
Subtree Deactivation Control with Grammatical Genetic
Programming in Dynamic Environments

Michael O’Neill, Anthony Brabazon and Erik Hemberg

Abstract—We investigate the usefulness of a subtree deactiva-
tion control mechanism which is open to evolutionary learning.
It is hypothesised that this representation confers an adaptive
advantage in dynamic environments over the standard sub-
tree representation adopted in Genetic Programming. Results
presented on benchmark dynamic problem instances provides
evidence to support that such an adaptive advantage exists.

I. INTRODUCTION

THERE have been a number of significant studies in
Evolutionary Computation applied to Dynamic problem

environments (e.g., [1], [2], [3]). Research on the behaviour
of Genetic Programming in dynamic environments, however,
has been largely overlooked to date relative to the amount
of work being undertaken in static environments [4]. De-
spite the existence of a recent Special Issue in the Genetic
Programming Journal on Dynamic environments [5], none
of the four articles actually dealt with GP directly (e.g., [6]).
While some applications in dynamic environments have been
undertaken in recent years (e.g., [7], [8], [9], [10], [11], [12],
[13]), there has been little analysis of the behaviour of GP
in these environments with the two main examples having
examined bloat [14] and constant generation [4].
As the natural process of evolution operates in a non-

stationary environment it seems natural that evolutionary
algorithms such as Genetic Programming could present a
useful tool to solve problems in these challenging environ-
ments.
In this paper we examine representational adaptation in

a grammatical form of Genetic Programming, Grammatical
Evolution. We do this by incorporating an extension to
the standard Genetic Programming subtree representation
that allows individuals to deactivate and (re)activate each
subtree in the solution. When a subtree is deactivated it
returns a functionally neutral value to its parent node. This
is operationalised through the use of the identity function
for each element of the function set. For example, when a
subtree that is rooted in a parent node that is a multiplication
operator is deactivated, it will return 1.0. The net effect
being whatever is returned from the second subtree of that
parent node will be the overall value returned by the parent
subtree.
A deactivated subtree is just that, deactivated, such that it

can easily be later reactivated at a future time. The deacti-
vated subtree is not removed from the individual, rather it is
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a kind of dormant memory which can later be reactivated.
Such a feature may prove useful in the case of a dynamic
environment where learnt knowledge that is not useful at
this time may be reused at a later point in time when the
environment changes. Through the use of a grammatical form
of Genetic Programming this representational extension can
be easily achieved through a simple extension to the input
grammar.
Following a brief introduction to Grammatical Evolution

in Section II, we present the subtree (de)activation grammars
in Section III. Section IV details the results before finishing
the paper with Conclusions and Future Work in Section V.

II. GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) [15] is a grammar-based
form of Genetic Programming [16], [17], [18], [19], [20]
that can be used to evolve computer programs, rule-sets,
or more generally sentences in any language. Rather than
representing the programs as syntax trees (as in GP), a
linear genome representation is used in conjunction with a
grammar. Each individual (genome), a variable-length binary
string, contains in its codons (groups of bits) the information
to select production rules from a Backus Naur Form (BNF)
grammar. BNF is a notation that represents the language in
the form of production rules. It is comprised of a set of
non-terminals that can be mapped to elements of a set of
terminals, according to the production rules. When tackling
a problem with GE, a suitable BNF (Backus Naur Form)
grammar definition must initially be defined. The BNF can
be either the specification of an entire language or, perhaps
more usefully, a subset of a language geared towards the
problem at hand.
In GE, a BNF definition is used to describe the output

language to be produced by the system. BNF is a notation
for expressing the grammar of a language in the form of
production rules. BNF grammars consist of terminals, which
are items that can appear in the language, e.g. binary boolean
operators and, or, xor, and nand, unary boolean operators
not, constants, true and false etc. and non-terminals,
which can be expanded into one or more terminals and non-
terminals.
As the BNF definition is a plug-in component of the

system, it means that GE can produce code in any language
thereby giving the system a unique flexibility.
There have been a number of extensions to GE in recent

years in terms of the grammars adopted, the search engine
employed and even variants on the mapping process itself



(e.g., see the following sources [25], [22], [26], [27], [4],
[23], [21]).

III. SUBTREE ACTIVATION CONTROL GRAMMARS
The problem domain examined is that of symbolic regres-

sion in a dynamic environment where the target function is
undergoing change. The standard and deactivation grammars
employed in this study are presented below in Figures 1
and 2. The grammars are deliberately minimalist in order to
focus our analysis on any effect produced by the deactivation
mechanism alone.
The evolved functions are evaluated as scheme s-

expressions and are hence presented in their lambda calculus
form. The deactivation grammar illustrates how the subtree
deactivation mechanism is implemented. The deactivated
subtree is functionally neutral with respect to the root it
is nested in by returning the identity of the root operator
(1.0 in the case of multiplication and 0.0 in the case of
addition). A standard context free grammar can be adapted to
represent this relationship by specifying specific expressions
that are allowed for each root type. This convenience of
the grammatical representation is the primary motivation for
adopting a Grammatical approach to Genetic Programming
such as GE in this study. Indeed, subtree deactivation could
be incorporated easily into most grammar-based forms of
Genetic Programming (e.g., [28], [29], [30], [31], [32], [33])
as well as standard Genetic Programming. If we examine
the derivation trees produced by these grammars the net
effect of the deactivation condition results in the ability of
each subtree in a solution to be explicitly deactivated or
(re)activated by modifying the state of the <deactivate>
non-terminal, which is under genetic control in this study.

<code> ::= (define guess (lambda (x) (* <expr> <expr>)))
| (define guess (lambda (x) (+ <expr> <expr>)))

<expr> ::= (* <expr> <expr>)
| (+ <expr> <expr>)
| <var>

<var> ::= x

Fig. 1. Standard control grammar producing prefix expressions.

<code> ::= (define guess (lambda (x) (* <*expr> <*expr>)))
| (define guess (lambda (x) (+ <+expr> <+expr>)))

<expr> ::= (* <*expr> <*expr>)
| (+ <+expr> <+expr>)
| <var>

<*expr> ::= (if <deactivate> <expr> 1)

<+expr> ::= (if <deactivate> <expr> 0)

<var> ::= x

<deactivate> ::= #t | #f

Fig. 2. Subtree Activation/Deactivation grammar producing prefix expres-
sions.

Figs. 3 and 4 gives a visual representation of the effect
of subtree deactivation. Instead of a subtree being lost from

the population it is temporarily deactivated, and can easily be
reintroduced into the individual by modifying the state of the
deactivation switch as implemented by the <deactivate>
non-terminal. Effectively each subtree represents two possi-
ble states that can be evaluated.

IV. EXPERIMENTAL SETUP & RESULTS
There are two hypotheses under examination in this study.
The first hypothesis tested is stated as follows:
H0: There is no difference in performance between

subtree deactivation and a standard subtree repre-
sentation.

H1: Subtree deactivation confers a performance advan-
tage in a dynamic environment.

Two forms of the subtree deactivation setup are examined.
The first simply adopts the deactivation grammar as specified
in Figure 2. The second setup adopts a directed mutation
operator, which targets the deactivation switch. Following
from this a second hypothesis is tested as follows:

H0: There is no difference in performance between sub-
tree deactivation with and without directed mutation
towards the deactivation sites.

H2: Directed mutation towards subtree deactivation sites
confers an adaptive advantage in terms of a more
robust performance measured by improved fitness
in a dynamic environment.

Oscillating targets were employed, changing every 20 gen-
erations for a total of 100 generations with a population size
of 500. Probability of crossover (variable-length one point on
the integer chromosome) is 0.9, probability of codon integer
mutation is 0.01 (32 bit integer encoding). Tournament
selection with tournament size of 3, and a rank replacement
strategy where the children and parents are pooled with
the top ranking population size candidate solutions been
propagated to the subsequent generation. In the case of the
directed mutation setup, where mutations are directed at the
deactivation control switch, probabilities of 0.5, 0.25 and
0.125 were tested. The standard mutation operator was also
allowed in this setup at the rate of 0.01. In the case of the
directed mutation towards the deactivation sites the integer
codon value used to expand each <deactivate> non-
terminal is the target for mutation. If a <deactivate>
codon is to be mutated the value 1 is added to its current
state, and as we are always choosing expansion from two
possible states the switch state will always be inverted when
mutation occurs. It is trivial to keep track of the codon
responsible for mapping each <deactivate> non-terminal
by maintaining the derivation tree during the expansion of
an individual during the genotype-phenotype mapping.
Three problem instances of dynamic symbolic regression

were examined as detailed below.
a) Dynamic Symbolic Regression Instance #1:

f = x2 + x3 + x5 (1)

f = x2 + x5 (2)
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Fig. 3. An illustration of the subtree deactivation representation in operation on the derivation tree. Parts B and C illustrate the simplification of this
derivation tree to it’s corresponding parse tree
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Fig. 4. The same derivation tree as in Fig. 3 but with the first deactivation switch turned off (A’). Parts B’ and C’ illustrate the simplification of this
derivation tree to it’s corresponding parse tree.

b) Dynamic Symbolic Regression Instance #2: The two
targets are:

f = x + x2 + x3 + x4 + x5 (3)

f = x2 + x3 + x5 (4)

c) Dynamic Symbolic Regression Instance #3: At the
start of each run two targets are randomly selected from:

f = x + x2 + x3 + x4 (5)

f = x + x2 + x3 (6)

f = x + x2 + x4 (7)

f = x2 + x3 + x5 (8)
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Fig. 5. The best and average fitness plots for problem instance 1 with
period length 20.
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Fig. 6. The best and average fitness plots for problem instance 2 with
period length 20.
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Fig. 7. The best and average fitness plots for problem instance 3 with
period length 20.

Fitness plots are presented in Figures 5, 6 and 7. A
simplified area under the curve calculation for each fitness
period and total area are provided for each of these figures
in Tables I, II and III. This measure sums the error over
each fitness period.
The results reflect an initial warm up period over the first

few cycles of the fitness target during which time the perfor-
mance of the standard representation is generally superior.
However, following this warm up period the more adaptive
deactivation representation demonstrates equal and in some
cases a performance advantage over the static representation
both in terms of the total error during each period of change
and in terms of the fitness hit taken directly following a target
change on Problem instances 1 and 3.
With respect to the first hypothesis (H1) there is evidence

to support rejecting the null hypothesis that there is no differ-
ence between the subtree deactivation and standard subtree
representations on the two problem instances examined here.
The second hypothesis (H2) asks if there is a performance

difference between subtree deactivation with and without a
directed mutation operator towards the deactivation switch.
The evidence presented here provides strong evidence to
support rejecting the null hypothesis that there is no differ-
ence between the presence and absence of directed mutation.
There is a clear gain in performance in the presence of
directed mutation.

A. Discussion
The observed performance of the deactivation representa-

tion is particularly impressive given the increase in search
space size arising from the choice of the deactivation non-
terminal for each subtree in an individual. It is also worth
noting that no special initialisation strategy was adopted for
either approach. Initialistion in each case was a pseudo ran-
dom process. The consequence of this random initialisation
is that on average 50% of the deactivation switches will
be set to off. This means that in the initial population at
least half of the subtrees of each solution that employ the
deactivation grammar will not contribute to the fitness of an
individual, and the effective sampling of the fitness space
will be significantly less than in the case of the standard
grammar.
In dynamic environments such as these pure fitness optimi-

sation is no longer the solitary driving force with evolutionary
robustness being of at least equal importance. Given that
a real-world environment in which an adaptive algorithm
could exist would perhaps ideally be a continously operating
live evolutionary algorithm without restarts, the performance
observed for the deactivation representation is particularly
encouraging with these results suggesting a more consistent
and robust performance might be possible.

V. CONCLUSIONS & FUTURE WORK

We introduced a subtree deactivation extension to the stan-
dard representation adopted in Genetic Programming. It was
hypothesised that such an extension might confer an adaptive
advantage in dynamic environments. Results presented here



TABLE I
AREA UNDER CURVE DATA (AVERAGED OVER 30 RUNS) DETAILED FOR EACH PERIOD OVER THE RUN WHERE THE TARGET CHANGES EVERY 20

GENERATIONS ON PROBLEM 1.

Problem 1
Period

Setup 1 2 3 4 5 Total
Std (best) 7.19 3.71 5.10 3.21 6.97 26.17
Deactivate (best) 23.54 7.71 13.12 4.20 6.81 55.38
DirectedMutn 0.5 (best) 13.78 3.96 10.37 3.79 10.62 42.51
DirectedMutn 0.25 (best) 12.67 3.74 9.05 2.86 5.86 34.18
DirectedMutn 0.125 (best) 16.82 3.58 7.56 2.84 6.05 36.84
Std (avg) 77.39 18.96 13.76 11.56 13.96 135.64
Deactivate (avg) 72.51 59.81 53.98 19.51 21.03 226.84
DirectedMutn 0.5 (avg) 64.80 21.56 48.98 17.39 46.21 198.93
DirectedMutn 0.25 (avg) 65.08 16.47 39.13 12.70 21.42 154.80
DirectedMutn 0.125 (avg) 65.81 16.13 28.69 7.55 15.03 133.20

TABLE II
AREA UNDER CURVE DATA (AVERAGED OVER 30 RUNS) DETAILED FOR EACH PERIOD OVER THE RUN WHERE THE TARGET CHANGES EVERY 20

GENERATIONS ON PROBLEM 2.

Problem 2
Period

Setup 1 2 3 4 5 Total
Std (best) 15.35 6.72 20.35 6.04 17.62 66.07
Deactivate (best) 54.10 19.22 27.31 13.09 26.14 139.85
DirectedMutn 0.5 (best) 33.75 13.39 20.42 10.52 27.68 105.76
DirectedMutn 0.25 (best) 33.22 9.51 19.88 6.53 21.02 90.16
DirectedMutn 0.125 (best) 35.31 8.39 18.43 8.12 19.72 89.97
Std (avg) 118.31 22.74 54.26 51.54 53.61 300.46
Deactivate (avg) 143.89 87.81 63.68 33.09 61.25 389.72
DirectedMutn 0.5 (avg) 133.19 49.71 80.59 24.44 62.65 350.58
DirectedMutn 0.25 (avg) 129.33 25.07 59.64 22.16 60.84 297.03
DirectedMutn 0.125 (avg) 127.78 22.74 54.38 26.10 52.14 283.13

TABLE III
AREA UNDER CURVE DATA (AVERAGED OVER 30 RUNS) DETAILED FOR EACH PERIOD OVER THE RUN WHERE THE TARGET CHANGES EVERY 20

GENERATIONS ON PROBLEM 3.

Problem 3
Period

Setup 1 2 3 4 5 Total
Std (best) 10.09 10.28 12.83 11.58 13.18 57.95
Deactivate (best) 27.75 21.68 19.99 15.45 15.65 100.53
DirectedMutn 0.5 (best) 18.94 12.26 9.12 8.95 12.38 61.64
DirectedMutn 0.25 (best) 18.92 10.62 10.63 10.56 10.12 60.85
DirectedMutn 0.125 (best) 19.41 10.17 10.81 7.74 8.21 56.35
Std (avg) 90.91 22.66 22.36 20.72 22.12 178.77
Deactivate (avg) 95.87 76.79 47.32 27.45 26.77 274.20
DirectedMutn 0.5 (avg) 85.05 62.07 41.54 26.11 24.98 239.75
DirectedMutn 0.25 (avg) 92.88 37.78 23.38 24.05 24.07 202.16
DirectedMutn 0.125 (avg) 94.67 35.52 23.42 23.13 23.76 200.49



suggest that such an adaptive advantage can exist in certain
types of dynamic environments, and consequently warrants
further investigation. Future work will include an analysis
of subtree deactivation on a number of different problem
environments to test the generalisation of the results beyond
the symbolic regression instances examined here.
The developmental nature of the grammatical form of

Genetic Programming adopted in this study, Grammatical
Evolution, provides us with another potentially powerful
manner to approach adaptation in dynamic environments. In
particular, it will be possible to allow a form of epigenetic
and developmental learning to occur as a solution is being
generated from its embryonic start symbol. It is trivial to
implement subtree (de)activation that can operate on much
shorter time scales than the evolutionary one present in
this case. For example, by allowing feedback from the
environment (such as fitness of the parent) this could be
allowed to alter the switches that are present. If a change
in the conditions of the parent are detected this information
can be passed on epigenetically through the switches, thus
(de)activating subtrees that were previously (de)activated. We
also wish to examine a form of local search where we sample
an individual N times by toggling random switches.
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