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Abstract—We wish to explore the contribution that asocial and
social learning might play as a mechanism for self-adaptation
in the search for variable-length structures by an evolutionary
algorithm. An extremely challenging, yet simple to understand
problem landscape is adopted where the probability of randomly
finding a solution is approximately one in a trillion. A number of
learning mechanisms operating on variable-length structures are
implemented and their performance analysed. The social learning
setup, which combines forms of both social and asocial learning
in combination with evolution is found to be most performant,
while the setups exclusively adopting evolution are incapable of
finding solutions.

I. INTRODUCTION

Hinton & Nowlan [1] demonstrated potential benefits of

lifetime learning for evolution in the form of a Baldwin

effect [2]. They examined a problem domain that required

a predefined and fixed number of phenotypic traits, which

were encoded in a fixed-length genotype. The landscape was

a challenging one for evolution as it took the form of a

needle-in-a-haystack, with no gradient available to guide the

population towards the ideal target. With the inclusion of a

learning mechanism additional information became available

to the population, and that resulted in the combination of

evolution and learning being capable of finding solutions.

Evolution alone was unable to find a solution given the

population size employed.

In this study we adapt the Hinton & Nowlan problem

landscape to explore the utility of learning in the space of

variable-length phenotypes where the number of required traits

is not predefined and can vary between individuals within

a population, such as exists within genetic programming

populations. The move from a fixed-length to variable-length

problem, where the space of structures must be explored in

addition to optimising the content, increases the search space

by orders of magnitude rendering the problem significantly

more challenging. We compare a number of approaches to

learning including a number of variants of individual, or

asocial learning, and a social learning strategy, to understand

their behaviour in problems of a variable-length nature.

The following section provides some background and con-

text to the study focusing on the interplay between learning

and evolution. Section III details the experimental setup where

we set out to explore the contribution that learning might

play in the search of the space of variable-length structures.

Results and Conclusions are presented in Sections IV and V

respectively.

II. BACKGROUND

There are two main categories of learning in the natural

world, namely social and asocial learning [3]. Asocial learning

involves a change in an organisms behaviour in response to a

specific experience, which might include a stimulus such as an

event or object in the environment, a response to a stimulus,

or some relationship between two stimuli. On the other hand

social learning involves organisms imitating or transmitting

behaviour to one another. Learning then is operating at the

level of the phenotype.

There have been many studies of learning and evolu-

tion in the evolutionary computation and artificial life (e.g.,

[4], [5], [6], [7]) literature’s, too many to detail here, as such

a sample of the seminal work relevant to this study is captured.

It is worth highlighting that until recently the majority of

studies have exclusively involved asocial learning, and few

if any have examined social learning in the search of variable-

length structures.

Hinton & Nowlan [1] explore the interaction between learn-

ing and evolution with the adoption of a primitive learning

mechanism. The phenotype of each individual in the popula-

tion is specified by a genome with twenty loci. Each locus

can take on one of three symbols (0, 1 or ?). The ? symbol

is said to be plastic in that it represents either a 0 or 1.

To evaluate the fitness of an individual each plastic symbol

must be resolved to either a 0 or 1. As such, the presence

of a ? means there is potential for that individual to learn

during their lifetime what better values of ? might be in the

current environment. The fitness landscape is straightforward

(see Fig. 1 for an illustration). If an individual contains a 0, it

is awarded the worst possible fitness. If an individual contains

all 1’s, it is rewarded with the best fitness. If an individual

contains both 1’s and ?’s, if all the ?’s are resolved to become978-1-7281-8393-0/21/$31.00 ©2021 IEEE
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Fig. 1. An illustration of the Hinton & Nowlan fitness landscape. Phenomes containing a 0 at any locus automatically receive the worst possible fitness of
20. Phenome A on the left-hand-side of the figure illustrates this scenario. On the right-hand-side of the figure we see each phenome (illustrated here using
Phenome B) is given a number of learning trials (1000) to generate phenotypes (Phenotype0 through to Phenotypen where the maximum n in this study is
1000) from the phenome by converting the plastic symbols to either a 0 or 1. If one of the phenotypes generated is comprised of all 1’s (i.e., the perfect
solution) the fitness of the phenome is calculated based on the number of learning trials taken to find that perfect solution. The fewer trials taken the better
the fitness of the phenome.

1’s then the best possible fitness is adjusted by reducing the

fitness in proportion to the number of learning trials that were

undertaken.

Learning and evolution are both then forms of adaptation.

Mayley [8] discusses the benefits and costs that lifetime

adaptation through learning brings to a population undertaking

simulations on a tunably rugged NK landscape [9].

Gruau and Whitley [10] explore asocial learning with Cel-

lular Encoding with both Baldwinian [2] and Lamarckian [11]

mechanisms. Social learning is not considered. The purely

Baldwinian setups allow learning to modify the weights of

the evolved neural networks. The Lamarckian setups allow

the information that is learned to be encoded in the genome

and are so afforded the opportunity to pass on these acquired

characteristics through the process of evolution. In this study

we restrict ourselves to the classic separation of genotype

and phenotype according to the central dogma of molecular

biology, that information flows from genotype to phenotype

(and not backwards), such that learning takes place through

modifications to the phenotype, which are not then encoded

back on the genome. Evolution then operates exclusively

on the genome. In recent years what might be considered

violations of the central dogma of molecular biology have been

observed in developmental biology, for example, in the form of

genomic imprinting [12] where epigenetic modifications can

change the expression of genes. An elaborate developmental

process [13] is not adopted here and so we exclude the

possibility of transmission of epigenetic features.

In this study we set out to explore the contribution that

learning might play as a mechanism for self-adaptation in

the search for variable-length structures, such as exists within

genetic programming. A novel aspect of this study is that

we consider both asocial and social learning in the presence

of variable-length structures. To this end we examine a very

challenging, yet simple to understand, problem landscape

inspired by the seminal study of Hinton & Nowlan [1],

which demonstrated the adaptive advantage that a learning

mechanism can bring to an evolutionary system. The sheer

scale of the increased search space size adopted here coupled

to the relatively small population size and number of learning

trials mitigates previous criticisms [14] of the classic Hinton

& Nowlan [1] setup.
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<phenome> ::= <s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s>

<s> ::= <zero>|<one>

<one> ::= 1

<zero> ::= 0

Fig. 2. nolearning grammar for the classic fixed-length problem with twenty terminal symbols (1’s or 0’s) in the phenotype.

<phenome> ::= <s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s><s>

<s> ::= <zero>|<one>|?|?

<one> ::= 1

<zero> ::= 0

Fig. 3. The grammar (asocial learning setup) for the fixed-length problem with twenty terminal symbols (1’s or 0’s) in the phenotype. This grammar includes
the ability of the phenome to include plastic ? symbols, which are resolved to one of the terminal symbols (1 or 0) during learning. Note as per the original
experimental setup reported in [1] the grammar enables that on average 50% of an individual will become a plastic symbol during intialisation of the first
generation. Correspondingly, on average 25% of an individual with either be a 0 or a 1.

Fig. 4. An overview of the experimental treatments adopted in this study. Control treatments include the no learning setups, which are restricted to evolutionary
search both with and without a form of local search that generates a number of random variants of the phenotype. The number of random variants is equivalent
to the number of Learning Trials (i.e., 1000) adopted in the treatments that include both evolution and learning. The control setups therefore explore the
maximum number of phenotypes that the learning setups are capable of exploring. We then have treatments exclusively with asocial learning where plastic
symbols are resolved randomly, or alternatively using a tabulist which represents a memory of previously visited phenotypes. The final setup adopts a form of
social learning in which individuals share their phenotype lengths and use this information to adjust the lengths of their individual phenotype by controlling
the number of expansions of their structural plastic symbols.

III. EXPERIMENTAL SETUP

An overview of the experimental treatments adopted in this

study is presented in Fig. 4. We wish to explore the contri-

bution that learning (both asocial and social) might play in

the search for variable-length structures. To this end a python

implementation of grammar-based genetic programming [16]

using PonyGE2 [15] is adopted in this study. For each learning

variant we adopt a linear genotype encoding search operator,

Grammatical Evolution type algorithm. An illustration of the

map from genotype to phenotype is presented in Fig. 7. In each

case the so-called PIGrow initialisation method from PonyGE2

is used with the same tree-depth initialisation restrictions.

100 replications of each algorithm are run with the same

set of pseudo random number generator seeds. The parameter

settings are detailed in Table I.

In the first experiments we set out to observe the behaviour

and performance of the grammar-based genetic programming

algorithms on the classic Hinton & Nowlan fixed-length

problem [1] with a target phenotype vector of twenty 1’s.

Three learning variants are explored. The first two are con-
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<phenome> ::= <s>|<s><phenome>

<s> ::= <zero>|<one>|?|?

<one> ::= 1

<zero> ::= 0

Fig. 5. The grammar for the variable-length problem shown with plastic symbols. The grammar for the nolearning setup on this problem simply removes
the plastic (?) rules from the grammar.

<phenome> ::= <s>|<s><phenome>|˜|˜<phenome>

<s> ::= <zero>|<one>|?|?

<one> ::= 1

<zero> ::= 0

Fig. 6. The grammar for the variable-length problem shown with the inclusion of plastic expansion symbols in the phenome rule. Note that˜ is equivalent
to a ? plastic symbol with the exception that it is rooted in the context of <phenome> (a structural rule) rather than <s> (a content rule). We adopt the
separate˜symbol to note this typing distinction so that we can later easily observe which plastic symbols are responsible for structural search versus those
responsible for content search (i.e., choosing between 1’s and 0’s) search.

TABLE I
THE PARAMETER SETTINGS ADOPTED FOR EACH EXPERIMENTAL SETUP.

Parameter Setting

Population Size 1,000

Generations 50

Mutation integer (1 event per individual)

Crossover variable onepoint

Crossover Probability 0.9

Selection Tournament (size=2)

Replacement generational with elitism (10 individuals)

Max Initialisation Tree Depth 10

Max Tree Depth 50

Initialisation PIGrow

Learning Trials 1,000

Target Solution 11111111111111111111

trol benchmarks where the algorithms exclusively adopt an

evolutionary search with no learning. There are no plastic

(?) symbols available to be encoded, and the grammar is

presented in Figure 2. The first control setup (nolearning)

simply adopts a population size of 1,000 running for 50

generations. The second control (nolearning with rollouts)

extends the nolearning setup by allowing a number of variants

of each phenotype to be explored in a kind of random local

search. The number of variants generated is equivalent to the

number of learning trials adopted in the learning setups. The

number of learning trials is a parameter setting which is set to

1,000 across all the experiments conducted in this study, with

this value equivalent to that adopted in [1]. The third setup

allows plastic (?) symbols to be expressed in the phenome

with the grammar detailed in Figure 3. In the learning setup

(asocial) phenomes that contain plastic symbols must replace

each ? randomly with either a ’1’ or a ’0’ in order to resolve

to a phenotype that can be evaluated. Please note that we

adopt the term phenome to represent an incompletely mapped

solution that contains plastic symbols. A phenotype refers

to the completely mapped vector comprised exclusively of

terminal symbols (i.e., 1’s and 0’s). Learning takes place by

allowing 1,000 learning trials to occur, where up to 1,000

variants of the phenome are expressed (i.e., replacements of ?

plastic symbols).

In the second experiment we explore a number of variants of

learning on a variable-length version of the classic Hinton &

Nowlan problem [1]. Solutions to this problem must success-

fully encode the number of features in the phenotype vector,

in addition to the symbol for each feature. The grammars for

this problem are detailed in Figure 5. While the probability

of solving the fixed-length version of the problem by chance

is 1 in 220 (approximately 1 in a million), for the variable-

length version of the problem this reduces sharply to 240

(approximately 1 in a trillion). Consequently this variable-

length form of the needle-in-a-haystack problem is extremely

challenging for the relatively small population sizes (1,000)

and learning trials (1,000) adopted in this study.

Taking into consideration the variable-length nature of the

problem landscape where simultaneously both the solution

structure and its constituent symbolic values need to be

explored, three additional learning setups are adopted (plastic

expansion, tabulist and social).

The first (plastic expansion) adopts asocial learning

and adds a new plastic symbol ˜ to the expansion rule

<phenome> of the grammar (see Figure 6). Note that ˜ is

equivalent to a ? plastic symbol with the exception that it is

rooted in the context of <phenome> rather than <s>. We

adopt the separate ˜ symbol for convenience to highlight this

typing distinction so that we can later easily observe which

plastic symbols are responsible for structural search versus

those responsible for content search (i.e., choosing between

1’s and 0’s) search. As per the original plastic symbol ?,

each ˜ that appears in the phenome must be resolved to a

terminal symbol (i.e., one of 1 or 0). During the mapping

of the genotype to phenotype each ˜ is randomly replaced (in

accordance with the grammar to preserve syntactic correctness

of the phenotype) with either a ? or a ˜? until all ˜’s are

resolved in the first instance to a ?. The learning mechanism
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Authorized licensed use limited to: University College Dublin. Downloaded on August 12,2025 at 16:12:40 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. An illustration of the mapping from genotype through a grammar onto a derivation tree, which is resolved to the phenome before learning is permitted
to generate phenotypes.

is, therefore, capable of expanding the length of the expressed

phenotype. Then each ? is resolved to one of 1 or 0 randomly

(as per the earlier asocial learning setups). A predefined max-

imum number of learning trials (or variants) of the phenome

are expressed when plastic symbols are present, as per the

earlier asocial learning setup. The number of learning trials is

again 1,000.

If during the generation of phenotype variants during the

learning trial phase, a perfect solution occurs the learning

terminates and a fitness is returned. For both this and the

earlier asocial learning setup the fitness is calculated according

to [1] as:

fitness = 1 + (L− 1) ∗ (t/T ) (1)

where L is the length of the ideal target (20 in this study), t
is the number of learning trials taken to find the target, and T is

the maximum number of learning trials available (1,000 across

all experimental setups). When the ideal target is not found the

fitness of the individual is set to the maximum (worst) possible

(i.e., L=20). All experimental setups are therefore attempting

to minimise the fitness value to be as close to zero as possible.

The second alternative learning setup (tabulist) employs a

tabulist from Tabu Search [17], such that, during learning trials

where we randomly rollout the plastic symbols to terminals

(1’s or 0’s) that if we create a phenotype that has been

found before by that individual (i.e., it exists in the tabulist)

we attempt to generate a new phenotype by re-replacing

the plastic symbols. Given it will not always be possible to

generate a novel phenotype from any phenome (due to the

number of plastic symbols in the phenome) we restrict the

tabulist checks to a maximum limit of 10. From a learning

perspective we have provided each individual with a memory

of previously visited/expressed phenotypes over the duration

of their ”lifetime” (i.e., one generation’s worth of learning

trials).

The third additional setup (social) adopts a simple form

of social learning. Each individual shares with the population

the length of the largest phenotype it has generated during its

lifetime (i.e., during a single generation of the evolutionary

algorithm). During the mapping from the genotype to pheno-

type every individual in the population can ”see” the length

of the phenotype of the best fitness solution found to date.

This population maximum is taken into consideration when

mapping the plastic expansion symbols (˜’s), such that each

˜ in the individual is expanded to a number of ?’s according

to:

PL
′

= PL+ |MPL− IPL| (2)
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where PL is the length of the phenome, MPL is the

maximum phenotype length of the best individual in the

population (the social learning term), and IPL is the maximum

phenotype length expressed by this individuals phenome to

date during its learning trials (an asocial learning term, or

personal information). PL
′

is then the length of the phenome

with all ˜’s resolved to ?’s.

Please note that during the instantiation of the population

of the first generation the length of the phenotype of the best

solution is not yet known. As such during this phase mapping

of the genotype to the pheneotype follows the earlier asocial

setup, with social learning taking place during each subsequent

generation.

IV. RESULTS

Results for the classic fixed-length problem instance are

captured in Figures 8 and 9. We observe similar behaviour

to that found in [1], with the pure evolutionary setup

(nolearning) unable to consistently find correct solutions.

When we allow a random local search without learning (no

learning with rollouts) some replications are more likely to

find solutions. This experimental setup was not used in [1],

however, we believe it is a fairer control as it is afforded

the opportuntity to explore the same number of phenotypes

that are available to the setups with learning. Effectively the

sample size made by the population over the course of a run

in the no learning with rollouts setup and the asocial setups

are equivalent. Differences observed in behaviour of these two

setups are less likely to be due to the ability to randomly find

a solution. In the setup with learning (asocial ge) solutions are

consistently found, and are found in much earlier generations

than the other setups. In terms of the proportion of symbols in

the phenome we again observe similar trends to those in [1]

with a preservation of the plastic symbol ? and a corresponding

growth and decline in 1’s and 0’s respectively. Recall the ideal

target is comprised of twenty 1’s.

Turning to the much more challenging, variable-length

instance of the problem, when we examine the behaviours on

the same setups adopted on the fixed-length problem instance,

we observe that no setup is capable of finding a solution (see

Figure 10). Given the significant increase in the size of the

search space when both the structure/length of the solution

must be found, in addition to the correct symbols at each

phenotype locus, the learning mechanisms in these setups is

insufficient.

Results for the three learning variants (plastic expansion,

tabulist, and social learning) are provided in Figure 11 where

we observe the social learning setup in particular being capable

of finding solutions to the problem. Both the plastic expansion

and tabulist (which includes plastic expansion) are observed

to have similar behaviour and unlike the earlier setups some

populations do find a solution.

The number of replications out of 100 performed for each

setup where a successful solution is found is detailed in Ta-

ble II. It is clear that when learning is capable of exploring the

length of phenotype solutions and simultaneously capable of

taking into consideration the length of the best solution in the

population (combining both social and asocial learning) that

together with evolution solutions to this challenging problem

landscape can be successfully found.
Examining the mean lengths of phenotypes generated by

each setup (see Table III), we observe that the more successful

setups are producing longer phenotypes, and the lengths of

those phenotypes are on average close to the length of the

target phenotype. The less successful setups appear to be

oversampling smaller solutions, which is a common issue

for Genetic Programming and well supported by theory and

perhaps counter intuitively is the best explanation to date

for the existence of bloat [18] [19]. The relatively simple

social learning setup appears to successfully overcome this

size sampling limitation allowing a more effective search of

the space of variable-length structures.

V. CONCLUSION

We set out to explore the contribution that learning (both

asocial and social) might play in the search for variable-length

structures. The classic Hinton & Nowlan [1] problem land-

scape was adopted and experiments undertaken with grammar-

based genetic programming operating under linear genome

operators. A set of asocial and social learning mechanisms

were examined with the result that we observe the setup

that includes social learning to be the most successful. The

setups exclusively adopting evolution with no lifetime learning

are unable to solve the problem. Future work will test the

generalisation of these findings to a wider set of problem

landscapes requiring the search for variable-length structures.

Additionally, a broader set of learning mechanisms will be

examined.
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