Tonality Driven Piano Compositions with
Grammatical Evolution

Réisin Loughran

James McDermott

Michael O’Neill

NCRA NCRA NCRA
UCD CASL UCD CASL UCD CASL
Belfield Belfield Belfield

Dublin 4, Ireland
Telephone: (+353) 1-7162692
Email: roisin.loughran@ucd.ie

Abstract—We present a novel method of creating piano
melodies with Grammatical Evolution (GE). The system employs
a context free grammar in combination with a tonality-driven
fitness function to create a population of piano melodies. The
grammar is designed to create a variety of styles of musical
events within each melody such as runs, arpeggios, turns and
chords without any a priori musical information in regards to
key or time signature. The fitness of the individuals is calculated
as a measure of their tonality defined by a statistical distribution
of the pitches in each piece. A number of short compositions are
presented demonstrating that our system is capable of creating
music that is interesting and unpredictable.

I. INTRODUCTION

This study applies an Evolutionary Computation (EC)
method, specifically Grammatical Evolution (GE) to the task of
composing a short novel piece of piano music. The application
of EC and machine learning methods to subjective problems
in creative domains such as art, music and humour have
become more prevalent in recent years due to the complexity
of measurement in these domains and the continuous increase
in the capabilities of such computational methods. Computer
programs can replace and outperform the human mind in
computational tasks, but until a program can demonstrate true
creativity, there is an argument that it cannot be deemed
intelligent. By investigating these ill defined problem domains
further, we hope to gain some possible insights into the fields
of Artificial Intelligence or Computational Creativity.

Generative music or algorithmic composition is music
that is created by an algorithm, set of rules or any given
machine learning method. Such methods have been developed
for creating music for over half a century [1]-[3]. Although we
may think of generative music as being electronic or electro-
acoustic, the term refers to the way in which music is produced
or created and has no bearing on content, style or genre. Music
can be generated by learning from previous music (data-driven)
or by pure generation from a random seed, through a series of
rules and grammars to a novel result. This study focusses on
the second method.

Over the last few decades, EC methods have been applied
in a number of ways to computationally creative systems
such as music generation. The very nature of EC, creating
a population of solutions before combining and mutating the
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more successful of these is generally not deterministic; a
solution is rarely determined outright but approached from a
number of locations. This is reminiscent of the music creation
process — composition is not a linear, deterministic process,
but a wandering combination of thoughts and decisions that,
once started, would be unlikely to end up in the same position
twice. Grammar-based generative methods, such as GE used
in this paper, can be particularly suitable to generating music
as it is a genome that is being manipulated rather than the
piece of music itself. This allows the method to generate an
output with a level of complexity far greater than with which
it started. This added complexity generation can be be very
helpful in creating interesting and diverse pieces of music. In
the experiments proposed in this paper, the grammar defines
the search domain — the allowed notes and musical events
in each composition. Successful melodies are then chosen by
traversing this search space according to the defined fitness
function.

The following section discusses previous music composi-
tion studies that have incorporated EC techniques. Section III
introduces the methods used in this experiment, in particular
GE and measures of tonality. Section IV discuses the represen-
tation used within the system including the grammar and fit-
ness function developed for our experiments. The experimental
setup and a number of the compositions created are presented
and discussed in Section V. Finally, some conclusions and
future work are proposed in Section VI

II. PREVIOUS STUDIES

There have been a number of previous studies that incorpo-
rate evolutionary methods with musical compositions. [4] offer
an overview of earlier studies, determining that Genetic Pro-
gramming methods preform better than those that use Genetic
Algorithms. They state that the process of composition can
be split into three stages: search domain, input representation
and fitness measurement. The search domain is defined by a
set of a priori constraints the user decides at the beginning
of the composition — the notes allowed, the instrumentation
used etc. Input representation refers to the way in which
the music is represented for use by the system and fitness
measurement is the manner in which the evolved piece is
judged. While they argue these points for algorithmic and
in particular evolutionary composers, it is clear that human



composers also make similar judgements in regards to such
criteria for a composition.

A number of studies to compose specific styles or aspects
of music have incorporated evolutionary techniques. GenJam
[5] used a GA to evolve jazz solos, building solos from pre-
generated MIDI sequences that were judged by a user to
determine the fitness measure. The system has been modified
and developed into a real-time, MIDI-based, interactive impro-
visation system performance system that regularly performs in
mainstream venues [6]. GeNotator is a composition tool pre-
sented in [7] that used a modified GA to manipulate a musical
composition using a hierarchical grammar. Melody and rhythm
were both evolved and evaluated separately using MLPs in [8].
These evolved melodies were then mixed to produce verses and
whole songs. Dahlstedt developed a system that implements
recursively described binary trees as genetic representation
for the evolution of musical scores. The recursive mechanism
of this representation allowed the generation of expressive
performances and gestures along with musical notation [9].
The performance of EC algorithms on melody-matching tasks
is examined in [10]. Although they do not create any new
music, they examine a number of representations using GP
including the use of Automatically Defined Functions (ADFs).
They propose that ADFs may be useful in finding and reusing
patterns within a melody. The results show that the inclusion
of ADFs helped the system to find better approximations
of the target melodies, indicating that the may be useful in
representing melodies.

A. Interactive Evolutionary Computation

A large number of studies in involving creative com-
positions and EC use Interactive EC (IEC). These methods
involve a human judgment either wholly or as part of the
fitness evaluation. This type of fitness evaluation is very well
suited to design and creative tasks as subjective judgements
are extremely difficult to quantify. Interactive GE in particular
has been used in a number of design tasks including pylon,
truss and 3D design [11]-[13]. IGE and GE in general are
well suited to such design problems as domain knowledge
of the specified problem can be easily incorporated through
the underlying grammatical representation. Such employment
of domain knowledge is particularly useful in musical tasks.
GE was used with an interactive fitness function for musical
composition using the Wii remote for a generative, virtual
system entitled Jive, [14]. This system interactively modifies a
combination of piece-wise linear sequences to create melodic
pieces of musical interest. [15] used GE for composing short
melodies using four different experimental set ups of varying
fitness functions and grammars. They used a combination of
automatic fitness generation and interactive human judgment
on a number of methods, determining that users preferred
melodies created with a structured grammar.

The biggest drawback with interactive methods is that they
create a bottleneck, particularly in musical tasks. For tasks such
as visual analysis, whereby the user can observe a number
of creations concurrently, the fitness can be evaluated very
quickly. With musical judgments however, users need to listen
to and concentrate on aural excerpts successively, rendering
these methods expensive. Instead of using a human observer,
the compositional method presented here autonomously creates

musical excerpts from the ground up. Although interactive
fitness has been shown to perform well and be informative,
we focus on using an autonomous fitness function without the
need for a human fitness evaluation. The measure of fitness
may be difficult to quantify, but it is hoped that by developing
judgement fitness functions in areas such as composition, we
may learn more about how such judgements are made and
about computational creativity itself. Using a few simple rules
from a defined grammar, we create melodic pieces that are
not trained from previous pieces, are not judged by a human
listener and are not given any a priori musical information
such as key signature or time signature. As such, the composed
pieces vary significantly and have an ad-hoc, organic nature to
them, as discussed later in this paper.

III. METHOD

The proposed method uses a python implementation of GE
entitled PonyGE to evolve or compose musical pieces. PonyGE
evolves a phenotype representing a MIDI sequence of notes
which is interpreted and played through GarageBand.

A. Grammatical Evolution

Grammatical Evolution (GE), [16], [17] is a grammar
based evolutionary computation method. As with other EC
algorithms, GE is based on the creation of a population of
solutions or individuals that are evolved over a number of
generations using operators such as selection, mutation and
crossover. GE employs a user-defined context-free grammar to
map the evolved genotype of an individual to its phenotype.
The fitness of the individual can then be evaluated from
a measure of the phenotype’s success at solving the given
problem. Typically the grammars used are in Backus-Naur
Form (BNF).

1) Grammar: The creative capabilities of GE come from
the choices offered within the mapping of the grammar.
Typically, the genome is represented by a combination of 8 bit
integers known as codons. These codons select the particular
rule for a given expression according to the mod value from
the number of choices for that rule.

Rule = (Codon Integer Value)mod(# of choices) @)

Using this we can introduce biases by including multiple
instances for preferred choices. For example, the operand
depicted in Equation 2 offers three choices, two of which
are choicel. Thus there is a 2:1 bias towards the selection
of choicel over choice2. We make use of such biases in
our experiments to incorporate our knowledge of the musical
domain.

< operand >::=< choicel > | < choicel > | < choice2 > (2)

2) Representation: We exploit the representational capabil-
ities of GE resulting from the definition of a grammar that
can explore the given search domain. While many studies
involving GE generate program code, the grammar can map
the phenotype to contain any character or integer string the
user requires. This phenotype can then be interpreted by the
user in a predetermined manner. In these experiments, we use
integer strings to represent sequences of MIDI notes. We create
a number of grammars that can map to specific integer values
which are in turn interpreted into note attributes such as pitch,
duration and style.



B. Tonality

Most tonal music contains some sense of tonal hierarchy.
Certain tones are given preference and are repeated and
emphasised throughout the piece giving the music a sense of
stability. In western tonal music this is generally based on the
major or minor key signature of the piece but the details of
tonal hierarchy differ across styles and cultures. This variation
suggests that such hierarchies are based less on the acoustic
relationship between the harmonic structures of complex tones
but that an expected tonality is more reliant on perception and
cognition [18]. Krumhansl defines Tonal Induction in [19] as
the process by which a listener identifies the key of a given
piece of music. Although originally considered for Western
tonal music there is evidence shown, for example in [20], that
when given a repeated tone, Westerners can similarly induce
pitch keys from unfamiliar music such as Indian music. This
implies that there may be no ‘correct’ tonality, but rather a
tonal hierarchy could be developed or induced by a new system
with no a priori knowledge of tonal relationships and hence
no pitch expectations.

Similarly, [21] discusses the Distributional view of key
identification — that the perception of key depends on the
distribution of pitch-classes within a piece. Such studies imply
that all that is required to induce or infer a perceived pitch key
is to enforce a preference or repetition of a given set of pitches.
The current study does not use major or minor tonal keys as
defined by Western tonality, but rather we try to enforce a ratio
between the used pitches so that a certain number of pitches
appear much more frequently than others.

The driving force behind any evolutionary method is the
fitness function. For subjective tasks, such as musical com-
position, the definition of what makes an individual more fit
than another is ill-defined. This is the strongest argument for
employing IEC in such tasks. For this study however, we
wanted to use a more autonomous approach. In the proposed
experiments, we use a measure of emergent tonality as the
fitness evaluation for evolved individuals. Rather than giving a
key signature, we reward compositions that induce their own
sense of tonality. Compositions that emphasise a certain num-
ber of pitches within the scale over others will be considered
more tonal and hence judged more fit than others that show
an even distribution of pitches. Thus we drive a statistical
preference to the use of a certain number of pitches but make
no assertions as to the relationship between prevalent pitches.
We propose that this will in turn induce a key or tonality to a
given piece, albeit not one we would be used to.

IV. REPRESENTATION
A. Grammar

The BNF Grammar controls the way in which the evolved
piece of music progresses over time. Our grammar maps the
genome (a combination of 8 bit codons) to the phoneme which
represents melodies as a combination of events entitled notes,
chords, runs, turns and arpeggios as defined by the grammar.
The initialisation of the piece is given by the line

<piece> ::= <event>|<piece><event> |
<event><piece><event>|
<event><piece><event><event>

This creates a piece of music <piece> that is comprised
of a sequence of musical events <event>. A BNF grammar
such as this offers a number of choices for each mapping
separated by a |. Thus the first two options alone would suffice
in expanding out a melody. The inclusion of the last two
options is to allow the melody to expand in length in early
generations. PonyGE uses random initialisation, therefore if
only two initial options are given it can take a number of
generations for the genome to grow to a useful size. The
expansion of the remainder of the grammar is based on a series
of musical events, here denoted by <event>:

<event> ::= 111,<style>, <oct>,<pitch>, <dur>,

The constant 111 indicates the beginning of a new
<event>. This allows the resultant phenotype to be correctly
interpreted into individual note events. Every <event> is
attributed a given value for style, octave, pitch and duration.
Each of these attributes expand uniquely within the grammar in
relation to what they represent. These expansions are detailed
below.

Pitch is simply a value between O and 11 chosen with
equal probability to represent which of the 12 pitches in the
chromatic scale this note event is based on. Octave refers to
the octave number the current event starts in. Although the
pitch of a piano can range across 8 octaves, we would like
to keep the majority of the notes played within the mid range
of the piano for the moment, to encourage simple melodies.
Hence <oct> is expanded to:

<oct> ::=3 [ 4 | 4] 4|1 4] 5115|5166

This means that only notes in octave 3-6 will be allowed
in any piece, and that notes in the 4th and 5th octave will
be given preference. This encourages the melody to remain
around middle C (Octave 5, pitch 0) but it allows notes to be
played in higher and lower octaves. The use of biases such
as this is one of the practical benefits of using a grammar
for melodic composition and is exploited many times in our
system.

Rather than specifying a rthythm or timing for the melody,
we allow each note to have a specific duration. The attribute
for duration is given by:

<dur>

= 1121212121 4] 4] 4
| 8 | 8

1
| 16 | 16 | 32

This line of the grammar defines the duration of the
note event from a demisemiquaver (value 1) to a semibreve
(value 32). As with the octave attribute, a bias is introduced
to encourage shorter notes within the melodies with notes
shorter than a quaver (value 4) given more instances and hence
higher preference over longer minim and semibreve notes.
The inclusion of longer notes is very important in music, but
melodies that consist of mostly long notes can be dull.

The <style> attribute defines the current type of note
event. The type of events available to the grammar are note,
chord, turn and arpeggio:

<style> ::= 100 | 100 | 100 | 100 | 100 | 100
100 | 100 | 50,<chord> | 50,<chord> |



50, <chord> |
80, <arp>, 100

50,<chord> | 70,<turn>,100 |

The style of each event is determined by the constant value
preceding it. As can be seen from the above code, the value
100 signifies a plain note, 50 represents a chord, 70 a turn
and 80 an arpeggio. Notes and chords are single events taking
less time to play but can be more pivotal to the overall piece
than turns and arpeggios. Hence there are more instances of
chords and particularly notes in this grammar. A 100 (note)
requires no further information than the octave, pitch and
duration already assigned to it and hence requires no further
grammar. A chord is defined by the pitch value already given
to it and the inclusion of either one, two or three notes played
in conjunction with it:

<chord> ::= <int>, 0, 0 | <int>,<int>, 0 |
<octave>,0 ,0 | <int>,0, 0 | <int>,0, 0 |
<int>, 0, 0 | <int>, <int> , <int>

<octave> ::= 12

<int> ::=3 | 4 | 5 | 5| 5| 71717

To discourage overly-heavy chords, those with only one
upper note <int>, 0, 0 were encouraged above all others.
The <int> values indicate the number of semitones above the
tone that is played with it. Hence the above grammar allows
interval of a minor third, major third, perfect fourth, perfect
fifth and the octave, with a preference for perfect intervals.

A turn is defined as a short run of notes in one direction (up
or down) followed by another short run in another direction:

<turn> ::= <dir>,<lenT>,<dir>,<lenT>,<stepDur>
<dir> ::= 45 | 55
<lenT> ::= <step> | <step>,<step>

| <step>, <step>, <step>
| <step>,<step>, <step>
| <step>, <step>, <step>, <step>
<step> ::=1 | 1 | 1L | 1 | 1| 21212
212121212213
<stepDur> ::=1 | 2 | 2 | 2 | 2 | 2 | 2 | 4
4141 41 41 41 4

The direction up or down is chosen at the beginning
and again halfway through the turn. As the second choice
of direction is independent from the first, this grammar will
produce a run (both directions the same) 50% of the time,
resulting in no need for a separate grammar line for runs.
The length of each section of the turn is one, two, three or
four notes with a bias towards three. Each step size within
the turn is either one or two semitones, with the occasional
allowance of a step of three semitones. The duration of the
step is limited to either semiquavers or quavers. The grammar
for the arpeggios is very similar to this for a turn, except that
the allowed step size is <int> as defined earlier in <chord>
and slightly longer durations are allowed.

In GE, the genetic operators manipulate the genotype,
while fitness evaluation is taken from the corresponding phe-
notype. Thus a small mutation can result in a large change
in the phenotype and hence the melody. This is one of the
main advantages in using GE; the grammar mapping, such as
the one described above, adds a level of complexity that can
encourage change and variety within the music.

B. Fitness Function

The above grammar maps a genotype to it’s corresponding
phenotype. The phenotype is a string containing a list of
numbers that are in turn interpreted into a musical context. The
fitness of an individual is measured from the distribution of the
pitches among the melody in combination with the length of
the phenotype. The function, described below, is a minimising
fitness function.

The initial fitness of an individual is set in relation to
the size of the current phenotype in comparison to a given
constant. For these experiments this constant was set to 200.
In this way, GE can quickly create a phenotype of a specified
length. This length is related to the length of the produced
piece of music via the grammar. It does not, however, directly
control the length of the piece of music produced, or even
the number of notes included, due to the use of turns and
arpeggios within the grammar. From the grammar, a single
note event will contain five values, a chord will contain eight
values and a turn or arpeggio can contain up to seventeen
values depending on the length of the turn. The initial fitness
is calculated as:

fitnessinitial = (Len — 200)% 4 1 (3)

where Len is the length, in integer values, of the current
phenotype. The addition of the constant 1 is to prevent a fitness
of zero as this initial fitness is now adjusted by multiplication
according to the statistical relationship between the pitches.

The fitness of each individual is measured in relation to
the perceived tonality of the piece. As described in Section III
tonality is largely perceived in response to repetition of pitches.
Thus we measure the fitness of a given individual based on the
ratio of the pitches within the current phenotype. The number
of instances of each pitch in the individual is summed and
the instances of pitches are arranged in decreasing order. Only
<event> pitches as defined by the grammar are considered
for this measurement — pitches introduced due to the turns or
chords in the grammar are disregarded.

For a true emergent tonality we require one pitch to be the
most frequently played within the melody, and we require an
unequal distribution of the remaining pitches. In our fitness
we define the primary as the pitch value with most instances
and the secondary as that with the second highest number of
instances. Thus for a good (low) fitness we want the number
of primary pitches to be significantly higher than the number
of secondary pitches.

If,

# instances of primary

<13 4
# instances of secondary @)

the fitness is multiplied by a factor of 1.3.

This enforces the primary tone to have significantly more
instances than the secondary, encouraging one strong pitch
within each melody. We further define the number of instances
of the seven most frequently played notes as Top7 and the
number of instances of the top nine notes as Top9.



If,

Top7
P 0.75 )
Total number of played notes
or if
Top9
P 0.95 ©)

Total number of played notes

the fitness is again multiplied by 1.3.

This encourages most of the played notes to be within the
top seven or top nine notes, but still allows for accidentals to be
played. In uniformed pitch-distributed music these ratios would
work out to be 58% and 75% respectively whereas in Western
tonal music all notes, bar accidentals, would be contained in
the top seven pitches. Thus, with our limits of 0.75 and 0.95 we
are encouraging more tonality than 12 tone serialism but not
enforcing the limits of Western tonality. This fitness function is
completely reliant on the statistical measure of the frequency
of notes played within the piece. It does not take into account
the order in which the notes are played. Also, the fitness is
based on the relationship of the instances of the notes but has
absolutely no bearing of the relationship between the pitches
themselves. In this regard it is highly unlikely to produce a
similar key to one from the Western tonal system.

V. EXPERIMENT AND RESULTS

The goal of our experiment is to evolve musical piano
melodies without the need for human interaction. The experi-
ments were run with a population of 100 for 50 generations.
For these experiments all other parameters were left to the
default settings in PonyGE: the mutation coefficient was set
to 0.01, crossover was set to 0.7 and there was an elite size
of 1. In comparison to many EC studies, these experimental
runs are very short, taking less than 30 seconds to complete. A
number of the evolved compositions are available at the follow-
ing address: http://ncra.ucd.ie/Site/loughranr/music.html. The
production and validity of these melodies are discussed below.

A. Short Melodies

Our first melodies were created from single individuals
evolved using the grammar and fitness function described
above. For these runs the target length of the phenotype, Len
in Equation 3, was set to 200. Individuall.mp3 is a typical
example of a melody created by the system. This melody
demonstrates all of the note events that the grammar is capable
of creating — notes, chords, turns and arpeggios. The primary
key emergent from this melody is F, with four instances of
this note in comparison to three instances of the secondaries
F#, G and A#.

From listening to this composition it is clear that it is
musical, but somewhat meandering. This is true for many
of the evolved compositions, notably Individual3.mp3. While
there does still appear to be some tonality to this composition,
pitch A# is sternly primary with seven instances compared
to only four for the next three secondary pitches, there is
a wandering quality to the piece. This is to be expected as
the grammar does not encourage any repetition or variation
on a theme but creates independent events sequentially. Such
compositional aspects can be highly desirable at times, if the
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Fig. 1: Average and Best Fitnesses over 30 runs. Fitness values
reported as logio(Fitness).

piece is to create an air of suspense for example. There is
the danger, however, that such pieces can end up sounding
unfinished and meandering, with no real purpose or direction.

In some cases, the melody can be overshadowed by too
many fast runs and arpeggios as in Individual2.mp3. This can
make the melody overly complex and very fast moving. Again,
sometimes in a composition this may be desirable, but if not
we can try to curb such behaviour by increasing the bias even
further in the grammar towards notes and chords rather than
turns and arpeggios.

1) Fitness Evaluation: In any evolutionary run, it is useful
to track how the best fitness evolves in relation to the average
fitness of the population. To examine this, we ran our system
30 times and took the mean of the best and average fitnesses
over the 50 generations. A plot of the log of the results is
given in Figure 1. It is clearly evident from these runs that
although the best fitness converges quite quickly to the target
(within approximately 12 generations), at the end of the run
the average fitness is still very high. This implies that after 50
generations the population is still very diverse. Generally in EC
tasks we would like the population to converge on the correct
solution. This diversity indicates that the fitness measure
currently used is not allowing the population to converge and
that the individual melodies in the final generation are very
different from one another.

To examine this diversity within the final generation we
recorded the individual fitness values, phenotype lengths and
Top7 and Top9 values for each of the 100 individuals in the
final generation of a run. A plot of each of these values
is shown in Figure 2. It can be seen from the fitness plot
that while the majority of individuals achieve low fitness, 11
individuals have fitness values over 10,000 with one individual
approaching 100,000. Such abnormally high fitnesses will
inevitably push up the average fitness throughout the run.
It can be seen from the phenotype length plot that each of
these high fitnesses correspond to a particularly long or short
length. As the initial fitness is calculated from the square of
the distance between the phenotype length to a given constant,
this correlation is not unexpected. The graphs of Top7 and
Top9 for each individual show that while the majority can
achieve the target of 0.75 for Top7, only a small number
manage to have their Top9 pitches to within 95% of all notes
played. This indicates there are still a high number of melodies
containing all (or almost all) 12 pitches. From an examination



of the relationship between the primary and secondary pitches
we found that the ratio between them for most individuals
did not exceed the target of 1.3. This analysis of the fitness
components indicates that to enforce a stronger tonality we
could introduce higher penalties for individuals that perform
weakly on the primary to secondary ratio and the Top9 value.

To further examine a good versus bad individual, we
considered the pitch distribution between two specific indi-
viduals. Figure 3 displays the pitch distribution of the best
and worst individual in the final generation of an evolutionary
run. These bar charts indicate the differences in distribution of
pitches in these individuals. Figure 2(a) shows the pitches in
Individual3.mp3 which achieves an perfect fitness of 1. From
this graph there is a clear primary pitch that is more present
than the others, with three secondary pitches standing out and
only the top nine pitches featuring in the melody. The length
of the phenotype is 200 giving a perfect initial fitness of 1.
Further to that there are a total of 31 pitches played with 25
within the top 7 and 30 within the top 9 giving distribution
percentages of 81% and 97% respectively. In contrast, Figure
2(b) displays the pitches in WeakIndividual.mp3 whose fitness
is 34,330. This particular individual has a high (bad) fitness in
every measure. The length of the phenotype is 325, giving it an
initial fitness of over 15,600. From Figure 2(b) it can be seen
that there are two equally strong primary notes and that every
pitch is represented in the melody at least once resulting in the
percentage of notes in the top 7 and top 9 at only 67% and
80% respectively. Hence the initial bad fitness is increased at
each measurement. This WeakIndividual.mp3 can be listened
to at http://ncra.ucd.ie/Site/loughranr/music.html. What may be
surprising is that this melody does not immediately sound any
‘worse’ than Individuall. It is heavy on the runs, which would
naturally increase the length of the phenotype but the presence
of each chromatic tone and the lack of a primary key does
not appear obvious on the first listen. As discussed in Section
III-B however, it is the repetition and emphasis of such patterns
that can cause perceptual keys to emerge. This idea led us to
combine a number of fit individuals together as described in
the next section.

From an inspection of a number of weaker individuals in
different runs, it was clear that many had high (bad) fitness
due to their lengths either being significantly too short or too
long. This implies that the initial weighting of squared distance
from the target to actual length is too strong for the entire
population to overcome. Even so, in every run the majority of
individuals achieved good fitness with a number of highly fit or
perfect individuals emerging within 11 generations, indicating
that it can be a good driving force. It is worth noting again
that enforcing a given phenotype length does not directly force
the melody to be a certain duration or even a certain number
of notes in length. The mappings in the grammar can lead
to events of different length within the phenotype, hence the
length of the piece of music is not strictly enforced by this
fitness function but can be within a given range. In future
work we may consider having a range of possible lengths so
an individual is only heavily penalised if it is significantly
outside this range. Furthermore, the fitness function may easily
be altered if we wish to drive the evolution according to
another property such as rhythm, melody progression or a more
subjective fitness measure, should it be proposed.
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Fig. 2: Fitness, Length, Top7 and Top9 for each of the
individuals in the final Generation
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Fig. 3: Pitch Distribution for a (a) highly fit individual dis-
playing one prominent pitch and a tail that tapers off after
nine pitches, (b) weak individual with two equally prominent
pitches and all 12 pitches present

B. Longer Melodies

The compositions created by the above method are very
short. The fitness function ensures a short phenotype length
which in turn creates short pieces. There is also little form
or regularity within the piece. Temporally, the progression of
melody does not depend on any previous notes, and no partic-
ular themes or motifs emerge. A particularly useful feature of
EC methods in this regard is that we have evolved a population
of solutions — a number of highly fit individuals that are
similar but not identical. As we have seen above, the popu-
lation of solutions even after 50 generations remains diverse,
indicating that the final population contains varied melodies.
Thus instead of merely taking the best individual, we can take
a selection of the best individuals and splice them together.
Even in cases where the fitness has reached a minimum (local
or global) and a number of top individuals have equal fitness,
the individuals themselves are rarely identical. This idea of
splicing individuals together to create a composition was used
by Rodney Waschka II in his program GenDash [22]. This
program combined all individuals from successive generations
in creating entire compositions or aspects of compositions.
Although we only combine a small number of individuals from
the final population, we found that combining individuals in
this manner led to a number of interesting compositions.
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Fig. 4: Motif and three variations emergent from Melody 1

Melodyl.mp3 is a good example of combining numerous
similar but non-identical individuals that enables a motif to
emerge from a melody. This composition was created by
combining the top four individuals from the final generation
of an evolutionary run. From listening to this composition, the
semibreve Eb is immediately obvious as a striking yet simple
repetition within the piece. In this example, this particular note
indicates the beginning of the individual, but the remainder of
each individual differs causing variations within the theme.
Figure 4 displays scores of the first part of each individual
that share a variation on a motif. The original theme, in the
top score, is varied slightly in regards to rhythm and pitch but
is distinctly recognisable each time it is played. The remainder
of each individual varies considerably by comparison but
the return to this motif anchors the listener and gives the
composition a sense of form. This recurrence of similar content
is due to selection and crossover among highly fit individuals;
the first part of the melody has survived to be recreated in
a number of the top individuals. Other short motifs emerge
that are more subtle yet clearly audible within the piece.
Similar emergent themes and motifs can be heard clearly in
Melody2.mp3 and Melody3.mp3.

C. Discussion

It is immediately evident from working with this system
that there is a large variation in the compositions being
produced. We would argue that this variation is more of a
testament to the success of the system rather than a flaw within
it. If the system reproduced the same or very similar melodies
every time it was run, there would be no compositional benefits
to using it at all. While the variation between runs is high,
the motifs that emerge from the best individuals in the last

generation show that the system is capable of focussing on
and refining one given idea. If we are use such a system as
a computational aid, something to give the working composer
new ideas, then diversity and variation among the produced
musical excerpts, while having some confidence in the merit
of the music produced is the ideal goal of such a system.

In saying that, we acknowledge there are limitations in the
compositions currently produced. As the compositions stand,
they lack in their overall form. Although the inclusion of
four individuals can introduce perceived repetitions and motifs
within the piece, the majority of the melodies produced still
show little in terms of beginning, progression and ending. This
cannot be immediately addressed by the system as it works
at the moment. The melodic progression is independent of
previous notes and so cannot influence the development of
the music. Likewise, the ordering of the individuals in the
longer melodies is not related to their progression or their
note content, but merely based on their fitness. As long as the
fitness is entirely dependent on the statistical tonality of the
evolved melody it will not be able to influence the progression
of the composition. To fully address this issue, we would
need to create a system that takes into account the form of
the composition. Until the system can recognise and respond
to the progression of the melody it is unlikely to be able to
create fully formed, concise compositions. At the moment, it
is evident that the system cannot create a full composition, but
we do see it as an interesting compositional tool, one which
can aid a composer in initialising ideas.

As discussed, this system responds to a statistical fitness
function of distribution of pitches, it does not guarantee a
pleasant melody. As an extreme, let us consider a melody that
consists of 40 quaver notes, 30 of which are played at pitch C,
octave 2 followed by the remaining 10 played at C#, octave
2. The initial fitness would be set to 1 as there are 5 values
per single <note> in the phenotype, thus 40 notes would
give a perfect initial fitness of 1. Furthermore, C' emerges
prominently as the primary key with C'# as the notable
secondary and the ratio in equations 5 and 6 would both be
1 leading to an optimal fitness value of 1. Clearly this is not
a good melody !. Although theoretically our fitness function
would give this contrived melody perfect fitness, in our system,
the grammar would be highly unlikely to ever generate such a
composition. This fitness function is not intended as a universal
measure of the quality or ‘goodness’ of the melody, but it is a
statistical measure that can quantify a given attribute (in this
case tonality) as a method of guiding the algorithm through the
search space created by the grammar. This statistical measure
of pitches is similar to an approximation of the power law or
Zipfs distribution. Zipfs distribution has been used on a number
of musical attributes in classifying music in terms of aesthetic
and ‘pleasantness’ [23]. In future development of this project,
we plan to extend the fitness function to emanate this power
law distribution to better evaluate the fitness of an individual.

Ideally, we wish to judge the merits of a compositional
system on the aesthetic quality of it’s output. Any aesthetic
judgement is highly subjective and therefore extremely difficult
to quantify and measure. We are tentatively pleased with the
quality of a number of the compositions produced by our

lalthough we must point out that with a slight rearrangement to interpolate
the pitches this does emanate the theme from ‘Jaws’



system as we find them to be interesting, vibrant and at times
fun. At the moment, the system will not automatically create
a masterpiece, but it does create snippets of original music
which we look forward to developing in the areas of form and
evaluation. As a creative system, it stops shy of addressing
open problems in evolutionary art and music such as those
proposed in [24]. Nevertheless, we have created a system that
can create novel sections of music using a new representation
and grammar in GE with a tonality-driven fitness function.
We hope to push this system further into the domain of
evolutionary music and computational creativity by developing
a way to measure the true aesthetic value or merit of the
evolved melodies.

VI. CONCLUSION AND FUTURE WORK

A number of original piano melodies created in GE with a
user-defined grammar and tonality-driven fitness function have
been presented. We described our domain specific grammar
that maps from genotype to phenotype to create complex
melodies containing runs, turns and arpeggios. These were
evolved with a fitness function based on the number of pitches
present in the melody to create a variety of compositions.
These individual compositions were in turn combined together
to create longer pieces of music that contain discernible
patterns and motifs.

Piano music is conventionally written on two staves, one
for the treble and one for the bass. Although a number of the
presented pieces would be played by two hands on a piano,
it is one melody line that is being evolved. We are currently
looking at methods to evolve a bassline that would accompany
a given melody in both pitch and rhythm. We are also currently
looking at ways to expand the grammar so that it may consider
the form of a full composition. Thus our system would be able
to produce a piano piece more akin to a typical piece played
by a human performer.

The fitness used is a measure of tonal statistical validity,
rather than a true measure of creativity or even musical ‘good-
ness’. As such, our system may not always create a particularly
noteworthy or pleasant sounding piece; each composition may
not be to everyone’s tastes, but more often than not they are
of at least some musical interest. As future work, we are very
interested in developing a fitness function that is able to make
a more subjective judgement of music — not one that would
judge a certain style, but one that could correctly identify or
discern musical merit. Creating an aesthetic fitness function
that can reliably judge the merits of any creative object is
still an extremely difficult, ill-defined problem. We hope that
by developing a more automated system, we may be able to
investigate this area more thoroughly and in turn gain insights
into the usage and capabilities of computational creativity.
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