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Abstract— Particle swarm has proven to be competitive to A. Particle Svarm Algorithms

_other evolutionary algorithms in the field of optimization, gnd LBest and GBest are two variations of the standard PSA
in many cases enables a faster convergence to the ideal sabat . .
However, like any optimization algorithm it seems to have (Particle Swarm Algorithm). The standard PSA was devel-
difficulties handling optimization problems of high dimenson. oped by Kennedy [1]. The idea is based on the behaviour of
Here we first show that dimensionality is really a problem for  flocks or fish swarms looking for food. All the individuals

the classical particle swarm algorithms. We then show that (or particles in the PSA paradigm) have the same behaviour.
increasing the swarm size can be necessary to handle problem The particles represent a solution of a problem and are
of high dimensions but is not enough. We also show that the )
issue of scalability occurs more quickly on some functions. represented as vectors of real values of fixed length. Each

particle,z?, is moving with a certain speed. The particles

speed is updated according to the best position the particle

| INTRODUCTION has seen so I:aE and the best position its neighbours have

Amongst evolutionary algorithms, Particle Swarm Algo-seen so farz?. An inertia weight,w, is also taken into
rithms [1] have proven their efficiency mainly thanks toaccount to prevent the particle from changing its direction
their fast convergence. However few experiments have been converging too quickly. The particle is also forced not to
run on high dimensional problems. By high dimension, wenove to quickly in any direction by constraining its speed
mean problems of size 30 and above. While this is not i@ a box. The update rules for particteare described at
large number of dimensions when compared to ones tackleduation 1

recently by Genetic Algorithms [2] it is a typical problem N =S . =

size tackled in the PSO literature. It seems to be assumed tha V" < wv* + acu1 * (agZ B xz) T aguz * (xl - xz)
dimensionality is a problem for particle swarm algorithms, - 5L

but no studies show it clearly. We are particularly intezdst ~ © max (U ’vm‘”) 1)

in this issue as we are investigating the applicability of vt — min (Ji,—v,;m)
Particle Swarm in the domain of Sound Synthesis where we P 1
are optimising a model containing over 300 dimensions. ’

This paper therefore focuses on finding whether probleifheredi andus are random real valued vector iy 1%, N
dimension is a real problem for particle swarm. We try tdS the size oft’, x is the term-by-term multiplicatiory. and
find out whether increasing the swarm size and/or increasirig are the cognitive and global acceleration rates respéytive
the optimization process is enough to find a solution.  Umaz IS the vectornv,q. |, andv,q.. is the speed limit.

We focus our studies on two standard algorithms: the 1) Topology.: The difference between GBest anq LBest
LBest and GBest models which are described in section [1-A> the topology of th(_a swarm. T_he topology deflnes_the
For each algorithm, the swarm size is increased to obser! k between the particles, i.e. given a particular pagiicl

any change in improvements. The performance measure ich other particles have an influence on it. The topology
the median of the number of iterations required to solv efines therefore the neighbourhood of the particles. In the

in a satisfying way, a problem. As far as the problem Best version, the neighbourhood is composed of all the

are concerned, four common benchmark functions are us&ﬂrtides of the swarm (see Fig. 1(a)), whereas in the LBest
Ackley Griewa,nk Rastrigin and Rosenbrock version, it is composed only from a few other particles.
’ ' ' A typical topology for LBest is the ring topology, where

each particle has two neighbours plus itself (see Fig.1(b))
[I. EXPERIMENTAL SETTINGS Other topologies have shown some good results, notably the

Von Neumann topology [3], where each particle has four
This section describes all the parameters used in oHeighbours.

experiments.
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2) Condtriction factor.: The values fotw, a., anda, have The solution is considered good enough when
an important role on the algorithms. A classical approach ifacxiey (Z) < 0.01.

to used a linearly decreasing inertig from w;,;: = 0.9 to 2) Griewank.:

wend = 0.4, and to setu. = a, = 2. An other approach is N

to use a constriction factor. Clerc [4] proposed to constrai , 7) = 1 2 — 100)2

the values ofu,, a,, andw in order to ensure the algorithm feriewank (%) 4000 ;( ¢ )

to converge. A constriction factox; is defined according to N

equation 2. ) _ HCOS <L100> +1
= (2) 1=1 \/(7/)

‘2_¢_ \/m‘ # € [—600, 600]

where¢ = a. +a, > 4. The velocity update rule, becomes: The solution is considered good enough when

- = = -, fGTzewank( ) < 0.05.
U; — X {vl + ac.uy (a:l - fz) + agus <x1 — Il>:| 3)

3) Rastrigin.:
PSA with constriction factor is therefore equivalent to the N
standard PSA with «— x, ac « %, anda, « "79 Common [Rastrigin (T Z z? — 10 cos(2mz;) + 10)
values arep = 4.1 andy = 0.7298, which is equivalent to a =1 N
standard PSO witlv = 0.7298 and a. = a, = 1.49609. Z € [-5.12,5.12]

In the case of .the constr|<_:t|on factor, limiting the speed The solution is considered good enough when

of the particles is not required to ensure convergence, t&u}% irigin () < 100
. . astrigin .

Eberhart_ [5] showed that it enables the algorithm to corerer 4) Rosenbrock.

more quickly.

After a few experiments, we noticed that the GBest model

performed better with a linearly decreasing inertia, where JRosenbrock (T Z 100(zj41 — ; ) + (2 —1)°
the LBest model performed better with the constriction N
factor. Therefore we only retained those two models. Also € [—2.048,2.048]

in both models, the velocity was limited to the size of the

. The solution is considered good enough when
search space, i.evmaz = Tmaz, Where the search space is
]N fRosenbrock( ) < 100.

[_:Emama Tmax

IIl. RESULTS ANDANALYSIS

TABLE |
VALUES USED FOR BOTH ALGORITHMS The experiments have been run for 10,000,000 evaluations
of the benchmark function. Each experiment consists of:
[Aoo |« [ o | 4 | oma: | Topology | PSA algorithm: GBest or LBest;
GBest| 09 04 | 20 20 | Zmas Ring «a algoriihm. sbest or Lbest, o
[Best | 07208 | 1.4600 | 1.4609 | Zmas | EUl connexion « a benchmark function: Ackley, Griewank, Rastrigin (all

three are multimodal) or Rosenbrock (unimodal);
« a problem size: 30, 50, 75, 100, 150, or 200 (and 300,
B. Benchmark Functions 400, 500 for Ackley and Griewank);

To compare the algorithms, the benchmark functions Ack- ® a swarm size: 25, 50, 75, 100, 150, 200, 250, 300, 400,
ley, Griewank, Rastrigin and Rosenbrock are used. In the or 500. _ _
following description of the benchmark functions, we defineThe performance of the algorithm is measured after every

« N, the dimension of the problem. 10,000 evaluations of the benchmark function. This means

« ©=|x1,20, - ,2n], the vector representing the posi- that the precision is +/- 10,000 evaluations. Each experime
tion to evaluate has been run 50 times.

. z;, theit" value of vectorz. We report the median number of evaluations required to

o frunction, the Function to optimize. have a good resylt on the.benchmlark function, according

For every function, the minimun), is at# = [0]". to the problem size. The different lines correspond to the

1) Acdley: different swarm size used (see Fig. 2, 4, 6, 8, 10, 12, 14,
16). When there are more failure than successful runs, no
data is displayed.
In the same way, we also report the successful rate on
the benchmark function, according to the problem size (see
1 Fig. 3, 5, 7, 9, 11, 13, 15, 17).
— exp (N Z cos(27r:vi)> +20+e In a third step, to find out if there is a significant difference
i between the different swarm sizes, a Kruskal-Wallis anslys
7 € [—32.768,32.768] of variance was made (with a 95% confidence), followed by

fAckley (f) =-20 exp —0.2




a multiple comparison of medians (KW-CM). The Kruskal-a change of slope when the problem size reaches 200. More
Wallis analysis of variance was prefered to an ANOVAover, for a swarm size of 25, the algorithm can not find a
because most of the data failed the test of normality. Theolution for more than 25% of the time. To handle Ackley
only variable considered was the swarm size, which meapsoblem of size 200 and above, it seems therefore necessary
that the Kruskal-Wallis analysis of variance were made faio increase both the swarm size (hot much) and the maximum
a fixed (PSA algorithm, benchmark function and problenmumber of evaluations (a lot).

size) triple. However, the analysis can't be directly apgli

when there are unsuccessful runs. To still be able to compare ir
the effect of the swarm size, we decided to set the results
of the unsuccessful runs to twice the maximum number of o8 e
evaluations allowed (i.e. 20,000,000). © ~0-75
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1) GBest.: Fig. 2 shows two main behaviour: the GBest g v 300
algorithm manages to solve the problems of size equal or 2 , *ggg
below 200, whatever the swarm size used, but has difficulties
handling problems with size of 300 and above. oLs g ‘ ‘ ‘ ‘
Let’s first focus on the problems of size 200 and below. 0 100 200 300 400 500

. . Problem dimension
The curves are quite well separated, and the algorithm seems

to perform faster when the swarm size is small. Howevergig. 4. Median number of evaluations to criteria on AckleythwiBest
the KW-CM, tells us that we can not reject the hypothesis
that for a given swarm size (e.g. 75), the algorithms with 2) LBest.. The LBest model is less efficient than the
the swarm size just below or above (i.e. 50 or 100) perforr@Best model on the Ackley function, in terms of scaling.
the same. But there is a significant different if the swarnit can't solve the problem (at least more than 50% of the
size is increased (or decreased) by two steps (e.g. betwa#ne) for problem size over 100 or even 75 in some cases
swarm size of 50 and 100). It is interesting to notice that fofsee Fig. 4). When it can solve the problem (i.e. for low size
a problem size of 200, GBest starts to have problems to fiqgtoblems), the LBest model is faster than the GBest.
solutions as seen in Fig. 3. We'll come back on that point In terms of swarm size, the KW-CM shows that, for a
later. problem size of 30, the smaller the swarm size, the fastest
Let’s now focus on the problems of size 300 and abovét finds the solution. But like with the GBest model, we can
Most of the configurations fail more than 50% of the timenot reject the hypothesis that for a given swarm size (e.qg.
(see Fig. 3). Only the swarm sizes 50 and 75 are able to find), the algorithms with the swarm size just below or above
a solution more than 50% of the time within 10,000,00@i.e. 50 or 100) perform the same. The same behaviour is
evaluations. also seen from problem size 50 to problem size 100, as soon
We can say that there is a problem on Ackley with GBesis the swarm size is bigger than 25. The swarm size of 25
when the problem size is above 200. However, in one waig not enough to find a solution more than 50% of the time.
one can notice that for a problem size of 200, the number &om problem size 150, the swarm size has no real impact
evaluations required starts to be close to the limit we fixedn the performance of the LBest model.
(10,000,000). Therefore we can not deny that increasirgg thi On Ackley the LBest model definitely suffers from the
limit may enable the algorithm to converge. In an other wayncrease of the problem size. Fig. 5 shows that its success
if we look at the behaviour of the curves on Fig. 2, there isate decreases rapidly with the increasing problem size. It



also shows that the smaller the swarm size, the more quickly i
it fails when the problem size is increased.
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quickly from a problem of size 100. We can also note that

with a swarm size of 50 the success rate starts to slightly

] decrease on the Griewank problem of size 500. This tends to

B. Results on Griewank prove that increasing the swarm size may be a good option
1) GBest.: According to Fig. 6, the GBest algorithm doesto solve the problem.

not seem to have too many scalability issues. When the The curves on Fig. 8 seem quite well separated, and the

problem size is increased, the number of evaluations has dfgorithm seems to perform faster when the swarm size is

be increased, but quite regularly. It seems that our highemall. However, the KW-CM tells us that we can not reject

limit of 10,000,000 evaluations is not enough when a largthe hypothesis that for a given swarm size (e.g. 75), the

swarm size is used. This is confirmed by Fig. 7. Indeed thegorithms with the swarm size just below or above (i.e. 50

success rate is quite stable but for the large swarm sizes fmr 100) perform the same. But there is a significant different

which it decreases on problem of size above 300. The curviéshe swarm size is increased (or decreased) by two steps

on Fig. 6 are well separated, therefore the algorithm seerfes.g. between swarm size of 50 and 100).

to perform faster when the swarm size is small. However,

the KW-CM tells us that we can not reject the hypothesis x 10°

that for a given swarm size (e.g. 75), the algorithms with the

swarm size one or two steps below or above (i.e. 25, 50, 100

Fig. 5. Success rate on Ackley with LBest
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£ On Griewank, the LBest model performs better than the
2 Al GBest model and does not seem to have many scalability
problems as soon as the swarm size is large enough: 50 seems
0 ‘ , L~ 500 ‘ ‘ the best compromise for a problem size of 500 or below. We
o 100 200 300 ol 3P may have to increase the swarm size for problems of larger

size though.
Fig. 6. Median number of evaluations to criteria on Griewavith GBest o
C. Results on Ragtrigin
Therefore, the GBest model does not have main scalability 1) GBest.: On Rastrigin, the GBest model fails to find a
issues on Griewank until at least a size of 500. solution more than 50% of the time as soon as the problem
2) LBest.: The performance of LBest on Griewank is quitesize is 100 (except with a swarm size of 300) or above.
good. The success rate (see Fig. 9) is all the time at 100Ptg. 11 shows that for a problem of dimension 100, it is
except from a swarm size of 25, for which it decreasesecessary to increase a lot the swarm size to improve the
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success rate. Swarm sizes of 300, 150 and 400 are the best
configurations. From problem size of 150, the GBest model

fails all the time.

On problem size below 100, the KW-CM don’'t show !
any significant differences, but for problem size 30 where a %
swarm size of 25 or 50 is significantly better than the others.

The big increase of the sarm size necessary to solve
problems of increasing size shows that there is a scaLabiIiF'g' 12

problem on Rastrigin with the GBest model.
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algorithms. For problem size 50, Fig. 13 shows that the targe
the swarm size, the better the success rate. The maximum
swarm size of 500 used is however not enough to reach a
100% success rate. For problem size 75 and above, the LBest
model fails all the time, whatever the swarm size used.

Like with the GBest model, the Rastrigin function requires
a big increase of the swarm size for the LBest algorithm to
be able to handle large sizes.
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D. Results on Rosenbrock

1) GBest.: The GBest algorithm solves the Rosenbrock
problem for problem sizes of 25 and 50. For problem size
75, its success rate starts to decrease (Fig. 15) very quickl
and from problem size 150, it never solves the problem.

The Fig. 14 tends to show, according to the slope of the
curves, that from problem size 100, one may have to use
more evaluations that the maximum allowed. The slope of the
curve tends to show that an exponentially increasing number
of evaluations is necessary to solve the Rosenblock problem
when its size increases. But the algorithm may also not be
able to find a solution at all.

The KW-CM on problem size below 100 does not show
many significant differences between the GBest models of
different swarm size: the first significant difference is ob-

2) LBest.: Rastrigin is causing even more trouble to thdained between GBest models of swarm size 25 and 100. A
LBest model. Only the problem of size 30 is solved by all themall swarm size seems therefore to be the best.
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2) LBest.: The LBest model performs much better than An important problem is when it is necessary to increase
the GBest on the Rosenbrock problem. Its success rdtee number of evaluations exponentially (e.g. Rosenbrock)
decreases much later (Fig. 17), from problem size 10@:hich is shown by an abrupt change in the slope of the curves
However it is still decreasing very quicly, in particularrfo (median number of evaluations necessary to solve a problem
large swarm sizes. Surprisingly the smallest swarm size vghen the size of the problem increases) and by the fact that
the only one that enables the LBest to solve the Rosenbroskme of these curves stop quickly. Even on the Rastrigin

problem for every problem size. problem it is necessary to increase swarm sizes three fold.
The Fig. 16 confirms that only the smallest swarm size However, one can say that a smaller swarm size has to

are efficient on problem sizes 150 and above. The KW-CMe prefered as soon as it manages to solve the problem. If

gives a significant difference on problem size 200 wheredke problem size is above 50, a swarm size of 50 is a good

on problem size 150 and 100, one there is no significant diéhoice for any of the functions used.

ference between two following swarm sizes. This figure also We are currently replicating this study for a number of the

shows that from problem size 100, the number of evaluatiomsore recent variations on PSA, such as ...... to determine if

required to solve the problem increasing exponentiallyctvh these more advanced algorithms have better scalability.
may be a problem for even bigger problems.
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