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Grammatical Evolution (GE) is a novel data driven, model induction tool, inspired by
the biological gene-to-protein mapping process. This study provides an introduction to
GE, and demonstrates the methodology by applying it to model the corporate bond-
issuer credit rating process, using information drawn from the financial statements of
bond-issuing firms. Financial data and the associated Standard & Poor’s issuer-credit
ratings of 791 US firms, drawn from the year 1999/2000 are used to train and test the
model. The best developed model was found to be able to discriminate in-sample (out-
of-sample) between investment-grade and junk bond ratings with an average accuracy
of 87.59 (84.92)% across a five-fold cross validation.

Povzetek:

1 Introduction

Grammatical Evolution (GE) [1], represents an
evolutionary automatic programming methodol-
ogy, and can be used to evolve rule sets. These
rule sets can be as general as a functional expres-
sion which produces a good mapping between a
series of known input-output data vectors. A par-
ticular strength of the methodology is that the
form of the model need not be specified a priori
by the modeler. This is of particular utility in
cases where the modeler has a theoretical or in-
tuitive idea of the nature of the explanatory vari-
ables, but a weak understanding of the functional
relationship between the explanatory and the de-
pendent variable(s). GE does not require that the
model form is linear, nor does the method require
that the measure of model error used in model
construction is a continuous or differentiable func-
tion. Neither is GE a black box method. As such
the evolved rules (taking the form of symbolic ex-
pressions in this instance) are amenable to human
interpretation and consequently have the poten-
tial to enhance our understanding of the problem
domain.

A key element of the methodology is the con-
cept of a Grammar, which governs the creation
of the rule sets. This paper describes the GE
methodology, and applies the methodology to ac-
curately model the corporate bond rating process.

Most large firms employ both share and debt
capital to provide long-term finance for their op-
erations. The debt capital may be provided by
a bank, or may be obtained by selling bonds di-
rectly to investors. As an example of the scale
of US bond markets, the value of bonds issued
in the first quarter of 2003 totalled $1.70 trillion
[2]. A bond can be defined as a ‘debt security
which constitutes a promise by the issuing firm,
to pay a stated rate of interest based on the face
value of the bond, and to redeem the bond at this
face value at maturity.’ When a publicly-traded
company wants to issue traded debt (bonds), it
must obtain a credit rating for the issue from at
least one recognised rating agency (Standard and
Poor’s (S&P), Moody’s or Fitches’). The credit
rating represents the rating agency’s opinion, at
a specific date, of the creditworthiness of a bor-
rower in general (an issuer credit rating), or in
respect of a specific debt issue (a bond credit rat-
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ing). Therefore it serves as a surrogate measure
of the risk of non-payment of interest or capital of
a bond. These ratings impact on the borrowing
cost and the marketability, of issued bonds.

1.1 Motivation for study

There are a number of reasons to suppose a pri-
ori that the use of an evolutionary automatic pro-
gramming (EAP) approach such as GE, can prove
fruitful in this domain.

In common with the related corporate failure
prediction problem [3], a feature of the bond-
rating problem is that there is no clear theoretical
framework for guiding the choice of explanatory
variables, or model form. Rating agencies assert
that their credit rating process involves consid-
eration of both financial and non-financial infor-
mation about the firm and its industry, but the
precise factors utilised, and the related weight-
ing of these factors, are not publicly disclosed by
the rating agencies. In the absence of an un-
derlying theory, most published work on credit
rating prediction employs a data-inductive mod-
elling approach, using firm-specific financial data
as explanatory variables, in an attempt to recover
the model used by the rating agencies. This pro-
duces a high-dimensional combinatorial problem,
as the modeller is attempting to uncover a good
set of model inputs, and model form, giving rise
to particular potential for an evolutionary auto-
matic programming methodology such as GE. In
this initial application of GE to modelling credit
rating, we restrict attention to the binary classi-
fication case (discriminating between investment
grade vs junk grade ratings). This will be ex-
tended to the multi-class case in future work. It
is noted that a limited number of studies have ap-
plied a grammar-based methodology to constrain
the search space for classification rules [3, 4, 5, 6].
This study extends this methodology into the do-
main of bond-rating.

The rest of this contribution is organized as
follows. The next section provides an overview
of the literature on bond rating, followed by a
section which describes Grammatical Evolution.
We then outline the data set and methodology
utilised. The following sections provide the re-
sults of the study followed by a number of conclu-
sions.

2 Bond Rating

Several categories of individuals would be inter-
ested in a model that could produce accurate esti-
mates of bond ratings. Such a model would be of
interest to firms that are considering issuing debt
as it would enable them to estimate the likely re-
turn investors would require if the debt was is-
sued, thereby providing information for the pric-
ing of the bonds. The model could also be used
to assess the credit-worthiness of firms that have
not issued debt and hence do not already have a
published bond rating. This information would be
useful to bankers or other companies that are con-
sidering whether they should extend credit to that
firm. Much rated debt is publicly traded on stock
markets, and bond ratings are typically changed
infrequently. An accurate bond-rating prediction
model could indicate whether the current rating
of a bond is still justified. To the extent that an
individual investor could predict a bond rerating
before other investors foresee it, this may provide
a trading edge. In addition, the recent introduc-
tion of credit-risk derivatives allows investors to
buy protection against the risk of the downgrade
of a bond [7]. The pricing of such derivative prod-
ucts requires a quality model for estimating the
likelihood of a credit rating change.

2.1 Bond Rating Notation

Although the precise notation used by individual
rating agencies to denote the creditworthiness of a
bond or issuer varies, in each case the rating is pri-
marily denoted by a discrete, mutually exclusive,
‘letter grade’. Taking the rating structure of S&P
as an example, the ratings are broken down into
10 broad classes. The highest rating is denoted
AAA, and the ratings then decrease in the follow-
ing order, AA, A, BBB, BB, B, CCC, CC, C, D.
Ratings between AAA and BBB (inclusive) are
deemed to represent investment grade, with lower
quality ratings deemed to represent debt issues
with significant speculative characteristics (junk
bonds). A ‘C’ grade represents a case where a
bankruptcy petition has been filed, and a ‘D’ rat-
ing represents a case where the borrower is cur-
rently in default on their financial obligations. As
would be expected, the probability of default de-
pends strongly on the initial rating which a bond
receives (see table 1).



CREDIT CLASSIFICATION USING GRAMMATICAL EVOLUTION Informatica 29 page xxx–yyy 3

Initial Rating Defaults (%)
AAA 0.52
AA 1.31
A 2.32

BBB 6.64
BB 19.52
B 35.76

CCC 54.38

Table 1: Rate of default by initial rating category
(1987-2002)(from [8]).

Ratings from AAA to CCC can be modified by
the addition of a + or a -, to indicate at which
end of the rating category the bond rating falls.
An initial rating is prepared when a bond is
being issued, and this rating is periodically re-
viewed thereafter by the rating agency. Bonds
(or issuers) may be re-rated upwards (upgrade) or
downwards (downgrade) if firm or environmental
circumstances change. A re-rating of a bond be-
low investment grade to junk bond status (such
bonds are colorfully termed ‘a fallen angel’) may
trigger a significant sell-off as many institutional
investors are only allowed, by external or self-
imposed regulation, to hold bonds of investment
grade. The practical affect of a bond (or issuer)
being assigned a lower rather than a higher rating
is that its perceived riskiness in the eyes of po-
tential investors increases, and consequently the
required interest yield of the bond rises.

2.2 Prior Literature

In essence, the objective of constructing a model
of bond ratings, is to produce a model of rating
agency behaviour, using publicly available infor-
mation. A large literature exists on bond-rating
prediction. Earliest attempts utilised statistical
methodologies such as linear regression (OLS)
[9], multiple discriminant analysis [10], the multi-
nomial logit model [11], and ordered-probit anal-
ysis [12]. The results from these studies varied,
and typically results of about 50-60% prediction
accuracy (out-of-sample) were obtained, using fi-
nancial data as inputs. With the advent of artifi-
cial intelligence and machine learning, the range
of techniques applied to predict bond ratings has
expanded to include neural networks [13]. In the
case of prior neural network research, the predic-

tive accuracy of the developed models has varied.
Several studies employed a binary predictive tar-
get and reported good classification accuracies.
For example, [14] used a neural network to pre-
dict AA or non-AA bond ratings, and obtained
an accuracy of approximately 83.3%. However, a
small sample size (47 companies) was adopted in
the study, making it difficult to generalise strongly
from its results.

3 Grammatical Evolution

Evolutionary algorithms (EAs) operate on princi-
ples of evolution, usually being coarsely modelled
on the theories of survival of the fittest and nat-
ural selection [15]. In general, evolutionary algo-
rithms can be characterized as:

x[t + 1] = r(v(s(x[t]))) (1)

where x[t] is the population of solutions at it-
eration t , v(.) is the random variation opera-
tor (crossover and mutation), s(.) is the selection
for reproduction operator, and r is the replace-
ment operator which determines which of the par-
ents and children survive into the next generation.
Therefore the algorithm turns one population of
candidate solutions into another, using selection,
crossover and mutation. Selection exploits infor-
mation in the current population, concentrating
interest on ‘high-fitness’ solutions. Crossover and
mutation perturb these solutions in an attempt
to uncover better solutions, and these operators
can be considered as general heuristics for explo-
ration.

GE is a grammatical approach to Genetic Pro-
gramming (GP) that can evolve computer pro-
grams (or rulesets) in any language, and a full
description of GE can be found in [1, 16, 17, 18].
Rather than representing the programs as syntax
trees, as in Koza’s GP [19], a linear genome
representation is used. Each individual, a vari-
able length binary string, contains in its codons
(groups of 8 bits) the information to select pro-
duction rules from a Backus Naur Form (BNF)
grammar. In other words, an individual’s bi-
nary string contains the instructions that direct
a developmental process resulting in the creation
of a program or rule. As such, GE adopts
a biologically-inspired, genotype-phenotype map-
ping process.
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At present, the search element of the system
is carried out by an evolutionary algorithm, al-
though other search strategies with the ability to
operate over binary or integer strings have also
been used [1, 5]. The GE system possesses a
modular structure (see figure 1) which will allow
future advances in the field of evolutionary algo-
rithms to be easily incorporated.

3.1 The Biological Approach

The GE system is inspired by the biological pro-
cess of generating a protein from the genetic ma-
terial of an organism. Proteins are fundamental
in the proper development and operation of liv-
ing organisms and are responsible for traits such
as eye color and height [20].

The genetic material (usually DNA) contains
the information required to produce specific pro-
teins at different points along the molecule. For
simplicity, consider DNA to be a string of build-
ing blocks called nucleotides, of which there are
four, named A, T, G, and C, for adenine, tyro-
sine, guanine, and cytosine respectively. Groups
of three nucleotides, called codons, are used to
specify the building blocks of proteins. These pro-
tein building blocks are known as amino acids,
and the sequence of these amino acids in a pro-
tein is determined by the sequence of codons on
the DNA strand. The sequence of amino acids is
very important as it determines the final three-
dimensional structure of the protein, which in
turn has a role to play in determining its func-
tional properties.
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Figure 1: Modular structure of grammatical evo-
lution
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Figure 2: A comparison between the grammatical
evolution system and a biological genetic system.
The binary string of GE is analogous to the dou-
ble helix of DNA, each guiding the formation of
the phenotype. In the case of GE, this occurs
via the application of production rules to gener-
ate the terminals of the compilable program. In
the biological case by directing the formation of
the phenotypic protein by determining the order
and type of protein subcomponents (amino acids)
that are joined together.

In order to generate a protein from the sequence
of nucleotides in the DNA, the nucleotide se-
quence is first transcribed into a slightly differ-
ent format, that being a sequence of elements
on a molecule known as mRNA. Codons within
the mRNA molecule are then translated to deter-
mine the sequence of amino acids that are con-
tained within the protein molecule. The appli-
cation of production rules to the non-terminals
of the incomplete code being mapped in GE is
analogous to the role amino acids play when be-
ing combined together to transform the growing
protein molecule into its final functional three-
dimensional form.

The result of the expression of the genetic mate-
rial as proteins in conjunction with environmental
factors is the phenotype. In GE, the phenotype
is a sentence or sentences in the language defined
by the input grammar. These sentences can take
the form, for example, of functions, programs,
or as in the case of this study, rule sets. The
phenotype is generated from the genetic material
(the genotype) by a process termed a genotype-
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phenotype mapping. This is unlike the standard
method of generating a solution directly from an
individual in an evolutionary algorithm by explic-
itly encoding the solution within the genetic ma-
terial. Instead, a many-to-one mapping process
is employed within which the robustness of the
GE system lies. Figure 2 compares the mapping
process employed in both GE and biological or-
ganisms.

3.2 The Mapping Process

When tackling a problem with GE, a suitable
BNF (Backus Naur Form) grammar definition
must first be defined. The BNF can be either
the specification of an entire language or, perhaps
more usefully, a subset of a language geared to-
wards the problem at hand.

In GE, a BNF definition is used to describe
the output language to be produced by the sys-
tem. BNF is a notation for expressing the gram-
mar of a language in the form of production
rules. BNF grammars consist of terminals,
which are items that can appear in the lan-
guage, e.g. binary operators +, -, unary opera-
tors Sin, constants 1.0 etc. and non-terminals,
which can be expanded into one or more ter-
minals and non-terminals. For example from
the grammar detailed below, <expr> can be
transformed into one of four rules, i.e it be-
comes <expr><op><expr>, (<expr><op><expr>)
(which is the same as the first, but surrounded by
brackets), <pre-op>(<expr>), or <var>. A gram-
mar can be represented by the tuple {N, T, P, S},
where N is the set of non-terminals, T the set of
terminals, P a set of production rules that maps
the elements of N to T , and S is a start sym-
bol which is a member of N . When there are a
number of productions that can be applied to one
element of N the choice is delimited with the ‘|’
symbol. For example,

N = { <expr>, <op>, <pre_op> }

T = {Sin, +, -, /, *, X, 1.0, (, )}

S = <expr>

And P can be represented as:

(A) <expr> ::= <expr> <op> <expr> (0)

| ( <expr> <op> <expr> ) (1)

| <pre-op> ( <expr> ) (2)

| <var> (3)

(B) <op> ::= + (0)

| - (1)

| / (2)

| * (3)

(C) <pre-op> ::= Sin

(D) <var> ::= X (0)

| 1.0 (1)

The program, or sentence(s), produced will con-
sist of elements of the terminal set T . The gram-
mar is used in a developmental approach whereby
the evolutionary process evolves the production
rules to be applied at each stage of a mapping
process, starting from the start symbol, until a
complete program is formed. A complete program
is one that is comprised solely from elements of T .

As the BNF definition is a plug-in component
of the system, it means that GE can produce
code in any language thereby giving the system
a unique flexibility. For the above BNF, table 2
summarizes the production rules and the number
of choices associated with each.

Rule no. Choices
A 4
B 4
C 1
D 2

Table 2: The number of choices available from
each production rule.

The genotype is used to map the start symbol
onto terminals by reading codons of 8 bits to gen-
erate a corresponding integer value, from which
an appropriate production rule is selected by us-
ing the following mapping function:

Rule = Codon V alue % No. Rule Choices (2)

where % is the MOD function which returns the
remainder after a division operation (e.g. 4 % 3
= 1). Consider the following rule from the given
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grammar for the non-terminal op. There are four
possible production rules for this non-terminal.

(B) <op> :: = + (0)

| - (1)

| / (2)

| * (3)

If we assume the codon being read produces the
integer 6, then

6 % 4 = 2

would select rule (2), the operator /. Each time a
production rule has to be selected to transform a
non-terminal, another codon is read. In this way
the system traverses the genome.

During the genotype-to-phenotype mapping
process, it is possible for individuals to run out
of codons, and in this case we wrap the individ-
ual and reuse the codons. This is quite an unusual
approach in EAs, as it is entirely possible for cer-
tain codons to be used two or more times. This
technique of wrapping the individual draws in-
spiration from the gene-overlapping phenomenon
that has been observed in many organisms [20].

In GE, each time the same codon is expressed it
will always generate the same integer value, but,
depending on the current non-terminal to which it
is being applied, it may result in the selection of a
different production rule. This feature is referred
to as intrinsic polymorphism. Crucially, however,
each time a particular individual is mapped from
its genotype to its phenotype, the same output
is generated. This is the case because the same
choices are made each time. However, it is possi-
ble that an incomplete mapping could occur, even
after several wrapping events, and in this case the
individual in question is given the lowest possi-
ble fitness value. The selection and replacement
mechanisms then operate accordingly to increase
the likelihood that this individual is removed from
the population.

An incomplete mapping could arise if the inte-
ger values expressed by the genotype were apply-
ing the same production rules repeatedly. For ex-
ample, consider an individual with three codons,
all of which specify rule 0 from below,

(A) <expr> :: = <expr><op><expr> (0)

|(<expr><op><expr>) (1)

|<pre-op>(<expr>) (2)

|<var> (3)

even after wrapping the mapping process
would be incomplete and would carry on in-
definitely unless stopped. This occurs because
the nonterminal <expr> is being mapped re-
cursively by production rule 0, so it becomes
<expr><op><expr>. Therefore, the leftmost
<expr> after each application of a production
would itself be mapped to a
<expr><op><expr>, resulting in an ex-
pression continually growing as follows:
<expr><op><expr><op><expr><op><expr>
and so on.

Such an individual is dubbed invalid as it will
never undergo a complete mapping to a set of ter-
minals. For this reason we impose an upper limit
on the number of wrapping events that can oc-
cur. It is clearly essential that stop sequences
are found during the evolutionary search in or-
der to complete the mapping process to a func-
tional program. The stop sequence being a set
of codons that result in the non-terminals being
transformed into elements of the grammars ter-
minal set.

Beginning from the left hand side of the genome
then, codon integer values are generated and used
to select rules from the BNF grammar, until one
of the following situations arise:

1. A complete program is generated. This oc-
curs when all the non-terminals in the ex-
pression being mapped are transformed into
elements from the terminal set of the BNF
grammar.

2. The end of the genome is reached, in which
case the wrapping operator is invoked. This
results in the return of the genome reading
frame to the left hand side of the genome
once again. The reading of codons will then
continue, unless an upper threshold repre-
senting the maximum number of wrapping
events has occurred during this individual’s
mapping process.

3. In the event that a threshold on the num-
ber of wrapping events has occurred and the
individual is still incompletely mapped, the
mapping process is halted, and the individual
is assigned the lowest possible fitness value.

To reduce the number of invalid individuals being
passed from generation to generation, a steady
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state replacement mechanism is employed. One
consequence of the use of a steady state method
is its tendency to maintain fit individuals at the
expense of less fit, and in particular, invalid indi-
viduals.

4 Experimental Approach

The dataset consists of financial data of 791 non-
financial US companies drawn from the S&P
Compustat database. The associated S&P over-
all credit rating for each corporate bond issuer is
also obtained from the database.1

Of these companies, 57% have an investment
rating (AAA, AA, A, or BBB), and 43% have
a junk rating. To allow time for the prepara-
tion of year-end financial statements, the filing
of these statements with the Securities and Ex-
change Commission (S.E.C), and the development
of a bond rating opinion by Standard and Poor
rating agency, the bond rating of the company as
at 30 April 2000, is matched with financial infor-
mation drawn from their financial statements as
at 31 December 1999. A subset of 600 firms was
randomly sampled from the total of 791 firms, to
produce two groups of 300 ‘investment’ grade and
300 junk rated firms. The 600 firms were ran-
domly allocated to the training set (420) or the
hold-out sample (180), ensuring that each set was
equally balanced between investment and non-
investment grade ratings.
A total of eight financial variables was selected
for inclusion in this study. The selection of these
variables was guided both by prior literature in
bankruptcy prediction [21, 22, 23], literature on
bond rating prediction [14, 24, 25], resulting in
an initial judgemental selection of a subset of ac-
counting ratios. These ratios were then further
filtered using statistical analysis.

Five groupings of explanatory variables, drawn
from financial statements, are given prominence
in prior literature as being the prime determinants
of bond issue quality and default risk:

i. Liquidity

ii. Debt
1S&P is one of the largest credit rating agencies in the

world, currently rating about 150,000 issues of securities
across 50 countries. It provides credit ratings for about
99.2% of the debt obligations and preferred stock issues
which are publicly traded in the US [8].

iii. Profitability

iv. Activity / Efficiency

v. Size

Liquidity refers to the availability of cash re-
sources to meet short-term cash requirements.
Debt measures focus on the relative mix of fund-
ing provided by shareholders and lenders. Prof-
itability considers the rate of return generated by
a firm, in relation to its size, as measured by sales
revenue and/or asset base. Activity measures
consider the operational efficiency of the firm in
collecting cash, managing stocks and controlling
its production or service process. Firm size pro-
vides information on both the sales revenue and
asset scale of the firm and also provides a proxy
metric on firm history. The groupings of poten-
tial explanatory variables can be represented by
a wide range of individual financial ratios, each
with slightly differing information content. The
groupings themselves are interconnected, as weak
(or strong) financial performance in one area will
impact on another. For example, a firm with a
high level of debt, may have lower profitability
due to high interest costs. Following the exami-
nation of a series of financial ratios under each of
these headings, the following inputs were selected:

i. Current ratio

ii. Retained earnings to total assets

iii. Interest coverage

iv. Debt ratio

v. Net margin

vi. Market to book value

vii. Log (Total assets)

viii. Return on total assets

The objective in selecting a set of proto-
explanatory variables is to choose financial vari-
ables that vary between companies in different
bond rating classes, and where information over-
laps between the variables are minimised. Com-
paring the means of the above ratios for the two
groups of ratings (see table 3), reveals a statisti-
cally significant difference between the two groups
at both the 5% and the 1% level, and as expected,
the financial ratios in each case, for the invest-
ment ratings are stronger than those for the junk
ratings. The only exception is the current ratio,
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Investment grade Junk bond
Current ratio 1.354 1.93

Ret. earn/Tot assets 0.22 -0.12
Interest coverage 7.08 1.21

Debt ratio 0.32 0.53
Net margin 0.07 -0.44

Market to book value 18.52 4.02
Total assets 10083 1876

Return on total assets 0.10 0.04

Table 3: Means of input ratios for investment and junk bond groups of companies.

CR RE/TA IC DR NM MTB TA ROA

CR 1 -0.08 -0.01 0.06 -0.27 0.01 -0.18 -0.15

RE/TA -0.08 1 0.27 -0.64 0.14 0.15 0.15 0.48

IC -0.01 0.27 1 -0.28 0.06 0.31 0.15 0.41

DR 0.06 -0.64 -0.28 1 -0.05 -0.19 -0.20 -0.27

NM -0.27 0.14 0.06 -0.05 1 0.01 0.03 0.22

MTB 0.01 0.15 0.31 -0.19 0.01 1 0.04 0.14

TA -0.18 0.15 0.15 -0.20 0.03 0.04 1 0.07

ROA -0.15 0.48 0.41 -0.27 0.22 0.14 0.07 1

Table 4: Correlations between financial ratios.

which is stronger for the junk rated companies,
possibly indicating a preference for these compa-
nies to hoard short-term liquidity, as their access
to long-term capital markets is weak. A correla-
tion analysis between the selected ratios (see table
4) indicates that most of the cross-correlations are
less than | 0.20 |, with the exception of the debt
ratio and (Retained Earnings/Total Assets) ratio
pairing, which has a correlation of -0.64.

In this study, the GE algorithm uses a steady
state replacement mechanism, such that, two par-
ents produce two children the best of which re-
places the worst individual in the current popula-
tion, if the child has greater fitness. The standard
genetic operators of bit mutation (probability
of 0.01), and variable-length one-point crossover
(probability of 0.9) are adopted. A series of func-
tions, are pre-defined as are a series of mathe-
matical operators. A population of initial rule-
sets (programs) are randomly generated, and by
means of an evolutionary process, these are im-
proved. No explicit model specification is as-
sumed ex-ante, although the choice of mathemat-
ical operators defined in the grammar do place
implicit limitations on the model specifications
amongst which GE can search. The grammar
adopted in this study is as follows:

<lc> ::= if( <expr> <relop> <expr> )
class=’’Junk’’;

else
class=’’Investment Grade’’;

<expr> ::= ( <expr> ) + ( <expr> )
| <coeff> * <var>

<var> ::= Current_Ratio
| Retained_Earnings_to_total_assest
| Interest_Coverage | Debt_Ratio
| Net_Margin | Market_to_book_value
| Total_Assets | ln(Total_Assets)
| Return_on_total_assets

<coeff> ::= ( <coeff> ) <op> ( <coeff> )
| <float>

<op> ::= + | - | *

<float> ::= 9 | 8 | 7 | 6 | 5 | 4
| 3 | 2 | 1 | -1 | .1

<relop> ::= <=

5 Results

The results from our experiments are now pro-
vided. Each of the GE experiments is run for
100 generations, with variable-length, one-point
crossover at a probability of 0.9, one point bit
mutation at a probability of 0.01, roulette se-
lection, and steady-state replacement. Results
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are reported for two population sizes (500 and
1000). To assess the stability of the results across
different randomisations of the dataset between
training and test data, we recut the dataset five
times, maintaining an equal balance of investment
and non-investment grade ratings in the resulting
training and test datasets.
In our experiments, fitness is defined as the
number of correct classifications obtained by an
evolved discriminant rule. The results for the best
individual of each cut of the dataset, where 30 in-
dependent runs were performed for each cut, av-
eraged over all five randomisations of the dataset,
for both the 500 and 1000 population sizes, are
given in table 5. In each case the overall clas-
sification accuracy is provided, and this is then
subdivided into the number of true positives Ntp,
the number of true negatives Ntn, and the number
of false positives, and false negatives respectively
(Nfp, Nfn).
To assess the overall hit-ratio of the developed
models (out-of-sample), Press’s Q statistic [26]
was calculated for each model. In all cases, the
null hypothesis, that the out-of sample classifica-
tion accuracies are not significantly better than
those that could occur by chance alone, was re-
jected at the 1% level. A t-test of the hit-ratios
also rejected a null hypothesis that the classifica-
tion accuracies were no better than chance at the
1% level. Across all the data recuts, the best in-
dividual achieved an 87.56 (84.36)% accuracy in-
sample (out-of-sample) when the population size
was 500, with the best individual across all data
recuts in the population=1000 case obtaining an
accuracy of 87.59 (84.92)% accuracy in-sample
(out-of-sample). Although the average out-of-
sample accuracy obtained for population=1000
slightly exceeds that for population=500, the dif-
ference was not found to be statistically signifi-
cant. A plot of the best and average fitness on
each cut of the in-sample dataset, for the popu-
lation=500 case, can be seen in figure 3, and for
case where population=1000 in figure 4.
Examining the structure of the best individual
in the case where the initial fitness function was
utilised and where population=500 shows that the
evolved discriminant function had the following
form:

IF (10 + 16 var6 -9 var4 -2 var9) ≥ 0 THEN
‘Junk’ ELSE ‘Investment Grade’

where var6 is Debt Ratio, var4 is Retained Earnings
Total Assets ,

and var9 is Total Assets.
In the case where population=1000 the best
evolved discriminant function had a similar form
to the above:

IF (5 + 8 var6 -4 var4 - var9) ≥ 0 THEN ‘Junk’
ELSE ‘Investment Grade’

Examining the signs of the coefficients of the
evolved rules does not suggest that they con-
flict with common financial intuition. The
rules indicate that low/negative retained earn-
ings, low/negative total assets or high levels of
debt finance are symptomatic of a firm that has
a junk rating. It is noted that similar risk fac-
tors have been identified in predictive models of
corporate failure which utilise financial ratios as
explanatory inputs [3, 4]. Conversely, low levels
of debt, a history of successful profitable trading,
and high levels of total assets are symptomatic of
firms that have an investment grade rating. Al-
though the two discriminant functions have dif-
fering coefficient values, they are in essence very
similar, as the differing coefficient values are bal-
anced by the differing constant term which has
been evolved in each function.

Considering the individual classification rules,
it interesting that despite the potential to gen-
erate long, complex ratio chains, this bloating
did not occur and the evolved classifiers are rea-
sonably concise in form. We also note that the
evolved classifiers (unlike those created by means
of a neural network methodology, for example)
are amenable to human interpretation.

5.1 Benchmarking the Results

To provide a benchmark for the results obtained
by GE, we compare them with the results ob-
tained on the same recuts of the dataset, using
a fully-connected, three-layer, feedforward multi-
layer perceptron (MLP) trained using the back-
propagation algorithm, and with the results ob-
tained using linear discriminant analysis.

The developed MLP networks utilised all the
explanatory variables. The optimal number of
hidden-layer nodes was found following experi-
mentation on each separate data recut, and varied
between two and four nodes. The classification
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Fitness TP TN FP FN
Train GEBOND500 0.861 185.4 176.4 33.6 24.6
Train GEBOND1000 0.867 183.4 180.8 29.2 26.6

Out-Sample GEBOND500 0.854 77.8 76 14 12.2
Out-Sample GEBOND1000 0.860 78 76.8 13.2 12

Train MLP 0.8690 181.8 183.2 26.8 28.2
Out-sample MLP 0.8500 75.8 77.2 12.8 14.2

Table 5: Performance of the best evolved rules on their training and out-of-sample datasets, aver-
aged over all five randomisations, compared with the classification performance of an MLPs on same
datasets.

accuracies for the networks, averaged over all five
recuts is provided in table 5.
The levels of classification accuracy obtained with
the MLP are competitive with earlier research,
with for example [14] obtaining an out-of-sample
classification accuracy of approximately 83.3%,
although it is noted that the size of the dataset
in this study was small. Comparing the results
from the MLP with those of GE on the initial fit-
ness function suggests that GE has proven highly
competitive with an MLP methodology, produc-
ing a similar classification accuracy on the train-
ing data, and slightly out-performing the MLP
out-of-sample.

Utilising the same dataset recuts as GE, LDA
produced results (averaged across all five recuts)
of 82.74% in-sample, and 85.22% out-of-sample.
Again, GE is competitive against these results in
terms of classification accuracy. Comparing the
results obtained by the linear classifiers (LDA and
GE) against those of an MLP suggests that strong
non-linearities between the explanatory variables
and the dependent variable are not present.

6 Conclusions & Future Work

In this paper a novel methodology, GE, was de-
scribed and applied for the purposes of predic-
tion of bond ratings. It is noted that this novel
methodology has general utility for rule-induction
applications. GE was found to be able to evolve
quality classifiers for bond ratings from raw finan-
cial information. Despite using data drawn from
companies in a variety of industrial sectors, the
developed models showed an impressive capabil-
ity to discriminate between investment and junk
rating classifications. The GE-developed models

also proved highly competitive with a series of
MLP models developed on the same datasets.

Several extensions of the methodology in this
study are indicated for future work. One route
is the inclusion of non-financial company and
industry-level information as input variables. A
related possibility would be to concentrate on
building rating models for individual industrial
sectors. The study can also be extended to en-
compass the multi-class rating prediction prob-
lem. As already noted, there are multiple
methodologies available for the generation of clas-
sification rules / regression models [27, 28]. Fu-
ture work could extend this study by examining
the general utility of GE vs other methods of gen-
erating classification rules, by comparing the per-
formance of a range of methods on a wider range
of datasets.
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