
Option Model Calibration Using a Bacterial
Foraging Optimization Algorithm

Jing Dang1,2, Anthony Brabazon1, Michael O’Neill1, and David Edelman2

1 Natural Computing Research and Applications Group
University College Dublin, Ireland

jing.dang@ucd.ie, anthony.brabazon@ucd.ie, m.oneill@ucd.ie
2 School of Business, University College Dublin, Ireland

davide@ucd.ie

Abstract. The Bacterial Foraging Optimization (BFO) algorithm is a
biologically inspired computation technique which is based on mimicking
the foraging behavior of E.coli bacteria. This paper illustrates how a BFO
algorithm can be constructed and applied to solve parameter estimation
of a EGARCH-M model which is then used for calibration of a volatility
option pricing model. The results from the algorithm are shown to be
robust and extendable, suggesting the potential of applying the BFO for
financial modeling.

1 Introduction

This paper illustrates the financial application of a biologically-inspired com-
putation technique (see [1] for a general introduction to biologically inspired
algorithms), the Bacterial Foraging Optimization (BFO) algorithm introduced
by Passino [14] in 2002, which models the foraging behavior of Escherichia coli
bacteria present in our intestines.

The algorithm has been developed and applied to solve various real-world
problems [7,8,10,19], in a number of application domains. Mishra [11] shows
that BFO can converge to the global optimum faster than the canonical genetic
algorithm. Kim [8] suggests that the BFO could be applied to find solutions for
difficult engineering design problems. In this paper, we examine the potential of
applying BFO algorithm - with and without swarming effect - within the financial
domain. We employ BFO to estimate the parameters of the EGARCH-M model
which is a nonlinear problem. The results are used to price the volatility options.

The paper is organized as follows: Section 2 provides a concise overview of
the BFO algorithm. Section 3 gives background information of volatility option
pricing and section 4 outlines the experimental methodology adopted. Section 5
provides the results of these experiments followed by conclusions in Section 6.

2 The Bacterial Foraging Optimization (BFO) Algorithm

Natural selection tends to eliminate animals with poor foraging strategies and
favors the propagation of genes of those animals that have successful foraging

M. Giacobini et al. (Eds.): EvoWorkshops 2008, LNCS 4974, pp. 113–122, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 J. Dang et al.

strategies, since they are more likely to enjoy reproductive success. After many
generations, poor foraging strategies are either eliminated or shaped into good
ones. This activity of foraging led researchers to use it as optimization process:
animals search for nutrients to maximize the energy obtained per unit time spent
foraging, in the face of constraints presented by its own physiology. The E.coli
bacteria present in our intestines also undertake a foraging strategy [14].

Algorithm 1. BFO algorithm

Randomly distribute initial values for θi, i = 1, 2, ..., S across the optimization
domain. Compute the initial cost function value for each bacterium i as J i, and
the initial total cost with swarming effect as J i

sw .

for Elimination-dispersal loop do
for Reproduction loop do

for Chemotaxis loop do
for Bacterium i do

Tumble: Generate a random vector φ ∈ RD as a unit length
random direction
Move: Let θnew = θi + cφ and compute corresponding Jnew . Let
Jnew

sw = Jnew + Jcc(θnew , θ)
Swim: Let m=0
while m < Ns do

let m=m+1
if Jnew

sw < J i
sw then

Let θi = θnew , compute corresponding J i and J i
sw

Let θnew = θi + cφ and compute corresponding J(θnew).
Let Jnew

sw = Jnew + Jcc(θnew, θ)
else

let m = Ns

end
end

end
end
Sort bacteria in order of ascending cost JswThe Sr = S/2 bacteria with
the highest J value die and other Sr bacteria with the best value split
Update value of J and Jsw accordingly.

end
Eliminate and disperse the bacteria to random locations on the optimization
domain with probability ped. Update corresponding J and Jsw.

end

Here, the objective is to find the minimum of J(θ), θ ∈ RD, where we do not
have the gradient information ∇J(θ). Suppose θ is the position of the bacterium
and J(θ) represents a nutrient profile, i.e.,J(θ) < 0, J(θ) = 0 and J(θ) > 0
represent the presence of nutrients, a neutral medium and noxious substances
respectively. The bacterium will try to move towards increasing concentrations
of nutrients (i.e. find lower values of J), search for ways out of neutral media

Option Model Calibration Using a BFO Algorithm 115

and avoid noxious substances (away from positions where J > 0). It implements
a type of biased random walk.

Bacteria can also engage in a form of chemically-mediated ‘social communica-
tion’ during their search process. Let J i denote the actual cost (or the nutrient
surface) at the position of the ith bacterium θi. A bacterium that has uncovered
good sources of nutrients during its search can release a chemical signal which at-
tracts other bacteria to converge (or swarm) to its current location. This process
is mediated by the release of a ‘repellent signal’ to ensure that the bacteria do
not get too close to each other. Including this mechanism in our optimization
algorithm, the problem becomes the minimization of J i

sw = J i +Jcc(θi, θ), which
represents the time-varying total cost value for bacterium i. The mathematical
swarming (cell-cell signalling) function can be represented by:

Jcc(θi, θ) =

⎧
⎨

⎩

−M

(
S∑

k=1
e−Wa‖θi−θk)‖2 −

S∑

k=1
e−Wr‖θi−θk‖2

)

With swarming

0 No swarming

where ‖.‖ is the Euclidean norm, Wa and Wr are measures of the width of the
attractant and repellent signals respectively, M measures the magnitude of the
cell-cell signalling effect. These parameter values are chosen according to the
nutrient profile used.

During the lifetime of E.coli bacteria, they undergo different stages such as
chemotaxis, reproduction and elimination-dispersal. A description of each of
these is given below. The details of the algorithm are presented in Algorithm 1.

2.1 Chemotaxis

Chemotaxis is the tendency of a bacterium to move toward distant sources of
nutrients. In this process, the bacterium alternates between tumbling (changing
direction) and swimming behaviors. Here, a tumble is represented by a unit walk
with random direction φ ∈ RD (i.e. φ = Δ√

ΔT Δ
, where Δ is a vector with each

element a random number on [-1,1]), a swim is indicated as movement in the
same direction as the previous tumble. After one step move, the new position
of the ith bacterium can be represented as θnew = θi + cφ, where θi ∈ RD

indicates the position of the ith bacterium across the optimization domain. c is
the chemotactic step size taken in the direction of φ. In this paper, we consider
a fixed step size c for all bacteria.

If at θnew , the total cost Jnew
sw is better (lower) than the cost at θi, another

swimming step is taken, and is continued as long as it continues to reduce the
cost, but only up to a maximum number of steps, Ns. This means that the bac-
terium will tend to keep moving if it is headed in the direction of an increasingly
favorable environment.

2.2 Reproduction

After Nc chemotactic steps, a reproduction step is taken. In reproduction, the
least healthy bacteria die and the other Sr healthiest bacteria each split into two

116 J. Dang et al.

bacteria, which are then placed in the same location. The health of the bacteria
are measured by Jsw, higher cost represents that the bacterium did not get as
many nutrients during its life of foraging (hence is not as “healthy”) and thus
unlikely to reproduce.

2.3 Elimination - Dispersal

Let Ned be the number of elimination-dispersal steps. The elimination-dispersal
step happens after Nre reproduction steps. In elimination-dispersal, individual
bacterium is stochastically selected for elimination from the population and is
replaced by a new bacterium located at a random new location within the op-
timization domain, according to a preset probability ped. This mimics the real-
world process whereby bacteria can be dispersed to new locations, for example
via wind dispersal.

3 Estimation of Volatility Option Pricing Model

Volatility is a measure of how much a stock can move over a specific amount
of time. In 1993, the first measure of volatility in the overall market - the S&P
500 Volatility Index (VIX) was created. It is a widely disseminated benchmark
index commonly referred to as the market’s “fear gauge” and serves as a proxy
for investor sentiment - rising when investors are anxious or uncertain about the
market and falling during times of confidence or complacency.

Options are financial instruments that convey the right, but not the obliga-
tion, to engage in a future transaction on some underlying assets. In February
2006, options on the S&P500 volatility index (VIX Options) began trading on
the Chicago Board of Exchange (CBOE), which is the first product on mar-
ket volatility to be listed on an regulated securities exchange. VIX options offer
investors the ability to make trades based on their view of future direction or
movement of the VIX, and option buyers have the advantage of limited risk. VIX
options also offer the opportunity to hedge volatility risk of a portfolio, distinct
from price risk.

VIX

0

5

10

15

20

25

30

35

40

45

50

1990 1992 1994 1996 1998 2000 2002 2004 2006

(a) S&P500 Volatility Index (VIX)

0

100

200

300

400

500

1.5 2 2.5 3 3.5 4 4.5
ln(VIX)

F
re

q
u

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ro

b
ab

ili
ty

 (b) Probability Density of VIX

Fig. 1. Empirical Results of the VIX

Option Model Calibration Using a BFO Algorithm 117

Detemple and Osakwe [3] provide analytic pricing formulae for European
volatility options1 assuming that volatility follows a mean-reverting log process
(MRLP). We consider MRLP to be a reasonable assumption with small misiden-
tification error, as can be seen from Fig.1, the volatility tends to revert to some
long-running average (mean-reversion properties) and the probability density
function of the volatility based on unconditional distribution of VIX could be
approximated by a lognormal distribution. The closed from expression for the
European call option ct written on the volatility V , with strike price K and
maturity T is [3]:

ct(Vt, K, τ) = e−λτ [V φτ

t exp(
α

λ
(1 − φτ) +

1
2
a2

τ)N(dτ + aτ) − KN(dτ)] (1)

where dτ =
1
aτ

[φτ ln(Vt) − ln(K) + Aτ]

φτ = e−λ(τ)

Aτ =
α

λ
(1 − φτ)

aτ =
α√
2λ

(1 − φ2
τ)

1
2

and where τ = T − t is the time-to-maturity, t is the current time, Vt is the
volatility of the underlying asset at time t. The above model is a function
of parameters α, λ, and σ. α/λ denotes a long run mean for log (V), and
exp

(
(α + 1

4σ2)/λ
) √

285 denotes a long run mean annualized volatility (based on
285 days). These parameters for the option pricing model can be calculated as
below by estimating the corresponding EGARCH-M (the exponential GARCH2

in mean, first proposed by Nelson [13]) model and then taking the limit [4,12]:

α =
K

2
+

A1√
2π

, λ = 1 − G1 , σ =
1
2

√

(
π − 2

π
)A1

2 + L1
2 (2)

The EGARCH-M model has estimation issues such as choice of starting values
and choice of the optimization routine [15]. We employ BFO to optimize the
EGARCH-M model parameters: K, G1, A1 and L1, the details are described in
the following section.

4 Experimental Approach

Due to the existence of noise in the newly-traded volatility option data, we cali-
brate the MRLP option pricing model by estimating the corresponding discrete
1 A European call option on an asset Vt with maturity date T and strike price K is

defined as a contingent claim with payoff at time T given by max [VT − K, 0].
2 GARCH models are popular econometric modeling methods, having been initially

specified by Engle [5] and Bollerslev [2], they are specifically designed to model and
forecast changes in variance, or volatility per se.

118 J. Dang et al.

time EGARCH-M model and then taking the limit. The EGARCH-M model
is an asymmetric model designed to capture the leverage effect, or negative
correlation, between asset returns and volatility. The EGARCH-M (1,1) model
considered in this paper is set up as follows:

Conditional mean model:

yt = C − 1
2
σ2

t + εt (3)

where εt = σtzt, zt ∼ N(0, 1) and yt represents the log returns of S&P 500

Conditional variance model:

logσ2
t = K + G1logσ2

t−1 + A1(|zt−1|) + L1zt−1 (4)

where zt−1 = |εt−1|
σt−1

The left-hand side of equation 4 is the log value of the conditional variance. This
implies that the leverage effect is exponential, rather than quadratic, and the
forecasts of the conditional variance are guaranteed to be nonnegative. In equa-
tion 3, the coefficient of σ2

t is fixed at −0.5, and the constant C is assumed to be
0.0005, hence the parameters to be estimated are those appeared in equation 4,
namely, K, G1, A1, and L1. Where K is the conditional variance constant, G1
(GARCH term) is the coefficients related to lagged conditional variances, A1
(ARCH term) is the coefficients related to lagged innovations, L1 is the leverage
coefficients for asymmetric EGARCH-M(1,1) model.

The EGARCH-M model can be estimated by maximum likelihood estimation
(MLE). The idea behind maximum likelihood parameter estimation is to deter-
mine the parameters that maximize the probability (likelihood) of the sample
data. From a statistical point of view, the method of maximum likelihood is con-
sidered to be more robust and yields estimators with good statistical properties.
Although the methodology for maximum likelihood estimation is simple, the im-
plementation is mathematically intense. For the EGARCH-M models specified
in equations 3 and 4, the objective is to maximize the log likelihood function
(LLF) as follows:

LLF = −1
2

T∑

t=1

[log(2πσ2
t) +

ε2
t

σ2
t

] (5)

The residuals εt and the conditional variances σ2
t are inferred by recursive substi-

tution based on equations 3 and 4, given the observed log return series, the cur-
rent parameter values and the starting value of z1 ∼ N(0, 1) and σ2

1 = exp(K).
Since minimizing the negative log-likelihood (−LLF) is the same as maximizing
the log-likelihood(LLF), we use −LLF as our nutrient function (the objective
function). And the goal is to minimize the −LLF value, by optimizing parame-
ters K, G1, A1, L1 within the search domain.

The EGARCH-M model is fitted to the return series of S&P 500 daily in-
dex using the BFO algorithm (a modified version of Passino’s original Matlab
code [20]). The S&P 500 (Ticker SPX) equity index is obtained from CBOE,

Option Model Calibration Using a BFO Algorithm 119

with data drawn from 02/01/1990 to 30/12/2006, giving a total of 4084 daily
observations.

5 Results

The estimated parameters are constrained within [-1, 1]. During the searching
process for optimal parameter value, if it breaches the lower/upper bound, its
value is set to be -1 or 1. In each run of the BFO, we use parameter values
specified in Table 1, they are chosen based on trial and error experimentation.

Fig.2 depicts the evolution of the objective function value, measured using
negative maximum likelihood (−LLF), as a function of the iteration number
for a random single run of the algorithm for BFO with, and for comparison
purposes without, the swarming effect. Obviously, the BFO algorithm containing
swarming effect has quicker convergence than BFO without this mechanism,
though the accuracy of the final results are not too different. Figs. 3(a), 3(b),
3(c) and 3(d) depict the evolution of the parameters K, G1, A1 and L1 as a
function of the iteration number for a random single run of the BFO algorithm
with the swarming effect. In the early iterations BFO mainly performs global
search for the optimum value and displays quick convergence. Later in the run,
the focus switches to local optimal search.

Running both BFO with and without swarming effect over 30 trials, we obtain
the results shown in Table 2. Where ‘Optimum’ provides the best results over
30 runs for the objective value −LLF and relevant parameters K, G1, A1, L1.
The best results averaged over 30 runs and the standard deviation of the best
results over 30 runs are reported in the ‘Mean’ and ‘S.D.’ respectively. In order
to provide a benchmark for the accuracy of the results obtained by BFO, a Mat-
lab (Ver.7.0.1(R14)) optimizer fminconwas used. This optimizer uses sequential
quadratic programming (SQP) methods, which closely mimic Newton’s method
for constrained optimization.

From Table 2, the BFO algorithm with swarming outperforms that without
swarming effect. The objective value (the minimal −LLF) of -14242.27 is close

Parameter Values and Definition
D=4 Search space dimension
S=50 Bacteria population size
Nc=20 No. of chemotactic steps
Ns=4 No. of swimming steps
Nre=4 No. of reproduction steps
Ned=2 No. of elimination-dispersal
ped=0.25 Prob. for elimination-dispersal
c=0.007 Chemotactic step size
M=10 Magnitude of swarming effect
Wa=0.2 Coefficients of attractant effect
Wr=10 Coefficients of repellent effect

Table 1. BFO Parameters

0 20 40 60 80 100 120 140 160
−15000

−13000

−11000

−9000

−7000

−5000

−4000

Iteration

O
bj

ec
tiv

e
V

al
ue

Global Search

BFO with swarm
BFO without swarm

Fig. 2. Objective value vs. Iteration

120 J. Dang et al.

0 20 40 60 80 100 120 140 160
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Iteration

K

Evolution of K

(a) Evolution of K

0 20 40 60 80 100 120 140 160
0.9

0.92

0.94

0.96

0.98

1

Iteration

G
1

Evolution of G1

(b) Evolution of G1

0 20 40 60 80 100 120 140 160
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Iteration

A
1

Evolution of A1

(c) Evolution of A1

0 20 40 60 80 100 120 140 160
−1

−0.8

−0.6

−0.4

−0.2

0

0.1

Iteration

L1

Evolution of L1

(d) Evolution of L1

Fig. 3. Evolution of parameters as a function of the iteration number

Table 2. Results of BFO with and without swarming effect

Method Output −LLF (Obj) K G1 A1 L1

BFO

With Swarming
Optimum -14242.27 -0.474 0.965 0.182 -0.121

Mean -14064.26 -0.685 0.956 0.382 -0.086
(S.D.) (206.69) (0.219) (0.020) (0.230) (0.183)

No Swarming
Optimum -14241.72 -0.539 0.960 0.198 -0.125

Mean -13841.24 -0.726 0.945 0.302 -0.119
(S.D.) (1072.5) (0.212) (0.030) (0.224) (0.164)

Matlab Optimizer Optima -14242.99 -0.491 0.963 0.178 -0.114

to (though slightly higher) than -14242.99 obtained in Matlab using the fmincon
function. The result is acceptable and the standard deviation is small, which
suggests the applicability and potential of BFO in finance. Also, the bacterial
swarming improves the searching effect, which could be further investigated
in the future study. The estimated optimal parameter values using BFO with
swarming effects are: K = −0.474, G1 = 0.965, A1 = 0.182, L1 = −0.121.
The leverage effect term L1 is negative and statistically different from zero,
indicating the existence of the leverage effect in future stock returns during the
sample period. With the flexibility of BFO, it is believed that by further evolving
BFO parameters such as chemotactic step size c, number of chemotactic steps
Nc, etc., we can improve the accuracy of the results, however, there is always

Option Model Calibration Using a BFO Algorithm 121

trade off between accuracy (achieved by adding complexity to the algorithm)
and convergence speed.

Based on the above results and equation 2, the resulting stochastic volatility
option pricing model parameters are: α = −0.164, λ = 0.035 and σ = 0.082.
The negative α implied mean reversion with a long run mean for log (V) of
α/λ = −4.707, and a long run mean annualized volatility (based on 285 days)
of exp

(
(α + 1

4σ2)/λ
) √

285 = 0.160 percent. The speed of reversion λ, is small,
indicating strong autocorrelation in volatility which in turn implies volatility
clustering. These are consistent with the empirical results found from Fig.1.

Furthermore, based on the estimated parameters of the volatility option
pricing model, hedgers can manage the risk/volatility of their existing invest-
ment/portfolio. Traders can also use the generated theoretical volatility option
prices as a trading guide to make arbitrage/speculating profits.

6 Conclusion and Future Work

In this paper, we applied the proposed Bacterial Foraging Optimization (BFO)
algorithm for parameter estimation of a EGARCH-M model, the results of which
can be used to price volatility options. Compared to traditional parameter esti-
mation methods, BFO provides satisfactory results for this non-linear parameter
estimation problem, indicating proof of concept of the potential utility of apply-
ing this algorithm to the domain of finance. The results also indicate that the
BFO algorithm with a social swarming effect provides quicker convergence and
more stable results compared with the BFO algorithm without the swarming
mechanism.

In future work, we intend to extend the application of the BFO algorithm to
harder higher-dimensional and dynamic optimization problems in finance. These
complexities are widespread in financial modeling and pose serious problems for
traditional, gradient-based statistic computing methods which might only give
local solutions. Hence, it is important that the utility of population-based ap-
proaches such as the BFO algorithm is tested in the finance domain. It is noted
that there is of yet, still a limited literature on the application of the BFO algo-
rithm for real-world problems. Hence, it is necessary to undertake comprehensive
scaling and dynamic environment benchmarking of the BFO algorithm and ex-
amine the contribution of BFO compared to other global optimium searching
algorithms.

References

1. Brabazon, A., O’Neill, M.: Biologically-inspired Algorithms for Financial Mod-
elling. Springer, Berlin (2006)

2. Bollerslev, T.: Generalized Autoregressive Conditional Heteroskedasticity. Journal
of Econometrics 31(3), 307–327 (1986)

3. Detemple, J.-B., Osakwe, C.: The Valuation of Volatility Options. European Fi-
nance Review 4(1), 21–50 (2000)

122 J. Dang et al.

4. Duan, J.-C.: Augmented GARCH (p,q) Process and its Diffusion Limit. Journal of
Econometrics 79(1), 97–127 (1997)

5. Engle, R.-F.: Autoregressive conditional heteroskedasticity with estimates of the
variance of U.K. inflation. Econometrica 50(4), 987–1008 (1982)

6. Hentschel, L.: All in the Family: Nesting Symmetric and Asymmetric GARCH
Models. Journal of Financial Economics 39(1), 71–104 (1995)

7. Kim, D.-H., Cho, J.-H.: Intelligent Control of AVR System Using GA-BF. In:
Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684,
pp. 854–859. Springer, Heidelberg (2005)

8. Kim, D.-H., Abraham, A., Cho, J.-H.: A Hybrid Genetic Algorithm and Bacterial
Foraging Approach for Global Optimization. Information Sciences 177(18), 3918–
3937 (2007)

9. Li, M.-S., Tang, W.-J., et al.: Bacterial Foraging Algorithm with Varying Popula-
tion for Optimal Power Flow. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS,
vol. 4448, pp. 32–41. Springer, Heidelberg (2007)

10. Mishra, S.: A Hybrid Least Square-Fuzzy Bacterial Foraging Strategy for Harmonic
Estimation. IEEE Transactions on Evolutionary Computation 9(1), 61–73 (2005)

11. Mishra, S., Bhende, C.-N.: Bacterial Foraging Technique-Based Optimized Active
Power Filter for Load Compensation. IEEE Transactions on Power Delivery 22(1),
457–465 (2007)

12. Nelson, D.-B.: ARCH Models as Diffusion Approximations. Journal of Economet-
rics 45(1–2), 7–38 (1990)

13. Nelson, D.-B.: Conditional Heteroskedasticity in Asset Returns: A New Approach.
Econometrica 59(2), 347–370 (1991)

14. Passino, K.-M.: Biomimicry of bacterial foraging for distributed optimization and
control. Control Systems Magazine, IEEE 22(3), 52–67 (2002)

15. St. Pierre, E.F.: Estimating EGARCH-M models: Science or art? The Quarterly
Review of Economics and Finance 38(2), 167–180 (1998)

16. Tang, W.-J., Wu, Q.-H., Saunders, J.-R.: A Novel Model for Bacterial Foraging in
Varying Environments. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K.,
Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980,
pp. 556–565. Springer, Heidelberg (2006)

17. Tang, W.-J., Wu, Q.-H., Saunders, J.-R.: Bacterial Foraging Algorithm for Dy-
namic Environments. IEEE Congress on Evolutionary Computation, 1324–1330
(July 2006)

18. Tang, W.-J., Wu, Q.-H., Saunders, J.-R.: Individual-Based Modeling of Bacterial
Foraging with Quorum Sensing in a Time-Varying Environment. In: Marchiori, E.,
Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp. 280–290.
Springer, Heidelberg (2007)

19. Ulagammai, M., Venkatesh, P., et al.: Application of Bacterial Foraging Technique
Trained Artificial and Wavelet Neural Networks in Load Forecasting. Neurocom-
puting 70(16-18), 2659–2667 (2007)

20. Original matlab codes of Passino can be obtained from,
http://www.ece.osu.edu/∼passino/ICbook/ic index.html

http://www.ece.osu.edu/~passino/ICbook/ic_index.html

	Option Model Calibration Using a Bacterial Foraging Optimization Algorithm
	Introduction
	The Bacterial Foraging Optimization (BFO) Algorithm
	Chemotaxis
	Reproduction
	Elimination - Dispersal

	Estimation of Volatility Option Pricing Model
	Experimental Approach
	Results
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

