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Abstract— We present an analysis of an application of Evolu-
tionary Computation to the Sudoku Puzzle. In particular, weare
interested in understanding the locality of the search operators
employed, and the difficulty of the problem landscape. Treating
the Sudoku puzzle as a permutation problem we analyse the
locality of four permutation-based crossover operators, named
One Cycle Crossover, Multi-Cycle Crossover, Partially Matched
Crossover (PMX) and Uniform Swap Crossover. These were
analysed using different crossover rates. Experimental evidence
is found to support the fact that PMX and Uniform Swap
Crossover operators have better properties of locality relative
to the other operators examined regardless of the crossover
rates used. Fitness distance correlation, a well-known measure
of hardness, is used to analyse problem difficulty and the
results are consistent with the difficulty levels associated with
the benchmark Sudoku puzzles analysed.

I. I NTRODUCTION

The concept of a fitness landscape was first introduced
in biology by Wright [17]. This concept has dominated the
way geneticists think about biological evolution and has
been adopted within the Evolutionary Computation (EC)
community. In simple terms, a fitness landscape can be seen
as a plot where each point on the horizontal axis represents
all the genes in an individual corresponding to that point. The
fitness of that individual is plotted as the height against the
vertical axis. Thus, a fitness landscape is a representation
of a search space which may contain peaks, valleys, hills
and plateaus. How an evolutionary algorithm explores and
exploits a fitness landscape is a key element.

In [13], [14], [15] the authors expressed that the locality
of a representation describes how well neighbouring geno-
types corresponds to neighbouring phenotypes. The authors
pointed out that a representation presents high locality if
all neighbouring genotypes correspond to neighbouring phe-
notypes. On the other hand, a representation presents low
locality if some neighbouring genotypes do not correspond
to neighbouring phenotypes. The authors also mentioned that
if a representation has high locality, then we should expect
to see a good performance in evolutionary search whereas
the opposite is true when a representation has low locality.

In his studies, Rothlauf considered the relationship be-
tween genotype-phenotype mapping and the phenotype-
fitness mapping to study locality. In this paper we study
locality by considering the fitness of individuals. To do so,
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Fig. 1. Example of Sudoku problem.

we will use many Sudoku puzzles with different levels of
difficulty (i.e., classified from the source taken1).

The paper is organised as follows. In the following section,
the Sudoku puzzle is presented. Section III presents a litera-
ture review on Locality. In Section IV we describe the opera-
tors used on the Sudoku problem to study locality. Section V
describes fitness distance correlation, a well-known measure
of hardness. Section VI shows the experimental setup used to
conduct our research. In Section VII we present and discuss
our findings and Section VIII draws some conclusions.

II. SUDOKU PROBLEM

Sudoku is an immensely popular, originally Japanese
number placement puzzle, the subject of hundreds of books
and featuring in countless newspapers all over the world.
The game is played on a 9 by 9 grid, where each of the 81
squares can be either blank or filled with an integer between
1 and 9. In Figure 1, we present a typical example of the
Sudoku problem. (Other sizes are possible, as are variations
on the rules but none of this will be discussed here.) The
grid starts mostly empty, and is filled with numbers by the
player. The objective is to complete a Latin square, so that all
rows and columns contain exactly one each of the integers
1 to 9, and that each of the 9 sub-squares also contains one
of each integer. In other words, when a number is placed in
a position, the same number cannot occur in the same row,
column, or sub-square. The problem would be simple enough
if it was not for the presence of a number of fixed positions
which cannot be altered by the player. These fixed numbers
define a particular grid and determine the difficulty of it but
not in a straightforward way: the number of fixed positions

1http://www.websudoku.com/.



have little or no relation to the difficulty, instead certain
fixed positions are more difficult than others. Importantly,
each valid Sudoku grid has a unique solution. So, we are in
the presence of multimodal landscape with only one global
optimum.

All 9 by 9 Sudoku grids that are intended to be solvable
by humans can be solved within seconds by computers,
using standard constraint satisfaction methods (e.g. Knuth’s
“Dancing links” algorithm). Thus, while the Sudoku problem
in general can potentially be very challenging, we are not
aiming to compete with established non-evolutionary meth-
ods, at least not for the standard sizes of Sudoku.

To calculate the fitness of each individual in the popula-
tion, we used the same fitness function described in [5], [9].
The fitness function simply counts whether each integer is
present in each row, column and box. That is, for a9x9 grid
we have a maximum fitness of9 ∗ 9+9 ∗ 9+9 ∗ 9 = 243, so
a fitness can yield between 0 and 243 (this being the global
optimum). Because of the nature of the problem, we decided
to treat it as a permutation problem so, we will use only
operators based on permutations. This will be explained in
detail in Section IV. In the following section we present and
discuss the notion of locality.

III. L OCALITY

In [13], [14], [15], Rothlauf mentioned that the under-
standing of how well neighbouring genotypes corresponds
to neighbouring phenotypes is a key element in evolutionary
search.

To study locality, it is necessary to define a metric on the
search spaceΦ. In a genotype-phenotype mapping represen-
tation, it is clear that we are in the presence of two search
spaces, whereΦg is the genotypic search space andΦp is the
phenotypic search space. Now, based on a defined metric we
can quantify how different or similar two individuals are. In
his work, Rothlauf mentioned that for two different search
spaces (e.g., genotypic and phenotypic search space) it is
necessary to define two different metrics. In our work we
will use the same notion, but at the genoytpe-fitness level.
In Section IV, we will further discuss this.

The author distinguished two types of locality: low and
high locality. The author pointed out that a representation
presents high locality if all neighbouring genotypes corre-
spond to neighbouring phenotypes. On the other hand, a
representation presents low locality if some neighbouring
genotypes do not correspond to neighbouring phenotypes.
The author also mentioned that a representation that has high
locality is necessary for an efficient evolutionary search.

Rothlauf mentioned that if a representation shows high
locality, then any search operator has the same effects in
both the genotype and phenotype space. It is clear then that
the difficulty of the problem remains unchanged. According
to Rothlauf, having high locality is sufficient for an efficient
search.

This, however, changes when a representation has low
locality. To explain how low locality affects evolution,
Rothlauf considered three different categories of hardness

(these categories were taken from a well-known measure of
hardness presented in [7]. In Section V, we will discuss it in
detail). These categories are:

• easy, in which fitness increases as the global optimum
approaches,

• difficult, for which there is no correlation between
fitness and distance and

• misleading, in which fitness tends to increase with the
distance from the global optimum.

If a given problem lies in the first category (i.e., easy),
a low locality representation will change this situation by
making it more difficult and now, the problem will lie in
the second category. According to the author, this is due to
low locality randomises the search. To explain this, Rothlauf
mentioned that representations with low locality lead to
uncorrelated fitness landscapes so, it is difficult for heuristics
to extract information.

If a problem lies in the second category, this type of
representation does not change the difficulty of the problem.
The author pointed out that there are representations that can
convert a problem from difficult (class two) to easy (class
one). However, according to the author, there are only few
representations that have this effect. The same happens for
problems lying in class three.

Finally, if the problem lies in the third category, a rep-
resentation with low locality will transform it and now, the
problem will lie in the second category. That is, the problem
is less difficult because the search has become more random.
As it can be seen, this is a mirror image of a problem lying
in the first category and using a representation that has low
locality.

In this paper, we will focus our attention on locality of
a permutation-based landscape as realised in the Sudoku
puzzle, and we will measure locality by paying attention
to the effects that changes at genotype level have on the
fitness of solutions. Changes at the genotype-level arise
due to the crossover operators employed, in this case they
are permutation-based operators, named Partially Matched
Crossover, One and Multi-cycle Crossover, and Uniform
Swap Crossover. These will be introduced and explained
in Section IV. When we apply one of these permutation
operators we can measure the swapping distance that oc-
curs. Similarly we measure the change in fitness for each
swapping distance that can occur. To do both things, we
take into account the best individual of the population per
generation. We can then determine experimentally the impact
that different swap distances have on the change in fitness.
In a representation with high-locality we would expect
that the smaller genotypic swapping distances correspond
with smaller fitness distances, and by extension that larger
genotypic swap distances result in proportionately larger
fitness distances. In Section VII we will see what kind of
locality each of the operators present and how this affects
evolutionary search.



IV. GENETIC OPERATORS

We will be treating each individual in the population as
a sudoku grid (more details about the implementation will
be further discussed in Section VI). Figure 1 depicts this
idea. We have initialised our individuals by filling the empty
squares with the remaining missing numbers, in the range 1
to 9, per row.

Given these conditions, it is clear that the sudoku puzzle
can be treated as a permutation/swap problem. So, for com-
parison purposes and to study the type of locality present in
this problem, we have used four different types of crossover
for permutations, named one cycle crossover, multi cycle
crossover [10], uniform swap crossover and finally, Partially
Matched Crossover (PMX) [6]. These work as follows:

• One cycle crossover. This operator works as follows:
1) Determine the cycle that is defined by the cor-

responding positions of elements between two
parents.

2) Copy the elements defined in the cycle to an
offspring with the positions corresponding to those
of the parent.

3) Determine the remaining elements for the off-
spring by deleting those symbols that are already
in the cycle from the other parent.

4) Finally, fulfill the offspring with the remaining ele-
ments. Figure 3 illustrates the fours steps involved
in Cycle crossover.

• Multi cycle crossover. This type of crossover is very
similar to one cycle crossover. The main difference is
that multi cycle crossover considers all possible cycles.

• Uniform swap crossover. Uniformly (50%) swaps el-
ements, ensuring that the resulting offspring does not
have an element repeated.

• PMX crossover. This operator works as follows:
1) Select a substring uniformly in two parents at

random. These substrings are called mapping sec-
tions.

2) Exchange these two substrings to obtain a partial
offspring.

3) Determine the mapping relationship between two
mapping sections.

4) Finally, legalise the offspring with the mapping re-
lationship. Figure 2 shows the four steps involved
in PMX crossover.

In his studies, Rothlauf defined locality within the frame
of fitness distance correlation. This measure of hardness will
be presented in the following section.

V. FITNESS DISTANCE CORRELATION

In [7], [8], Jones proposed an heuristic calledfitness
distance correlation(fdc) using the typical GA representation
(i.e., the bitstring representation) and successfully tested it in
several problems.

The idea of usingfdc as an heuristic method, as stated
in [7], [8], was to create an algebraic metric that can give
enough information to determine the difficulty (for a GA)

of a given problem when the global optimum is known in
advance. To achieve this, Jones explained that it is necessary
to consider two main elements:

1) To determine the distance between a potential solution
and the global optimum (when using a bitstring repre-
sentation, this is accomplished by using the Hamming
distance) and

2) To calculate the fitness of the potential solution.

With these elements in hand, one can easily compute
the fdc coefficient using Jones’ calculation [7] thereby, in
principle, being able to determine in advance the hardness
of a problem.

The idea behindfdc was to consider fitness functions as
heuristic functions and to interpret their results as indicators
of the distance to the nearest optimum of the search space.
fdc is an algebraic measure to express the degree to which
the fitness function conveys information about distance to the
searcher.

The definition of fdc is quite simple: given a setF =
{f1, f2, ..., fn} of fitness values ofn individuals and the
corresponding setD = {d1, d2, ..., dn} of distances of such
individuals from the nearest optimum,fdc is given by the
following correlation coefficient:

fdc =
CFD

σF σD

, (1)

where:

CFD =
1

n

n∑

i=1

(fi − f)(di − d)

is the covariance ofF and D, and σF , σD, f and d are
the standard deviations and means ofF andD, respectively.
Then individuals used to computefdc are obtained via some
form of random sampling.

According to [7] a problem can be classified in one of
three classes, depending on the value offdc:

1) misleading(fdc ≥ 0.15), in which fitness tends to
increase with the distance from the global optimum;

2) difficult (−0.15 < fdc < 0.15), for which there is no
correlation between fitness and distance; and

3) easy(fdc ≤ −0.15), in which fitness increases as the
global optimum approaches.

The threshold interval [-0.15, 0.15] was empirical deter-
mined by Jones. In [7], Jones also proposed to use scatter
plots (distance versus fitness) whenfdc does not give enough
information about the hardness of a problem.

There are some known weakness in thefdc as a measure
of problem hardness [1],[12]. However, it is fair to say that
the method has been generally very successful, including the
use of tree-like structure representation [2], [3], [4], [11],
[16].

This measure of hardness will help us to determine the
difficulty of solving a given sudoku puzzle. We will further
discuss this in Section VII.
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TABLE I

PARAMETERS USED TO CARRY OUT OUR EXPERIMENTS.

Parameter Value
Length of the genome 81
Population Size 1000
Generations 100
Crossover Rates 1, 0.5
Tournament Size 7
Independent Runs 100

VI. EXPERIMENTAL SETUP

We have used six different sudoku puzzles of
different level of difficulty. These were taken from
http://www.websudoku.com/. Two of them were classified as
easy, two as medium and finally, two as difficult.

The experiments were conducted using a GA with tourna-
ment selection, run for 100 generations. To obtain meaninful
results, we performed 100 independent runs for each of
operators described in Section IV. Runs were stopped when
the maximum number of generations was reached. The
parameters we have used are summarised in Table I.

Each individual in the population was treated as a “su-
doku shape”. That is, an individual was treated as a two-
dimensional array (Figure 1 depicts this idea). Each operator
described in Section IV was applied per row. For each row,
we filled them with the missing numbers in the range [1,9]
at random. To do so, we took in consideration the fixed
numbers.

VII. R ESULTS AND DISCUSSION

In Tables III, IV, V and VI we show the results for the
one cycle crossover, multi cycle crossover, uniform swap
crossover and PMX and setting the crossover rate at 0.5
(second column) and crossover rate at 1 (third column),
respectively. In these tables we report the number of runs out
of 100 independent runs that were able to solve the problem
(i.e., fitness = 243) and those runs that got stuck in local
optima (e.g., fitness ={239,241})2.

Interestingly,fdc more less predicted the difficulty of the
problem. That is, for the easy and medium problems the

2Note that the sum of these can be different of 100 because there are
few runs stuck in other local optima, indicating that the sudoku problem is
multimodal.



coefficient offdc lies between -0.31 and -0.34 so, according
to this measure of hardness, these categories should be
equally difficult to be solved by the GA. However, this is
not true as can be seen in Tables III, IV, V and VI, where
it can be checked that for the medium difficulty level, the
operators descrided in Section IV find those problems more
difficult compared to the easy problems. Now, for the difficult
problems, the coefficient offdc varies from the easy and
medium problem. In these problems,fdc increases indicating
that the problem is in fact more difficult compared to easy
and medium levels. This is in fact reflected in the results
found by the GA as shown in the last two rows of Tables
III, IV, V and VI .

From the results found by the operators, it is quite clear
that the operators with best performance in terms of finding
the solution are uniform swap crossover (see Table V) and
PMX (see Table VI). The opposite happens when one cycle
crossover (see Table III) and multi cycle crossover (see Table
IV) are used.

We are interested in seeing how these results are obtained
by the genetic operators within the frame of locality. From
the results reported in Tables III, IV, V and VI , it is clear
that the Sudoku problem is an interesting benchmark due
to its features of multimodality. Also, it is interesting to
see how most the runs end up at fitnesses 239, 241 (these
being local optima) or at fitness 243 (global optimum). So,
to analyse how locality is present in this problem and to do
fair comparisons, we recorded 100 runs that end up at these
values for the four crossover types presented and explained
in Section IV and using an easy problem (i.e., Easy 1) and
setting two crossover rates ={0.5, 1.0}.

In Figures 4 and 5, we report the swap distance from the
best individual to the optimum solution (y axis) vs. fitnesses
values (x axis), setting crossover rate at 0.5 and at 1, respec-
tively. We show this relationship using one cycle crossover
(top left of Figures 4 and 5) and multi cycle crossover (top
right of Figures 4 and 5), where both operators showed
poor performance for all the used sudoku problems. When
we compare these plots with those using PMX crossover
(bottom left of Figures 4 and 5) and uniform swap crossover
(bottom right of Figures 4 and 5), we can see how there is
a clear indication that the last two operators explore more
points in the search space until finding the global solution.
In other words, these operators perform a smoother search.
This is even more evident if we focus our attention on the
bottom right corner of each plot in both Figures 4 and 5. For
instance, for one cycle crossover and multi cycle crossover,
there are more points close to the global optimum compared
to PMX and uniform crossover. What is also interesting to
see is that by using different crossover rates for each of the
operators used, the search performance remains almost the
same. We can also see that the locality of the crossover
operators remains the same by altering the crossover rates
used in our experiments. For instance, we can see that high
locality is present when PMX and uniform swap mutation
(bottom of Figures 4 and 5) irrespective of the crossover

TABLE II

FITNESSDISTANCE CORRELATION.

Difficulty fdc

Easy 1 -0.33
Easy 2 -0.34
Medium 1 -0.31
Medium 2 -0.34
Hard 1 -0.27
Hard 2 -0.23

rate used (i.e., 0.5, 1.0).

VIII. C ONCLUSIONS

How an evolutionary algorithm explores and exploits the
search space is a key element in any EC paradigm. Rothlauf
put forward the concept of locality: how well neighbour-
ing genotypes corresponds to neighbouring phenotypes. The
same principle can be applied at the genotype-fitness level.
Rothlauf also mentioned that there are two forms of locality:
high and low locality. It is believed that high locality is
sufficient for an algorithm to efficiently explore the search
space.

In this work, we have studied four different crossover op-
erators, named One Cycle Crossover, Multi Cycle crossover,
Partially Matched Crossover (PMX) and Uniform Swap
Crossover and used two different crossover rates (i.e.,0.5
and1.0). PMX and Uniform Swap Crossover, both showing
high locality irrespective of the crossover rate used, shown
to be efficient in finding the global solution on a multimodal
landscape (many sudoku puzzles of different levels of diffi-
culty).
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Fig. 5. Swap distance between the best individual per generation and the global solution versus fitnesses using an easy Sudoky puzzle (i.e., easy 1) and
setting crossover rate at 1.0.


