
Evolving a Logo Design using Lindenmayer Systems, Postscript &
Grammatical Evolution

Michael O’Neill and Anthony Brabazon

Abstract—We present an application of Grammatical Evolu-
tion to the exploration of Lindenmayer systems. The resulting
L-systems are expressed in the Postscript language, and as
such a Postscript grammar was provided as input to the
Grammatical Evolution algorithm. The system takes the form
of an interactive evolutionary algorithm, with a human-in-the-
loop acting as the fitness function for the generated L-systems.
The motivation for this research was to evolve a logo for the
UCD Natural Computing Research & Applications group, and
to this end the study was a success.

I. INTRODUCTION

EVOLUTIONARY Computation has demonstrated much
potential for Evolutionary Design (ED) producing solu-

tions that are competitive, and even superior to those devel-
oped by human experts resulting in patentable inventions [1],
[2], [3]. As such, the real world application domain of Design
(in particular Analog Circuit Design [1]) has been a proving
ground for the abilities of an artificial evolutionary process
and has arguably led to the first routinely, human-competitive
form of Machine Learning. ED is a challenging domain
as it is often dynamic in nature due to the ever changing
preferences of the human users that judge the aesthetic
qualities of a design during evolution.

The combination of an EA coupled to a Grammatical,
Developmental Representation (Design Language) is a par-
ticularly powerful and novel departure in recent years [4].
Research at this nexus of EC and a Grammatical Representa-
tion include GENRE and Genr8 amongst others [4], [6], [7],
[8], [9]. As is the case in this study much of this research in
grammar-based Genetic Programming and in more traditional
approaches to Genetic Programming (e.g., [10]) has been
undertaken using L-systems.

Aristid Lindenmayer developed what are now known as
L-systems in 1968 to model the development of cells [11].
The L-systems are a form of grammar, similar to Chomsky
grammars, with the difference that Lindenmayer grammars
can apply production rules in parallel. There have been a
number of applications of genetic programming approaches
to the generation of various types of L-systems most no-
tably the Hemberg-Extended Map L-systems for 3-D surface
generation [6], and using Grammatical Evolution to design
fractal curves with a specific dimension [12].

A convenient way to generate and display L-systems is
to use the Postscript language, and in this study we use
Grammatical Evolution [13] to evolve Postscript programs
that represent aesthetically pleasing 2-D L-systems.

Michael O’Neill and Anthony Brabazon are with the Natural Computing
Research & Applications Group, University College Dublin, Ireland (e mail:
m.oneill@ucd.ie, anthony.brabazon@ucd.ie).

In the following Section II we provide a brief introduction
to Grammatical Evolution. Section III details the grammar
used to generate L-systems in PostScript, and results of the
interactive evolution are presented in Section IV. Conclusions
and a number of items for Future Research are outlined in
Section V.

II. GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) is an evolutionary algorithm
that can evolve computer programs in any language [13],
[14], [15], [16], [17], [18], and can be considered a form of
grammar-based genetic programming. Rather than represent-
ing the programs as parse trees, as in GP [19], [20], [21],
[22], [1], a linear genome representation is used. A genotype-
phenotype mapping is employed such that each individual’s
variable length binary string, contains in its codons (groups
of 8 bits) the information to select production rules from a
Backus Naur Form (BNF) grammar. The grammar allows
the generation of programs in an arbitrary language that
are guaranteed to be syntactically correct, and as such it is
used as a generative grammar, as opposed to the classical
use of grammars in compilers to check syntactic correctness
of sentences. The user can tailor the grammar to produce
solutions that are purely syntactically constrained, or they
may incorporate domain knowledge by biasing the grammar
to produce very specific forms of sentences.

BNF is a notation that represents a language in the form
of production rules. It is comprised of a set of non-terminals
that can be mapped to elements of the set of terminals
(the primitive symbols that can be used to construct the
output program or sentence(s)), according to the production
rules. A simple example BNF grammar is given below,
where <expr> is the start symbol from which all programs
are generated. These productions state that <expr> can
be replaced with either one of <expr><op><expr> or
<var>. An <op> can become either +, -, or *, and a
<var> can become either x, or y.

<expr> ::= <expr><op><expr> (0)
| <var> (1)

<op> ::= + (0)
| - (1)
| * (2)

<var> ::= x (0)
| y (1)

The grammar is used in a developmental process to
construct a program by applying production rules, selected by
the genome, beginning from the start symbol of the grammar.

In order to select a production rule in GE, the next codon
value on the genome is read, interpreted, and placed in the
following formula:

Rule = Codon V alue % Num. Rules

where % represents the modulus operator.
Given the example individuals’ genome (where each 8-bit

codon is represented as an integer for ease of reading) in
Fig.2, the first codon integer value is 220, and given that
we have 2 rules to select from for <expr> as in the above
example, we get 220 % 2 = 0. <expr> will therefore be
replaced with <expr><op><expr>.

Beginning from the left hand side of the genome, codon in-
teger values are generated and used to select appropriate rules
for the left-most non-terminal in the developing program
from the BNF grammar, until one of the following situations
arise: (a) A complete program is generated. This occurs when
all the non-terminals in the expression being mapped are
transformed into elements from the terminal set of the BNF
grammar. (b) The end of the genome is reached, in which
case the wrapping operator is invoked. This results in the re-
turn of the genome reading frame to the left hand side of the
genome once again. The reading of codons will then continue
unless an upper threshold representing the maximum number
of wrapping events has occurred during this individuals
mapping process. (c) In the event that a threshold on the
number of wrapping events has occurred and the individual
is still incompletely mapped, the mapping process is halted,
and the individual assigned the lowest possible fitness value.
Returning to the example individual, the left-most <expr>
in <expr><op><expr> is mapped by reading the next
codon integer value 240 and used in 240 % 2 = 0 to be-
come another <expr><op><expr>. The developing pro-
gram now looks like <expr><op><expr><op><expr>.
Continuing to read subsequent codons and always mapping
the left-most non-terminal the individual finally generates the
expression y*x-x-x+x, leaving a number of unused codons
at the end of the individual, which are deemed to be introns
and simply ignored. Fig.1 draws an analogy between GE’s
mapping process and the molecular biological processes of
transcription and translation. A full description of GE can be
found in [13].

III. POSTSCRIPT LOGO DESIGN GRAMMAR

To evolve a logo design for the UCD Natural Computing Re-
search & Applications group we wished to use a bio-inspired
process that would complement the philosophy of the group.
We also wished that the design itself would reflect the natural
world to some extent. As L-systems were originally adopted
to model cell growth and plant development we considered
this developmental language appropriate. The input grammar
adopted in this study is presented below, and contains the
rules to generate an L-system grammar. The L-system must
then be expanded to produce a design that can be evaluated
by the human user.
<lsys> ::= <numrepeats> "{dup} repeat" <rules>"} \n

if pop \n

} def \n
/rotangle"<rotangle> " def \n"

<rules> ::= <rules> <rules> <rules> <rules>
| <Fcomplex>
| <Xcomplex>
| <fun>
| <rotateop>

<rotateop> ::= + | -

<fun> ::= F | X

<Fcomplex> ::= <rotateop> F
| <rotateop> F <rotateop> F

<Xcomplex> ::= <rotateop> X
| <rotateop> X <rotateop> X

<rotangle> ::= 5 | 10 | 15 | 20 | 25 | 30
| 35 | 40 | 45 | 50 | 55 | 60
| 65 | 70 | 75 | 80 | 85 | 90

<numrepeats> ::= ?

The above grammar generates an L-system coded in the
Postscript language [27], [28]. All the evolved grammars in
this study take the form:

S -> X
X -> ?

where the angle of rotation of the turtle graphic (rotangle)
is evolved according to the non-terminal <rotangle>, and
the order (depth of expansion of the L-system) of the
system is 3 by default, however, the interesting L-systems
evolved in this study were allowed to divide further and
are presented later on. To complete a valid postscript file
the header and footers presented in Fig 3 are used to wrap
the evolved L-System. A number of PostScript operators are
provided including dup and pop which duplicate and pop
the top item on the stack respectively, the conditional oper-
ators if and ne (not equals). The forward slash, /, is used
to denote user-defined variable and procedure names along
with the definition operator (def). rlineto, newpath
and moveto are path construction operators that create a
path, clear the current path and move to a specific cartesian
coordinate respectively. The painting operator stroke is
used to paint the current path with the current color and line
width.

An unusual feature of this grammar is that the
<numrepeats> non-terminals right-hand side is undefined
at the start of the mapping process. Only after a first pass
through the grammar, starting from <rules>, is completed
can the the terminal symbol for <numrepeats> be deter-
mined by parsing over the sentence arising from <rules>.
During the parse we count the number of occurences of
procedure calls in the evolved L-System (i.e., the occurences
of X and F in this case). F is a user-defined procedure
that creates a path for a line, and the evolved procedure
X determines how F’s are combined and rotated during the
expansion of the L-system.

In this approach we therefore provide a grammar as
input to GE, which represents another grammar (the L-
system). The evolved L-system must then itself be generated
in order to evaluate it. This meta-grammar approach (the

TRANSCRIPTION

TRANSLATION

DNA

RNA

Acids
Rules

Grammatical Evolution

Protein

Integer String

Binary String

Amino

Biological System

Phenotypic Effect

Program /
Function

Executed Program

Fig. 1. A comparison between Grammatical Evolution and the molecular biological processes of transcription and translation. The binary string of GE is
analogous to the double helix of DNA, each guiding the formation of the phenotype. In the case of GE, this occurs via the application of production rules
to generate the terminals of the compilable program. In the biological case by directing the formation of the phenotypic protein by determining the order
and type of protein subcomponents (amino acids) that are joined together.

220 20253101203220240 102203 55 202221

241 133 30 204 140 39 202 203 10274

Fig. 2. An example GE individuals’ genome represented as integers for ease of reading.

Postscript Header:
%!PS
/order 3 def %set the systems order
/START { X } def %start definition of X
/X { %let evolution fill in
dup 0 ne %the rest
{1 sub

Postscript Footer:
/F { %define F - draws a line
0 eq { 10 0 rlineto } if
} bind def
/- { rotangle neg rotate } bind def %rotation angle specified
/+ { rotangle rotate } bind def %by evolution
/paperx 8.5 72 mul def
/papery 11 72 mul def
/xx paperx 0.3 mul def
/yy 400 def
/thick 25 def
/factor { pop 2 } def
1 setlinejoin
1 setlinecap
newpath
xx yy moveto %centers in page, roughly
thick 1 1 order { factor div } for dup scale
90 rotate %initial angle
order START
stroke
showpage

Fig. 3. Postscript header and footers into which the evolved l-system is placed.

input grammar represents another grammar) is a powerful
abstraction that is made possible through the representational
flexibility of grammars themselves. Many examples of the

use of meta-grammars with GE exist (e.g., [6], [23], [24],
[25], [26]).

Fig. 4. F-X-X-X-F-F-FF-F, 30o .

Fig. 5. F-F+F+FXF-F+F+FXF-F+F+FXF-F+F+FX, 85o .

Fig. 6. -X-X-X-FFX-X-X-X-FFX, 85o.

Fig. 7. F-F-F-F+X+X-F-F-F-FF-F+F+F, 60o.

Fig. 8. F-F-F-F-X+XX-F-F-FF-F-F+FX-X-X-F+FF-F-F-F, 80o.

IV. RESULTS

The experiments were performed with a population size of
10 running for 20 generations, with a bit mutation probability

of 0.01, and a variable-length one point crossover probability
of 0.9, with roulette selection and Steady state replacement.

Initialisation was random with individuals’ genotypes being
generated in a size range of 15 to 25 codons. Wrapping was
enabled up to a limit of 10 events. The fitness function was
the author with fitness values assigned within the range 0.0
to 1.0 where 1.0 represented a perfect solution. The more
aesthetically pleasing of the evolved L-systems are presented
in Fig’s. 4, 5, 6, 7, and 8 at the original expansion depth
(order 3) and other smaller and larger depth variants to
expose the underlying building block(s) that generate the
larger design patterns.

Fig.9 was selected as the logo for the UCD Natural
Computing Research & Applications group1, which was
founded at University College Dublin, Ireland in January
2006 by Michael O’Neill and Anthony Brabazon. The logo
has a natural form that resembles an Ammonite.

Fig. 9. F-F+F+FXF-F+F+FXF-F+F+FXF-F+F+FX, 85o.

V. CONCLUSIONS & FUTURE WORK

We presented an application of Grammatical Evolution to
the exploration of L-systems expressed in Postscript. The use
of this approach resulted in the discovery of a logo for the
UCD Natural Computing Research & Applications group.

Future work will include the continued development of
Grammatical Evolution in the context of interactive Evo-
lutionary Computation for the exploration of designs. In
particular, Shape Grammars have proven a successful tool
to capture the essence of many designs including Coffee
Makers, Cars and Harley Davidson Motorbikes [29], [30],
[31], [32], [33], [34], [35]. We are examining their potential
for combination with evolutionary search using GE.

Research we have undertaken in addressing the fitness
evaluation bottleneck for interactive evolutionary computa-
tion during sound synthesis [36] also has relevance to evolu-
tionary design with GE. We are investigating the extension of
the sweeping interface to GE to allow interpolation between
individuals at different levels of granularity.

REFERENCES

[1] Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza,
G. (2003). Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer Academic Publishers.

1http://ncra.ucd.ie

[2] Takagi, H. (2001). Interactive Evolutionary Computation: Fusion
of the Capabilities of EC Optimization and Human Evaluation.
Proceedings of the IEEE, Vol.89, No.9, pp.1275-1296.

[3] Bentley, P. (Ed.) (1999). Evolutionary Design by Computers.
Morgan Kaufmann.

[4] Hornby, G., Pollack, J.B. (2001). The advantages of genera-
tive grammatical encodings for physical design. In Proc. of the
Congress on Evolutionary Computation, pp.600-607. IEEE Press.

[5] Hornby, G., Pollack, J.B. (2001). Evolving L-systems to generate
virtual creatures. Computers and Graphics, Vol.25 No.6., pp.1041-
1048. Elsevier.

[6] Hemberg, M. (2001). GENR8 - A Design Tool for Surface Gener-
ation. MSc Thesis. MIT.

[7] Hemberg, M., O’Reilly, U-M. (2004). Extending Grammatical Evo-
lution to Evolve Digital Surfaces with Genr8. In LNCS 3003 Proc.
of the European Conference on Genetic Programming, pp.299-308.
Springer.

[8] Hemberg, M., O’Reilly, U-M., Menges, A., Jonas, K., da Costa
Goncalves, M., Fuchs, S. (2007). Genr8: Architect’s experience
using an emergent design tool. In Art of Artificial Evolution.
Springer.

[9] Gero, J.S. (1994). Evolutionary Learning of Novel Grammars for
Design Improvement. AIEDAM, Vol.8, No.2, pp.83-94.

[10] Langdon, W.B. (2004). Global Distributed Evolution of L-system
Fractals. In LNCS 3003 Proceedings of the European Conference
on Genetic Programming EuroGP 2004, pp. 349-358. Springer.

[11] Lindenmayer, A. (1968). Mathematical Models for Cellular Inter-
action in Development. Journal of Theoretical Biology, Vol. 18,
pp. 280-315.

[12] Ortega, A., Dalhoum, A.A., Alfonseca, M. (2003). Grammatical
evolution to design fractal curves with a given dimension. IBM
Journal of Research & Development, Vol. 47, No. 4, July 2003.

[13] O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolution-
ary Automatic Programming in an Arbitrary Language. Kluwer
Academic Publishers.

[14] O’Neill, M. (2001). Automatic Programming in an Arbitrary Lan-
guage: Evolving Programs in Grammatical Evolution. PhD thesis,
University of Limerick, 2001.

[15] O’Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans.
Evolutionary Computation. 2001.

[16] O’Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003). Crossover
in Grammatical Evolution. Genetic Programming and Evolvable
Machines, Vol. 4 No. 1. Kluwer Academic Publishers, 2003.

[17] Ryan, C., Collins, J.J., O’Neill, M. (1998). Grammatical Evolution:
Evolving Programs for an Arbitrary Language. Proc. of the First
European Workshop on GP, 83-95, Springer-Verlag.

[18] Dempsey, I. (2007). Grammatical Evolution in Dynamic Environ-
ments. PhD Thesis. University College Dublin.

[19] Koza, J.R. (1992). Genetic Programming. MIT Press.
[20] Koza, J.R. (1994). Genetic Programming II: Automatic Discovery

of Reusable Programs. MIT Press.
[21] Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Ge-

netic Programming – An Introduction; On the Automatic Evolution
of Computer Programs and its Applications. Morgan Kaufmann.

[22] Koza, J.R., Andre, D., Bennett III, F.H., Keane, M. (1999). Ge-
netic Programming 3: Darwinian Invention and Problem Solving.
Morgan Kaufmann.

[23] O’Neill, M., Ryan, C. (2004). Grammatical Evolution by Grammat-
ical Evolution. In LNCS 3003 Proc. of EuroGP 2004, pp.138-149.
Springer.

[24] O’Neill, M., Brabazon, A. (2005). mGGA: The meta-Grammar
Genetic Algorithm. In LNCS 3447 Proc. of EuroGP 2005, pp.
311-320. Springer.

[25] Hemberg, E., Gilligan, C., O’Neill, M., Brabazon, A. (2007). A
Grammatical Genetic Programming Approach to Modularity in
Genetic Algorithms. In LNCS 4445 Proc. of EuroGP 2007, pp.1-
11. Springer.

[26] Hemberg, E., O’Neill, M., Brabazon, A. (2008). An investigation
of meta grammars in Grammatical Evolution. Proc. of EuroGP
2008. Springer. To appear.

[27] Taft, E., Chernicoff, S., Rose, C. (1999). PostScript Language
Reference. 3rd Edition. Addison-Wesley.

[28] Adobe Systems, Inc. (1985). Postscript Language Tutorial and
Cookbook. Addison-Wesley.

[29] Stiny, G., Gips, J. (1972). Shape Grammars and the Genera-
tive Specification of Painting and Sculpture. In Proc. of IFIP
Congress71, pp.1460-1465. North-Holland.

[30] Stiny, G. (1991). The Algebras of Design. Research in Engineering
Design. Vol.2, No.3, pp.171-181.

[31] Brown, K. (1997). Grammatical Design. IEEE Expert, March-
April, pp.27-33.

[32] Koning, H., Eizenberg, J. (1981). The language of the Praire: Frank
Llyod Wright’s Praire Houses. Environment and Planning B, Vol.8,
pp.295-323.

[33] Stiny, G., Mitchell, W.J. (1978). The Palladian Grammar. Environ-
ment and Planning B, Vol.5, pp.5-18.

[34] Knight, T.W. (1980). The generation of Hepplewhite-style chair
back designs. Environment and Planning B, Vol.7, pp.227-238.

[35] Li, A. I-Kang. (2002). Algorithmic Architecture in Twelfth-Century
China: The Yingzao Fashi. In Nexus IV: Architecture and Mathe-
matics, pp.141-150. Kim Williams Books.

[36] McDermott, J., Griffith, N., O’Neill, M. (2007). Evolutionary GUIs
for Sound Synthesis. In LNCS 4448 Proc. of the Fifth European
Workshop on Evolutionary Music and Art EvoMUSART 2007,
pp.547-556. Springer.

