
An Examination of Synchronisation in Artificial

Gene Regulatory Networks
Jonathan Byrne, Miguel Nicolau, Anthony Brabazon and Michael O’Neill

Natural Computing Research & Applications Group,

Complex and Adaptive Systems Lab, University College Dublin

Abstract— An Artificial Genetic Regulatory Network (GRN)
is a model of the gene expression regulation mechanism in
biological organisms. It is a dynamical system that is capable
of mimicking non-linear time series. The GRN was adapted to
allow for input and output so that the system’s rich dynamics
could be used for dynamic problem solving. In order for the
GRN to be embedded in the environment, the time scale of the
physical system has to be mapped to that of the GRN and so a
synchronisation process was introduced. This work examines the
impact of different synchronisation intervals and how they effect
the overall performance of the GRN. A variable synchronisation
step that stops once the system has stabilised is also explored as
a mechanism for automatically choosing the interval size.

I. INTRODUCTION

The understanding of biological mechanisms involved in

the evolutionary process has advanced significantly in recent

years. Accordingly, the models of evolutionary computation

have changed to incorporate this knowledge. A gene in a cell

is not always expressed, instead gene expression is dependent

on the complex interaction of proteins and the other regulatory

mechanisms in the cell.

Artificial Genetic Regulatory Networks (GRN) were ini-

tially developed to understand the behaviour found in biologi-

cal regulatory networks that adaptively control the expression

of RNA and proteins in a cell [3]. Such techniques gave

insight into phenomena such as heterochrony, a variation in

timing expression. The ability to react dynamically to changes

in the environment led to the development of GRNs into a

machine learning technique for dynamic environments. The

GRN model has since been applied to dynamic problems, such

as balancing a pole [4] or modelling financial data [5].

The experiments described in this work are based upon the

GRN model devised by Banzhaf [1]. In order for the model

to handle inputs and generate outputs, a number of changes

were made to the original Banzhaf model. A synchronisation

step was added which allowed the system to perform several

iterations after a change to the input, thus giving it time for the

system to stabilise after perturbation. This work investigates

the effect of the synchronisation step on the performance of

the algorithms on two different problem domains.

The results show that a many to one synchronisation map-

ping provides a clear benefit, but that efficacy is reduced

beyond a certain number of iterations. A one to one mapping,

where an iteration of the physical system is mapped to a single

GRN iteration, performs poorly and in some cases fails to find

a solution. Even increasing a physical iteration to ten GRN

iterations provides a clear benefit. Increasing this value further

improves the performance of the system but this improvement

scales logarithmically as the number of iterations is increased.

This paper is organised as follows. Section II gives a

description of the GRN model and explains how it is composed

of evolutionary and developmental processes. Section III gives

an overview of the synchronisation step and describes the

different settings used in this work. Section IV describes

the evolutionary algorithm used and states what experimental

settings were used for the experiments. Section V details

the effect of changing the synchronisation step for the pole-

balancing experiments. Section VI examines how the sync

step effects the GRN’s ability match an input with an offset

output. Finally the results and future work are discussed in

Section VII.

II. THE GRN MODEL

GRNs are composed of a network of biological interactions

between the genes in a chromosome and the proteins they

produce: each gene encodes specific types of protein. Certain

proteins termed Transcription Factors regulate (either enhance

or inhibit) the expression of other genes which, in turn, effect

the generation of the protein those genes encode.

There are two elements to the GRN model used in this

work. They represent the combination of evolutionary and

developmental processes that occur in biology. The first com-

ponent is a binary representation which is evolved to optimise

the GRN for a particular problem. The second component is

generated from the binary representation by a mapping process

that generates a recurrent network. Both of these components

are described in detail in this section.

A. The Evolutionary Representation

The evolutionary component is used to “tune” the model

for a particular problem. Initially random GRNs are generated

and tested on the problem domain. The GRNs with better

performance are preferentially selected and used to create the

next generation. This process iteratively tunes the GRN on the

specific problem domain.

The representation is composed of a genome, represented

as a binary string. The proteins interact with the genome

at regulatory sites in the gene. The genome is scanned for

promoter sites, identified by a specific binary sequence. If such

a site is found this indicates the presence of a gene. The binary

signature consists of an arbitrarily selected 32 bit pattern: the

2764

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

sequence XYZ01010101 identifies a gene, with X, Y and Z

each representing an arbitrary sequence of 8 bits. If a promoter

site is found, the 160 bits (5× 32) following it represent the

gene sequence, which encodes a protein.

Fig. 1. Bit string encoding of a gene. If a promoter site is found, the gene
information is used to create a protein, whose quantity is regulated by the
attachment of proteins to the enhancer and inhibitor sites.

The gene sequence is mapped from a 160 bit sequence to

a 32 bit protein sequence. The 160 bits are split into five 32

bit sets. The majority rule is used to decide the value of a

bit by observing the value in the sets at that position. The

effect that a protein has on other proteins in the network is

defined by the 64 bits upstream from the promoter site. Each

32 bit segment represents the enhancer and inhibitor sites for

a gene. Figure 1 illustrates the encoding of a gene. An XOR

operation is used to calculate how well the proteins bind with

the regulatory site. The XOR operation returns the number of

complimentary bits between both string. The enhancing and

inhibiting signals regulating the production of the protein are

calculated by the following equation:

ei, hi =
1

N

N
∑

j=1

cj exp(β(uj − umax)) (1)

where N is the total number of proteins, cj is the concentration

of protein j, uj is the number of complementary bits between

the (enhancing or inhibitory) regulating site and protein j,

umax is the maximum match observed in the current genome,

and β is a positive scaling factor. Because of the exponential,

only proteins whose match is close to umax will have an

influence here.

B. The Developmental Model

Once the genome has been mapped it defines a network of

genes, connected by their enhancing or inhibiting effects on

each other. The concentration of the protein for a particular

gene depends on concentration of other proteins and whether

they have an enhancing or inhibiting effect on that gene. The

production of pi is calculated via the following differential

equation:
dci

dt
= δ(ei − hi)ci − Φ(1.0) (2)

where δ is a positive scaling factor (representing a time

unit), and Φ(1.0) is a term that proportionally scales protein

production, ensuring that
∑

i ci = 1.0.

The original Banzhaf model only had one type of gene in

the model, the transcription factor gene, as shown in Figure 2.

In order to handle input and output the genes were divided into

two groups, Product (P) genes and Transcription Factor (TF)

genes. The concentration of each P protein is read as output

and they are affected by the concentration of TF proteins. The

concentration of P proteins is normalised separately, otherwise

the combined concentrations of all the proteins in the network

would suppress the changes to the P protein concentrations. TF

genes are akin to the traditional Banzhaf model where every

TF gene effects every other TF gene. The input mechanism is

provides by EXTRA proteins which are essentially TF proteins

where the input value sets the concentration. Changing the

concentration of EXTRA proteins allows the input to effect

the concentration of the other TF proteins in the network. An

illustration of a typical network is shown in Figure 3.

Fig. 2. The original Banzhaf model.

TF

TF

TF

E

P

P

Fig. 3. The input is provided by the concentration of the E proteins and
affects all TF genes. The TF proteins in turn affect the concentration of the
P proteins.

III. THE SYNCHRONISATION STEP

In order to allow the GRN model to interact with a physical

system, a synchronisation process is required to map the GRN

iterations to that of the physical system. The original pole

balancing work had an interval of 2000 time steps as the GRN

performed 1000 iterations in 0.01 seconds and the physical

model for the pole balancing experiment updated every 0.02

seconds [4]. The size of the synchronisation step effects the

dynamics of the GRN model as it allows the model to respond

to input changes by allowing it to iterate for a fixed number

of steps. The aim of this work is to examine how tuning

this parameter effects the performance of the model. The

fixed intervals examined are 1, 10, 100, 500 and 1000. A

2765

variable synchronisation process is also explored where the

synchronisation period will end if the total change, ∆, in

concentrations between iterations drops below a certain level.

This is expressed mathematically as:

∆ =

Pn
∑

P=1

|Pt − Pt−1|

where Pt is the current concentration of the protein and Pt−1

is the concentration from the previous iteration. This provides

an intriguing possibility of a self tuning parameter that would

choose the right synchronisation period for different problem

domains. Another advantage of stopping when the system has

reached a stable state is that unnecessary iterations are not

performed. The criteria for a stabilised system is that the sum

of the absolute value of all changes in an iteration are less

than 1 × 10−5. If the total change did not drop below this

level after 1000 iterations, then the synchronisation step was

stopped.

IV. EXPERIMENTAL SETUP

The GRN is optimised using an evolutionary strategy [6]

and applied to three different problems, pole balancing, offset

sine and offset random walk. The evolutionary algorithm used

to evolve the binary genomes is an evolutionary strategy

(250 + 250) − ES: 250 parents generate 250 offspring, and

the best 250 of all 500 are used as the new parent population;

a maximum of 50 iterations were allowed. The only variation

operator used is a simple bit-flip mutation, set to 1% and

changed during the course of the run according to the 1/5
rule of Evolution Strategies [6]: when the rate of successful

mutations is higher than 1/5 (i.e. when more than 20%

mutation events result in improved fitness), the mutation rate

is doubled; it is halved in the opposite case. However, to

avoid stagnation of evolution, if the number of mutation events

(i.e. the number of bits flipped per generation) drop below 250,

the mutation rate is doubled. Thirty runs were carried out for

each experiment.

V. POLE BALANCING EXPERIMENT

The pole-balancing problem, also known as the inverted

pendulum problem, is a benchmark for dynamic experi-

ments [2, 7]. The task consists of controlling a cart along a

finite one dimensional track. There is a pole fixed to the cart

and the objective is that the pole must remain balanced on the

cart while the cart remains within the boundaries of the track.

The problem is described with four variables:

x ∈ [−2.4, 2.4] m is the position of the cart from the

centre;

θ ∈ [−12, 12] ◦ is the angle of the pole with the vertical;

ẋ ∈ [−1, 1] m/s is the velocity of the cart on the track;

θ̇ ∈ [−1.5, 1.5] ◦/s is the angular velocity of the pole.

The physical model updates every 0.02s during the simula-

tion. The experiment is carried out for 120,000 time steps or

until either the cart reaches the track boundaries (x = ±2.4m),

or the pole falls (i.e., |θ| > 12◦). The GRN requires four

Fig. 4. Results for the Pole balance experiment over thirty runs. The error
bars show the variance of the runs.

EXTRA proteins to handle the four inputs and outputs one of

two possible values, push the cart left or right (with a constant

force F (t) = ±10N).

As the GRN can start in a highly dynamic state so there is

an initial stabilisation step where the GRN is allowed to settle,

it is then tested against a random cart state. The cart position

changes for every generation and so the fitness function is

very noisy. The random initialisation can also be problematic

as several combinations of the four input variables result in

unsolvable states (i.e. the pole cannot be balanced). The fitness

is calculated using the following equation:

F (x) =
120000

successful time steps

A time step is considered successful if the cart does not

exit the ±2.4m track, or the pole does not fall beyond the

±12◦ range. Output is read from a single P protein, if the

concentration is greater than 0.5 then the cart is pushed to

the right, if it is less than 0.5 it is pushed to the left. As the

number of P genes is arbitrarily defined by the genome, the

concentration of each P protein is tested and the best result is

assigned to the GRN.

A. Pole Balance Results

The results in Figure 4 show that the synchronisation step

improves the performance of the GRN although the improve-

ment scales logarithmically for greater step sizes. The results

for the one to one mapping, that is a step size of 1, improve

up to generation thirty but eventually plateau and do not reach

the same level as the other step sizes. The variable step size

operator performs as well as the step sizes larger than one.

The evolutionary algorithm is stopped as soon as it managed

to find a solution (120,000 time steps). In order to investigate

whether the generated solutions were robust a generalisation

test is carried out [7]. The generalisation test varies the

four input variables, with their normalised values set to the

following: 0.05, 0.275, 0.50, 0.725, and 0.95, resulting in

54 = 625 test cases. The generalisation score of the best

individual found is thus the number of test cases out of these

625, for which the controller manages to balance the pole for

1000 time steps.

2766

Sync Step Successful Runs Ave Std

Sync 1 5 22.63 53.96
Sync 10 26 182.7 109.49
Sync 100 29 243.6 128.49
Sync 500 29 171.03 136.64
Sync 1000 29 200.93 133.06

Variable 29 207.9 120.5

TABLE I

GENERALISATION RESULTS FOR THE SUCCESSFUL RUNS.

The generalisation results for GRN in Table I highlight the

benefit of having a synchronisation step. Step size one only

generated five solutions that could balance a pole whereas

greater step sizes generated many more solutions. In order to

compare the results, runs that did not generate a successful

solution were given a generalisation score of zero. Upon

further investigation it was found that solving the problem

early in the run generated solutions that generalised poorly,

as it resulted from an easily solved initial configuration. As

increasing the synchronisation step improved convergence this

turned an advantage into a disadvantage as quicker conver-

gence created runs with poor generalisation scores. Despite

this, the average generalisation scores for high synchronisation

steps were equivalent.

VI. OFFSET EXPERIMENTS

Two experiments are conducted in this section that examine

how increasing the delay interval between the input and the

desired output effects the performance of the GRN for different

synchronisation steps. The sine and random walk experiments

initially examine if a GRN is capable of replicating a given

input as an output. The desired output is then offset to

investigate if previous input, in conjunction with a synchroni-

sation step, improves convergence on the desired output. The

difference between both experiments is that the sine wave has

a regularity to the input whereas the random walk experiments

have no underlying pattern. There is also another change in

the experimental settings from the previous experiment, the

number of generations is increased to 250 to observe if there

is any additional improvement over time.

In order to properly understand the results and their effects

on performance, they were compared with two methods. The

first baseline is copying the input. If all it is doing is redirecting

the input to output then the model is not truly reacting

to the environment but merely re-expressing it. the second

baseline is a simple deterministic method, linear regression.

This deterministic method provides a baseline for performance

as the algorithm should outperform fitting a line to the data.

A. Sine Experiment

The input to the system in this experiment is a sine wave

over the range 0 to 4π. A sine wave was chosen because of

the regularity of the input. The rate of change of a sine wave

gradually changes over time. The pattern is repeated so there

is the possibility the GRN could use this information to more

easily solve the problem. For increased offsets the sine wave

was wrapped around to ensure a continuous input with no

Fig. 5. The sine wave that is input into the system. An offset copy of the
same sine wave is used to calculate the fitness.

large changes. The input is discretised using a step size of

0.1 to generate 126 separate inputs as shown in Figure 5. The

samples are obtained using the following equation:

samples =

{

sin(n) + 1

2

}4/pi

n=0

The fitness value is calculated by summing the absolute

difference between the P protein output and desired output

over the 126 samples and is described by the equation:

fitness =
126
∑

n=1

|p.out(n)− sample(n)|

B. Sine Results

The GRN outperformed linear regression for all of the sine

experiments showing that it outperforms a basic deterministic

method for fitting the data. It also outperformed copying the

input except for offset 0 where it performed equivalently

as copying the input is the best approach. Although larger

synchronisation steps initially show a benefit when the offset

is 0, this advantage quickly disappears for greater offsets. Sine

offset 0, shown in Figure 6, highlights the need for a synchro-

nisation step. Every step size matches the desired output except

step size one, which plateaus after 50 generations.

Fig. 6. Sine Offset 0 results.

2767

The reason for such a good performance are examined in

detail in Figure 7 which shows how the protein concentrations

varied as the input was changed. The input and desired output

are shown in black, the TF protein concentrations are shown

in red, and the P protein concentrations are shown in blue. The

best performing P protein is highlighted in green. It is clear

that the TF protein has an inverse relationship with the input,

as the input concentration increases, the TF protein decreases.

The P proteins show different effects to the change in TF

protein concentrations. The best result (in green) once again

has an inverse relationship with the TF allowing it to directly

match the input.

Fig. 7. Protein concentrations during the course of a run.

The results from offset 10 in Figure 8 generated an un-

expected result as variable synchronisation step actually per-

formed worse than any of the other fixed intervals. This result

is interesting as no equivalent effect was seen in the random

walk results, indicating that the regularity of the input had a

negative effect on a variable sync step. The result indicates

that the method used in the experiments for finding a stable

state may be incorrect. If the system has reached a truly

stable state then the results should be equivalent to completing

1000 iterations. The results for offset 20 in Figure 9 overlap

substantially indicating that there is no statistically significant

difference between the results.

Fig. 8. Sine Offset 10 results.

Fig. 9. Sine Offset 20 results, copy input not shown as it performed poorly.

C. Random Walk Experiment

In this experiment the input to the GRN consists of a

succession of random steps. The step size for each input step

was chosen from a uniform distribution between −0.02 and

0.02 for 1000 sample points. Such input provides no regularity

or pattern so that the only way the GRN can match the signal

is to use the previous input values. The aim of this experiment

is to examine if the GRN is capable of using hysteresis (the

dependence of a system not only on its current environment but

also on its past environment) to solve the problem. The random

walk input is shown in Figure 10. Again the experiments were

carried out for 250 generations with a population size of 100

to examine if there was any improvement over a greater length

of time. In order to baseline the results they were compared

against a linear regression solution.

Fig. 10. The sequence of random steps that is input into the GRN.

D. Random Walk Results

The GRN outperformed linear regression and copying the

input for all of the random walk experiments once again

showing that it performed better than both baselines set for

these experiments. The results for matching input and output

shown in Figure 11 indicate that the synchronisation provides

a clear benefit to performance as step size one plateaus after

50 generations and produces no additional gains after that.

2768

Fig. 11. Random walk offset 0.

Fig. 12. Random walk offset 10.

The results for both the offset 10 and offset 20 in Figures 12

and 13 respectively contain considerable overlap of the results,

indicating that any difference is not statistically significant.

VII. CONCLUSION

The pole balancing experiment examined in this work indi-

cate that a many to one mapping between the physical system

and the GRN model dramatically improves performance. One

caveat of this finding was that the improvement increased

logarithmically so that there were diminishing returns for

increasing the step size. The offset experiments showed a

similar improvement when the offset was zero but performed

equivalently when the offset was increased. The results indi-

cate that increasing the step size does not provide a benefit

for all instances of a particular problem.

The experiments also showed that although a variable

synchronisation step provided a mechanism for selecting the

number of iterations, in some cases it performed worse than a

fixed number of iterations. If the variable synchronisation step

had correctly detected a stable state then the results should

have been the same as using a fixed number of iterations.

Such a result indicates that the mechanism for detecting a

stable state requires improvement.

VIII. FUTURE WORK

An investigation into different methods for detecting a stable

state, such as tracking the total change over several iterations

Fig. 13. Random walk offset 20, copy input not shown as it performed
poorly.

or decreasing the change threshold, will be explored in future

work.

IX. ACKNOWLEDGMENTS

We would like to thank Science Foundation Ireland, the Fi-

nancial Mathematics Computation Cluster and Andrea McMa-

hon for her help during this project. We also wish to ac-

knowledge the DJEI/DES/SFI/HEA Irish Centre for High-

End Computing (ICHEC) for the provision of computational

facilities and support. This work was funded by the SFI grants

08/RFP/CMS1115, 08/IN.1/I1868 and 08/SRC/FM1389.

REFERENCES

[1] Wolfgang Banzhaf. On the dynamics of an artificial

regulatory network. In Advances in Artificial Life, pages

217–227. Springer, 2003.

[2] Andrew G Barto, Richard S Sutton, and Charles W Ander-

son. Neuronlike adaptive elements that can solve difficult

learning control problems. Systems, Man and Cybernetics,

IEEE Transactions on, (5):834–846, 1983.

[3] Jeff Hasty, David McMillen, Farren Isaacs, and James J

Collins. Computational studies of gene regulatory net-

works: in numero molecular biology. Nature Reviews

Genetics, 2(4):268–279, 2001.

[4] Miguel Nicolau, Marc Schoenauer, and Wolfgang

Banzhaf. Evolving genes to balance a pole. In EuroGP,

pages 196–207, 2010.

[5] Miguel Nicolau, Michael O’Neill, and Anthony Brabazon.

Applying genetic regulatory networks to index trading. In

PPSN (2), pages 428–437, 2012.

[6] Ingo Rechenberg. Evolutionsstrategie’94, volume 1 of

Werkstatt Bionik und Evolutionstechnik. Friedrich From-

mann Verlag (Günther Holzboog KG), Stuttgart, 1994.

[7] Darrell Whitley, Stephen Dominic, Rajarshi Das, and

Charles W Anderson. Genetic reinforcement learning for

neurocontrol problems. Springer, 1994.

2769

