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Abstract—This paper describes and tests the utility of a meta
Grammar approach to Grammatical Evolution (GE). Rather
than employing a fixed grammar as is the case with canonical
GE, under a meta Grammar approach the grammar that is used
to specify the construction of a syntactically correct solution is
itself allowed to evolve. The ability to evolve a grammar in the
context of GE means that useful bias towards specific structures
and solutions can be evolved and directly incorporated into the
grammar during a run. This approach facilitates the evolution
of modularity and reuse both on structural and symbol levels
and consequently could enhance both the scalability of GE and
its adaptive potential in dynamic environments. In this paper
an analysis of the extent that building block structures created
in the grammars are used in the solution is undertaken. It is
demonstrated that building block structures are incorporated
into the evolving grammars and solutions at a rate higher than
would be expected by random search. Furthermore, the results
indicate that grammar design can be an important factor in
performance.

I. INTRODUCTION

The meta Grammar Genetic Algorithm is a Genetic Pro-
gramming (GP) [1] approach to a Genetic Algorithm (GA)
representation [2]. The meta Grammar Genetic Algorithm
(mGGA) was initially developed in [3], [4] and has shown
good performance on a range of test problems. In this
paper two aspects of the mGGA are analysed. The first
aspect concerns the content of the evolved grammars and
asks whether modular structures are being evolved and then
used in solving the problems examined. The second aspect
addressed focuses on the design of input grammars, by
comparing the performance of the original biased grammar
to unbiased variants.
The paper is structured as follows. First an overview of

the meta-grammar approach to Grammatical Evolution(GE)
is presented and earlier research in this area is discussed in
Sec. II. Sec. III describes the two experiments undertaken.
The results obtained are provided and discussed in Sec. IV,
before finishing the paper in Sec. V with Conclusions and
Future Work.

II. META GRAMMARS IN GRAMMATICAL EVOLUTION

The grammar-based Genetic Programming GP [5] ap-
proach upon which this study is based is the Grammatical
Evolution by Grammatical Evolution algorithm (GE)2 [6].
In turn, this is based on the GE algorithm [7].
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A. Grammatical Evolution
Rather than representing the programs as parse trees, as in

GP, a variable length linear genome representation is used.
A genotype-phenotype mapping is employed where an an
individual’s binary string is interpreted as a sequence of
integer values (called codons), which are then used to select
production rules from a Backus-Naur Form (BNF) grammar.
A context free grammar is a four tuple (N, Σ, R, S) [8].
Where N is a finite set of non-terminal symbols. Σ is a
finite set of terminal symbols, N ∩Σ = ∅. R is a finite set of
production rules, A → α, A ∈ N and α ∈ (Σ ∪N)∗, and S
is the start symbol, S ∈ N . To determine which α is chosen
α = c mod r, where c is the value of the codon and r is the
number of choices for the current R

B. Meta Grammar Grammatical Evolution
(GE)2 is a meta grammar Evolutionary Algorithm in

which the input grammar is used to specify the construction
of another syntactically correct grammar. The generated
grammar is then used in a mapping process to construct a
solution to the problem of interest. Fig. 1 illustrates the meta
grammar GE.
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Fig. 1. An overview of the meta grammar approach to GE. The meta
Grammar generates a solution grammar, which is used to generate a
candidate solution.

In order to allow the evolution of a grammar we must
provide a grammar to specify the form that a grammar can
take. By allowing an Evolutionary Algorithm to adapt its
representation, through the evolution of the grammar in this
case, it is possible to automatically incorporate biases into
the search process. In this case we can allow the mGGA
to evolve biases towards different building block structures
of varying sizes. For further examples of what can be
represented with grammars see [7] and [9] for an alterna-
tive approach to grammar evolution. A more developmental
approach was also explored in [10], [11].
In (GE)2 the meta grammar dictates the construction

of the solution grammar. In order to operationalise this,
two separate variable-length, genotypic binary chromosomes
were used. The first chromosome generates the solution



grammar from the meta grammar and the second chro-
mosome generates the solution itself. Crossover operates
between homologous chromosomes, that is, the solution
grammar chromosome from the first parent recombines with
the solution grammar chromosome from the second parent,
with the same occurring for the solution chromosomes. For
evolution to be successful it must co-evolve both the meta
grammar and the structure of solutions based on the evolved
meta grammar. Consequently, the search space is larger
than in standard GE where only a solution chromosome is
evolved.
1) Examples of Meta Grammar Grammatical Evolution:

Fig. 2 illustrates a meta grammar mapping a binary string of
size 4.
Another example of a meta grammar that could be used

to evolve grammars for generating 8 bit binary strings is
provided below.

<g> ::= "<bitstring> ::=" <reps>
"<bb4> ::=" <bb4>
"<bb2> ::=" <bb2>
"<bb1> ::=" <bb1>
"<bit> ::=" <val>

<bb4> ::= <bb4t>
| <bb4t> "|" <bb4>

<bb2> ::= <bb2t>
| <bb2t> "|" <bb2>

<bb1> ::= <bb1t>
| <bb1t> "|" <bb1>

<bb4t> ::= <bit><bit><bit><bit>
<bb2t> ::= <bit><bit>
<bb1t> ::= <bit>
<reps> ::= <rept>

| <rept> "|" <reps>
<rept> ::= "<bb4><bb4>"

| "<bb2><bb2><bb2><bb2>"
| "<bb1><bb1><bb1><bb1><bb1><bb1><bb1><bb1>"

<bit> ::= "<bit>"
| 1
| 0

<val> ::= <valt>
| <valt> "|" <val>

<valt> ::= 1
| 0

An example bit string grammar that could be sampled from
the above meta grammar follows below. In this example,
there are five possible forms that a <bitstring> can take
on, with two possible choices for building block structures of
size 4 and 1, and three choices for building block structures
of size 2. The rule for generating a <bit> has four possible
outcomes with a clear bias towards a <bit> becoming a 1
with a probability of 0.75 (3 of the four choices result in 1)
.

<bitstring> ::= <bit>11<bit>00<bit><bit>
| <bb2><bb2><bb2><bb2>
| 11011101
| <bb4><bb4>
| <bb4><bb4>

<bb4> ::= <bit>11<bit>
| 000<bit>

<bb2> ::= 11
| 00
| <bit>1

<bb1> ::= 0
| 0

<bit> ::= 1
| 0
| 1
| 1

C. Earlier Research
There have been a number of studies of a meta grammar

approach to GE [6], [3], [4], [12]. In each of these the same
rate of evolutionary search was adopted on both the meta
grammar and solution chromosomes through the adoption
of the same rates of mutation and crossover. The original
study [6] investigated the feasibility of this approach and
demonstrated its effectiveness in dynamic environments, see
[13] for a discussion on dynamic environments. In the
mGGA [3] the meta grammar approach was shown as an
effective method to perform as an alternative binary string
Genetic Algorithm through the provision of a mechanism to
achieve modularity. A follow-up study demonstrated that the
mGGA had an improved ability to scale to harder problem
instances over the Modular GA (MGA) [14]. The exami-
nation of the solutions and solution grammars evolved by
meta grammar GE indicated a tendency to generate concise
solution grammars which did not include a wide choice of
production rules [3]. This suggested that the system was
pushing most of the evolutionary search onto the solution
grammar chromosome rather than balancing search between
the two chromosomes. In a recent study [15] alternative
rates of evolution on both the meta grammar and solutions
chromosomes was conducted. The most interesting finding
from this study was that most of the evolutionary search is
currently focused on the meta grammar chromosome. The
resulting evolved solution grammars represent only a small
fraction of the potential solution space.
This study seeks to extend earlier work in two ways.
Firstly, a potential limitation of these earlier studies is that

the grammars adopted by the mGGA contain bias towards
the use of the building block structures of size greater than
one. That is, they under-represent a more classical GA-
type representation where each bit of a solution is specified
individually. The study addresses this limitation by removing
bias from the grammar at various levels to determine if this
bias might be the source of performance loss.
Secondly, we wish to understand if in fact the modular

structures that are provided by this approach are in fact
adopted in the creation of the solutions, and are therefore
responsible (at least in part) for the performance gains
achieved over the MGA.

III. EXPERIMENTS & RESULTS

Initially the two experiments are described followed by the
experimental setup. The first experiment focuses on the bias
question. Does a bias towards the building block structures
result in a performance loss when compared to unbiased
equivalents? The second experiment asks if the building
block structures are actually used in the creation of solutions.

A. Fitness function - Checkerboard
We initially examine the Checkerboard problem which has

been used in earlier studies to benchmark the performance of
the mGGA against that of the MGA. In this problem a pattern
of colours or states is imposed upon a two dimensional grid



Fig. 2. An example mapping of a meta grammar. Diamonds are non terminal symbols and rectangles are terminal symbols. The numbers by the arrows
are used to denote which input chose the rule at the

called the Checkerboard, introduced in [14]. There are 2
possible states adopted for each square on the grid, i.e.,
black or white, which can be represented as bit values 1
and 0 respectively. Fitness is simply measured by summing
the number of squares that are in an incorrect state. In this
study the fitness is minimized, such that 0.0 is the best
possible fitness where all of the candidate solution’s squares
exactly match the target checkerboard-pattern. Fig. 3 which
illustrates scaled-up versions of a pattern. The instances will
be referred to by the total number of bits needed to describe
the board. The board size CbN is calculated as follows
CbN = ss2

i ∗ 4 ∗ 2, where ssi is the number of consecutive
ones or zeros. In this paper the board sizes used where Cb32

and Cb128

Fig. 3. Checkerboard patterns for Cb32 and Cb128.

A dynamic noisy version of the checkerboard problem
is also adopted. In [12] the checkerboard was distorted
with noise to make the problem harder. The distortion was
implemented by the possibility of each bit in the original
board to flip with a probability of 0.05. Here it is taken
a step further and the checkerboard is distorted after a set
period length of 10 or 100 iterations. Therefore, we have two
dynamic variants of each problem size (Cb32 and Cb128).

B. Experiment 1 - Grammar Design
We examine a series of grammars that incrementally

remove bias on different levels from the mGGA grammars
adopted in earlier studies. We wish to determine if this bias
is having a negative impact on performance. Each of these
grammars represents a solution to the Checkerboard problem.
For each of the modified grammars only changes from

the original grammar will be shown. In order to fit the
grammars to the page the “...” should be read as repeat

problemsize/blocksize times. A large number of grammars
have been analysed with a series of incremental changes
between each grammar. Given space restrictions we have
only presented the significant grammars.
1) Original - grammar 0: To allow the creation of multi-

ple building block structures of different sizes the following
meta grammar could be used (this approach was implemented
in [3], [12]). Below a is an example of a grammar for Cb 32.
As can be seen when expanding <bitstring> there will
be a bias towards using building block structures of size >1.
<g> ::= "<bitstring> ::=" <reps>

"<bb16> ::=" <bb16>
"<bb8> ::=" <bb8>
"<bb4> ::=" <bb4>
"<bb2> ::=" <bb2>
"<bb1> ::=" <bb1>
"<bit> ::=" <val>

<bb16> ::= <bb16t>
| <bb16t> "|" <bb16>

<bb8> ::= <bb8t>
| <bb8t> "|" <bb8>

<bb4> ::= <bb4t>
| <bb4t> "|" <bb4>

<bb2> ::= <bb2t>
| <bb2t> "|" <bb2>

<bb1> ::= <bb1t>
| <bb1t> "|" <bb1>

<bb16t> ::= <bit>...<bit>
<bb8t> ::= <bit><bit><bit><bit><bit><bit><bit><bit>
<bb4t> ::= <bit><bit><bit><bit>
<bb2t> ::= <bit><bit>
<bb1t> ::= <bit>
<reps> ::= <rept>

| <rept> "|" <reps>
<rept> ::= "<bb16><bb16>" | "<bb8><bb8><bb8><bb8>"

| "<bb4><bb4><bb4><bb4><bb4><bb4><bb4><bb4>"
| "<bb2>...<bb2>
| "<bb1>...<bb1>

<bit> ::= "<bit>"
| 1
| 0

<val> ::= <valt>
| <valt> "|" <val>

<valt> ::= 1
| 0

2) Equal 1 - grammar 5: This grammar has the same
probability for <bitstring> to use a GE GA or a building
block structures of size greater than 1.
<g> ::= "<bitstring> ::= <GA>...<GA>|" <reps>

"<bb16> ::= " <bb16>
"<bb8> ::= " <bb8>
"<bb4> ::= " <bb4>
"<bb2> ::= " <bb2>
"<bit> ::=" <val>
"<GA> ::= 1 | 0"



<reps> ::= <rept>
| "<GA>...<GA> |" <rept> "|" <reps>

<rept> ::= "<bb16><bb16>"
| "<bb8><bb8><bb8><bb8>"
| "<bb4><bb4><bb4><bb4><bb4><bb4><bb4><bb4>"
| "<bb2>...<bb2>"
| <reps>

3) Equal 2 - grammar 6: This grammar has the same
probability for <bitstring> to use a GE GA or building
block structures of any size.
<g> ::= "<bitstring> ::= <GA>...<GA>|" <reps>

"<bb16> ::= " <bb16>
"<bb8> ::= " <bb8>
"<bb4> ::= " <bb4>
"<bb2> ::= " <bb2>
"<bb1> ::= " <bb1>
"<bit> ::=" <val>
"<GA> ::= 1 | 0"

<reps> ::= <rept>
| "<GA>...<GA> |" <rept> "|" <reps>

<rept> ::= "<bb16><bb16>"
| "<bb8><bb8><bb8><bb8>"
| "<bb4><bb4><bb4><bb4><bb4><bb4><bb4><bb4>"
| "<bb2>...<bb2> "
| "<bb1>...<bb1> "
| <reps>

4) GE GA - grammar 11: This is a simple GE approach
to GA that does not use a meta grammar. It is implemented
in order to provide a benchmark for the other results. The
grammar pre-specifies the number of bit positions in the
solution, and the genome is used to select what each bit
becomes.

<bitstring> ::= <GA>...<GA>
<GA> ::= 1

| 0

C. Experiment 2 - Building Block Use in Evolved Grammars

In the second part of this study we examine the building
block structures that are being generated in the evolved
grammars. Primarily we wish to ascertain if the evolved
grammars and co-evolved solutions actually include and use
building block structures of size greater than one when
solving a problem. To this end we compare the frequency of
occurrence of the building block rules in solutions against
the frequency of occurrences of the same building block
structures using a random search.

D. Setup

The settings in Table I were adopted. The population size
was the one that solved the instance within 10% of where
30 runs are successful for a maximum of 800 iterations.
Both chromosomes had the same initial length, roughly three
times the problem size. The chromosomes were variable-
length vectors of integers (2 byte integers). Rank replacement
is adopted with a constant population size, where the new
children are pooled with the current population, ranked, and
the worst individuals are removed. One-point fixed crossover,
and integer mutation where a new value was randomly
chosen, are used. For the GE GA the parameters for the
meta chromosome are not used.

TABLE I
PARAMETERS FOR THE GE ALGORITHM

Fitness function Checkerboard
Checkerboard size 32, 128
Initial chromosome size 90, 300
Population size 121, 288
Initialisation Random
Selection operation Tournament Select
Tournament size 3
Replacement Rank replacement
Max wraps 1
Generations 800
Crossover probability meta 0.9
Crossover probability solution 0.9
Mutation probability meta 0.01
Mutation probability solution 0.01

IV. RESULTS
1) Experiment 1: Table II details the average generation

at which a solution was found over the 30 runs and Table III
details the results of a t-test on this data.

TABLE II
RESULTS. AVE IT. DENOTES AT WHICH ITERATION THE PROBLEM WAS

SOLVED.

Run Cb32 Ave It. Std
Grammar 0 67.440 22.641
Grammar 5 46.900 5.355
Grammar 6 46.340 5.578
Grammar 11 41.420 4.312
Run Cb128 Ave It. Std
Grammar 0 136.960 38.839
Grammar 5 133.670 6.174
Grammar 6 134.090 6.785
Grammar 11 128.380 6.973

TABLE III
P-VALUES OF 2 SIDED T-TEST BETWEEN THE DIFFERENT GRAMMARS ON

THE PROBLEM.

Cb32
Grammar 0 5 6 11
0 0.000 0.000 0.000
5 0.000 0.470 0.000
6 0.000 0.470 0.000
11 0.000 0.000 0.000

Cb128
Grammar 0 5 6 11
0 0.404 0.468 0.031
5 0.404 0.648 0.000
6 0.468 0.648 0.000
11 0.031 0.000 0.000

In the case of the simpler problem instance (Cb32) both
of the unbiased grammars (grammars 5 and 6) significantly
outperform the biased grammar (grammar 0). This is not the
case, however, for the larger Cb128 problem instance where
statistically the results are the same. Examining the fitness
plots in Fig. 4 we see that the unbiased grammars are solving
the problem faster than the biased grammar on both problem
instances.
An interesting result is that the simpler GE approach to

GA, as represented in grammar 11, significantly outperforms
all other grammars on both problem instances at the 95%
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Fig. 4. On the x-axis is the number of fitness evaluations. On the y-axis
is the normalized fitness.

confidence level. However, on the larger instance there is
no difference in performance between the biased grammar
(grammar 0) and grammar 11 at the 99% level.
On both problem instances it is also worth noting that the

fitness standard deviation in the biased grammar 0 is much
higher than that of the unbiased grammars. This could be
expected since a building block structure might solve the
problem faster as well as hamper it more then a GA.
We examined the solutions evolved during the 30 runs

at each generation and averaged the value at each position
across the population. This result is visualised in Fig. 5 where
a rapid convergence on the solution is found for all grammars
.
Each column in the figure represents the average solution

of that generation (i.e., the average value at each bit position
of the solution) with the first column representing the first
generation. It can be seen that the first generation is noisy
(indicated by grey bit values at each locus) as expected from
a random initialisation process. As we move east through
the figure (moving through each generation of a run) we see

very rapid convergence on the ideal target solution of the
checkerboard (spread out across a line). This suggests that
the problems examined in this case are too simple to expect
to observe performance differences.
On the dynamic noisy checkerboard instances similar

trends are observed. The number of fitness evaluations re-
quired to solve each problem are shown in Figs. 6 and 7.
An alternative view of these results is to plot the area under
the curve. In Figs. 8 and 9 we plot a simplification of the
area under the curve by plotting a running total of the error
at each period.
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Fig. 6. On the x-axis is the number of fitness evaluations. On the y-axis
is the normalized fitness.

2) Experiment 2: An idea of the use of building block
structures can be formed by looking at the use of building
block structures in the solution grammar of the individual
that solved the problem and comparing it to random samples.
Fig. 10 and 11 show these results.
It can be seen in the presence of random search that

there is a 50:50 split between solutions that adopt building
block structures of size N versus building block structures
of size 1 (bottom half of each figure). In the presence of an



(a) Grammar 0

(b) Grammar 6

Fig. 5. The appearance of solutions for a sample of 100 runs of Cb32. The y-axis represents the average value at each locus of the solution, the x-axis is
the generation (300 in total). The left part of the figure represents the average values in the population. The right part of the figure represents the values
for the best individuals. Convergence of the bit values occurs approximately within the first 50 generations.
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Fig. 7. On the x-axis is the number of fitness evaluations. On the y-axis
is the normalized fitness.

evolutionary algorithm however, the relative use of building
block structures of size N is significantly greater than blocks
of size 1. Size 1 building block structures are only used 23%
and 20% of the time on the Cb32 and Cb128 respectively.
These results are encouraging and suggest that when a

choice between adopting building block structures of size N
versus no building block structures (i.e., size 1) is offered
in the meta grammar, that building block structures are
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Fig. 8. On the x-axis is the period. On the y-axis is the normalized sum
of errors.

exploited in solving the problem.

V. CONCLUSIONS & FUTURE WORK

We set out to measure and understand two aspects of
the meta Grammar Genetic Algorithm (mGGA). Firstly, an
experiment was undertaken to determine if a bias in the gram-
mar design used in earlier studies towards the use of building
block structures impaired search efficiency. Secondly, we
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Fig. 9. On the x-axis is the period. On the y-axis is the normalized sum
of errors.

wished to determine if the building block structures were
in fact adopted by the population in solving the problem.
With respect to grammar design, it was found that it can

be an important factor in the search efficiency of the meta-
grammar approach on the problems analysed. An unbiased
form of the grammar was found to outperform the biased
equivalent.
An analysis of the adoption of building block structures by

the evolutionary search found that these modular structures
were utilised successfully by the population to solve the
problem.
A recommendation arising from this study is towards the

adoption of a meta-grammar that allows the utilisation of
both a classic GA bitstring representation in conjunction with
the modular building block structures.
Future work will focus on the generality of these results to

different and harder problem domains. Results presented here
suggest that the static problems adopted in this study were
too easy to expect performance gains to be achieved by the
meta-grammar approach. Similar, to the threshold of problem
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Fig. 10. Use of building block structures in solution for mGGA Cb32
using Grammar 5 and random search

difficulty Koza observed to justify the use of ADFs, the
additional overhead of the meta-grammar approach coupled
with the building block grammars warrants its application to
harder problems. Indeed, this suggestion is backed up by an
earlier study where scalability of the mGGA to harder in-
stances of the checkerboard yielded impressive performance
gains relative to the modular GA [12].
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