required for comparison of mapping approaches

in this thesis. To this end a suite of GPMs for GE are detailed in Chapter 3 (Research

Question 1).

Performance Comparison of Di↵erent Approaches to the GPM

Chapter 3 presents a detailed comparison of mapping approaches performed on a

range of benchmark problems. The comparison is the foundation on which this

thesis is based (Research Question 1).

Analysis of Genotype-Phenotype Map connectivity

Connectivity of a GPM relies heavily on the representation underpinning the ap-

proach. Chapter 4 provides an in-depth analysis of the two most promising GPMs
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from this thesis, examined in Chapter 3. Visualisation of the comparison was aided

by the usage of graphs and adjacency matrices (Research Question 2).

Methods of Monitoring Expansion Order in ⇡GE

⇡GE has a variable order of expansion in the genotype-phenotype map. Understand-

ing what orders are being used by the population or a subset of its individuals can

provide valuable insight into its behaviour. Chapter 5 presents two metrics that can

measure distance from known mapping orders (Research Question 2).

Analysis of Population Order Dynamics

Some GPMs use a variable expansion order during the mapping from genotype to

phenotype. The order dynamics of one such mapping, ⇡GE, are explored over a set

of benchmark problems in Chapter 5 (Research Question 3).

Identification and Analysis of an Advanced Mutation Operation

Through investigation of other variants of the GPM, it is possible to discover added

degrees of freedom in the mapping approach. These degrees of freedom may be ex-

ploited to produce improved performance of the GPM. Chapter 6 sees the realisation

of one such operator, Focused Mutation Operation. The operator’s behaviour is anal-

ysed, and di↵erent setups of the operator are compared across a range of problems

(Research Question 4).

7.3 Future Work

The work carried out in this thesis has presented some interesting avenues for future work.

This section sets out to identify the three main areas of investigation that present the best

prospects for fruitful research.
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7.3.1 Further Work with Operators

Chapter 6 presented a focused mutation operator for ⇡GE. Results indicated that rebalanc-

ing of the mutation events could lead to performance gains. With this in mind exploration

of an adaptive focused mutation operator may prove beneficial. Using the data being gen-

erated during a run the mutation could be adjusted to focus on order or content codons

as desired.

⇡GE su↵ers from being a variable order GPM, in that it is very di�cult to perform

complex genetic operations on individuals. This leads to the opportunity in the future to

devise e�cient ways to perform operations such as subtree crossover on ⇡GE. GE achieves

good performance gains by using crossover [115, 123]. These gains are not seen in ⇡GE due

to the lack of a linearly linked genotype and phenotype. Providing ⇡GE with an equivalent

operation that transfers information in a similar fashion may prove advantageous as in

GE. Chapter 6 left a lot of possible avenues for exploration with the interaction of the new

mutation operation and crossover.

7.3.2 GE Mapping Islands

No free lunch theory implies that no one search algorithm can be the best at all problems.

With this in mind I would propose borrowing from island based EC and present a paradigm

for GE. There now exists several di↵erent GPM variants for GE, the idea behind Gram-

matical Evolution - Mapping Islands (GEMI) is that the population would be partitioned

and sent to islands where each sub population would use a di↵erent GPM. After a certain

duration of evolution on islands, the population would be gather together, evaluated, and

then repartitioned. The same genotype and derivation tree data structures are used in

all mappings. However, a new algorithm for mapping a derivation tree derived under one

GPM to the genotype required to produce it under another GPM would be required.
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GEMI can provide the benefits of all GPMs. If a sub-population on a GE island has

converged to a local optimum, relocation to a ⇡GE island may result in escape from the

optimum given the added connectivity of ⇡GE. Likewise a certain grammar may be more

suited to a breadth first approach. By polling all individuals at island recombination the

size of each island could be adapted based on performance of its population. This would

have the added benefit of preventing wasted exploration on a GPM that wasn’t providing

productive individuals.

A similar approach could be taken with di↵erent grammars. Murphy [109] has docu-

mented success with the use of TAGE (Tree Adjunct Grammatical Evolution) that uses

tree adjunct grammars instead of context free grammars. Hemberg [66] had success with

meta grammars. This form of adaptive population GE is ripe for exploration.

7.3.3 Visualisations

During the course of this thesis the usage of visualisation has proven a very good way to

investigate and understand how an algorithm works. The problem with these visualisations

has been the size of the data needed to generate some of the images. Investigation into

better and more e�cient ways to generate these images would be beneficial. A real time

monitoring device akin to GenViewer by Murphy et al. [104] here would be a nice feature

to have to help monitor the health of a population with regards to tree shapes, tree sizes,

or convergence, to name a few measures. A monitoring device may prove beneficial in an

EC system that would run for prolonged periods of time and allow user input during a run.
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Appendix A

Order Histograms - All Runs

This appendix contains the order histogram figures for Chapter 5. The figures show the

top 10 individuals for each run. The figures mirror those shown in the Section 5.4 just

from the perspective of the top individuals from the runs.

A.1 Order Histograms - Elite Individuals
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Appendix B

Order Histograms - Successful Runs

This appendix contains the order histogram figures for Chapter 5. The figures show the

orders observed for only the successful runs. The figures when compared to those in

Section 5.4 display the same observed trends.

B.1 Order Histograms - Successful Runs Only
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B.1. ORDER HISTOGRAMS - SUCCESSFUL RUNS ONLY

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 L
M

 O
rd

er

# inds after 50 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
020406080100

D
is

ta
nc

e 
fro

m
 G

E 
O

rd
er

in
g 
− 

Ev
en

 5
 P

ar
ity

 w
ith

 C
ro

ss
ov

er

(a
)
E
v
en

5
P
a
ri
ty

w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

D
ep
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 L
M

 O
rd

er

# inds after 50 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
020406080100

D
is

ta
nc

e 
fro

m
 G

E 
O

rd
er

in
g 
− 

SR
 A

 w
ith

 C
ro

ss
ov

er

(b
)
S
R

A
w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

D
ep
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 B
F 

O
rd

er

# inds after 50 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
020406080100

D
is

ta
nc

e 
fro

m
 B

re
ad

th
−F

irs
t O

rd
er

in
g 

O
rd

er
in

g 
− 

Ev
en

 5
 P

ar
ity

 w
ith

 C
ro

ss
ov

er

(c
)
E
v
en

5
P
a
ri
ty

w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

B
re
a
d
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 B
F 

O
rd

er

# inds after 50 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
020406080100

D
is

ta
nc

e 
fro

m
 B

re
ad

th
−F

irs
t O

rd
er

in
g 

O
rd

er
in

g 
− 

SR
 A

 w
ith

 C
ro

ss
ov

er

(d
)
S
R

A
w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

B
re
a
d
th

F
ir
st

F
ig
u
re

B
.1
:
T
h
e
fi
gu

re
sh
ow

s
th
e
d
is
tr
ib
u
ti
on

of
d
is
ta
n
ce
s
fr
om

a
d
ep
th
-fi
rs
t
an

d
b
re
ad

th
-fi
rs
t
or
d
er

on
tw

o
p
ro
b
le
m
s
w
it
h

R
an

d
om

O
rd
er

In
it
ia
li
sa
ti
on

,
fo
r
th
e
su
cc
es
sf
u
l
ru
n
s.

T
h
e
su
b
fi
gu

re
s
sh
ow

h
ow

th
e
d
is
tr
ib
u
ti
on

ch
an

ge
s
d
u
ri
n
g
th
e
co
u
rs
e

of
th
e
ru
n
w
it
h
th
e
le
ft
-m

os
t
gr
ap

h
b
ei
n
g
ge
n
er
at
io
n
ze
ro
,
an

d
th
e
ri
gh

t-
m
os
t
b
ei
n
g
th
e
fi
n
al

ge
n
er
at
io
n
.

187



B.1. ORDER HISTOGRAMS - SUCCESSFUL RUNS ONLY

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 L
M

 O
rd

er

# inds after 50 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
020406080100

D
is

ta
nc

e 
fro

m
 G

E 
O

rd
er

in
g 
− 

Ev
en

 5
 P

ar
ity

 w
ith

 C
ro

ss
ov

er

(a
)
E
v
en

5
P
a
ri
ty

w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

D
ep
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 L
M

 O
rd

er

# inds after 50 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
020406080100

D
is

ta
nc

e 
fro

m
 G

E 
O

rd
er

in
g 
− 

SR
 A

 w
ith

 C
ro

ss
ov

er

(b
)
S
R

A
w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

D
ep
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 B
F 

O
rd

er

# inds after 50 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
020406080100

D
is

ta
nc

e 
fro

m
 B

re
ad

th
−F

irs
t O

rd
er

in
g 

O
rd

er
in

g 
− 

Ev
en

 5
 P

ar
ity

 w
ith

 C
ro

ss
ov

er

(c
)
E
v
en

5
P
a
ri
ty

w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

B
re
a
d
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 B
F 

O
rd

er

# inds after 50 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
020406080100

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
020406080100

D
is

ta
nc

e 
fro

m
 B

re
ad

th
−F

irs
t O

rd
er

in
g 

O
rd

er
in

g 
− 

SR
 A

 w
ith

 C
ro

ss
ov

er

(d
)
S
R

A
w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

B
re
a
d
th

F
ir
st

F
ig
u
re

B
.2
:
T
h
e
fi
gu

re
sh
ow

s
th
e
d
is
tr
ib
u
ti
on

of
d
is
ta
n
ce
s
fr
om

a
d
ep
th
-fi
rs
t
an

d
b
re
ad

th
-fi
rs
t
or
d
er

on
tw

o
p
ro
b
le
m
s
w
it
h

G
E

O
rd
er

In
it
ia
li
sa
ti
on

,
fo
r
th
e
su
cc
es
sf
u
l
ru
n
s.

T
h
e
su
b
fi
gu

re
s
sh
ow

h
ow

th
e
d
is
tr
ib
u
ti
on

ch
an

ge
s
d
u
ri
n
g
th
e
co
u
rs
e
of

th
e
ru
n
w
it
h
th
e
le
ft
-m

os
t
gr
ap

h
b
ei
n
g
ge
n
er
at
io
n
ze
ro
,
an

d
th
e
ri
gh

t-
m
os
t
b
ei
n
g
th
e
fi
n
al

ge
n
er
at
io
n
.

188



B.1. ORDER HISTOGRAMS - SUCCESSFUL RUNS ONLY

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 L
M

 O
rd

er

# inds after 50 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
0246810

D
is

ta
nc

e 
fro

m
 G

E 
O

rd
er

in
g 
− 

Ev
en

 5
 P

ar
ity

 w
ith

 C
ro

ss
ov

er

(a
)
E
v
en

5
P
a
ri
ty

w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

D
ep
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
# inds after 25 gens

0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 L
M

 O
rd

er

# inds after 50 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
0246810

D
is

ta
nc

e 
fro

m
 G

E 
O

rd
er

in
g 
− 

SR
 A

 w
ith

 C
ro

ss
ov

er

(b
)
S
R

A
w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

D
ep
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 B
F 

O
rd

er

# inds after 50 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
0246810

D
is

ta
nc

e 
fro

m
 B

re
ad

th
−F

irs
t O

rd
er

in
g 

O
rd

er
in

g 
− 

Ev
en

 5
 P

ar
ity

 w
ith

 C
ro

ss
ov

er

(c
)
E
v
en

5
P
a
ri
ty

w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

B
re
a
d
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 B
F 

O
rd

er

# inds after 50 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
0246810

D
is

ta
nc

e 
fro

m
 B

re
ad

th
−F

irs
t O

rd
er

in
g 

O
rd

er
in

g 
− 

SR
 A

 w
ith

 C
ro

ss
ov

er

(d
)
S
R

A
w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

B
re
a
d
th

F
ir
st

F
ig
u
re

B
.3
:
T
h
e
fi
gu

re
sh
ow

s
th
e
d
is
tr
ib
u
ti
on

of
d
is
ta
n
ce
s
fr
om

a
d
ep
th
-fi
rs
t
an

d
b
re
ad

th
-fi
rs
t
or
d
er

on
tw

o
p
ro
b
le
m
s
w
it
h

R
an

d
om

O
rd
er

In
it
ia
li
sa
ti
on

,
fo
r
to
p
10

of
th
e
p
op

u
la
ti
on

on
th
e
su
cc
es
sf
u
l
ru
n
s.

T
h
e
su
b
fi
gu

re
s
sh
ow

h
ow

th
e
d
is
tr
ib
u
ti
on

ch
an

ge
s
d
u
ri
n
g
th
e
co
u
rs
e
of

th
e
ru
n
w
it
h
th
e
le
ft
-m

os
t
gr
ap

h
b
ei
n
g
ge
n
er
at
io
n
ze
ro
,
an

d
th
e
ri
gh

t-
m
os
t
b
ei
n
g
th
e
fi
n
al

ge
n
er
at
io
n
.

189



B.1. ORDER HISTOGRAMS - SUCCESSFUL RUNS ONLY

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 L
M

 O
rd

er

# inds after 50 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
0246810

D
is

ta
nc

e 
fro

m
 G

E 
O

rd
er

in
g 
− 

Ev
en

 5
 P

ar
ity

 w
ith

 C
ro

ss
ov

er

(a
)
E
v
en

5
P
a
ri
ty

w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

D
ep
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
# inds after 25 gens

0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 L
M

 O
rd

er

# inds after 50 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
0246810

D
is

ta
nc

e 
fro

m
 G

E 
O

rd
er

in
g 
− 

SR
 A

 w
ith

 C
ro

ss
ov

er

(b
)
S
R

A
w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

D
ep
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 B
F 

O
rd

er

# inds after 50 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
0246810

D
is

ta
nc

e 
fro

m
 B

re
ad

th
−F

irs
t O

rd
er

in
g 

O
rd

er
in

g 
− 

Ev
en

 5
 P

ar
ity

 w
ith

 C
ro

ss
ov

er

(c
)
E
v
en

5
P
a
ri
ty

w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

B
re
a
d
th

F
ir
st

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 0 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 25 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00
%

 fr
om

 B
F 

O
rd

er

# inds after 50 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 75 gens
0246810

0−
10

10
−2

0
20
−3

0
30
−4

0
40
−5

0
50
−6

0
60
−7

0
70
−8

0
80
−9

0
90
−1

00

# inds after 100 gens
0246810

D
is

ta
nc

e 
fro

m
 B

re
ad

th
−F

irs
t O

rd
er

in
g 

O
rd

er
in

g 
− 

SR
 A

 w
ith

 C
ro

ss
ov

er

(d
)
S
R

A
w
it
h
C
ro
ss
ov
er

-
D
is
ta
n
ce

fr
o
m

B
re
a
d
th

F
ir
st

F
ig
u
re

B
.4
:
T
h
e
fi
gu

re
sh
ow

s
th
e
d
is
tr
ib
u
ti
on

of
d
is
ta
n
ce
s
fr
om

a
d
ep
th
-fi
rs
t
an

d
b
re
ad

th
-fi
rs
t
or
d
er

on
tw

o
p
ro
b
le
m
s
w
it
h

G
E

O
rd
er

In
it
ia
li
sa
ti
on

,
fo
r
to
p
10

of
th
e
p
op

u
la
ti
on

on
th
e
su
cc
es
sf
u
l
ru
n
s.

T
h
e
su
b
fi
gu

re
s
sh
ow

h
ow

th
e
d
is
tr
ib
u
ti
on

ch
an

ge
s
d
u
ri
n
g
th
e
co
u
rs
e
of

th
e
ru
n
w
it
h
th
e
le
ft
-m

os
t
gr
ap

h
b
ei
n
g
ge
n
er
at
io
n
ze
ro
,
an

d
th
e
ri
gh

t-
m
os
t
b
ei
n
g
th
e
fi
n
al

ge
n
er
at
io
n
.

190


