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Abstract— Particle swarm has proven to be competitive to
other evolutionary algorithms in the field of optimization, and
in many cases enables a faster convergence to the ideal solution.
However, like any optimization algorithm it seems to have
difficulties handling optimization problems of high dimension.
Here we first show that dimensionality is really a problem for
the classical particle swarm algorithms. We then show that
increasing the swarm size can be necessary to handle problem
of high dimensions but is not enough. We also show that the
issue of scalability occurs more quickly on some functions.

I. I NTRODUCTION

Amongst evolutionary algorithms, Particle Swarm Algo-
rithms [1] have proven their efficiency mainly thanks to
their fast convergence. However few experiments have been
run on high dimensional problems. By high dimension, we
mean problems of size 30 and above. While this is not a
large number of dimensions when compared to ones tackled
recently by Genetic Algorithms [2] it is a typical problem
size tackled in the PSO literature. It seems to be assumed that
dimensionality is a problem for particle swarm algorithms,
but no studies show it clearly. We are particularly interested
in this issue as we are investigating the applicability of
Particle Swarm in the domain of Sound Synthesis where we
are optimising a model containing over 300 dimensions.

This paper therefore focuses on finding whether problem
dimension is a real problem for particle swarm. We try to
find out whether increasing the swarm size and/or increasing
the optimization process is enough to find a solution.

We focus our studies on two standard algorithms: the
LBest and GBest models which are described in section II-A.
For each algorithm, the swarm size is increased to observe
any change in improvements. The performance measure is
the median of the number of iterations required to solve,
in a satisfying way, a problem. As far as the problems
are concerned, four common benchmark functions are used:
Ackley, Griewank, Rastrigin and Rosenbrock.

II. EXPERIMENTAL SETTINGS

This section describes all the parameters used in our
experiments.
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A. Particle Swarm Algorithms

LBest and GBest are two variations of the standard PSA
(Particle Swarm Algorithm). The standard PSA was devel-
oped by Kennedy [1]. The idea is based on the behaviour of
flocks or fish swarms looking for food. All the individuals
(or Particles in the PSA paradigm) have the same behaviour.
The particles represent a solution of a problem and are
represented as vectors of real values of fixed length. Each
particle, ~xi, is moving with a certain speed~vi. The particles
speed is updated according to the best position the particle

has seen so far,~xi, and the best position its neighbours have

seen so far,
~
xi. An inertia weight,ω, is also taken into

account to prevent the particle from changing its direction
or converging too quickly. The particle is also forced not to
move to quickly in any direction by constraining its speed
in a box. The update rules for particlei are described at
equation 1

~vi ← ω~vi + ac ~u1 ?
(

~
xi − ~xi

)

+ ag ~u2 ?

(

~
xi − ~xi

)

~vi ← max
(

~vi, ~vmax

)

~vi ← min
(

~vi,− ~vmax

)

~xi ←
~xi + ~vi,

(1)

where ~u1 and ~u2 are random real valued vector in[0, 1]N , N

is the size of~xi, ? is the term-by-term multiplication,ac and
ag are the cognitive and global acceleration rates respectively,

~vmax is the vector[vmax]N , andvmax is the speed limit.
1) Topology.: The difference between GBest and LBest

is the topology of the swarm. The topology defines the
link between the particles, i.e. given a particular particle,
which other particles have an influence on it. The topology
defines therefore the neighbourhood of the particles. In the
GBest version, the neighbourhood is composed of all the
particles of the swarm (see Fig. 1(a)), whereas in the LBest
version, it is composed only from a few other particles.
A typical topology for LBest is the ring topology, where
each particle has two neighbours plus itself (see Fig.1(b)).
Other topologies have shown some good results, notably the
Von Neumann topology [3], where each particle has four
neighbours.

(a)
Full: GBest

(b)
Ring: LBest

Fig. 1. The two topology used for a swarm size of 5



2) Constriction factor.: The values forω, ac, andag have
an important role on the algorithms. A classical approach is
to used a linearly decreasing inertiaω, from ωinit = 0.9 to
ωend = 0.4, and to setac = ag = 2. An other approach is
to use a constriction factor. Clerc [4] proposed to constrain
the values ofac, ag, andω in order to ensure the algorithm
to converge. A constriction factor,χ is defined according to
equation 2.

χ =
2

∣

∣

∣2− φ−
√

φ2 − 4φ
∣

∣

∣

(2)

whereφ = ac + ag > 4. The velocity update rule, becomes:

~vi ← χ

[

~vi + ac ~u1

(

~
xi − ~xi

)

+ ag ~u2

(

~
xi −

~xi

)]

. (3)

PSA with constriction factor is therefore equivalent to the
standard PSA withω ← χ, ac ←

ac

χ
, andag ←

ag

χ
. Common

values areφ = 4.1 andχ = 0.7298, which is equivalent to a
standard PSO withω = 0.7298 and ac = ag = 1.49609.
In the case of the constriction factor, limiting the speed
of the particles is not required to ensure convergence, but
Eberhart [5] showed that it enables the algorithm to converge
more quickly.

After a few experiments, we noticed that the GBest model
performed better with a linearly decreasing inertia, whereas
the LBest model performed better with the constriction
factor. Therefore we only retained those two models. Also
in both models, the velocity was limited to the size of the
search space, i.e. ,vmax = xmax, where the search space is
[−xmax, xmax]N .

TABLE I

VALUES USED FOR BOTH ALGORITHMS

Algo ω ac ag vmax Topology

GBest 0.9 → 0.4 2.0 2.0 xmax Ring
LBest 0.7298 1.4609 1.4609 xmax Full connexion

B. Benchmark Functions

To compare the algorithms, the benchmark functions Ack-
ley, Griewank, Rastrigin and Rosenbrock are used. In the
following description of the benchmark functions, we define:

• N , the dimension of the problem.
• ~x = [x1, x2, · · · , xN ], the vector representing the posi-

tion to evaluate.
• xi, the ith value of vector~x.
• fFunction, the Function to optimize.
For every function, the minimum,0, is at~x = [0]N .
1) Ackley.:

fAckley(~x) = −20 exp



−0.2

√

√

√

√

1

N

N
∑

i=1

x2
i





− exp

(

1

N

N
∑

i=1

cos(2πxi)

)

+ 20 + e

~x ∈ [−32.768, 32.768]N

The solution is considered good enough when
fAckley(~x) < 0.01.

2) Griewank.:

fGriewank(~x) =
1

4000

N
∑

i=1

(xi − 100)2

−

N
∏

i=1

cos

(

xi − 100
√

(i)

)

+ 1

~x ∈ [−600, 600]N

The solution is considered good enough when
fGriewank(~x) < 0.05.

3) Rastrigin.:

fRastrigin(~x) =

N
∑

i=1

(

x2
i − 10 cos(2πxi) + 10

)

~x ∈ [−5.12, 5.12]N

The solution is considered good enough when
fRastrigin(~x) < 100.

4) Rosenbrock.:

fRosenbrock(~x) =

N−1
∑

i=1

100(xi+1 − x2
i )

2
+ (xi − 1)2

~x ∈ [−2.048, 2.048]N

The solution is considered good enough when
fRosenbrock(~x) < 100.

III. R ESULTS AND ANALYSIS

The experiments have been run for 10,000,000 evaluations
of the benchmark function. Each experiment consists of:

• a PSA algorithm: GBest or LBest;
• a benchmark function: Ackley, Griewank, Rastrigin (all

three are multimodal) or Rosenbrock (unimodal);
• a problem size: 30, 50, 75, 100, 150, or 200 (and 300,

400, 500 for Ackley and Griewank);
• a swarm size: 25, 50, 75, 100, 150, 200, 250, 300, 400,

or 500.

The performance of the algorithm is measured after every
10,000 evaluations of the benchmark function. This means
that the precision is +/- 10,000 evaluations. Each experiment
has been run 50 times.

We report the median number of evaluations required to
have a good result on the benchmark function, according
to the problem size. The different lines correspond to the
different swarm size used (see Fig. 2, 4, 6, 8, 10, 12, 14,
16). When there are more failure than successful runs, no
data is displayed.

In the same way, we also report the successful rate on
the benchmark function, according to the problem size (see
Fig. 3, 5, 7, 9, 11, 13, 15, 17).

In a third step, to find out if there is a significant difference
between the different swarm sizes, a Kruskal-Wallis analysis
of variance was made (with a 95% confidence), followed by



a multiple comparison of medians (KW-CM). The Kruskal-
Wallis analysis of variance was prefered to an ANOVA
because most of the data failed the test of normality. The
only variable considered was the swarm size, which means
that the Kruskal-Wallis analysis of variance were made for
a fixed (PSA algorithm, benchmark function and problem
size) triple. However, the analysis can’t be directly applied
when there are unsuccessful runs. To still be able to compare
the effect of the swarm size, we decided to set the results
of the unsuccessful runs to twice the maximum number of
evaluations allowed (i.e. 20,000,000).

A. Results on Ackley

0 100 200 300 400 500
0

2

4

6

8

10
x 10

6

N
um

be
r 

of
 e

va
lu

at
io

ns

Problem dimension

 

 

25
50
75
100
150
200
250
300
400
500

Fig. 2. Median number evaluations to criteria on Ackley withGBest

1) GBest.: Fig. 2 shows two main behaviour: the GBest
algorithm manages to solve the problems of size equal or
below 200, whatever the swarm size used, but has difficulties
handling problems with size of 300 and above.

Let’s first focus on the problems of size 200 and below.
The curves are quite well separated, and the algorithm seems
to perform faster when the swarm size is small. However,
the KW-CM, tells us that we can not reject the hypothesis
that for a given swarm size (e.g. 75), the algorithms with
the swarm size just below or above (i.e. 50 or 100) perform
the same. But there is a significant different if the swarm
size is increased (or decreased) by two steps (e.g. between
swarm size of 50 and 100). It is interesting to notice that for
a problem size of 200, GBest starts to have problems to find
solutions as seen in Fig. 3. We’ll come back on that point
later.

Let’s now focus on the problems of size 300 and above.
Most of the configurations fail more than 50% of the time
(see Fig. 3). Only the swarm sizes 50 and 75 are able to find
a solution more than 50% of the time within 10,000,000
evaluations.

We can say that there is a problem on Ackley with GBest
when the problem size is above 200. However, in one way,
one can notice that for a problem size of 200, the number of
evaluations required starts to be close to the limit we fixed
(10,000,000). Therefore we can not deny that increasing this
limit may enable the algorithm to converge. In an other way,
if we look at the behaviour of the curves on Fig. 2, there is

a change of slope when the problem size reaches 200. More
over, for a swarm size of 25, the algorithm can not find a
solution for more than 25% of the time. To handle Ackley
problem of size 200 and above, it seems therefore necessary
to increase both the swarm size (not much) and the maximum
number of evaluations (a lot).
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Fig. 3. Success rate on Ackley with GBest
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Fig. 4. Median number of evaluations to criteria on Ackley with LBest

2) LBest.: The LBest model is less efficient than the
GBest model on the Ackley function, in terms of scaling.
It can’t solve the problem (at least more than 50% of the
time) for problem size over 100 or even 75 in some cases
(see Fig. 4). When it can solve the problem (i.e. for low size
problems), the LBest model is faster than the GBest.

In terms of swarm size, the KW-CM shows that, for a
problem size of 30, the smaller the swarm size, the fastest
it finds the solution. But like with the GBest model, we can
not reject the hypothesis that for a given swarm size (e.g.
75), the algorithms with the swarm size just below or above
(i.e. 50 or 100) perform the same. The same behaviour is
also seen from problem size 50 to problem size 100, as soon
as the swarm size is bigger than 25. The swarm size of 25
is not enough to find a solution more than 50% of the time.
From problem size 150, the swarm size has no real impact
on the performance of the LBest model.

On Ackley the LBest model definitely suffers from the
increase of the problem size. Fig. 5 shows that its success
rate decreases rapidly with the increasing problem size. It



also shows that the smaller the swarm size, the more quickly
it fails when the problem size is increased.
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Fig. 5. Success rate on Ackley with LBest

B. Results on Griewank

1) GBest.: According to Fig. 6, the GBest algorithm does
not seem to have too many scalability issues. When the
problem size is increased, the number of evaluations has to
be increased, but quite regularly. It seems that our higher
limit of 10,000,000 evaluations is not enough when a large
swarm size is used. This is confirmed by Fig. 7. Indeed the
success rate is quite stable but for the large swarm sizes for
which it decreases on problem of size above 300. The curves
on Fig. 6 are well separated, therefore the algorithm seems
to perform faster when the swarm size is small. However,
the KW-CM tells us that we can not reject the hypothesis
that for a given swarm size (e.g. 75), the algorithms with the
swarm size one or two steps below or above (i.e. 25, 50, 100
or 150) perform the same. But there is a significant different
if the swarm size is increased (or decreased) by three steps
(e.g. between swarm size of 50 and 150, there is a significant
difference).
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Fig. 6. Median number of evaluations to criteria on Griewankwith GBest

Therefore, the GBest model does not have main scalability
issues on Griewank until at least a size of 500.

2) LBest.: The performance of LBest on Griewank is quite
good. The success rate (see Fig. 9) is all the time at 100%
except from a swarm size of 25, for which it decreases

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

Problem dimension

 

 

25
50
75
100
150
200
250
300
400
500

Fig. 7. Success rate on Griewank with GBest

quickly from a problem of size 100. We can also note that
with a swarm size of 50 the success rate starts to slightly
decrease on the Griewank problem of size 500. This tends to
prove that increasing the swarm size may be a good option
to solve the problem.

The curves on Fig. 8 seem quite well separated, and the
algorithm seems to perform faster when the swarm size is
small. However, the KW-CM tells us that we can not reject
the hypothesis that for a given swarm size (e.g. 75), the
algorithms with the swarm size just below or above (i.e. 50
or 100) perform the same. But there is a significant different
if the swarm size is increased (or decreased) by two steps
(e.g. between swarm size of 50 and 100).
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Fig. 8. Median number of evaluations to criteria on Griewankwith LBest

On Griewank, the LBest model performs better than the
GBest model and does not seem to have many scalability
problems as soon as the swarm size is large enough: 50 seems
the best compromise for a problem size of 500 or below. We
may have to increase the swarm size for problems of larger
size though.

C. Results on Rastrigin

1) GBest.: On Rastrigin, the GBest model fails to find a
solution more than 50% of the time as soon as the problem
size is 100 (except with a swarm size of 300) or above.
Fig. 11 shows that for a problem of dimension 100, it is
necessary to increase a lot the swarm size to improve the
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Fig. 9. Success rate on Griewank with LBest

success rate. Swarm sizes of 300, 150 and 400 are the best
configurations. From problem size of 150, the GBest model
fails all the time.

On problem size below 100, the KW-CM don’t show
any significant differences, but for problem size 30 where a
swarm size of 25 or 50 is significantly better than the others.

The big increase of the sarm size necessary to solve
problems of increasing size shows that there is a scalability
problem on Rastrigin with the GBest model.
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Fig. 10. Median number of evaluations to criteria on Rastrigin with GBest
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Fig. 11. Success rate on Rastrigin with GBest

2) LBest.: Rastrigin is causing even more trouble to the
LBest model. Only the problem of size 30 is solved by all the

algorithms. For problem size 50, Fig. 13 shows that the larger
the swarm size, the better the success rate. The maximum
swarm size of 500 used is however not enough to reach a
100% success rate. For problem size 75 and above, the LBest
model fails all the time, whatever the swarm size used.

Like with the GBest model, the Rastrigin function requires
a big increase of the swarm size for the LBest algorithm to
be able to handle large sizes.
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Fig. 12. Median number of evaluations to criteria on Rastrigin with LBest
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Fig. 13. Success rate on Rastrigin with LBest

D. Results on Rosenbrock

1) GBest.: The GBest algorithm solves the Rosenbrock
problem for problem sizes of 25 and 50. For problem size
75, its success rate starts to decrease (Fig. 15) very quickly
and from problem size 150, it never solves the problem.

The Fig. 14 tends to show, according to the slope of the
curves, that from problem size 100, one may have to use
more evaluations that the maximum allowed. The slope of the
curve tends to show that an exponentially increasing number
of evaluations is necessary to solve the Rosenblock problem
when its size increases. But the algorithm may also not be
able to find a solution at all.

The KW-CM on problem size below 100 does not show
many significant differences between the GBest models of
different swarm size: the first significant difference is ob-
tained between GBest models of swarm size 25 and 100. A
small swarm size seems therefore to be the best.
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Fig. 14. Median number of evaluations to criteria on Rosenbrock with
GBest
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Fig. 15. Success rate on Rosenbrock with GBest

2) LBest.: The LBest model performs much better than
the GBest on the Rosenbrock problem. Its success rate
decreases much later (Fig. 17), from problem size 100.
However it is still decreasing very quicly, in particular for
large swarm sizes. Surprisingly the smallest swarm size is
the only one that enables the LBest to solve the Rosenbrock
problem for every problem size.

The Fig. 16 confirms that only the smallest swarm size
are efficient on problem sizes 150 and above. The KW-CM
gives a significant difference on problem size 200 whereas
on problem size 150 and 100, one there is no significant dif-
ference between two following swarm sizes. This figure also
shows that from problem size 100, the number of evaluations
required to solve the problem increasing exponentially, which
may be a problem for even bigger problems.

The only issue in terms of scalabilty of the LBest model
on Rosenbrock comes from the fact this later observation.

IV. CONCLUSION

Apart from the Griewank fitness function, we have shown
that there is definitely a scalability issue for PSA. To solve
problems of increasing size, it is necessary to increase the
swarm size and to run for more iterations, but this is not
always sufficient to solve the problem in 10,000,000 evalua-
tions. It is, therefore, very difficult to predict the swarm size
and the number of evaluations required to solve a problem
of known size.
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Fig. 16. Median number of evaluations to criteria on Rosenbrock with
LBest
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Fig. 17. Success rate on Rosebrock with LBest

An important problem is when it is necessary to increase
the number of evaluations exponentially (e.g. Rosenbrock),
which is shown by an abrupt change in the slope of the curves
(median number of evaluations necessary to solve a problem
when the size of the problem increases) and by the fact that
some of these curves stop quickly. Even on the Rastrigin
problem it is necessary to increase swarm sizes three fold.

However, one can say that a smaller swarm size has to
be prefered as soon as it manages to solve the problem. If
the problem size is above 50, a swarm size of 50 is a good
choice for any of the functions used.

We are currently replicating this study for a number of the
more recent variations on PSA, such as ...... to determine if
these more advanced algorithms have better scalability.
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