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Abstract—We explore the application of grammar-based Ge-
netic Programming, specifically Grammatical Evolution, to the
problem of modeling the outcome of Six Nations Rugby matches.
A series of grammars are developed in attempts to generate
different forms of predictive rules, which might be useful in pre-
match and mid-match scenarios. A number of interesting models
are generated and their utility discussed.

I. INTRODUCTION & RELATED WORK

While the collection and use of quantitative data in sports
has a long history, dating back at least to the collection of basic
statistics such as hits and pitches in 19th century baseball in the
United States, the last fifty years has seen an ever-expanding
level of sophistication in these applications [1].

With the commercialisation of sporting activity, the mo-
tivation and payoffs for the collection of sporting data has
increased dramatically, leading to the development of an entire
industry devoted to ‘sports analytics’. The idea of sports
analytics was popularised in the book MoneyBall, written
by Michael Lewis in 2003 [2], which described the use of
analytics by the Oakland Athletics baseball team. The book
was subsequently made into a film starring Brad Pitt in 2011.
The ideas have been further explored by others including
Sawchik [3].

In parallel to the commercial development of the field of
sports analytics, new research journals have emerged rang-
ing from sports performance journals focussing on aspects
of human and animal (for example, horse) performance, to
specialist sports analytics journals such as the Journal of
Quantitative Analysis in Sports (JQAS), an official journal of
the American Statistical Association, and the Journal of Sports
Analytics. International conferences in the area of sports
analytics have also become common with the best known
being the annual MIT Sloan Sports Analytics Conference
which commenced in 2006. While the precise definition of
the term sports analytics is elusive, the coverage of JQAS
includes ‘game outcome models, measurement and evaluation
of player performance, tournament structure, analysis of rules
and adjudication, within-game strategy, analysis of sporting
technologies, and player and team ranking methods’ [4].

Commercial software service providers such as SAS now
offer an array of specialist analytical tools for sporting or-
ganisations. These tools cover areas such as monitoring fan

insight & loyalty, optimisation of ticket pricing, and player /
team analytics. In the context of player and game management,
analytical tools can be used for a variety of applications in-
cluding the analysis of historical or real-time game information
in order to obtain competitive intelligence, to anticipate and
avoid player safety / injury issues, and to assist with player
recruitment.

Typical data inputs include in-game and player biometric
data, demographic and CRM data on fans, and information
from social media websites. The quantity of data available
has increased significantly as players wear biometric sensors
routinely during training and competitive games in many
professional sports, motion capture technology can track ev-
erything that occurs on the field of play, and data from
social media provides insight into fan sentiment. A variety
of commercial data providers such as Opta1, who collect data
on UK Premiership Games and then offer this data as a service
to clients for a fee, have lowered the barriers to entry for new
‘adopters’ of sports analytics. Information from commercial
providers is also used by bookmakers in pricing various bets
such as game outcome or the score differential arising in a
game. As the volume of game data collected has increased,
there has been a corresponding increase in the range of betting
products offered to the public.

An interesting aspect of the use of sports analytics for game
/ player management is that domain knowledge is clearly
important. Each sport has its own rules, training methods
and differing athletic requirements. Even within an individual
sport, the game environment is dynamic as rules change over
time, and game strategy formulation and athlete preparation
bears parallel with an evolutionary arms-race as successful
innovations are either copied or countered. Hence, we have a
dynamic environment, where domain knowledge is important,
and where the range of available data is increasing. This sug-
gests that data mining methodologies which can incorporate
domain knowledge, such as grammar-based GP, are likely to
be of considerable utility.

In this paper, we undertake a pilot study which illustrates the
application of one form of grammar-based GP, namely Gram-
matical Evolution, for the purposes of modeling the outcomes

1http://http://www.optasports.com/



of 6 Nations Rugby Championship matches. In particular, we
explore the utility of a number of different grammars for this
task and examine the strengths and weaknesses of the resulting
models. While there have been a couple of papers that have
applied GP to sports analytics applications [5], [6]), we are
unaware of any previous applications of a grammar-based GP
approach in Sports Analytics, and this a novel application to
the domain of Rugby Union.

In the Section II, we provide a short introduction to the
game of rugby union and the dataset used in this study.
Section III introduces the grammatical encodings and experi-
mental settings used in the study. The results are provided in
Section IV followed by conclusions and some suggestions for
future work in Section V.

II. RUGBY UNION

Rugby union is a team sport in which each team has 15
players, split between 8 ‘forwards’ and 7 ‘backs’. The game
is played on a rectangular field and is based on running with
an oval ball. In play, each team defends their ‘try line’ (one
end of the rectangular field) and if their opponents touch the
ball down behind this line, they are awarded a ‘try’ (worth
five points). If a team commits an infringement of the rules,
a penalty may be awarded against it, and in this case, the
non-penalised team can attempt to kick the ball between two
upright goalposts which are located on each try line. If the kick
is successful, three points are awarded to the kicking team. On
the scoring of each try, the attacking team is also awarded a
‘conversion attempt’ whereby they can score an additional two
points by kicking the ball between the goalposts. While the
ball may be kicked forward, hand passes can only be made
backwards. The team which scores the higher number of points
over two, forty-minute periods of play wins the game.

According to myth, the game was invented in 1823 when a
pupil of Rugby School (a private school dating from 1567 in
the town of Rugby in Warwickshire) called William Webb Ellis
picked up the ball during a game of football and ran with it.
Although the veracity of this story is debated, the game came
to prominence in England in the early nineteenth century with
the first set of codified rules being written in 1845 by pupils
of Rugby School.

By the 1880s, international games were being played
between the ‘home nations’ (Ireland, England, Wales, and
Scotland) and the first championship between these countries
took place in 1883. In subsequent years, the game spread to
many other countries, and the game is now played in over 120
countries worldwide, including Australia, New Zealand, South
Africa, Italy, Argentina, USA, Canada, Japan and Russia to
name but a few. The major annual international competitions
include the modern incarnation of the Home Nations Cham-
pionship, the 6 Nations Championship (see below), and the
Rugby Championship (played annually between New Zealand,
Australia, South Africa and Argentina). Every four years
there is a ‘Rugby World Cup’ in which the top 20 countries
participate.

Up to 1995, the game was an amateur sport but since
then, a professional tier of the game has developed which
encompasses professional club teams in most of the top ten
countries. Over the past twenty years, top-level rugby sport
has become big business. Its scale can be appreciated by
considering that some 2.5 million spectators attended the
recent (2015) Rugby world cup games. The only other global
sporting events in history that have generated larger numbers
of spectators have been Soccer world cups [7].

A. Six Nations Rugby Dataset

The Six Nations Championship is an annual international
rugby union tournament between Ireland, Wales, Scotland,
France, Italy, and England2. This tournament has existed
in some format since 1883, and was the first international
rugby tournament. The current iteration of the tournament has
been is existence since 2000, when Italy joined. During the
tournament each country will play the other five countries
once. The venue for these games alternate between home and
away fixtures on an annual basis, and the ordering of fixtures
is varied each year. The country with the most points at the
end of the five fixtures wins. In the event of a tie the winner
is decided by the following tie breakers, the country with
the higher points differential (points for minus points against)
wins. In the event this also results in a tie the country with
the highest number of tries scored is awarded the trophy. In
the event this also results in a tie the championship is shared
between the tied countries.

B. Dataset

The dataset for this study was obtained from Statsguru,
ESPN’s Rugby statistics database3 using the Team Records
search utility4. We retrieved records covering the period of the
21st Century (2001-2015) for the Trophy “Five/Six Nations”
with the View Format set to “Match list”. The dataset contains
12 variables as displayed in Table I.

TABLE I
ESPN RUGBY STATGURU DATASET VARIABLES

Variable Description

Team Name of the Team
Result Result of the match (win, lost, draw)
For Number of points For the Team.
Aga Number of points scored against the Team.
Diff Points difference (i.e., Diff=For-Aga)
Tries Number of Tries scored by the Team (worth 5 points).
Conv Number of conversions scored by the Team (worth 2 points).
Pens Number of penalties scored by the Team (worth 3 points).
Drop Number of drop goals scored by the Team (worth 3 points).
Opposition Opposition team name.
Ground Ground in which the match was played.
MatchDate Date on which the match was played.

Note that there are two entries for every match, so that we have
the number of tries, conversions, penalties and drop goals for
both sides in a match. In this study we exclude three variables

2http://www.rbs6nations.com/
3http://stats.espnscrum.com/statsguru/rugby/stats/.
4http://stats.espnscrum.com/statsguru/rugby/stats/index.html?class=1;type=team



from the generated models. Diff is excluded as it is effectively
a proxy for Result. As there are two entries for each match
(one for each team that plays) we exclude Opposition. We
do not consider the temporal nature of the dataset, and the
possibility that the performance of teams may ebb and flow
over the years depending on factors such as team composition
and motivation, as such, MatchDate is also excluded.

The dataset is divided into training and test sets. The training
set is comprised of all matches from 2001 up to and including
the 2013 tournament. The test set is the remaining data for the
last two tournaments which took place during 2014 and 2015.
Summary statistics of the numerical features are provided in
Tables II & III for the training and test datasets respectively.
For the 390 matches in the training set, 10 resulted in a draw,
and for the 60 test set matches every game resulted in a winner.

III. GRAMMATICAL ENCODINGS FOR MATCH PREDICTION

The objective of this study is to evolve decision tree-
like models in Python using grammar-based GP [8]. Specifi-
cally, Grammatical Evolution is adopted, which has an exten-
sive literature including method development and application
(e.g., [9], [10], [11], [12]). To this end, the following approach
is taken to encode all the required variables in the grammar,
whilst ensuring that solutions generated are in a decision
tree-like format. This produces a classification-type problem
and we note that there is a substantial exant literature on
classification in GP (e.g., [13], [14], [15], [16], [17], [18],
[19]).

A particular strength of grammatical evolution is that the
modeller can easily specify, via the design of the grammar,
the structure of the model (classifier in this case) which is to
be produced. In this section we describe the various grammars
used and the resulting classifers which they can output.

The grammar in Fig. 1 generates a fixed form solution (in
Python) based on an if-elif-else conditional statement.
Working from the start symbol (<code>), the conditional
statement is embedded in a for loop, which serves to execute
the conditional statements over each element of the training
set.

The second line of the grammar, encodes the if-elif-else
statement which is rooted in the non-terminal <line>. The
return values in this case are themselves evolved to take on
any of the values won, lost, or draw. The general form of a
solution can be seen in Fig. 2.

The non-terminal <cond> specifies that a condition can be
generated from either an expression utilising problem-specific
variables of type string (<strexpr>) or from an expression
generated from problem-specific numerical variables (integers)
rooted in the non-terminal <numexpr>.

Conditional statements based on problem-specific strings
include the six nations participating in the tournament (i.e.,
Ireland, England, Scotland, Wales, France and Italy) and the
stadia in which the matches are played (i.e., Landsdowne
Road, Twickenham, Murrayfield, Millenium Stadium, Stade de
France and Rome). Each of these string values is provided as a
constant in the grammar through the non-terminals <ground>

<code> ::= for i in range(0, TOTAL): <lines>
<lines> ::= if <cond> : guess[i] = <result>

elif <cond> : guess[i] = <result>
else : guess[i] = <result>

<cond> ::= <strexpr> | <numexpr>
<strexpr> ::= team[i] == <team>

| ground[i] == <ground>
| <strexpr> <boolop> <strexpr>

<numexpr> ::= <numvar> <relop> <numvar>
| <const> <relop> <numvar>
| <numexpr> <boolop> <numexpr>

<relop> ::= <= | >
<boolop> ::= and | or
<biop> ::= + | *
<const> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19
| 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30

<result> ::= "won" | "lost" | "draw"
<numvar> ::= f0r[i] | aga[i] | tries[i] | conv[i] | pens[i] | drop[i]
<ground> ::= "Lansdowne Road" | "Twickenham" | "Murrayfield"

| "Millennium Stadium" | "Stade de France" | "Rome"
<team> ::= "Ireland" | "England" | "Scotland" | "Wales" | "France" | "Italy"

Fig. 1. A grammar to generate rules to predict the outcome of a Six Nations
match.

# Each evolved individual iterates over the training set
# TOTAL is the number of training examples

for i in range(0, TOTAL):
if <cond> :

guess[i] = <result>
elif <cond> :

guess[i] = <result>
else :

guess[i] = <result>

Fig. 2. The general form of a solution generated by the grammar in Fig. 1.
The two conditional statements (<cond>’s) and match outcomes (<result>’s)
are evolved.

and <team>. Conditional statements using these string con-
stants are then formed by comparing team and ground values
from records in the dataset to these constants. For example,
team[i]==<team> tests whether or not a constant <team>
is equivalent to the team name in record i of the training
dataset. Multiple string conditionals can be combined into a
more complex boolean expression using either and’s and or’s
as specified in the rule <strexpr><boolop><strexpr>.

Similarly, numerical conditional statements can be
complex boolean expressions as specified by the
rule <numexpr><boolop><numexpr>. In this case, the
statements can utilise predefined constants (from the rule
<const>) and problem-specific values from the variables
f0r,aga,tries,conv,pens and drop, which encode the
number of points scored by the team, the number of points
scored against the team, the number of tries, conversions,
penalities and drop goals scored by the team, respectively.
The relational operators less-than-or-equal-to and greater-than
are provided through the non-terminal <relop>.

The fitness of a solution is determined by simply counting
the number of training cases mis-classified, and dividing by the
total number of training cases (as we are minimising fitness).
The Python code used to evaluate a solution is provided in
Fig. 3.



TABLE II
TRAINING DATASET STATISTICS COVERING 390 MATCHES PLAYED BETWEEN 2001 AND 2013

Statistic For Aga Tries Conv Pens Drop
N 390 390 390 390 390 390
Mean 21.426 21.426 1.992 1.459 2.649 0.200
St.Dev. 11.589 11.589 1.770 1.470 1.596 0.482
Min 0 0 0 0 0 0
Median 19.5 19.5 2 1 2 0
Max 80 80 10 9 7 3

TABLE III
TEST DATASET STATISTICS COVERING 60 MATCHES PLAYED BETWEEN 2014 AND 2015 SIX NATIONS TOURNAMENTS

Statistic For Aga Tries Conv Pens Drop
N 60 60 60 60 60 60
Mean 21.050 21.050 2.050 1.550 2.467 0.100
St.Dev. 13.445 13.445 1.987 1.641 1.546 0.303
Min 0 0 0 0 0 0
Median 20 20 2 1 2 0
Max 61 61 8 7 6 1

# cmd is a list containing the evolved solution code
# TOTAL is the number of training cases

def calculateSixNationsDifference(cmd):
guess = [ ("draw") for ii in range(0, TOTAL)]
exec cmd
difference = 0.0
for ii in range(0, TOTAL):

if guess[ii]=="won":
if result[ii]!="won":

difference+=1
else:

difference+=0
elif guess[ii]=="lost":

if result[ii]!="lost":
difference+=1

else:
difference+=0

else:
if result[ii]!="draw":

difference+=1
else:

difference+=0
return difference / TOTAL

Fig. 3. Python code of the objective function.

A. Experimental Settings

As indicated earlier, the dataset is divided into training
and test sets. The training set is comprised of all matches
from 2001 up to and including the 2013 tournament. The test
set is the remaining data for the last two tournaments which
took place during 2014 and 2015. The evolutionary parameter
settings used for our experiments are shown in Table IV.

IV. RESULTS AND DISCUSSION

In this section we outline our results, discussing in turn
the outputs from the initial grammar as well as those from
the reduced variables and restricted conditions grammars. 30
independent runs on the training set are performed for each
grammatical encoding.

A. Initial Grammar

The first grammar explored is presented earlier in the paper
(Fig 1) and allows the return value of each component of
if-elif-else to be evolved.

TABLE IV
EVOLUTIONARY PARAMETER SETTINGS.

Parameter Value

Population size 1000
Generations 100
Selection Fair Tournament
Tournament size 0.01% of the population size
Replacement Generational with Elitism (0.1% of population size)
Crossover probability 0.9
Mutation probability 0.01
Initialisation ramped-half-and-half
Initial Max depth 15
Raw fitness sum of misclassifications over the training set
Trials per treatment 30 independent runs for each value

Perfect predictive accuracy is achieved using the above
grammar as highlighted in Fig. 4. In plain english, if the score
against the home team is greater than their own score they have
lost. Else if their score is greater than the score against them
they have won, else the outcome is a draw. While this model
has perfect predictive accuracy, it is stating the obvious, and
has no practical use in prediction of match outcome.

Generation 7 Fitness 0

for i in range(0, TOTAL):
if aga[i] > f0r[i] :

guess[i] = "lost"
elif f0r[i] > aga[i] :

guess[i] = "won"
else : guess[i] = "draw"

Fig. 4. Example evolved solution for the initial grammar (Fig. 1).

B. Reduced Variables Grammar

In order to predict match outcomes prior to match start we
remove match score statistics from the grammar, so models
can now only be constructed using teams and stadia (see
Fig. 5). Inferior predictive training accuracy is produced
of approximately 72%, with the dominant models including
rules which state that Italy and Scotland will always lose,
everyone else wins but with certain caveats. For example, in
the generation 50 sample individual from a typical run (Fig. 6)



we see that France and Wales tend to lose at Twickenham (the
home ground of England), England and Wales tend to lose at
Landsdowne Road (the home ground of Ireland), England lose
in the Millenium Stadium (Wales), and Wales, England and
Ireland lose in the Stade de France.

<code> ::= for i in range(0, TOTAL): <lines>
<lines> ::= if <cond> : guess[i] = <result>

elif <cond> : guess[i] = <result>
else : guess[i] = <result>

<cond> ::= <strexpr>
<strexpr> ::= team[i] == <team>

| ground[i] == <ground>
| <strexpr> <boolop> <strexpr>

<boolop> ::= and | or
<result> ::= "won" | "lost" | "draw"
<ground> ::= "Lansdowne Road" | "Twickenham" | "Murrayfield"

| "Millennium Stadium" | "Stade de France" | "Rome"
<team> ::= "Ireland" | "England" | "Scotland"

| "Wales" | "France" | "Italy"

Fig. 5. A grammar to produce models which can be used prior to a match
(i.e., numerical variables on match score statistics have been removed).

Generation 10 Fitness 0.312821

for i in range(0, TOTAL):
if team[i] == "Scotland" or team[i] == "Italy" :

guess[i] = "lost"
elif ground[i] == "Twickenham" and team[i] == "France" :

guess[i] = "lost"
else :

guess[i] = "won"

Generation 50 Fitness 0.276923

for i in range(0, TOTAL):
if team[i] == "Scotland" or team[i] == "Italy" :

guess[i] = "lost"
elif

team[i] == "France" and ground[i] == "Twickenham" or
team[i] == "Wales" and ground[i] == "Twickenham" or
team[i] == "Wales" and ground[i] == "Lansdowne Road" or
team[i] == "England" and ground[i] == "Lansdowne Road" or
team[i] == "England" and ground[i] == "Millennium Stadium" or
ground[i] == "Stade de France" and team[i] == "Wales" or
ground[i] == "Stade de France" and team[i] == "England" or
ground[i] == "Stade de France" and team[i] == "Ireland" :

guess[i] = "lost"
else :

guess[i] = "won"

Fig. 6. Example evolved solutions for the reduced variables grammar (Fig. 5).
The generation 50 sample individual has been simplified by reordering and
removing redundant components from the elif condition.

C. Restricted Conditions Grammar

With this grammar we wish to find a more accurate pre-
dictive model which might be used as a game progresses by
generating models which include match statistics for the home
team. These include the score for the home team, score against
them, the number of tries, conversions, penalties and drop
goals scored. The grammar adopted is presented in Fig. 7, and
examples of evolved solutions are provided in Fig. 8 achieving
a training accuracy of approximately 96%.

<code> ::= for i in range(0, TOTAL): <lines>
<lines> ::= if <cond> : guess[i] = <result>

elif <cond> : guess[i] = <result>
else : guess[i] = <result>

<cond> ::= <strexpr> | <numexpr>
<strexpr> ::= team[i] == <team>

| ground[i] == <ground>
| <strexpr> <boolop> <strexpr>

<numexpr> ::= <const> <relop> <numvar>
| <numexpr> <boolop> <numexpr>

<relop> ::= <= | >
<boolop> ::= and |or
<biop> ::= + | *
<const> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19
| 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30

<result> ::= "won" | "lost" | "draw"
<numvar> ::= f0r[i] | aga[i] | tries[i] | conv[i] | pens[i] | drop[i]
<ground> ::= "Lansdowne Road" | "Twickenham" | "Murrayfield"

| "Millennium Stadium" | "Stade de France" | "Rome"
<team> ::= "Ireland" | "England" | "Scotland"

| "Wales" | "France" | "Italy"

Fig. 7. A grammar to restrict conditions to take the form of decision
tree-like linear decision surfaces. The “restriction” over earlier grammars is
that conditions cannot contain comparisons between a problem variable and
another problem variable, instead problem variables must be compared to
elements of <const>.

Generation 79 Fitness 0.0358974
for i in range(0, TOTAL):

if
23 <= aga[i] and 25 > f0r[i] or
30 <= aga[i] and 1 > drop[i] or
19 > f0r[i] and 28 > tries[i] and 18 <= aga[i] or
12 <= aga[i] and 14 > f0r[i] and 25 > tries[i] :

guess[i] = "lost"

elif
# this condition is effectively redundant given return value of else
# and has therefore been removed for simplicity of exposition

guess[i] = "won"

else :
guess[i] = "won"

73 0.0358974
for i in range(0, TOTAL):

if 20 <= conv[i] :
guess[i] = "lost"

elif
14 > aga[i] and 12 <= f0r[i] or
17 <= f0r[i] and 4 <= conv[i] or
17 <= f0r[i] and 18 <= pens[i] and 10 <= drop[i] or
19 > aga[i] and 18 <= f0r[i] or
16 <= tries[i] or
29 <= f0r[i] and 17 <= aga[i] and 26 > aga[i] or
16 <= conv[i] or
10 > aga[i] or
5 <= tries[i] and 20 > pens[i] or
19 > aga[i] and 18 <= f0r[i] or
18 <= drop[i] or
22 <= f0r[i] and 25 > aga[i] :

guess[i] = "won"
else :

guess[i] = "lost"

Fig. 8. Example evolved solutions for the restricted conditions grammar.



D. Including Variable Statistics in the Grammar

We also extend the restricted conditions grammar (Fig. 7)
to include statistical analysis of the problem variables
through the incorporation of the <stats> non-terminal as
outlined in Fig. 9. A <const> can now become either
an <int> or <stats>. <int> encodes the integer con-
stants from the earlier grammars, and <stats> encodes ten
score statistics. Specifically, the mean and max values of
f0r,aga,tries,conv,pens and drop in the training dataset
are provided as constants. An example solution is given in
Fig. 10 also exhibiting a training classification accuracy of
96%.

<code> ::= for i in range(0, TOTAL): <lines>
<lines> ::= if <cond> : guess[i] = <result>

elif <cond> : guess[i] = <result>
else : guess[i] = <result>

<cond> ::= <strexpr> | <numexpr>
<strexpr> ::= team[i] == <team>

| ground[i] == <ground>
| <strexpr> <boolop> <strexpr>

<numexpr> ::= <const> <relop> <numvar>
| <numexpr> <boolop> <numexpr>

<relop> ::= <= | >
<boolop> ::= and |or
<biop> ::= + | *
<const> ::= <int> | <stats>
<int> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19
| 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30

<stats> ::= <__mean_f0r_aga> | <__max_f0r_aga>
| <__mean_tries> | <__max_tries>
| <__mean_conv> | <__max_conv>
| <__mean_pens> | <__max_pens>
| <__mean_drop> | <__max_drop>

<__mean_f0r_aga> ::= 21.43
<__maxf_0r_aga> ::= 80
<__mean_tries> ::= 1.99
<__max_tries> ::= 10
<__mean_conv> ::= 1.46
<__max_conv> ::= 9
<__mean_pens> ::= 2.65
<__max_pens> ::= 7
<__mean_drop> ::= 0.2
<__max_drop> ::= 3
<result> ::= "won" | "lost" | "draw"
<numvar> ::= f0r[i] | aga[i] | tries[i] | conv[i] | pens[i] | drop[i]
<ground> ::= "Lansdowne Road" | "Twickenham" | "Murrayfield"

| "Millennium Stadium" | "Stade de France" | "Rome"
<team> ::= "Ireland" | "England" | "Scotland"

| "Wales" | "France" | "Italy"

Fig. 9. An extension of the restricted conditions grammar presented in the
last subsection (Fig. 7) to include statistics calculated on match scores over
the training set.

Fixing return values: We restrict the grammar outlined in
Fig. 9 to return a fixed set of values, namely "won", "lost"
and "draw" respectively for the if,elif,else conditions as
per the non-terminal <lines> in Fig. 1. The best model found
is presented in Fig. 11 and again achieves training accuracy
of 96%.

E. Summary

In summary, we can capture the relative performance of
each grammar encoding using fitness plots calculated over 30
replications of each grammar in Fig. 12 (top). We can see three
clear clusters of performance. The initial grammar consistently
produces a global optimum model, but as discussed earlier this

Generation 70 Fitness 0.0358974
for i in range(0, TOTAL):

if
13 > aga[i] and 11 <= f0r[i] or
3 <= pens[i] and 3 <= tries[i] and 21.43 <= aga[i] or
5 <= tries[i] or
1 <= drop[i] and 1.99 <= tries[i] and 21.43 > aga[i] or
23 > aga[i] and 19 <= f0r[i] :

guess[i] = "won"

elif 2.65 > drop[i] :
guess[i] = "lost"

else :
guess[i] = "draw"

Fig. 10. Example evolved solutions for the grammar enriched with variable
statistics calculated on the training data (see Fig. 9). Interestingly this example
individual exploits the constants 21.43 and 1.99 in their “correct” contexts, as
the former is the mean score for/against the home team and the latter (1.99)
is the mean number of tries scored.

Generation 84 Fitness 0.0384615
for i in range(0, TOTAL):

if
28 <= f0r[i] or
10 <= f0r[i] and 13 > aga[i] or
19 <= f0r[i] and 23 > aga[i] :

guess[i] = "won"

elif
13 > f0r[i] and 80 > aga[i] and 23 > conv[i] and 14 <= drop[i] or
21.43 > tries[i] and 21.43 <= pens[i] and 13 > f0r[i]

and 80 > aga[i] and 23 > drop[i] and 14 <= drop[i] or
10 <= drop[i] and 21 <= aga[i] or
19 <= f0r[i] and 80 > aga[i] and 1.99 <= tries[i] or
10 <= f0r[i] and 13 > aga[i] or
18 <= f0r[i] and 23 > aga[i] or
21.43 <= aga[i] or
13 > f0r[i] or
7 <= drop[i] or
7 <= conv[i] or
18 <= aga[i] or
13 <= pens[i] :

guess[i] = "lost"

else :
guess[i] = "draw"

Fig. 11. The best evolved model from the fixing return values restriction to
Fig. 9.

has no predictive value as it simply captures the facts that if a
team scores more than their opponents they win, if scores for
both teams are the same it is a draw, otherwise the team lost.
The model with weakest predictive accuracy (approximately
70%) is produced by the “reduced variables” grammar (Fig. 5),
which excluded numerical variables (match score statistics).
These models had the advantage that they could be used prior
to a match to predict the winning team. The best of these
models found that Italy and Scotland generally lost while the
remaining teams generally won given a set of caveats based
on what grounds they were playing in.

The third cluster of models based on predictive perfor-
mance, utilised numerical variables to produce in-game pre-
dictive models, and enforced decision tree-style models with
boolean composition of linear decision surfaces at each node.
Some of these models allowed the use of variable statistics,
but it was found that these did not provide a clear performance
advantage. However, superior predictive accuracy of approxi-



TABLE V
CLASSIFICATION ERROR OF THE BEST SOLUTIONS FOUND DURING TRAINING ACROSS ALL GRAMMARS INVESTIGATED, BOTH THEIR TRAINING AND

TEST SET PERFORMANCE IS REPORTED.

Grammar Training Error Test Erro
Initial Grammar 0.00 0.00
Reduced Variables 0.28 0.20
Restricted Conditions 0.04 0.03
Restricted Conditions + Variable Statistics 0.04 0.08
Restricted Conditions + Variable Statistics + Fixed Returns 0.04 0.1
zeroR (won as the majority class) 0.51 0.50
J48 (Weka) 0.02 0.05

mately 96% is achieved over the pre-match models.
Table V captures the training and test classification errors

for the best models found during training on each grammar.
As can be seen from the data, the best model evolved from
the restricted conditions grammar produces the best test set
classification accuracy. Even though the initial grammar model
produces perfect predictive accuracy it is not useful in practice.
The model generated by the restricted conditions grammar can
be used mid-game to provide a better classification accuracy
than the model generated by the reduced variables grammar,
which is used pre-game. When compared against the baseline
methods of zeroR (majority class) and J48 (C4.5-like decision
tree learning from Weka) on both training and test datasets it
can be seen that all models outperform the majority class, and
the best evolved models, in particular the restricted grammar,
outperform J48 on the test dataset.

We also report the expressed genome lengths for each gram-
mar in Fig. 12 (bottom). Interestingly all have similar genome
growth behaviour rapidly converging towards solutions which
utilise approximately 25-50 codons on average, followed by
a growth phase towards approximately 200 codons, with the
exception of the fixed output grammar, which demonstrates
much more explosive growth. The fixed output grammar (a
version of which is illustrated earlier in the paper in Section
2.3) forces the if<cond> to return won, the elif<cond> to
return lost, and else to return draw. Based on what we
observe in the expressed genome lengths plot this causes a
rapid growth in the number of expressed codons relative to
the other grammars, which results in a reduced predictive
accuracy of the evolved models. When comparing training and
test classification accuracies it would also appear that model
overfitting has occured.

V. CONCLUSIONS AND FUTURE WORK

In this paper we explored a series of grammatical encodings
that could generate decision tree-like models capable of pre-
dicting the outcome of international rugby matches. Several
variations of the grammar were examined and comparisons to
other methods made. Comparable performance was observed.
Overfitting was also observed in the evolved solutions however
this could be attributed to the limited number of games played
in the six nations (5 matches per team per season). Looking to
the future we would like to scale up the data set, and hope to
gain access to data from one of the larger rugby competitions,
such as the English Rugby Premiership (22 matches per
team), France’s Top 14 (22 matches per team), or The Pro

12 Championship (22 matches per team). This commercially
available data contains a larger set of recorded variables, as
well as having a larger sample size than the data used for this
initial study. The temporal aspects of the data noted above
are also of interest going forward, as would incorporating
meteorological data in the dataset. It is hoped that with the
increased dataset, and strategies to prevent overfitting that we
will generate more powerful models. More generally, we note
that the importance of incorporation of domain knowledge
into many sports analytics applications suggests that grammar-
based methods of genetic programming are likely to have
particular utility. This paper introduces this methodology into
this application domain.
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