
A COMPARATIVE STUDY OF THE CANONICAL GENETIC ALGORITHM AND A 

REAL-VALUED QUANTUM-INSPIRED EVOLUTIONARY ALGORITHM 

KAI FAN 

School of Business & Natural Computing Research and Applications Group, University College Dublin 

Carysfort Avenue, Blackrock, Dublin, Ireland 

kai.fan@ucd.ie 

http://ncra.ucd.ie 

ANTHONY BRABAZON 

School of Business & Natural Computing Research and Applications Group, University College Dublin 

UCD Complex Adaptive Systems Laboratory, Belfield Office Park, Belfield, Dublin4, Ireland 

anthony.brabazon@ucd.ie 

CONALL O’SULLIVAN 

School of Business & Natural Computing Research and Applications Group, University College Dublin 

Carysfort Avenue, Blackrock, Dublin, Ireland 

conall.osullivan@ucd.ie 

MICHAEL O’NEILL 

School of Computer Science and Informatics & Natural Computing Research and Applications Group, University College Dublin 

UCD Complex Adaptive Systems Laboratory, Belfield Office Park, Belfield, Dublin4, Ireland 

m.oneill@ucd.ie 

 

Received (Day Month Year)   15 / 09 / 2008 

Revised (Day Month Year)    05 / 01 / 2009 

Accepted (Day Month Year) 

 

 

Purpose - Following earlier claims that Quantum-inspired Evolutionary Algorithm (QIEA) may offer advantages in high 

dimensional environments, this paper tests a real-valued QIEA on a series of benchmark functions of varying dimensionality in 

order to examine its scalability within both static and dynamic environments. 

Design/Methodology/Approach – This study compares the performance of both the QIEA and the canonical genetic algorithm on 

a series of test benchmark functions.  

Findings - The results show that the QIEA obtains highly competitive results when benchmarked against the genetic algorithm 

within static environments, while substantially outperforming both binary and real-valued representation of the genetic algorithm 

(GA) in terms of running time. Within dynamic environments, the QIEA outperforms GA in terms of stability and run time. 

Originality/value - This study suggests that QIEA has utility for real-world high dimensional problems, particularly within 

dynamic environments, such as that found in real-time financial trading. 

Keywords Estimation of Distribution Algorithm (EDA); Quantum-inspired evolutionary algorithm (QIEA); Quantum 

chromosome. 
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1. Introduction 

This paper describes a recently introduced algorithm, the quantum-inspired evolutionary algorithm 

(QIEA), and compares the performance of the QIEA on a series of benchmark functions with that of 

the genetic algorithm. This comparative study provides further insights into the performance of the 

QIEA and clearly illustrates its scaling and efficiency potential within both static and dynamic 

environment. 

Over the last fifteen years a substantial literature has built up in the field of evolutionary computation 

(EC) concerning estimation of distribution algorithms (EDAs). EDAs are an alternative way of 

representing the learning which is embedded in evolving populations of genotypes in evolutionary 

computing (EC). EDAs have several names including probabilistic model building algorithms 

(PBMAs) and iterated density estimation evolutionary algorithms (IDEAs) (see (Larranaga, 2001, 

[15]), (Pelikan, 2005, [20]), (Pelikan, 2006, [21])). Recent years have seen the application of EDAs to 

most traditional evolutionary computing problem domains including multi-objective optimization 

(see (Thierens, 2001, [24]) and (Khan, 2002, [14]) and dynamic optimization (see (Yang, 2005, [27]). 

 

Rather than maintaining a population of solution encodings from one generation to the next and 

manipulating this population using selection, crossover and mutation operators (as is the case in 

typical evolutionary algorithms), global statistical information is extracted from previous iterations 

of the EDA. This information is used to construct a posterior probability distribution model of 

promising solutions, based on the extracted information. New solutions are then sampled from this 

probability model (Fig. 1). Hence, EDAs maintain the selection and variation concepts from 

evolutionary algorithms but generate variation in a different way. The general EDA concept can be 

operationalised in multiple ways. For example, the model update step can be performed in different 

ways depending on the assumptions made concerning the problem. Examples of EDAs include 

population-based incremental learning (PBIL) [1], the univariate marginal distribution algorithm 

(UMDA) [16], mutual information maximization for input clustering (MIMIC) [13], factorized 

distribution algorithm (FDA) [17], the compact genetic algorithm (cGA) [12], and the Bayesian 

Optimization Algorithm (BOA) [19]. A simplified flowchart of a univariate EDA is as follows: 

 

1. Initialize a probability vector P of length l (assume an l-dimensional problem) 

2. Repeat 

3. Generate n trial solution vectors, using P 

4. Evaluate the n trial solutions 

5. Select x<n better solutions from the population 

6. Adapt P using these x solutions 

7. Test terminating condition 

 

In Section 2 we provide a detailed introduction to quantum-inspired evolutionary algorithms (QIEA) 

but it is notable that most real-valued implementations of the QIEA bear some similarity to the EDA 

 

 

 

 

 

 

 

 

Fig. 1.  Illustration of a binary-representation EDA, with sampling from a probabilistic model replacing the usual 

GA crossover and mutation operators. 
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paradigm. QIEAs differ from EDAs in terms of their inspiration with QIEAs being inspired by the 

mechanisms of quantum mechanics. Quantum mechanics is an extension of classical mechanics, 

modelling behaviors of natural systems observed particularly at very short time or distance scales. An 

example of such a system is a sub-atomic particle, such as a free electron. A complex-valued 

(deterministic) function of time and space co-ordinates, called the wave-function, is associated with 

the system: it describes the quantum state the system is in. The standard interpretation of quantum 

mechanics is that this abstract wave-function allows us to calculate probabilities of outcomes of 

concrete experiments.  The squared modulus of the wave-function is a probability density function 

(PDF): it describes the probability that an observation of, for example, a particle will find the particle 

at a given time in a given region of space. The wave-function satisfies the Schrödinger equation. This 

equation can be thought of as describing the time evolution of the wave-function --- and so the PDF 

--- at each point in space: as time goes on, the PDF becomes more “spread out” over space, and our 

knowledge of the position of the particle becomes less precise, until an observation is carried out; 

then, according to the usual interpretation, the wave-function “collapses” to a particular classical 

state (or eigenstate), in this case a particular position, and the spreading out of the PDF starts all over 

again. 

Before the observation we may regard the system as being in a linear combination of all possible 

classical states (this is called a superposition of states); then the act of observation causes one such 

classical state to be chosen, with probability given by the PDF. Note that the wave function may 

interfere with itself (for example, if a barrier with slits is placed in the “path” of a particle) and this 

interference may be constructive or destructive, that is, the probability of detecting a particle in a 

given position may go up or go down. 

In this paper, we test the scalability and efficiency of the QIEA using a series of well-known 

benchmark problems drawn from the evolutionary computation literature. We initially introduce the 

real-valued Quantum-inspired Evolutionary Algorithm in Section 2. We then outline the 

experimental design adopted in Section 3. Following this, the results are provided in Section 4 and 

finally, in Section 5, a number of conclusions are drawn and some directions for future work are 

outlined. 

2. Quantum-inspired Evolutionary Algorithm 

Quantum mechanics is an extension of classical mechanics which models behaviors of natural 

systems that are observed particularly at very short time or distance scales. Under a quantum 

representation, the basic unit of information is no longer a bit which can assume two distinct states (0 or 

1), but is a quantum system. Hence, a qubit (the smallest unit of information in a two-state quantum 

system) can assume either of the two ground states (0 or 1) or any superposition of the two ground states 

(the quantum superposition). A qubit can therefore be represented as  

(1) 

    

where 0  and 1  are the ground states 0 and 1,   and   are complex numbers with 2 2 1   , 

that specify the probability amplitudes of the two ground states. The act of observing (or measuring) a 

qubit projects the quantum system onto one of the ground states. The term 2  is the probability that the 

qubit will be in state 0 when it is observed, and 2  is the probability that it will be in state 1. Hence, a 

qubit encodes the probability that a specific ground state will be seen when an observation takes place, 

rather than encoding the ground states themselves. In order to ensure this probabilistic interpretation 

remains valid, the values for   and   are constrained such that 2 2 1   . 

In recent years, quantum-inspired concepts have been applied to the domain of evolutionary 

computation [18; 10; 11; 25; 26]. Because QIEAs use a quantum representation, it has been suggested 

that they can maintain a good balance between exploration and exploitation, and that they offer 

computational efficiencies as use of a quantum representation can allow the use of smaller population 

sizes than typical evolutionary algorithms [6; 7; 8]. 

 

0 1iq   
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2.1.  Real-valued quantum-inspired evolutionary algorithms 

In the initial literature which introduced the QIEA, a binary representation was adopted, wherein 

each quantum chromosome was restricted to consist of a series of 0s and 1s. The methodology was 

modified to include real-valued vectors by da Cruz et al. [5]. As with binary-representation QIEA, 

real-valued QIEA maintains a distinction between a quantum population and an observed population of, 

in this case, real-valued solution vectors. However the quantum individuals have a different form to those 

in binary-representation QIEA. The quantum population Q(t) is comprised of N quantum individuals (
iq : 

i = 1,2,3,…, N), where each individual i is comprised of G genes (
ijg : j = 1,2,3,…, G). Each of these 

genes consist of a pair of values ( , )ij ij ijq g  , where ,ij ijg    represent the mean and the width of 

a square pulse (Fig. 2). Representing a gene in this manner has a parallel with the quantum concept of 

superposition of states as a gene is specified by a range of possible values, rather than by a single unique 

value. 

The original QIEA algorithms, e.g. [10; 11], are based very closely on physical qubits, but the 

“quantum-inspired” algorithm of da Cruz et al. [5] used in this paper draws less inspiration from quantum 

mechanics since it: 

 does not use the idea of a quantum system (in particular, no qubits); 

 only allows for constructive (not destructive) interference, and that interference is among 

“wave-functions” of different individuals; 

 uses real numbers as weights, rather than the complex numbers which arise in superposition of states 

in physical systems; 

 the probability density functions (PDFs) used (uniform distributions) are not those arising in  

physical systems. 

 

However, the da Cruz et al algorithm does periodically sample from a distribution to get a “classical” 

population, which can be regarded as a wave-function (quantum state) collapsing to a classical state upon 

observation. 

 

Quantum-inspired evolutionary algorithm 

=================================================================== 

Set t = 0 

Initialise Q(t) of N individuals with G genes 

    while t < max t do 

        Create the PDFs (and corresponding CDFs, see equation 4) for each gene locus 

           using the quantum individuals 

        Create a temporary population, denoted E(T), of K real-valued solution vectors 

           by observing Q(t) (via the CDFs) 

        if t = 0 then 

C(t) = E(t) 

           (Note: the population C(T) is maintained between iterations of the algorithm) 

        else 

E(t) = Outcome of crossover between E(t) and C(t) 

           Evaluate E(t) 

           C(t)=K best individuals from E(t)∪C(t) 

        end 

        With the N best individuals from C(t) 

        Q(t+1)=Output of translate operation on Q(t) 

        Q(t+1)=Output of resize operation on Q(t+1) 

        T = t+1 

      end 
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2.1.1.  Initialising the Quantum Population 

A quantum chromosome, which is observed to give a specific solution vector of real-numbers, is 

made up of several quantum genes. The number of genes is determined by the required dimensionality of 

the solution vector. At the start of the algorithm, each quantum gene is initialized by randomly selecting 

a value from within the range of allowable values for that dimension. A gene's width value is set to the 

range of allowable values for the dimension. For example, if the known allowable values for dimension j 

are [-75, 75] then 
ijq  (dimension j in quantum chromosome i) is initially determined by randomly 

selecting a value from this range (say) -50. The corresponding width value will be 150. Hence, 

( 50,150)ijq   . The square pulse need not be entirely within the allowable range for a dimension when 

it is initially created as the algorithm will automatically adjust for this as it executes. The height of the 

pulse arising from a gene j in chromosome i is calculated using 

 

   (2) 

                                                            

where N is the number of individuals in the quantum population. This equation ensures that the 

probability density functions (PDFs) (see next subsection) used to generate the observed individual 

solution vectors will have a total area equal to one. Fig. 2 provides an illustration of a quantum gene 

where N=4. 

2.1.2.  Observing the Quantum Chromosomes 

In order to generate a population of real-valued solution vectors, a series of observations must be 

undertaken using the population of quantum chromosomes (individuals). A pseudo-interference process 

between the quantum individuals is simulated by summing up the square pulses for each individual gene 

across all members of the quantum population. This generates a separate PDF (just the sum of the square 

pulses) for each gene and equation 2 ensures that the area under this PDF is one. Hence, the PDF for gene 

j on iteration t is 

      (3) 

 

where 
ijg  is the square pulse of the thj  gene of the thi  quantum individual (of N). To use this 

information to obtain an observation, the PDF is first converted into its corresponding Cumulative 

Distribution Function (CDF) 

  (4) 

 

 

where 
jU  and 

jL  are the upper and lower limits of the probability distribution. By generating a 

random number r from (0,1) following a specific distribution, the CDF can be used to obtain an 

 

 

 

 

 

 

 

 

 

Fig. 2. A square pulse, representing a quantum gene, with a width of 150, centered on -50. The height of the pulse 

is 0.00166 
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observation of a real number x, where 1( )x CDF r . If the generated value x is outside the allowable 

real valued range for that dimension, the generated value is limited to its allowable boundary value. A 

separate PDF and CDF is calculated for each of the G gene positions. Once these have been calculated, 

the observation process is iterated to create a temporary population with K members, denoted E(t). 

2.1.3. Crossover Mechanism 

The crossover operation takes place between C(t) and the temporary population E(t). This step could 

be operationalized in a variety of ways with [5] choosing to adopt a variant of uniform crossover, without 

an explicit selection operator. After the K crossover operations have been performed, with the resulting 

children being copied into E(t), the best K individuals ( ) ( )C t E t  are copied into C(t). 

2.1.4. Updating the Quantum Chromosomes 

The next step is to update the corresponding width value of the thj  gene. The objective of this 

process is to vary the exploration / exploitation characteristics of the search algorithm, depending on the 

feedback from previous iterations. If the search process is continuing to uncover many new better 

solutions, then the exploration phase should be continued by keeping the widths relatively broad. 

However, if the search process is not uncovering many new better solutions, the widths are reduced in 

order to encourage finer-grained search around already discovered good regions of the solution space. 

There are multiple ways this general approach could be operationalized. 

 

 

 

 

 

 

 

 

 

 

In this study we adjust the quantum probability amplitude by comparing each successive generation's 

best fitness so that the quantum chromosome can produce more promising individuals with higher 

probability in the next generation, i.e. if the best fitness has improved (disimproved) we shrink (enlarge) 

the width in order to improve the local (global) search. Figure 3 illustrates the process in the creation of 

generation from t to t+1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Process in the creation of generation t+1 from t 
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2.2.  QIEA vs Genetic Algorithm 

A number of distinctions between the QIEA above and the GA can be noted. In the GA, the 

population of solutions persists from generation to generation, albeit in a changing form. In contrast, in 

QIEA, the population of solutions in P(t) are discarded at the end of each loop. The described QIEA, 

unlike GA, does not have explicit concepts of crossover or mutation. However, the adaptation of the 

quantum chromosomes in each iteration does embed implicit selection as the best solution is selected and 

is used to adapt the quantum chromosome(s). The crossover and mutation steps are also implicitly 

present, as the adaptation of the quantum chromosome in effect creates diversity, as it makes different 

states of the system more or less likely over time. Another distinction between the QIEA and the GA is 

that the GA operates directly on representations of the solution (the members of the current population of 

solutions), whereas in QIEA the update step is performed on the probability amplitudes of the ground 

states for each qubit making up the quantum chromosome(s). 

 

3. Experimental Design 

Four well-known static benchmark functions drawn from the evolutionary computation literature are 

chosen to test the ability of QIEA to find the global minimum within the search domain. We also test the 

scalability of the QIEA by varying the dimensionality of these benchmark functions, ranging from 100 to 

1000 dimensions. The results are compared to those from canonical GA (CGA). Details of the 

benchmark functions are shown in Fig 4 and Table I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Two dimensional visualization of benchmark functions. 
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Table I Benchmark functions 

f  Func. Name Mathematical representation Range 
*( )if x  

*

ix  

1f  DeJong 
 

[-100,100] 0 0 

2f  Rosenbrock 
 

[-100,100] 0 1 

3f  Rastrigrin 
 

[-100,100] 0 0 

4f  Griewank 

 

[-100,100] 0 0 

 

: DeJong's (Sphere) function is the simplest test function, being continuous, convex and unimodal. 

: Rosenbrock's function is a classic optimization problem. The global optimum is inside a long, 

narrow, parabolic shaped flat valley. To find the valley is trivial, however convergence to the global 

optimum is difficult and hence this problem has been repeatedly used to assess the performance of 

optimization algorithms. 

: Rastrigrin's function is based on function 1 with the addition of cosine modulation to produce many 

local minima. Thus, the test function is highly multimodal if it has two or more local optima. However, 

the location of the minima are regularly distributed. 

: Griewank's function is similar to Rastrigin's function. It has many widespread local minima. 

However, the location of the minima are regularly distributed. 

3.1.  Static test 

The results from the QIEA are benchmarked against those from a binary-valued GA (SGA) and 

against results from a real-valued GA (GEAT). As the concept of a population varies between the GA and 

QIEA, in order to make a fair comparison between the methods, we allow each algorithm to perform a 

fixed number of fitness function evaluations (10,000 in all cases). This aims to give each algorithm the 

same chance to get fitness feedback from the environment. However of course, allowing each algorithm 

the same number of fitness evaluations does not ensure that each will have the same running time. As will 

be observed in the results, whilst using the same fitness function evaluation budget, the QIEA runs 

considerably faster than either version of the GA, demonstrating its run-time efficiency. The parameters 

used for QIEA and GA, selected from sensitivity test, are shown in Table II. 

 

Table II. Optimal Parameter setting in GA and QIEA 

SGA and GEAT 

Generation number 200 

Population size 50 

Mutation rate 0.005 

Crossover rate 0.7 

QIEA 

Generation number 1000 

Population size 10 

Crossover rate 0.1 

Shrinkage factor 0.48 

Enlargement factor 4.5 

Resize base (search bound) / 30 

1f

2f

3f

4f
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3.2.  Dynamic test 

In the dynamic test, we employ the previous benchmark functions and move their central point with 

respect to the global minima randomly every 10 seconds. Fig. 5 and Fig. 6 depict the changing of the 

environment. For example, DeJong's function is set to standard form at t0, as shown in Fig. 5(a). After 10 

seconds, the global minima moves along the axis randomly, and the new optima changes from [0, 0] to 

[2.5, 5] respectively, as shown in Fig. 6(a). 

In this dynamic environment, the object is to find the optimum, and then track it successfully over 

time during the testing period. The overall testing period is 1 minute, i.e. 6 optimizations for each 

algorithm. 

Fig 5 Two dimensional visualization of benchmark functions at start time 

Fig 6 Two dimensional visualization of benchmark functions after 10 seconds 

 

The real-valued quantum-inspired evolutionary algorithm and binary genetic algorithm are examined 

in these experiments. As the environment alters every 10 seconds, the algorithm parameters are adjusted 

to suit this dynamic environment and are shown in table III. 

 

Table III. Optimal Parameter setting in GA and QIEA for dynamic test 

SGA 

Generation number 10 

Population size 5 

Mutation rate 0.005 

Crossover rate 0.7 

QIEA 

Generation number 10 

Population size 10 

Crossover rate 0.1 

Shrinkage factor 0.2 

Enlargement factor 5 

Resize base (search bound) / 30 
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4. Results 

4.1.  Static test 

The results of static test are shown in Tables IV to VII. In all cases, the results are averaged over 30 

runs of each algorithm. The first column lists the minimal (optimal) objective value found during the 30 

runs within the whole population. The second and third column lists the mean and standard deviation for 

the minimal value of 30 runs. The Time column shows the average time to complete each of the 30 runs, 

measured in seconds. 

 

Table IV.    (DeJong) results                    Table V.     (Rosenbrock) results 

Algorithm Best Mean S.D Time(s)  Algorithm Best Mean S.D Time(s) 

Dimension: 100 Dimension: 100 

SGA 7836 9261 1044 6 SGA 1.64e+9 2.41e+9 4.51e+8 7 

GEAT 121703 122161 1697 6 GEAT 2.19e+10 3.28e+10 4.60e+8 6 

QIEA 5663 7268 980.1 2 QIEA 2.38e+8 4.18e+8 9.67e+7 2 

Dimension: 500 Dimension: 500 

SGA 6.01e+5 6.21e+5 1.12e+4 30 SGA 2.08e+11 2.31e+11 1.35e+10 36 

GEAT 1.51e+6 1.54e+6 2.90e+4 12 GEAT 8.44e+11 8.76e+11 2.04e+10 12 

QIEA 5.73e+5 6.25e+5 2.21e+4 3 QIEA 1.96e+11 2.25e+11 1.38e+10 3 

Dimension: 1000 Dimension: 1000 

SGA 1.73e+6 1.81e+6 3.15e+4 77 SGA 7.42e+11 7.71e+11 2.05e+10 77 

GEAT 3.08e+6 3.13e+6 6.79e+4 22 GEAT 1.75e+12 1.82e+12 3.66e+10 22 

QIEA 1.73e+6 1.81e+6 3.72e+4 4 QIEA 7.56e+11 8.41e+11 3.70e+10 4 

 

Table VI.    (Rastrigrin) results                  Table VII.    (Griewank) results 

Algorithm Best Mean S.D Time(s)  Algorithm Best Mean S.D Time(s) 

Dimension: 100 Dimension: 100 

SGA 19250 24242 2546 7 SGA 4.27 5.54 0.50 7 

GEAT 119547 161492 19758 6 GEAT 32.10 37.72 1.88 6 

QIEA 7285 9585 1305 2 QIEA 2.29 2.79 0.24 3 

Dimension: 500 Dimension: 500 

SGA 6.18e+5 6.62e+5 2.24e+4 56 SGA 157.00 167.95 6.73 56 

GEAT 1.43e+6 1.52e+6 1.49e+5 12 GEAT 339.54 384.75 8.85 13 

QIEA 5.69e+5 6.43e+5 2.51e+4 3 QIEA 130.58 155.80 6.51 4 

Dimension: 1000 Dimension: 1000 

SGA 1.77e+6 1.90e+6 5.33e+4 126 SGA 441.58 463.92 9.42 137 

GEAT 3.15e+6 3.16e+6 6.97e+4 22 GEAT 730.80 781.43 20.69 24 

QIEA 1.70e+6 1.82e+6 4.76e+4 5 QIEA 440.59 462.89 9.39 5 

 

Fig. 7(a) and 7(b) illustrate the performance of QIEA against that of the binary and real-valued GA. 

GEAT converges most quickly, but after approximate 3000 to 5000 evaluations, QIEA generally 

outperforms both types of GA. Across all the twelve experiments (four functions times three levels of 

dimensionality), we can see that QIEA achieves or equals the best result in eight experiments. The results 

also indicate that the QIEA performs well as problem dimensionality increases, with the QIEA beating or 

equaling the best GA result on three of the four 1000 dimension experiments. 

Looking at the runtime metrics, it also becomes clear that the the above results are actually a 

conservative assessment of the QIEA's performance. Fig. 8 graphs the runtime for each method on each 

problem instance, across the three levels of dimensionality. This allows assessment of the runtime 

scalability of each algorithm. It is observed that the QIEA has a much lower run time than either of the 

two GA variants with the latter having run times ranging from three to eighteen times those of the QIEA. 

1f 2f

3f 4f
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Fig. 7 Global Search from 100 dimensions to 1000 dimensions 

 

 

Fig. 8 Processing time for benchmark functions 

 

An alternative way of comparing the algorithms relative performance would be to allow them a fixed 

run-time budget. The results obtained suggest that this would favor the QIEA. In summary, the results 

provide support for a claim that the real-valued QIEA could have substantial utility for high dimensional 

real-world problems. 
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4.2.  Dynamic test 

The results of dynamic test are shown in Tables VIII to XI. Similar to static test, the results are 

averaged over 30 runs of each algorithm. The first column lists the minimal (optimal) objective value 

found during the 30 runs within the whole population. The second and third column lists the mean and 

standard deviation for the minimal value of 30 runs. 

 

Table VIII.    (DeJong) results        Table IX.    (Rosenbrock) results 

Algorithm Best Mean S.D  Algorithm Best Mean S.D 

Dimension: 100  Dimension: 100 

SGA 1.74e+5 1.92e+5 8.34e+3  SGA 7.12e+10 8.68e+10 6.25e+9 

QIEA 1.87e+5 2.11e+5 1.12e+4 QIEA 7.63e+10 1.02e+11 1.02e+10 

Dimension: 500  Dimension: 500 

SGA 1.31e+6 1.35e+6 2.28e+4  SGA 6.84e+11 7.27e+11 2.12e+10 

QIEA 1.45e+6 1.49e+6 2.11e+4 QIEA 6.00e+11 7.16e+11 2.55e+10 

Dimension: 1000  Dimension: 1000 

SGA 2.84e+6 2.89e+6 1.94e+4  SGA 1.57e+12 1.64e+12 2.80e+10 

QIEA 2.71e+6 2.75e+6 1.01e+4 QIEA 1.47e+12 1.55e+12 1.23e+10  
Table X.     (Rastrigrin) results        Table XI.     (Griewank) results 

Algorithm Best Mean S.D  Algorithm Best Mean S.D 

Dimension: 100  Dimension: 100 

SGA 1.71e+5 1.96e+5 9.34e+3  SGA 46.97 49.87 1.91 

QIEA 2.01e+5 2.20e+5 1.08e+4 QIEA 53.19 60.56 3.11 

Dimension: 500  Dimension: 500 

SGA 1.32e+6 1.36e+6 2.30e+4  SGA 332.8 341.0 5.40 

QIEA 1.30e+6 1.36e+6 2.21e+4 QIEA 320.6 337.2 7.04 

Dimension: 1000  Dimension: 1000 

SGA 2.82e+6 2.91e+6 3.68e+4  SGA 703.4 727.3 8.7 

QIEA 2.70e+6 2.76e+6 1.04e+4 QIEA 687.7 695.1 1.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Global Search within 1000 dimensions 
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Comparative study of real-valued QIEA 

The results show that although QIEA does not work better than SGA within low dimensions, but it 

outperforms SGA within high dimensions and complicated benchmark functions, in accordance with the 

static test. Fig. 9 illustrates the performance of QIEA against that of the canonical GA for Griewank 

benchmark function. As introduced in Section 3.2, the time interval is 10 seconds; hence it is a 

high-frequency moving environment. At the end of each time window, i.e. at time point 10, 20, 30, 40, 50 

and 60, both QIEA and SGA stop their evolution and start another optimization as a new search. The 

results show that SGA can find better results at time 10, 50 and 60, and QIEA outperforms SGA at time 

20, 30 and 40. The optimization of QIEA is more stable than SGA, i.e. the standard deviation of QIEA is 

smaller than SGA. The parameters of SGA, such as population size and generation number, have to be 

adjusted to suit the time requirement, hence the algorithm cannot work as well as in static environment, 

while quantum genes in QIEA can still work well. This advantage of QIEA can be applied for solving 

real-world problems, such as algorithmic trading. As the financial data changes very quickly the 

processing time of a trading algorithm is critical (see [2; 3; 4] for an illustration of current work applying 

other natural computing algorithms in finance). The QIEA will be examined for those applications in 

future work. We also notice that the SGA evolves more gradually than QIEA over generations within 

each time window. That difference will be further investigated. 

 

4.3.  Sensitivity Analysis 

In order to gain greater insight into the operation of the algorithm, and to guide future applications of 

it, we undertook an analysis by systematically investigating a variety of parameter settings for shrinkage 

and enlargement. The results of the optimal objective value as a function of the enlargement and 

shrinkage parameters are reported in Table XII. The crossover rate is fixed at 0.1, a population size of 10 

and a generation number of 10 are used. Fig. 10 graphs these results. Respect to the global minima 

(63.17), the optimal enlargement factor is 5, and the shrinkage factor is 0.2, hence these parameters were 

used for our dynamic environment tests. 

 

Fig. 10 Sensitivity search for QIEA benchmark test 
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Table XII. Optimal Parameter setting in GA and QIEA 

Enlarge\Shrink 0.1 0.2 0.3 0.4 0.5 

2 75.63 73.20 70.45 76.50 67.35 

3 73.71 67.53 73.74 67.34 71.59 

4 71.54 68.06 66.75 71.56 77.54 

5 77.39 72.20 63.17 68.57 73.71 

6 67.56 70.87 69.51 70.16 67.85 

 

5. Conclusions 

Following earlier claims that QIEAs may offer advantages in high dimensional environments, this 

study tests a real-valued QIEA on a series of benchmark functions of varying dimensionality in order to 

examine its scalability and efficiency. The results are compared with those from a canonical genetic 

algorithm. The comparison shows that the QIEA obtains highly competitive results versus the genetic 

algorithm in static tests, while outperforming the canonical GA in terms of stability in dynamic tests. 

This suggests that QIEA may have substantial utility for real-world high dimensional and dynamic 

problems. 

A particularly interesting avenue of study would be to examine the utility of the QIEA in financial 

trading environments where price / volume data is being generated multiple times per second. For any 

real-time trading systems and pricing models, processing time and efficiency are crucial, especially in 

financial derivatives markets. Future work will target these high-frequency and challenging problems. 

Furthermore, in this paper, the only distribution employed by QIEA is the normal distribution. Future 

work will explore the utility of other distributions to explore their impact on the chromosome evolution 

process.  
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