On the Effects of Locality in a
Permutation Problem: The Sudoku Puzzle
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Abstract— We present an analysis of an application of Evolu- 6
tionary Computation to the Sudoku Puzzle. In particular, we are
interested in understanding the locality of the search opeators
employed, and the difficulty of the problem landscape. Tredahg 5
the Sudoku puzzle as a permutation problem we analyse the 84
locality of four permutation-based crossover operators, amed
One Cycle Crossover, Multi-Cycle Crossover, Partially Mathed
Crossover (PMX) and Uniform Swap Crossover. These were
analysed using different crossover rates. Experimental edence
is found to support the fact that PMX and Uniform Swap 4
Crossover operators have better properties of locality redtive 5
to the other operators examined regardless of the crossover
rates used. Fitness distance correlation, a well-known meare 5 8
of hardness, is used to analyse problem difficulty and the
results are consistent with the difficulty levels associate with
the benchmark Sudoku puzzles analysed. Fig. 1. Example of Sudoku problem.
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. INTRODUCTION : ; .
we will use many Sudoku puzzles with different levels of

The concept of a fitness landscape was first introducdlfficulty (i-e., classified from the source takgn .

in biology by Wright [17]. This concept has dominated the The paper is orgqnlsed as follows. Ip the following sect-|on,
way geneticists think about biological evolution and hafh® Sudoku puzzle is presented. Section Ill presents @iter
been adopted within the Evolutionary Computation (EC{U'e review on Locality. In Section IV we descrlb_e the opera-
community. In simple terms, a fitness landscape can be s¢kS used on the Sudoku problem to study locality. Section V
as a plot where each point on the horizontal axis represeﬁ;@scribes fitness distance correlation, a well-known nreasu
all the genes in an individual corresponding to that poihe T of hardness. Section VI shows_ the experimental setup L!SGd to
fitness of that individual is plotted as the height against thconduct our research. In Section VIl we present and discuss

vertical axis. Thus, a fitness landscape is a representatiBh’ findings and Section VIil draws some conclusions.

of a search space which may contain peaks, valleys, hills

and plateaus. How an evolutionary algorithm explores and . ) o
exploits a fitness landscape is a key element. Sudoku is an immensely popular, originally Japanese

In [13], [14], [15] the authors expressed that the Iocalit)?‘“mber plqcement puzzle, the subject of hundreds of books
of a representation describes how well neighbouring gengNd féaturing in countless newspapers all over the world.
types corresponds to neighbouring phenotypes. The authdfd® 9ame is played on a 9 by 9 grid, where each of the 81
pointed out that a representation presents high locality §uares can be either blank or filled with an integer between
all neighbouring genotypes correspond to neighbouring ph(lz and 9. In Figure 1, we .present a WP'Ca' example qf t_he
notypes. On the other hand, a representation presents ﬁ}ddoku problem. (Other Sizes are poss!ble, as are varstion
locality if some neighbouring genotypes do not correspon@? the rules but none of this will be discussed here.) The
to neighbouring phenotypes. The authors also mentioned tfid starts mostly empty, and is filled with numbers by the

if a representation has high locality, then we should expeB{ayer' The objective is to complete a Latin square, so that a

to see a good performance in evolutionary search whereZ¥/s and columns contain exactly one each of the integers

the opposite is true when a representation has low Iocality17 t 9, apd that each of the 9 sub-squares also F:ontalns one
of each integer. In other words, when a number is placed in

In his studies, Rothlauf considered the relationship be- ion. th b ; in th
tween genotype-phenotype mapping and the phenotypae-pos' ion, the same number cannot occur in the same row,

fitness mapping to study locality. In this paper we Stud)zcolumn,or sub-square. The problem would be simple enough

. . . Lo it was not for the presence of a number of fixed positions
locality by considering the fitness of individuals. To do SO, hich cannot be altered by the player. These fixed numbers

define a particular grid and determine the difficulty of it but
not in a straightforward way: the number of fixed positions

Il. SUDOKU PROBLEM
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have little or no relation to the difficulty, instead certain(these categories were taken from a well-known measure of

fixed positions are more difficult than others. Importantlyhardness presented in [7]. In Section V, we will discuss it in

each valid Sudoku grid has a unique solution. So, we are ifetail). These categories are:

the presence of multimodal landscape with only one global

optimum. « easy in which fithess increases as the global optimum
All 9 by 9 Sudoku grids that are intended to be solvable  approaches,

by humans can be solved within seconds by computers,s difficult, for which there is no correlation between

using standard constraint satisfaction methods (e.g. Kst fitness and distance and

“Dancing links” algorithm). Thus, while the Sudoku problem « misleading in which fitness tends to increase with the

in general can potentially be very challenging, we are not distance from the global optimum.

aiming to compete with established non-evolutionary meth- . o ] )
ods, at least not for the standard sizes of Sudoku. It a given problem lies in the first category (i.e., easy),

To calculate the fitness of each individual in the popula@ oW locality representation will change this situation by
tion, we used the same fitness function described in [5], [9?@king it more difficult and now, the problem will lie in
The fitness function simply counts whether each integer [§€ Second category. According to the author, this is due to
present in each row, column and box. That is, frAa grid low locality randomises the search. To explain this, Rathla
we have a maximum fitness 6f 9+ 99+ 99 = 243 so Mentioned that representations with low locality lead to
a fitness can yield between 0 and 243 (this being the globghcorrelated fitness landscapes so, it s difficult for reties
optimum). Because of the nature of the problem, we decidd@ extract information.
to treat it as a permutation problem so, we will use only If a problem lies in the second category, this type of
operators based on permutations. This will be explained ipresentation does not change the difficulty of the problem
detail in Section V. In the following section we present andrhe author pointed out that there are representations émat ¢
discuss the notion of locality. convert a problem from difficult (class two) to easy (class
one). However, according to the author, there are only few

I1l. LOCALITY . .
. representations that have this effect. The same happens for
In [13], [14], [15], Rothlauf mentioned that the under-y.onlems lying in class three.

standing of how well neighbouring genotypes corresponds

to neighbouring phenotypes is a key element in evolutionar 4 X . X !
search. esentation with low locality will transform it and now, the

To study locality, it is necessary to define a metric on th_groblem_vx(ill lie in the second category. That is, the problem
search spacé. In a genotype-phenotype mapping represed§ Igss difficult becau§e _the se_arch _has become more ran_dom.
tation, it is clear that we are in the presence of two seardh® it ¢an be seen, this is a mirror image of a problem lying
spaces, wher@, is the genotypic search space abglis the in thg first category and using a representation that has low
phenotypic search space. Now, based on a defined metric {#&211LY-
can quantify how different or similar two individuals are. I In this paper, we will focus our attention on locality of
his work, Rothlauf mentioned that for two different searcka permutation-based landscape as realised in the Sudoku
spaces (e.g., genotypic and phenotypic search space) itpiszzle, and we will measure locality by paying attention
necessary to define two different metrics. In our work wéo the effects that changes at genotype level have on the
will use the same notion, but at the genoytpe-fitness levdliness of solutions. Changes at the genotype-level arise
In Section 1V, we will further discuss this. due to the crossover operators employed, in this case they

The author distinguished two types of locality: low andare permutation-based operators, named Partially Matched
high locality. The author pointed out that a representatioBrossover, One and Multi-cycle Crossover, and Uniform
presents high locality if all neighbouring genotypes cerreSwap Crossover. These will be introduced and explained
spond to neighbouring phenotypes. On the other hand,im Section IV. When we apply one of these permutation
representation presents low locality if some neighbouringperators we can measure the swapping distance that oc-
genotypes do not correspond to neighbouring phenotypesurs. Similarly we measure the change in fitness for each
The author also mentioned that a representation that has higwapping distance that can occur. To do both things, we
locality is necessary for an efficient evolutionary search. take into account the best individual of the population per

Rothlauf mentioned that if a representation shows higbeneration. We can then determine experimentally the itnpac
locality, then any search operator has the same effects timat different swap distances have on the change in fitness.
both the genotype and phenotype space. It is clear then that a representation with high-locality we would expect
the difficulty of the problem remains unchanged. Accordinghat the smaller genotypic swapping distances correspond
to Rothlauf, having high locality is sufficient for an effioie with smaller fitness distances, and by extension that larger
search. genotypic swap distances result in proportionately larger

This, however, changes when a representation has Idithess distances. In Section VIl we will see what kind of
locality. To explain how low locality affects evolution, locality each of the operators present and how this affects
Rothlauf considered three different categories of harslnesvolutionary search.

Finally, if the problem lies in the third category, a rep-



IV. GENETIC OPERATORS of a given problem when the global optimum is known in
We will be treating each individual in the population asdvance. To achieve this, Jones explained that it is negessa

a sudoku grid (more details about the implementation will0 consider two main elements:
be further discussed in Section VI). Figure 1 depicts this 1) To determine the distance between a potential solution

idea. We have initialised our individuals by filling the empt and the global optimum (when using a bitstring repre-
squares with the remaining missing numbers, in the range 1  sentation, this is accomplished by using the Hamming
to 9, per row. distance) and

Given these conditions, it is clear that the sudoku puzzle 2) To calculate the fitness of the potential solution.

can be treated as a permutation/swap problem.. So, for COM\njith these elements in hand, one can easily compute
parison purposes and to study the type of locality present jfe f4c coefficient using Jones’ calculation [7] thereby, in

this problem,. we have used four different types of CrO_SSOV?Jrrinciple, being able to determine in advance the hardness
for permutations, named one cycle crossover, multi cycl

. ) Y6 a problem.
crossover [10], uniform swap crossover and finally, Paytial

The idea behinddc was to consider fitness functions as
Matched Crossover (PMX) [6]. These work as follows: heuristic functions and to interpret their results as iatiics

« One cycle crossover. This operator works as follows: ¢ the distance to the nearest optimum of the search space.

1) Determine the cycle that is defined by the corfdc is an algebraic measure to express the degree to which
responding positions of elements between twene fitness function conveys information about distancé¢o t
parents. searcher.

2) Copy the elements defined in the cycle to an The definition offdc is quite simple: given a sef =
offspring with the positions corresponding to thoser 7, £, .. £.} of fitness values of: individuals and the
of the parent. corresponding seb = {d,,ds, ...,d,} of distances of such

3) Determine the remaining elements for the offyhgividuals from the nearest optimurfdc is given by the

spring by deleting those symbols that are alreadi|jowing correlation coefficient:
in the cycle from the other parent.

4) Finally, fulfill the offspring with the remaining ele- Crp
ments. Figure 3 illustrates the fours steps involved fde =
in Cycle crossover.

« Multi cycle crossover. This type of crossover is verpvhere: .
similar to one cycle crossover. The main difference is 1 - =
that multi cycle crossover considers all possible cycles. Crp = Z(fi — Hidi—d)
o Uniform swap crossover. Uniformly (50%) swaps el-
ements, ensuring that the resulting offspring does ng§ the covariance of and D, and or, op, f andd are
have an element repeated. the standard deviations and meansFoéind D, respectively.
« PMX crossover. This operator works as follows: Then individuals used to compufec are obtained via some

1) Select a substring uniformly in two parents aform of random sampling.
random. These substrings are called mapping sec-According to [7] a problem can be classified in one of
tions. three classes, depending on the valuef é¢:

2) Exchange these two substrings to obtain a partial 1) misleading(fdc > 0.15), in which fitness tends to

3 (E)ffs{prlng. th . lationshio bet N increase with the distance from the global optimum;
) Determine the mapping relationship between tWo 5y itsicuit (—0.15 < fde < 0.15), for which there is no

mapping sec_tlons. . ) . correlation between fithess and distance; and
4) Finally, legalise the offspring with the mapping re- 3) easy(fdc < —0.15), in which fitness increases as the
lationship. Figure 2 shows the four steps involved global optﬁnum ap;oroaches

in PMX crossover.

In his studies, Rothlauf defined locality within the frame .The threshold interval [-0.15, 0.15] was empirical deter-
i ined by Jones. In [7], Jones also proposed to use scatter

of fitness distance correlation. This measure of hardnes Wi ) ; ,
be presented in the following section. plots (dlgtance versus fithess) whelis does not give enough
information about the hardness of a problem.
V. FITNESS DISTANCE CORRELATION There are some known weakness in ftie as a measure

In [7], [8], Jones proposed an heuristic calléithess of problem hardness [1],[12]. However, it is fair to say that
distance correlatiorffdc) using the typical GA representationthe method has been generally very successful, includiag th
(i.e., the bitstring representation) and successfulliete@ in  use of tree-like structure representation [2], [3], [4]1]1
several problems. [16].

The idea of usingdc as an heuristic method, as stated This measure of hardness will help us to determine the
in [7], [8], was to create an algebraic metric that can givelifficulty of solving a given sudoku puzzle. We will further
enough information to determine the difficulty (for a GA)discuss this in Section VII.

1)
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Step 1. Select subtrings at random Step 3. Determine the mapping relationship

Parent 1 [2]4]3[5]8[6]1]7]9] i) sesl gen?
Parent2  |4[3]2[1]7]5]6[8]9]

Step 2. Exchange substring between parents Step 4. Legalise offspring

Partial

Oafrfsl;ringl [2]3]2]1]7]6]1]7]9] Offspring 1 |43 ]2]1]7]6]5]8]9]
ottpring2 [+[4]3]5[8]5[e[8]9] Offepring2 [2[4]3]s[8]1]6]7]9]

Fig. 2. PMX Crossover, step by step.

Step 1. Determine the cycle Step 3. Determine the remaining elements
Parent 1 ‘1‘2‘3‘4‘5‘6‘7‘8‘9‘
Parent2 |4 [1[2]8]7]6]9]3]5] Paent2 | | | | |7]6]9] 5]

1—4—>8—>3-—>2—1

Step 2. Copy the elements defined in the cycle Step 4. Fulfill the offspring
Partial
offspring |1]2[3]4] | | [8] | oftspring  [1]2[3]4]7[6 [0 [8]5]

Fig. 3. Cycle Crossover, step by step.

TABLE |

Each individual in the population was treated as a “su-
PARAMETERS USED TO CARRY OUT OUR EXPERIMENTS

doku shape”. That is, an individual was treated as a two-

[ Parameter [ Value | dimensional array (Figure 1 depicts this idea). Each operat
Length of the genomd 81 described in Section IV was applied per row. For each row,
Population Size 1000 we filled them with the missing numbers in the range [1,9]
Generations 100 at random. To do so, we took in consideration the fixed
Crossover Rates 1,05 numbers.

Tournament Size 7
Independent Runs | 100 VIl. RESULTS AND DISCUSSION
In Tables IlI, 1V, V and VI we show the results for the

one cycle crossover, multi cycle crossover, uniform swap
crossover and PMX and setting the crossover rate at 0.5
We have used six different sudoku puzzles ofSecond column) and crossover rate at 1 (third column),
different level of difficulty. These were taken from respectively.Inthese tables we report the number of rubs ou
http://Awww.websudoku.comiwo of them were classified as 0f 100 independent runs that were able to solve the problem
easy, two as medium and finally, two as difficult. (i.e:, fitness = 243) and those runs that got stuck in local
The experiments were conducted using a GA with tourn@Ptima (e.g., fitness £239,241)% -
ment selection, run for 100 generations. To obtain meahinfu nterestingly,fdc more less predicted the difficulty of the
results, we performed 100 independent runs for each Bfoblem. That is, for the easy and medium problems the
operators described in Section IV. Runs were stopped WherkNote that the sum of these can be different of 100 because ter

the maximum number of generauong Wa_s reached. Th@v runs stuck in other local optima, indicating that the aludproblem is
parameters we have used are summarised in Table I. multimodal.

V1. EXPERIMENTAL SETUP



TABLE Il

coefficient offdc lies between -0.31 and -0.34 so, according FITNESSDIS TANCE CORRELATION

to this measure of hardness, these categories should be

equally difficult to be solved by the GA. However, this is [ Difficulty [ fdc |
not true as can be seen in Tables IllI, IV, V and VI, where Easy 1 2033
it can be checked that for the medium difficulty level, the Easy 2 -0.34
operators descrided in Section IV find those problems more Medium 1| -0.31
difficult compared to the easy problems. Now, for the difficul Medium 2 | -0.34
problems, the coefficient ofdc varies from the easy and :g;g; 8%

medium problem. In these problenfd¢ increases indicating
that the problem is in fact more difficult compared to easy
and medium levels. This is in fact reflected in the result; .

. .e., 0.5, 1.0).
found by the GA as shown in the last two rows of Tablesate used (i.e., 0.5, 1.0)

1, 1IvV, V and VI . VIIl. CONCLUSIONS

From the results found by the operators, it is quite clear oy an evolutionary algorithm explores and exploits the
that the operators with best performance in terms of finding, 5,cn space is a key element in any EC paradigm. Rothlauf
the solution are uniform swap crossover (see Table V) arith forward the concept of locality: how well neighbour-
PMX (see Table VI). The opposite happens when one cyc|gg genotypes corresponds to neighbouring phenotypes. The
crossover (see Table 1) and multi cycle crossover (sedeTabygme principle can be applied at the genotype-fitness level.
IV) are used. Rothlauf also mentioned that there are two forms of locality

We are interested in seeing how these results are obtaingigh and low locality. It is believed that high locality is
by the genetic operators within the frame of locality. Fronsufficient for an algorithm to efficiently explore the search
the results reported in Tables I, IV, V and VI , it is clearspace.
that the Sudoku problem is an interesting benchmark duen this work, we have studied four different crossover op-
to its features of multimodality. Also, it is interesting toerators, named One Cycle Crossover, Multi Cycle crossover,
see how most the runs end up at fitnesses 239, 241 (themgrtially Matched Crossover (PMX) and Uniform Swap
being local optima) or at fitness 243 (global optimum). SoCrossover and used two different crossover rates (i.5.,
to analyse how locality is present in this problem and to dand1.0). PMX and Uniform Swap Crossover, both showing
fair comparisons, we recorded 100 runs that end up at thelsigh locality irrespective of the crossover rate used, show
values for the four crossover types presented and explainggbe efficient in finding the global solution on a multimodal
in Section IV and using an easy problem (i.e., Easy 1) andndscape (many sudoku puzzles of different levels of diffi-
setting two crossover rates .5, 1.0}. culty).

In Figures 4 and 5, we report the swap distance from the
best individual to the optimum solutiory @xis) vs. fithesses
values { axis), setting crossover rate at 0.5 and at 1, respec-The authors would like to thank Julian Togelius for his
tively. We show this relationship using one cycle crossoveprevious collaboration. The authors would like to thank the
(top left of Figures 4 and 5) and multi cycle crossover (tofNCRA group for their valuable comments on the paper. This
right of Figures 4 and 5), where both operators showegublication has emanated from research conducted with the
poor performance for all the used sudoku problems. Whéinancial support of Science Foundation Ireland.
we compare these plots with those using PMX crossover
(bottom left of Figures 4 and 5) and uniform swap crossover
(bottom right of Figures 4 and 5), we can see how there ig1] M. Clergue and P. Collard. GA-Hard Functions Built by Caination

a clear indication that the last two operators explore more ©f Trap Functions. In D. B. Fogel, M. A. El-Sharkawi, X. Yao,
P P G. Greenwood, H. Iba, P. Marrow, and M. Schackleton, editBEsC

points in the search space until finding the global solution.  2002: proceedings of the 2002 Congress on Evolutionary @tap
In other words, these operators perform a smoother search. tion, pages 249-254. IEEE Press, 2002.

This is even more evident if we focus our attention on theldl E- Galvan-Lopez An Analysis of the Effects of Neutrality on Problem

. . . Hardness for Evolutionary Algorithms PhD thesis, Department
bottom right corner of each plot in both Figures 4 and 5. For Computing and Electronic Systems, University of Esseijtéd

instance, for one cycle crossover and multi cycle crossover Kingdom, 2008.
there are more points close to the global optimum comparel§] E- Galvan-Lopez, S. Dignum, and R. Poli. The Effects@rinstant

- . . . Neutrality on Performance and Problem Hardness in GP. In NkilQ
to PMX and uniform crossover. What is also interesting t0 | \anneschi, S. Gustafson, A. I. E. Alcazar, 1. D. Falco, A@oppa,

see is that by using different crossover rates for each of the and E. Tarantino, editor&SuroGP 2008 - 11th European Conference
operators used, the search performance remains almost the on Genetic Programmingvolume 4971 ofLNCS pages 312-324,
W | that the | lit f th Napoli, Italy, 26—28 Mar. 2008. Springer.

Same. Vve can also see thal the locality of the CroSSOVEh) e Galvan-Lopez and R. Poli. Some Steps Towards Unaeding
operators remains the same by altering the crossover rates How Neutrality Affects Evolutionary Search. In T. P. Rursars,
used in our experiments. For instance, we can see that high H-G. Beyer, E. Burke, J. J. Merelo-Guenos, L. D. Whitland

| lity i h PMX d if . X. Yao, editors,Parallel Problem Solving from Nature (PPSN IX).
ocality Is present when and uniform swap mutation 9th International Conferencevolume 4193 ofLNCS pages 778-787,

(bottom of Figures 4 and 5) irrespective of the crossover Reykjavik, Iceland, 9-13 Sept. 2006. Springer-Verlag.
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TABLE Il

ONE CYCLE CROSSOVER NUMBER OF RUNS ENDING UP AT FITNESSE239, 241 (OCAL OPTIMA) AND 243 (GLOBAL OPTIMUM). AVERAGE NUMBER
OF GENERATIONS REQUIRED TO SOLVE THE PROBLEM ARE SHOWN WITNIPARENTHESIS

Crossover Rate = 0.5 Crossover Rate = 1.0
Fit. 239 Fit. 241  Fit. 243  Avg. Fit] Fit. 239 Fit. 241 Fit. 243 Avg. Fit,
Easy 1 28 27 5(39.40) 238.58 24 26 4 (42.19) 238.62
Easy 2 18 16 4 (61.50) 237.61 19 18 3(66.83) 237.72
Medium 1 22 11 0 (NA) 237.28 20 12 0 (NA) 229.43
Medium 2 25 13 1(69.00) 237.75 21 10 0 (NA) 227.53
Hard 1 26 6 0 (NA) 237.37 25 4 0 (NA) 228.75
Hard 2 17 10 0 (NA) 237.15 16 8 0 (NA) 229.07
TABLE IV

MuLTI CyCLE CROSSOVER NUMBER OF RUNS ENDING UP AT FITNESSE239, 241 (OCAL OPTIMA) AND 243 (GLOBAL OPTIMUM). AVERAGE
NUMBER OF GENERATIONS REQUIRED TO SOLVE THE PROBLEM ARE SHOWWITHIN PARENTHESIS

Crossover Rate = 0.5 Crossover Rate = 1.0
Fit. 239 Fit. 241  Fit. 243  Avg. Fit] Fit. 239 Fit. 241  Fit. 243 Avg. Fit,
Easy 1 42 25 6 (17.16) 239.23 26 34 7 (12.42) 239.11
Easy 2 37 29 7 (21.42) 239.91 40 27 7 (12.57) 239.37
Medium 1 31 9 1(18.00) 237.91 28 14 1(14.00) 238.12
Medium 2 28 42 2 (23.00) 239.73 34 32 1(11.00) 239.22
Hard 1 42 4 0 (NA) 237.95 37 8 1(19.00) 238.13
Hard 2 22 3 1(19.00) 237.29 25 6 0 (NA) 237.33
TABLE V

UNIFORM SWAP CROSSOVER NUMBER OF RUNS ENDING UP AT FITNESSEZ39, 241 (OCAL OPTIMA) AND 243 (GLOBAL OPTIMUM). AVERAGE
NUMBER OF GENERATIONS REQUIRED TO SOLVE THE PROBLEM ARE SHOWWITHIN PARENTHESIS

Crossover Rate = 0.5 Crossover Rate = 1.0

Fit. 239  Fit. 241 Fit. 243 Avg. Fit] Fit. 239 Fit. 241 Fit. 243  Avg. Fit|

Easy 1 17 55 21 (26.09) 240.84 19 51 29 (19.44) 240.44
Easy 2 22 34 36 (25.30) 241.03 16 45 30 (18.26) 241.00
Medium 1 32 23 2 (29.50) 238.73 36 25 6 (19.00) 239.26
Medium 2 31 55 1 (20.00) 240.04 40 40 8 (20.25) 240.03
Hard 1 49 19 2 (31.00) 239.03 55 19 4 (23.25) 239.35
Hard 2 51 12 3 (30.33) 238.85 41 26 8 (25.75) 239.62

TABLE VI

PMX CROSSOVER NUMBER OF RUNS ENDING UP AT FITNESSE239, 241 (OCAL OPTIMA) AND 243 (GLOBAL OPTIMUM). AVERAGE NUMBER OF
GENERATIONS REQUIRED TO SOLVE THE PROBLEM ARE SHOWN WITHINMRENTHESIS

Crossover Rate = 0.5 Crossover Rate = 1.0

Fit. 239  Fit. 241 Fit. 243 Avg. Fit] Fit. 239 Fit. 241 Fit. 243  Avg. Fit|

Easy 1 17 57 19 (21.31) 240.81 17 56 22 (15.22) 240.97
Easy 2 31 35 23 (21.78) 240.44 22 52 17 (15.29) 240.60
Medium 1 34 25 6 (26.66) 239.16 31 26 7 (17.71) 239.30
Medium 2 29 58 6 (21.17) 240.33 35 53 2 (16.50) 240.09
Hard 1 63 19 1 (24.00) 239.16 53 23 3 (20.66) 239.21
Hard 2 42 21 4 (26.00) 238.98 37 25 3 (19.33) 239.22
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Fig. 5. Swap distance between the best individual per géaerand the global solution versus fitnesses using an eadgk$wpuzzle (i.e., easy 1) and

setting crossover rate at 1.0.
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