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Abstract— The construction of a quality RBF network for
a specific application can be a time-consuming process as the
modeller must select both a suitable set of inputs and a suitable
RBF network structure. Evolutionary methodologies offer the
potential to automate all or part of these steps. This study
illustrates how a hybrid RBFN-DE system can be constructed,
and applies the system to a number of datasets. The utility of
the resulting RBFNs on these classification problems is assessed
and the results from the RFBN-DE hybrids are shown to be
competitive against the best performance on these datasets using
alternative classification methodologies.

I. INTRODUCTION

The objective of this study is to illustrate the potential
for automating the construction of a radial basis function
network (RBFN) using differential evolution (DE) and to
assess the utility of the resulting classification systems on a
variety of test datasets. A RBFN generally consists of a three-
layer feedforward network. Just as for the canonical multi-
layer perceptron (MLP), a RBFN can be used for prediction
and classification purposes, and both the MLP and RBFN are
universal approximators. However, RBFNs differ from MLPs
in that the activation functions of the hidden layer nodes are
radial basis functions.

A. RBFN Construction

The training of RBFNs typically consists of a combination
of unsupervised and supervised learning. Initially, a number
hidden layer nodes (or centres) must be positioned in the
input data space. When each input vector is presented to the
network a value is calculated at each centre using a radial
basis function, for example a Gaussian function. In the case
of a Gaussian function, this value represents a measure of
the quality of the match between the input vector and the
location of that centre in the input space. Each hidden node
therefore, can be considered as a local detector in the input
data space.

The second phase of the model construction process for a
RBFN is the determination of the value of the weights on the
connections between the hidden layer and the output layer. In
training these weights, the output value for each input vector
are known, as are the activation values for that input vector
at each hidden layer node, so a supervised learning method
can be used. The simplest transfer function for the node(s)
in the output layer is a linear function where the network’s
output is a linearly weighted sum of the outputs from the
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hidden nodes. In this case, the weights on the arcs to the
output node(s) can be found using linear regression, with the
weight values being the regression coefficients. Sometimes it
may be preferred to implement a non-linear transfer function
at the output node(s). The basic algorithm for the canonical
RBFN is as follows:

i. Select the initial number of centres (m).
ii. Select the initial location of each of the centres.

iii. For each input data vector/centre pairing calculate the
activation value φ(||x− y||), where φ is a radial basis
function and ||...|| is a distance measure between input
vector x and a centre y in the data space. As an
example, let d = ||x−y||. The value of a Gaussian RBF

is then given by y = exp(
−d2

2σ2 ), where σ is a modeller
selected parameter which determines the bandwidth of
the centre.

iv. Once all the activation values for each input vector
have been obtained, calculate the weights for the con-
nections between the hidden and output layers using
linear regression.

v. Go to step (iii) and repeat the above steps until a
stopping condition is reached.

vi. Improve the fit of the RBFN to the training data by
adjusting some or all of the following: the number of
centres, their location, or the bandwidth of the radial
basis functions.

As can be seen from the above steps, substantial modeller
involvement is required in order to construct a quality RBFN.
Another issue which requires modeller involvement is the
selection of a quality set of model inputs. Both of these
steps represent a combinatorial problem and the solution
of this problem can be largely or partly automated through
the application of an evolutionary algorithm such as DE.
Although the application of evolutionary algorithms for the
purposes of constructing neural networks has given rise to a
large literature (see [1] for a good review), much of the early
literature predates the use of DE and concentrates on the
application of GA-based algorithms. The development of DE
and its good performance across a range of studies suggest
that it could be usefully hybridised with neural network
models.

A relatively small number of recent papers have applied
DE for the purposes of constructing various forms of MLPs,
typically reporting good results [2], [3], [4], [5]. However,
apart from [6] and [7] there are very few papers describing an
application of DE for the purposes of constructing a RBFN.
This paper seeks to address this gap.



B. Structure of Paper

The rest of this paper is organised as follows. The next
section provides a concise overview of DE. We then outline
the experimental methodology adopted. The remaining sec-
tions provide the results of these experiments followed by a
number of conclusions.

II. DIFFERENTIAL EVOLUTION

Differential evolution (DE) [8], [9], [10], [11] is a population-
based search algorithm which typically operates on real-
valued solution encodings. DE bears some similarity with the
genetic algorithm (GA) [12] in that both algorithms maintain
a population of potential solution encodings which are then
perturbed in an effort to uncover yet better solutions to a
problem of interest. In the GA, the key steps are fitness-
driven selection, crossover and mutation. In DE, individual
encodings are typically represented as real-valued vectors,
and the perturbation of solution vectors is based on the scaled
difference of two randomly chosen members of the current
population. One advantage of this approach is that the result-
ing ‘step’ size and orientation during the perturbation process
automatically adapts to the objective function landscape.

A. Canonical DE Algorithm

Although several DE algorithms exist, in the interests of
brevity, we primarily describe one version of the algorithm
based on the DE/rand/1/bin scheme [9]. The different vari-
ants of the DE algorithm are described using the shorthand
DE/x/y/z, where x specifies how the base vector (of real
values) is chosen (rand if it is randomly selected, or best
if the best individual in the population is selected), y is
the number of difference vectors used, and z denotes the
crossover scheme (bin for crossover based on independent
binomial experiments, and exp for exponential crossover).

At the start of the algorithm, a population of N , d-
dimensional vectors Xj = (xi1, xi2, . . . , xid), j = 1, . . . , N ,
each of which encode a solution, is randomly initialised
and evaluated using a fitness function f . During the search
process, each individual (j) is iteratively refined. The modi-
fication process has three steps:

i. Create a variant vector which encodes a solution,
using randomly selected members of the population
(mutation step).

ii. Create a trial vector, by combining the variant vector
with j (crossover step).

iii. Perform a selection process to determine whether the
newly-created trial vector replaces j in the population.

Under the mutation operator, for each vector Xj(t) a variant
vector Vj(t + 1) is obtained:

Vj(t + 1) = Xm(t) + F (Xk(t)−Xl(t)) (1)

where k, l,m ∈ 1, . . . , N are mutually distinct, randomly
selected indices, and all the indices 6= j (Xm is referred
to as the base vector and Xk(t) − Xl(t) is referred to as
a difference vector). Selecting the three indices randomly
implies that all members of the current population have the

same chance of being selected, and therefore influencing the
creation of the difference vector. The difference between
vectors Xk and Xl is multiplied by a scaling parameter
F (typically F ∈ (0, 2]). The scaling factor controls the
amplification of the difference between Xk and Xl and is
used to avoid stagnation of the search process. There are
several alternative versions of the above process for creating
a variant vector (see [9] for details of these). 

Index number  

 4 

 3 

 2 

 1 

  Xj (t) 

 d 

 c 

 b 

 a 

   Vj (t+1) 

 r 

 e 

 w 

 q 

   Uj (t+1) 

 r 

 e 

 w 

 a rand(1) > CR 

rand(2) ≤  CR 

rand(3) ≤  CR 

4=rndbr 

Fig. 1. An example of crossover in DE

A notable attribute of the mutation step in DE is that it
is self-scaling. The size/rate of mutation along each di-
mension stems solely from the location of the individuals
in the current population. The mutation step self-adapts as
the population converges leading to a finer-grained search.
In contrast, the mutation process in the canonical GA is
typically based on draws from a fixed probability density
function.

Fig. 2. Numerical example of the canonical DE algorithm



Following the creation of the variant vector, a trial vector
Uj(t + 1) = (uj1, uj2, . . . , ujd) is obtained:

Ujk(t + 1) =





Vjk(t + 1),
if (rand ≤ CR) or (j = rnbr(ind)) ;

Xjk(t),
if (rand > CR) and (j 6= rnbr(ind)).

(2)
where k = 1, 2, . . . , d, rand is a random number generated
in the range (0,1), CR is the user-specified crossover constant
from the range (0,1), and rnbr(ind) is a randomly chosen
index chosen from the range (1, 2, . . . , d). The random index
is used to ensure that the trial solution vector differs by
at least one element from Xj(t). The resulting trial (child)
solution replaces its parent if it has higher fitness (a form of
selection), otherwise the parent survives unchanged into the
next iteration of the algorithm.

Figure 1 provides an illustration of the crossover operator
in DE, and Figure 2 illustrates a simple numerical example.
In the numerical example, the parent vector is i=1. Three
other vectors are randomly chosen to create the variant
vector, and F=1 is assumed. When crossover is applied
between the parent and the variant vector, the first and the
third elements of the variant vector are assumed to combine
with the second element of the parent vector to create the
trial or child vector. Finally, it is assumed that the fitness
of the trial vector exceeds that of its parent and it therefore
replaces the parent (Eq. 3).

Xj(t + 1) =

{
Uj(t + 1), if f(Uj(t + 1)) > f(Xj(t));
Xj(t), otherwise.

(3)
Price and Storn [13] provide a comprehensive comparison
of the performance of DE with a range of other optimisers,
including the GA, and report that the results obtained by
DE are consistently as good as the best obtained by other
optimisers across a wide range of problem instances. They
also report that DE is robust with respect to choice of
parameter settings.

B. DE Variants

A wide variety of DE algorithms exist (see [13] for an up-
to-date review). Two recent variants are briefly discussed.
Das et al. [14] suggested that rather than holding the value
of F constant during the optimisation run, it could be
allowed to vary, either randomly in the range (0.5 → 1)
(DE with random scale factor), or it could be decreased
linearly during the optimisation run from an upper to a lower
bound (DE with time varying scale factor). The first idea
aims to reduce the chance of the search process stagnating
at a local optimum, the second aims to encourage diverse
searching early in the optimisation run, with a finer degree
of search later in the optimisation run. Both approaches were
found to outperform canonical DE across a range of test
functions. In contrast, Norma and Iba [15] proposed Fittest

Individual Refinement (FIR) wherein the canonical form of
DE is supplemented by a crossover-based local search step
(XLS), in order to assist in finding the optimum solution.
In essence, this results in a memetic variant of DE. In
this approach a local search is undertaken around the best
individual after each iteration of the algorithm by selecting
it as breeding stock, mating it with a number of newly created
variant vectors, and then determining whether any of the
child vectors generated have higher fitness.

III. EXPERIMENTAL APPROACH

A total of four test datasets were used in our investigations,
two drawn from the UCI machine learning repository [16],
and two financial datasets which have been used in prior
studies [17], [18], [19], [20]. All of the datasets consist of
a binary classification problem and have between eight and
thirty input variables.

A. Financial Datasets

The financial datasets are drawn from the domains of
corporate failure, and bond-rating prediction. Because of the
commercial significance of developing high-quality classi-
fiers for these domains, there has been substantial research
developing a wide-range of classification models in each.

1) Corporate Failure: Corporate failure is a natural com-
ponent of the market economy, facilitating the recycling of
financial, human and physical resources into more productive
organisations [21], [22]. Nonetheless, corporate bankruptcy
can impose significant private costs on many parties in-
cluding shareholders, providers of debt finance, employ-
ees, suppliers, customers, managers and auditors. All of
these stakeholders have an interest in being able to identify
whether a firm is on a trajectory which is tending towards
corporate failure. Early identification of such a trajectory
could facilitate successful intervention, to avert disaster. Most
attempts to predict corporate failure implicitly assume that
management decisions critically impact on firm performance
[23]. Although management decisions are not directly ob-
servable, their consequent effect on the financial health of
the firm can be observed through their impact on the firm’s
financial ratios. Typically when constructing corporate failure
prediction models, explanatory variables are drawn from
the financial statements of the firm, from financial markets,
general macroeconomic variables, and non-financial, firm-
specific information). In this study, attention is restricted to
information drawn from financial statements.

2) Bond Rating: When a company wants to issue traded
debt (bonds), it must obtain a credit rating for the issue from
at least one recognised rating agency (Standard & Poor’s
(S&P), Moody’s, Fitches’ or Dominion Bond Rating Ser-
vice). The credit rating represents the rating agency’s opinion
at a specific date of the creditworthiness of a borrower in
general (an issuer credit rating), or in respect of a specific
debt issue (a bond credit rating). These ratings impact on the
borrowing cost, and the marketability of issued bonds.



Several categories of individuals would be interested in
a model that could produce accurate estimates of bond
ratings. Such a model would be of interest to firms that are
considering issuing debt as it would enable them to estimate
the likely return investors would require if the debt was
issued, thereby providing information for pricing the bonds.
The model could also be used to assess the creditworthiness
of firms that have not issued debt and hence do not already
have a published bond rating. This information would be
useful to bankers or other companies that are considering
whether they should extend credit to that firm.

Most rated debt is publicly tradable on stock markets,
and bond ratings are typically changed infrequently. An
accurate bond-rating prediction model could indicate whether
the current rating of a bond is still justified. To the extent that
an individual investor could predict a bond re-rating before
other investors foresee it, this may provide a trading edge.

3) Rationale for Adopting a RBF-DE Hybrid: There are a
number of reasons to suppose that an evolutionary methodol-
ogy, coupled with a RBF can prove fruitful in the prediction
of both corporate failure and bond ratings. Both domains are
characterised by a lack of a strong theoretical framework,
with many plausible, competing explanatory variables. The
selection of quality explanatory variables and model form
represents a high-dimensional combinatorial problem, giving
rise to potential for evolutionary methodologies. Combining
these with the universial approximator qualities of a RBF
produces a powerful modelling methodology.

B. Methodology

There are a multitude of ways that a RBFN-DE hy-
brid could be constructed, depending on what the modeller
wishes to achieve. A major decision in creating any form
of evolutionary artificial neural network (EANN) is deciding
which elements of the system should be evolved and which
should not. Although it is tempting to try to evolve as many
parameters as possible, this can produce an unfeasibly large
search space. In this study we allow DE to select:
• model inputs,
• location of centres,
• bandwidth of each RBF,
• weight on each centre’s output, and the
• classification cut-off point.
The number of centres is not evolved in our approach.

Rather a suitable number of centres is determined using a
grid search process, whereby the number of centres is incre-
mented between a lower and an upper bound, with a separate
evolutionary process being repeated at each increment. It
would also be possible to evolve the nature of radial basis
function at each centre.

I I*C*n C C 1 
 

Fig. 4. Chromosome encoding choice of inputs and RBFN structure.

The chromosomes being evolved each consist of I + (I ∗
C∗n)+2C+1 real-valued elements (see Figure 4). The first I
elements represent a flag which determines whether a specific
input (from a set of I inputs) is used, the next (I ∗ C ∗ n)
elements represent the location of each of C centres in the
n dimensional input space, the next 2C elements consist of
the band-width for each centre followed by the weight on
each centre’s output. The last element of the chromosome
is the classification cut-off point for the RBFN output. We
implement the canonical form of DE (DE/rand/1/bin) but
following [14], a time-varying scaling factor is incorporated,
whereby F is linearly decreased from 1.5 to 0.5 during the
DE run.

F = Fmax − Fmax − Fmin

maxiter
∗ curriter (4)

In this study, a simulator was created to implement the
RBFN-DE hybrid. The user interacts with the simulator by
means of a GUI which allows the selection of a wide number
of parameters, such as whether the system will evolve the
choice of inputs to be used in the classification models, or
whether the choice of inputs is in the hands of the modeller.
The simulator also allows the user to choose the form of
selection, number of difference vectors, the form of crossover
to be applied and the form of scaling applied in the DE
algorithm (see Figure 3).

IV. RESULTS

The results from our experiments are now provided. In
each case the datasets were randomised to produce five
recuts, with the data being split approximately 80:20 between
training and test in each recut. Each of the experiments
is run for 50 generations, with CF=0.8, and a population
size of 200. A grid search was carried out when choosing
the appropriate number of centres, whereby the number of
centres was incrementally increased from 10 to 50 with a
step size of 2. The number of centres which produced highest
in-sample classification accuracy was then used to calculate
the out-of sample results. In selecting the above parameters,
initial trial experiments were undertaken. The classification
accuracies were not found to be highly sensitive to minor
changes in the number of generations, population size or the
value of CF.

In the experiments, fitness is defined as the number of
correct classifications obtained by an evolved discriminant
rule. The results for the best individual of each cut of the
dataset averaged over all five randomisations of the dataset,
are given in Table I. The table also provides the results for
the average mean fitness in the final generation in each recut.

To assess the overall hit-ratio of the developed models both
in and out of sample, Press’s Q statistic [24] was calculated.
In all cases the null hypothesis, that the classification accu-
racies are not significantly better than those that could occur
by chance alone, was rejected at the 1% level. A t-test of the
hit-ratios also rejected a null hypothesis that the classification
accuracies were no better than chance at the 1% level.



 

Fig. 3. User interface for simulator.

TABLE I
PERFORMANCE OF THE BEST EVOLVED RULES ON THEIR TRAINING AND OUT-OF-SAMPLE DATASETS, AVERAGED OVER ALL FIVE RANDOMISATIONS.

In-Sample In-Sample Out-Sample Out-Sample
Average (%) Best (%) Average (%) Best (%)

Bonds 82.1 84.4 81.4 83.0
Corporate Failure 77.7 80.7 71.3 86.7

Heart Disease 82.0 85.0 76.4 84.0
Breast Cancer 88.8 91.9 88.7 95.3

In developing the models, the number of centres was var-
ied as noted above. The number of centres which produced
the best results on each dataset varied between 26 on the
bond data and the Breast cancer data, 22 centres on the
corporate failure data, and 20 centres on the heart disease
data. Typically, the results produced by the evolved classifiers
were not highly sensitive to the number of centres employed,
around these optimal values.

A. Comparison of Results

To provide a benchmark for the results obtained by the
RBFN/DE hybrid, we compared them with the results ob-
tained on the same data sets by previous authors. In the
case of the bond dataset and corporate failure datasets, mean
best classification in-sample accuracies of 85% and 85.9%
were reported by [20] (out of sample accuracies were 83%
and 80% respectively), using a grammar-based evolutionary
methodology (grammatical evolution). The classifiers devel-
oped by the RBFN-DE hybrid are competitive with these
results. In the case of the Cleveland Heart Disease and the
Wisconsin Breast Cancer (new) datasets, [25] and [26] show
out of sample classification accuracies of around 77% and

96% respectively. Again, the constructed classifiers produce
competitive results.

V. CONCLUSIONS & FUTURE WORK

The combination of evolutionary algorithms with various
forms of artificial neural network structures is a notable
area of current research. It offers the potential to combine
the complementary strengths of two distinct methodologies.
The objective of this study was to illustrate the potential
for automating the construction of a radial basis function
network (RBFN) using differential evolution (DE), and to
assess the utility of the resulting classification systems on a
variety of test datasets. The developed models showed a clear
capability to generate effective classification models, and the
results from these classifiers proved competitive against prior
results from alternative methodologies on the same datasets.

Several extensions of the methodology in this study are
indicated for future work. The developed RBFN-DE hybrid
generator program will be tested on additional datasets to
further assess the generality of the promising results in
this study. The developed generator also allows the testing
of a variety of hybrid variants including FIR and random
scaling and investigation of these will also be the subject



of future work. We also note that the construction of high-
quality classifiers is of general utility in a wide variety of
application domains including business, medical diagnosis
and engineering. Therefore, the methodology outlined in this
study has wide potential application.
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