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Abstract. The last ten years has seen the introduction and rapid growth
of a market in weather derivatives, financial instruments whose payoffs
are determined by the outcome of an underlying weather metric. These
instruments allow organisations to protect themselves against the com-
mercial risks posed by weather fluctuations and also provide investment
opportunities for financial traders. The size of the market for weather
derivatives is substantial, with a survey suggesting that the market size
exceeded $45.2 Billion in 2005/2006 with most contracts being written
on temperature-based metrics. A key problem faced by buyers and sell-
ers of weather derivatives is the determination of an appropriate pricing
model (and resulting price) for the financial instrument. A critical input
into the pricing model is an accurate forecast of the underlying weather
metric. In this study we induce seasonal forecasting temperature mod-
els by means of a Machine Learning algorithm. Genetic Programming
(GP) is applied to learn an accurate, localised, long-term forecast of a
temperature profile as part of the broader process of determining appro-
priate pricing model for weather-derivatives. Two different approaches
for GP-based time-series modelling are adopted. The first is based on
a simple system identification approach whereby the temporal index of
the time-series is used as the sole regressor of the evolved model. The
second is based on iterated single-step prediction that resembles autore-
gressive and moving average models in statistical time-series modelling.
The major issue of effective model generalisation is tackled though the
use of an ensemble learning technique that allows a family of forecasting
models to be evolved using different training sets, so that predictions
are formed by averaging the diverse model outputs. Empirical results
suggest that GP is able to successfully induce seasonal forecasting mod-
els, and that search-based autoregressive models compose a more stable
unit of evolution in terms of generalisation performance for the three
datasets considered. In addition, the use of ensemble learning of 5-model
predictors enhanced the generalisation ability of the system as opposed
to single-model prediction systems. On a more general note, there is an
increasing recognition of the utility of evolutionary methodologies for the
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modelling of meteorological, climatic and ecological phenomena, and this
work also contributes to this literature.

1 Introduction

Weather conditions affect the cash flows and profits of businesses in a multitude
of ways. For example, energy company sales will be lower if a winter is warmer
than usual, leisure industry firms such as ski resorts, theme parks, hotels are af-
fected by weather metrics such as temperature, snowfall or rainfall, construction
firms can be affected by rainfall, temperatures and wind levels, and agricultural
firms can be impacted by weather conditions during the growing or harvesting
seasons [1]. Firms in the retail, manufacturing, insurance, transport, and brew-
ing sectors will also have weather “exposure”. Less obvious weather exposures
include the correlation of events such as the occurrence of plant disease with
certain weather conditions (i.e. blight in potatoes and in wheat) [2]. Another
interesting example of weather risk is provided by the use of “Frost Day” cover
by some of the UK town/county councils whereby a payout is obtained by them
if a certain number of frost days (when roads would require gritting - with an
associated cost) are exceeded. Putting the above into context, it is estimated
that in excess of $1 trillion of activity in the US economy is weather-sensitive
(3].

A key component of the accurate pricing of a weather derivative are fore-
casts of the expected value of the underlying weather variable and its associated
volatility. The goal of this study is to produce seasonal predictive models by the
means of Genetic Programming (GP) of the stochastic process that describes
temperature. On a more general attempt to induce good-generalising seasonal
models, an ensemble learning method (bagging) is employed to minimise high-
variance models that are often associated with unstable learning algorithms as
is the case of GP.

This contribution is organised as follows. Sections 2, 3 and 4 provide the back-
ground information to the problem domain tackled, as well as to the problem-
solving methods employed. Background information is divided into three major
parts. These are:

1. Section 2 introduces weather derivatives, discusses various methods for pric-
ing these financial instruments, and finally motivates the need for seasonal
temperature forecasting as part of a more general model for their pricing.

2. Section 3 introduces basic prior approaches to the task of seasonal tempera-
ture forecasting, and distinguishes between a number of possible scenarios in
considering the use of weather forecast information for derivatives pricing.
This section also motivates our choice of time-series index modelling.

3. Section 4 reviews the machine learning method of GP and its application to
time-series forecasting with an emphasis on weather, climate, and ecology
forecasting. The major statistical techniques for time-series modelling are
also described in this section with the aim of linking these methods with



Title Suppressed Due to Excessive Length 3

similar frameworks employed by GP-based time-series modelling systems.
The ensemble learning method of bagging for improving model generalisation
is also introduced in this section.

Following the background sections, Section 5 details our current scope of
research. Section 6 describes the data utilised, the experimental setup, and the
evolutionary model development framework adopted. Section 7 discusses the
empirical findings, and finally Section 8 draws our conclusions.

2 A Brief Introduction to Weather Derivatives

2.1 Managing Weather Risk

In response to the existence of weather risk, a series of financial products have
been developed in order to help organisations manage these risks. Usually, the
organisation that wishes to reduce its weather risk buys “protection” and pays a
premium to the seller who then assumes the risk. If the weather event occurs, the
risk taker then pays an amount of money to the buyer. The oldest of these finan-
cial products are insurance contracts. However, insurance only provides a partial
solution to the problem of weather risk as insurance typically concentrates on
the provision of cover against damage to physical assets (buildings, machinery)
or cash flows which arise from high-risk, low-probability, events such as floods or
storm damage. The 1990s saw a convergence of capital and insurance markets
and this led to the creation of additional tools for financial weather risk manage-
ment. One example of this is provided by “catastrophe bonds” whereby a firm
issues debt in the form of long-term bonds. The terms of these bonds include
a provision that the payment of principal or interest (or both) to bondholders
will be reduced in the event of specified natural disasters - thereby transferring
part of the risk of these events to the bondholders. This reduction in capital
or interest payments would leave the seller with extra cash to offset the losses
caused by the weather disaster. As would be expected, the buyers of catastrophe
bonds will demand a risk premium in order to compensate them for bearing this
weather risk.

The above financial products do not usually provide cover against lower risk,
higher probability, events such as the risk of higher than usual rainfall during
the summer season, which could negatively impact on the sales and profits of
(for example) a theme park. This “gap” in the risk transfer market for weather
eventually led to the creation of a market for weather derivatives which allow
counter-parties to trade weather risks between each other. In essence, weather
derivatives are financial products that provide a payout which is related to the
occurrence of pre-defined weather events [4]. These derivatives allow commercial
organisations to reduce the volatility of future cash flows by hedging against
one of the factors which contribute to volatility, namely the weather. Weather
derivatives offer several advantages over insurance contracts as unlike insurance
cover there is no need to file a claim or prove damages. Weather derivatives also
permit a user to create a hedge against a “good” weather event elsewhere. For
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example, for an agricultural firm, good weather in another location may increase
the harvest in that locality, thereby reducing the price that the firm gets for its
own produce due to over supply. Weather derivatives also remove the problem
of ‘moral hazard’ that can occur under traditional insurance.

In addition to the trading of weather derivatives in order to manage weather
risks, substantial trading in weather derivatives markets is driven by the trading
of weather risk as an investment product. As weather is not strongly correlated
with the systemic risk in general financial markets, weather derivatives repre-
sent an asset class which can provide diversification benefits for investors [5].
Weather derivatives also provide short-term traders with speculative investment
possibilities as well as opening up cross trading strategies between weather and
commodities markets (as both are impacted by weather) [5].

The scale of weather markets can be gleaned from the fifth annual industry
survey by the Weather Risk Management Association (WRMA) (a Washington-
based trade group founded in 1999) which suggests that the number of contracts
transacted globally in the weather market had risen to more than 1,000,000 in
the year ending March 2006, with a notional value of $45.2 billion [6].

2.2 Development of market for weather derivatives

The earliest weather derivative contracts arose in the US in 1997 [7]. A num-
ber of factors promoted their introduction at this time. Federal deregulation of
the power sector created a competitive market for electricity. Before deregula-
tion, utilities had the opportunity to raise prices to customers in the event of
weather-related losses occurring, competition removed this safety net. This cre-
ated a demand for financial products to allow the newly deregulated utilities
to hedge against reductions in sales volume, caused by weather (temperature)
fluctuations. Most of the early weather derivatives involved utilities and their
imprint on the market remains in that the most-heavily traded weather deriva-
tives are still temperature-based (for this reason, this paper concentrates on
temperature-based derivatives). Apart from deregulation of the power sector,
the 1997 El Nino brought an unusually mild winter to parts of the US. Many
firms, including heating oil retailers, utilities and clothing manufacturers, saw
their revenue dip during what should have been their peak selling season. This
enhanced the visibility of weather-related risks. At the same time, the insurance
industry faced a cyclical downturn in premium income, and seeking alternative
income sources, was prepared to make capital available to hedge weather risks
providing liquidity to the fledgling market [7].

The earliest weather derivatives were traded over-the-counter (OTC) as in-
dividually negotiated contracts. The absence of market-traded derivatives re-
stricted the liquidity of the OTC market. In September 1999, the Chicago Mer-
cantile Exchange (CME) (www.cme.com) created the first standardized, market-
traded, weather derivatives (futures and options) and this led to a notable in-
crease in their use. The CME also acted as a clearing house for all transactions,
reducing substantially the counter-party risk faced by market participants. Cur-
rently the CME offer weather derivative contracts on a wide variety of underlying
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weather metrics including temperature, rainfall, snowfall, frost and hurricanes.
The most popular contracts are those based on temperature in 24 US cities in-
cluding Colorado Springs, Las Vegas, Los Angeles, Portland,Sacramento, Salt
Lake City, Tucson, Atlanta, Dallas, Houston, Jacksonville, Little Rock, Raleigh,
Chicago, Cincinnati, Des Moines, Detroit, Kansas City, Minneapolis, Baltimore,
Boston, New York, Philadelphia and Washington D.C. Weather derivatives are
also available based on weather events outside the US.

2.3 OTC Weather Derivatives

Weather derivative contracts typically have a number of common attributes [8]:

— A contract period with a specified start and end date.

— A defined measurement station (location) at which the weather variable is
to be measured.

— An index which aggregates the weather variable over the contract period.

— A payoff function which converts the index value into a monetary amount
at the end of the contract period.

Contracts can be sub-divided into three broad categories [9]:

1. OTC weather derivatives.

2. Traded weather futures (equivalent to a swap - in essence this is a combined
put and call option - each with the same strike price - with each party taking
one side).

3. Traded weather options.

The earliest weather derivatives were traded over-the-counter (OTC) as in-
dividually negotiated contracts. In OTC contracts, one party usually wishes to
hedge a weather exposure in order to reduce cash flow volatility. The payout of
the contract may be linked to the value of a weather index on the Chicago Mer-
cantile Exchange (CME) or may be custom-designed. The contract will specify
the weather metric chosen, the period (a month, a season) over which it will be
measured, where it will be measured (often a major weather station at a large
airport), the scale of payoffs depending on the actual value of the weather metric
and the cost of the contract. The contract may be a simple “swap” where one
party agrees to pay the other if the metric exceeds a pre-determined level while
the other party agrees to pay if the metric falls below that level. Thus if an
energy firm was concerned that a mild winter would reduce demand for power,
it could enter into a swap which would provide it with an increasing payout if
average temperature over (for example) a month exceeded 66°F'. Conversely, to
the extent that average temperature fell below this, the energy firm, benefiting
from higher power sales, would pay an amount to the counterparty. OTC con-
tracts usually have a fixed maximum payout and therefore are not open ended.
As an alternative to swap contracts, contracts may involve call or put options.
As an interesting example of an OTC contract, a London restaurant entered
into a contract which provided for a payout based on the number of days in a
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month when the temperature was less than ‘x’ degrees [9]. This was designed
to compensate the restaurant for lost outdoor table sales when the weather was
inclement.

In the US, many OTC (and all exchange-traded) contracts are based on
the concept of a “degree-day”. A degree-day is the deviation of a day’s average
temperature from a reference temperature. Degree days are usually defined as
either “Heating Degree Days” (HDDs) or “Cooling Degree Days” (CDDs). The
origin of these terms lies in the energy sector which historically (in the US) used
65 degrees Fahrenheit as a baseline, as this was considered to be the temperature
below which heating furnaces would be switched on (a heating day) and above
which air-conditioners would be switched on (a cooling day). As a result HDDs
and CDDs are defined as

HDD = Max (0, 65°F - average daily temperature) (1)

CDD = Max (0, average daily temperature - 65°F) (2)

For example, if the average daily temperature for December 20th is 36°F,
then this corresponds to 29 HDDs (65 - 36 = 29). The payoff of a weather
future is usually linked to the aggregate number of these in a chosen time period
(one HDD or CDD is typically worth $20 per contract). Hence, the payoff to a
December contract for HDDs which (for example) trades at 1025 HDDs on 1st
December - assuming that there was a total of 1080 HDDs during December -
would be $1,100 ($20 * (1080-1025)). A comprehensive introduction to weather
derivatives is provided by [8].

2.4 Pricing a Weather Derivative

A substantial literature exists concerning the pricing of financial derivatives.
However, models from this literature cannot be simply applied for pricing of
weather derivatives as there are a number of important differences between the
two domains. The underlying (variable) in a weather derivative (a weather met-
ric) is non-traded and has no intrinsic value in itself (unlike the underlying in a
traditional derivative which is typically a traded financial asset such as a share
or a bond). It is also notable that changes in weather metrics do not follow a
pure random walk as values will typically be quite bounded at specific locations.
Standard (arbitrage-free) approaches to derivatives pricing (such as the Black-
Scholes option pricing model [10]) are inappropriate as there is no easy way to
construct a portfolio of financial assets which replicates the payoff to a weather
derivative [11].

In general there are four methods used to price weather risk which vary in
their sophistication:

1. Business Pricing. This approach considers the potential financial impact of
particular weather events on the financial performance of a business. This
information combined with the degree of risk adverseness of the business
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(a utility function [12]), can help determine how much a specific business
should pay for “weather insurance”.

2. Burn Analysis. This approach uses historical payout information on the
derivative in order to estimate the expected payoff to the derivative in the
future. This approach makes no explicit use of forecasts of the underlying
weather metric.

3. Index modelling. These approaches attempt to build a model of the distribu-
tion of the underlying weather metric (for example, the number of seasonal
cumulative heating degree days), typically using historical data. A wide va-
riety of forecasting approaches such as time-series models, of differing gran-
ularity and accuracy, can be employed. The fair price of the derivative is the
expected value based on this, discounted for the time value of money.

4. Physical models of the weather. These employ numerical weather prediction
models of varying time horizon and granularity. This approach can incor-
porate the use of monte-carlo simulation, by generating a large number of
probabilistic scenarios (and associated payoffs for the weather derivative)
with the fair price of the derivative being based on these, discounted for the
time value of money [13].

As with financial asset returns, weather has volatility and hence, a key com-
ponent of the accurate pricing of a weather derivative such as an option are
forecasts of the underlying weather variable (an estimate of its expected value)
and its associated volatility. As can be seen, the latter two methods above explic-
itly rely on the production of forecasts of the underlying variable using historic
and/or current weather forecast information. This paper focuses on index mod-
elling, whereby temperature composes the weather metric of interest. The section
that follows contains a brief introduction to the complex task of weather forecast-
ing for the purposes of pricing a weather derivative. Our discussion concentrates
on seasonal temperature forecasting.

3 Weather Forecasting for Pricing a Weather Derivative

Weather forecasting is a complex process which embeds a host of approaches
and associated time horizons. At one end of the continuum we have short-run
weather forecasts which typically are based on structural physical models of
atmospheric conditions (known as Atmospheric General Circulation Models -
AGCMs). These models divide the atmosphere into a series of “boxes” of de-
fined distance in north-south, east-west, and vertical directions. Starting from a
set of initial conditions in each box, the evolution of atmospheric conditions is
simulated forward in time using these values and the set of equations assumed
to explain atmospheric conditions.

As the outputs from these models are sensitive to initial conditions the most
common approach is to develop an ensemble forecast (which consists of multiple
future weather scenarios, each scenario beginning from slightly different initial
conditions). These models usually have good predictive ability up to about 10
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days with rapidly reducing predictive ability after that. Forecasts produced by
these models are relatively large-scale in nature and hence, to obtain a regional
or localised weather forecast the output from the AGCM must be “downscaled”
(this refers to the process of developing a statistical model which attempts to re-
late large-scale AGCM forecasts to the weather at a specific location). It should
be noted that as weather derivatives are usually written for a specific loca-
tion, course-grained forecasts from AGCMs are not especially useful for weather
derivative pricing (at a specific location).

Longer term forecasts having a time horizon beyond one month are typically
termed seasonal forecasts [14]. There are a variety of methods for producing
these forecasts ranging from the use of statistical time series models based on
historic data to the use of complex, course-grained, simulation models which
incorporate ocean and atmospheric data. Given the range of relevant phenomena
it has proven to be a very difficult task to build structural models for accurate
long-term seasonal forecasting and non-structural time series approaches (which
bypass atmospheric data and science) can produce long-run forecasts which are
at least as good as those produced by structural models once the forecast horizon
exceeds a few weeks [13]. Very long-term climate forecasts are also produced by
various groups but these are not relevant for the purposes of weather derivative
pricing.

In considering the use of weather forecast information for derivatives pricing,
we can distinguish between a number of possible scenarios. As weather deriva-
tives can often be traded long before the start of the relevant “weather period”
which will determine the payoff to the derivative. In this case we can only use
seasonal forecasting methods as current short run weather forecasts have no
useful information content in predicting the weather than will arise during the
weather period. The second case is that the derivative is due to expire within
the next 10 or so days, so the current short-run weather forecast (along with
the weather record during the recent past) has substantial information content
in pricing the derivative. Obviously the closer the derivative gets to its expiry
date, the less important the weather forecast will become, as the payoff to the
derivative will have been substantially determined by weather that has already
occurred. The final (and most complex) case is where the derivative has several
weeks or months left to run in its weather period, hence its value will need to
be ascertained using a synthesis of short-run weather forecasts and information
from a longer-run seasonal forecast. The process of integrating these sources of
information has been the subject of several studies [15].

3.1 Prior Approaches to Seasonal Temperature Forecasting

A number of prior studies have examined the prediction of seasonal tempera-
ture in the context of pricing weather derivatives. The historical time-series of
temperatures for a given location exhibit the following characteristics [9]:

1. Seasonality.
2. Mean reversion.
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3. Noise.

A simple linear model for capturing the seasonality component is proposed
by [9] :
T{" = A+ Bt + Csin(wt + ¢) (3)

where T{™ is the mean temperature at (day) time ¢, w represents a phase
angle as the maximum and minimum do not necessarily occur on 1st January
and 1st July each year, ¢ represents the period of the seasonal temperature
cycle (2m/365). Bt permits mean temperature to change each year, allowing for
a general warming or cooling trend, and A provides an intercept term. Daily
temperatures display marked mean-reversion, and this supports the idea that
the process can be modelled using autoregressive methods. These models can
capture the key properties of temperature behavior such as seasonality and other
variations throughout the year [3]. The variance of temperatures is not constant
during the annual cycle, varying between months but remaining fairly constant
within each month [9]. In particular, variability of temperature is higher in winter
(in the Northern Hemisphere) than in summer. Thus, the noise component is
likely to be complex. In a study of this issue [16] noted that while assuming
that the noise component was i.i.d. did result in reasonable predictions, they
could be improved by allowing the distribution of the noise component to vary
dynamically. In modeling temperature, attention can be restricted to discrete
estimation processes [16]. Although temperature is continually measured, the
values used to calculate the temperature metrics of interest (HDDs or CDDs)
are discrete, as they both rely on the mean daily temperature.

Seasonal temperature forecasting can be reduced to the task of index mod-
elling as discussed in Section 2.4. Two major families of heuristic and statistical
time-series modelling methods are described in the next section, with the aim of
introducing the general problem-solving framework employed.

4 Machine Learning of Time-series Forecasting Models

Modern machine learning heuristic methods for time-series modelling are based
on two main natural computing paradigms, those of Artificial Neural Networks
and Fvolutionary Automatic Programming (EAP). Both methods rely on a train-
ing phase, whereby a set of adaptive parameters or data-structures are being
adjusted to provide a model that is able to uncover sufficient structure in train-
ing data in order to allow useful predictions. This work makes use of the main
thread of EAP that comes under the incarnation of Genetic Programming.
There are a number of reasons to suppose that the use of GP can prove fruitful
in the seasonal modelling of the temperature at a specific location. As noted, the
problem of seasonal forecasting is characterised by a lack of a strong theoretical
framework, with many plausible, collinear explanatory variables. Rather than
attempt to uncover a theoretical cause and effect model of local temperature
for each location, this study undertakes a time-series analysis of historical tem-
perature data for the locations of interest. A large number of functional forms,
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lag periods and recombinations of historic data could be utilized in this process.
This gives rise to a high-dimensional combinatorial problem, a domain in which
GP has particular potential. The major issue of effective model generalisation is
tackled though the use of an ensemble learning technique that allows a family of
forecasting models to be evolved using different training sets, so that predictions
are formed by averaging the diverse model outputs. This section introduces the
GP paradigm and its application to time-series modelling. Special attention is
given to the modelling of ecologic and atmospheric data. The dominant statisti-
cal time-series modelling methods are also reviewed in an attempt to motivate
the forecasting model representations that will be employed as part of the evo-
lutionary learning algorithm in later sections. Finally, ensemble learning and its
impact on model generalisation is discussed in the final sub-section.

4.1 Genetic Programming

Genetic Programming [17-20] (GP) is an automatic programming technique that
employs an Evolutionary Algorithm (EA) to search the space of candidate so-
lutions, traditionally represented using expression-tree structures, for the one
that optimises some sort of program-performance criterion. The highly expres-
sive representation capabilities of programming languages allows GP to evolve
arithmetic expressions that can take the form of regression models. This class of
GP application has been termed “Symbolic Regression”, and is potentially con-
cerned with the discovery of both the functional form and the optimal coefficients
of a regression model. In contrast to other statistical methods for data-driven
modelling, GP-based symbolic regression does not presuppose a functional form,
i.e. polynomial, exponential, logarithmic, etc., thus the resulting model can be
an arbitrary arithmetic expression of regressors [21]. GP-based regression has
been successfully applied to a wide range of financial modelling tasks [?].

GP adopts an Evolutionary Algorithm (EA), which is a class of stochastic
search algorithms inspired by principles of natural genetics and survival of the
fittest. The general recipe for solving a problem with an EA is as follows:

1. Define a representation space in which candidate solutions, computer pro-
grams, can be specified.
. Design the fitness criteria for evaluating the quality of a solution.
. Specify a parent selection and replacement policy.
4. Design a variation mechanism for generating offspring programs from a par-
ent or a set of parents.

W N

In GP, programs are usually expressed using hierarchical representations tak-
ing the form of syntax-trees, as shown in Figure 1. It is common to evolve
programs into a constrained, and often problem-specific user-defined language.
The variables and constants in the program are leaves in the tree (collectively
named as terminal set), whilst arithmetic operators are internal nodes (collec-
tively named as function set). In the simplest case of symbolic regression, the
function set consists of basic arithmetic operators, while the terminal set con-
sists of random numerical constants and a set of regressor variables. Figure
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1 illustrates an example expression-tree representing the arithmetic expression
x+(2—y).

GP finds out how well a program works by executing it, and then testing its
behaviour against a number of test cases; a process reminiscent of the process
of black-box testing in conventional software engineering practice. In the case of
symbolic regression, the test cases consist of a set of input-output pairs, where
a number of input variables represent the regressors and the output variable
represents the regressand. GP relies on an error-driven model optimisation pro-
cedure, assigning program fitness that is based on some sort of error between
the program output value and the actual value of the regressand variable. Those
programs that do well (i.e. high fitness individuals) are chosen to be take part
to a program variation procedure, and produce offspring programs. The primary
program variation procedures that compose the main search operators of the
space of computer programs are crossover and mutation.

The most commonly used form of crossover is subtree crossover, depicted in
Figure 1. Given two parents, subtree crossover randomly (and independently)
selects a cross-over point (a node) in each parent tree. Then, it creates two off-
spring programs by replacing the subtree rooted at the crossover point in a copy
of the first parent with a copy of the subtree rooted at the crossover point in the
second parent, and vice-versa. Crossover points are not typically selected with
uniform probability. This is mainly due to the fact that the majority of the nodes
in an expression-tree are leaf-nodes, thus a uniform selection of crossover points
leads to crossover operations frequently exchanging only very small amounts of
genetic material (i.e., small subtrees). To counteract this tendency, inner-nodes
are randomly selected 90% of the time, while leaf-nodes are selected 10% of the
time.

The dominant form of mutation in GP is subtree mutation, which randomly
selects a mutation point in a tree and substitutes the subtree rooted there with
a new randomly generated subtree. An example application of the mutation
operator is depicted in Figure 1. Another common form of mutation is point
mutation, which is roughly equivalent to the bit-flip mutation used in genetic
algorithms. In point mutation, a random node is selected and the primitive
stored there is replaced with a different random primitive of the same rarity
taken from the primitive set. When subtree mutation is applied, this involves
the modification of exactly one subtree. Point mutation, on the other hand,
is typically applied on a per-node basis. That is, each node is considered in
turn and, with a certain probability, it is altered as explained above. This allows
multiple nodes to be mutated independently in one application of point mutation.

Like in any EA, the initial population of GP individuals is randomly gener-
ated. Two dominant methods are the full and grow methods, usually combined
to form the ramped half-and-half expression-tree initialisation method [21]. In
both the full and grow methods, the initial individuals are generated so that
they do not exceed a user-specified maximum depth. The depth of a node is the
number of edges that need to be traversed to reach the node starting from the
tree’s root node (the depth of the tree is the depth of its deepest leaf). The full
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method generates full tree-structures where all the leaves are at the same depth,
whereas the grow method allows for the creation of trees of more varied sizes
and shapes.

4.2 Genetic Programming in Time-series Modelling

This section describes the approach adopted by GP in time-series forecasting
with an emphasis to weather, climate, and ecology forecasting. In GP-based
time-series prediction [22—-24] the task is to induce a model that consists of the
best possible approximation of the stochastic process that could have generated
an observed time-series. Given delayed vectors v, the aim is to induce a model f
that maps the vector v to the value x4 ;. That is,

Tep1 = f(V) = f(T4—(m-1)r> Te—(m—2)7> -+ Tt) (4)

where m is embedding dimension and 7 is delay time. The embedding speci-
fies on which historical data in the series the current time value depends. These
models are known as single-step predictors, and are used to predict to predict one
value x4 of the time series when all inputs xy—,,...,T—2, T¢_1, T are given.
For long-term forecasts, iterated single-step prediction models are employed to
forecast further than one step in the future. Each predicted output is fed back as
input for the next prediction while all other inputs are shifted back one place. As
a result, the input consists partially of predicted values as opposed to observables
from the original time-series. That is,

’
T 41 = f(Ttomy- s Te—1,28);m < t
! !
T2 = f(Ttomt1,- T, T g1);m < t
’ ’ 7
Tk = f(@tmmtr—1, s T k2, T pp—1);m <tk > 1

(5)

where k is the prediction step.

Long-term predictions involve a substantially more challenging task than
short-term ones. The fact that each newly predicted value is partially dependent
on previously generated predictions creates a reflexive relationship among pro-
gram outputs, often resulting in inaccuracy propagation and an associated rapid
fitness decrease with each additional fitness-case evaluation. Long-term forecast-
ing models are generally sensitive to their initial output values, and inaccuracies
of initial predictions are quickly magnified with each subsequent fitness evalua-
tion iteration.

Examining prior literature reveals that evolutionary model induction method-
ologies have been applied to a number of problems in weather, climate and ecol-
ogy forecasting. Examples include [25] which used GP to downscale forecasts
based on course-grained Atmospheric General Circulation model outputs to es-
timate local daily extreme (maximum and minimum) temperatures. The results
obtained from application of GP to data from the Chute-du-Diable weather
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station in North Eastern Canada outperformed benchmark results from com-
monly used statistical downscaling models. GP has also been used for climate
prediction problems including rainfall-runoff modelling [26], groundwater level
fluctuations [27], short-term temperature prediction [28] and CO3 emission mod-
elling [29], the combination of ensemble forecasts [30], the forecasting of El Nino
[31], evapotranspiration modelling (the process by which water is lost to the at-
mosphere from the ground surface via evaporation and plant transpiration) [32],
modelling the relationship between solar activity and earth temperature [33],
stream flow forecasting (forecasting of stream flow rate in a river) [34], mod-
elling of monthly mean maximum temperature [35], modelling of water temper-
ature [36], and wind prediction [37]. Hence we can see that there has been fairly
widespread use of GP in this domain, although no previous application to the
problem of seasonal forecasting was noted.

4.3 Statistical Time-series Forecasting Methods

Statistical time-series forecasting methods fall into the following five categories;
the first three categories can be considered as linear, whereas the last two are
non-linear methods:

1. Exponential smoothing methods.

2. Regression methods.

3. Autoregressive Integrated Moving Average methods (ARIMA).

4. Threshold methods.

5. Generalised Autoregressive Conditionally Heteroskedastic methods (GARCH).

In ezponential smoothing, a forecast is given as a weighted moving average of
recent time-series observations. The weights assigned decrease exponentially as
the observations get older. In regression, a forecast is given as a linear combina-
tion of one or more explanatory variables. ARIMA models give a forecast as a
linear function of past observations and error values between the time-series it-
self and past observations of explanatory variables. These models are essentially
based on a composition of autoregressive models (linear prediction formulas that
attempt to predict an output of a system based on the previous outputs), and
moving average models (linear prediction model based on a white noise station-
ary time-series). For a discussion on smoothing, regression and ARIMA methods
see [38]. Linear models cannot capture some featured that commonly occur in
real-world data such as asymmetric cycles and outliers.

Threshold methods [38] assume that extant asymmetric cycles are cause by
distinct underlying phases of the time-series, and that there is a transition period
between these phases. Commonly, the individual phases are given a linear func-
tional form, and the transition period is modelled as an exponential or logistic
function. GARCH methods [39] are used to deal with time-series that display
non-constant variance of residuals (error values). In these methods, the variance
of error values is modelled as a quadratic function of past variance values and
past error values.
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Both linear and non-linear methods above, although capable of characteris-
ing features such as asymmetric cycles and non-constant variance of residuals,
assume that the underlying data-generation process is stationary. For many real-
world problems, this assumption is often invalid as shifting environmental con-
ditions may cause the underlying data-generating process to change. In applying
the statistical forecasting methods listed above, expert judgement is required to
initially select the most appropriate method, and hence select an appropriate
model-parameter optimisation technique. In the likely event that the underlying
data-generating process is itself evolving, a modelling method must be reevalu-
ated. This is one of the main reasons that forecasting models that can handle
dynamic environments are desired.

4.4 Ensemble Learning for Model Generalisation

The idea of supervised ensemble learning is to induce multiple base models, and
combine their predictions in order to increase generalisation performance, that is
the performance on previously unseen instances. This was originally conceived
in the context of learning algorithm instability, in which small changes in the
training instances can lead to substantially different models with significant
fluctuations in accuracy [40]. Ensembles of models approach the phenomenon
of overfitting using the statistical concept of bias-variance tradeoff, under which
the generalisation error of a model is decomposed into the sum of bias plus the
variance [40]. Bias measures the extent to which the learned model is differ-
ent from the target model, whereas variance measures the extent to which the
learned model is sensitive on a particular sample training dataset [41].

There is a trade-off between bias and variance, with very flexible models
having low bias and high variance, whereas relatively rigid models having high
bias and low variance. To better illustrate the concept of bias and variance,
consider that we are constructing a fixed model completely independent of a
dataset. In this case, the bias will be high since we are not learning anything
from the data, however the variance will vanish. In the opposite case, where we
induce a function that fits the training data perfectly, the bias term disappears
whereas the variance becomes pronounced. Best generalisation is achieved when
we have the best balance between the conflicting requirements of small bias
and small variance. Ensemble methods are typically based on inducing families
of accurate models that are trained on various distributions over the original
training dataset. They form an approach to minimise both bias and variance.

A parallel ensemble combines independently constructed accurate (low-bias)
and diverse (low-variance) base models. In this case, an individual base model
is trained on a specific subsample of the training instances, and the ultimate re-
quirement is that different base models should make errors of different magnitude
when confronted with new instances. Parallel ensembles obtain better general-
isation performance than any single one of their components using a variance-
reduction technique, and in the majority of cases, they are applied to unstable,
high-variance learning algorithms (i.e. decision-tree induction, GP model induc-
tion [42]) Bagging [43] (bootstrap aggregation) is the earliest parallel ensemble
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learning method that has been proven very effective for training unstable classi-
fiers. The method creates multiple instances of the training dataset by using a
bootstrapping technique [44]. Each of these different datasets are used to train
a different model. The outputs of the multiple models are hence combined by
averaging (in the case of regression), or voting (in the case of classification) to
create a single output.

5 Scope of Research

The goal of this study is to produce predictive models of the stochastic process
that describes temperature. More specifically, we are interested in modelling
aggregate monthly HDDs using data from three US airport weather stations. Our
main objective is to determine whether GP is capable of uncovering sufficient
structure in historical data for a series of US locations, to allow useful prediction
of the future monthly HDDs profile for those locations. The incorporation of the
induced models into a complete pricing model for weather derivatives is left for
future work. We also restrict attention to the case where the contract period
for the derivative has not yet commenced. Hence, we ignore short-run weather
forecasts, and concentrate on seasonal forecasting.

We investigate two families of program representations for time-series mod-
elling. The first is the standard GP technique, genetic symbolic regression (GSR),
applied to the forecasting problem in the same way that it is applied to sym-
bolic regression problems. The task is to approximate a periodic function, where
temperature (HDDs) is the dependent variable (regressand), and time is the sole
regressor variable. The second representation allows the induction of iterated
single-step predictors that can resemble autoregressive (GP-AR) and autore-
gressive moving average (GP-ARMA) time-series models that were described
in Section 4.3. In an attempt to provide good generalising forecasting models,
ensembles of predictors are evolved within the general bagging framework for
training set resampling and model-output combination. The sections that fol-
low describe the experiment design, discuss the empirical results, and draw our
conclusions.

6 Experiment Design

6.1 Model Data

Three US weather stations were selected: (a) Atlanta (ATL); (b) Dallas, Fort
Worth (DEN); (c¢) La Guardia, New York (DFW). All the weather stations
were based at major domestic airports and the information collected included
date, maximum daily temperature, minimum daily temperature, and the as-
sociated HDDs and CDDs for the day. This data was preprocessed to create
new time-series of monthly aggregate HDDs and CDDs for each weather station
respectively.
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There is generally no agreement on the appropriate length of the time-series
which should be used in attempts to predict future temperatures. Prior studies
have used lengths of twenty to fifty years, and as a compromise this study uses
data for each location for the period 01/01/1979 - 31/12/2002. The monthly
HDDs data for each location is divided into a training set (15 years) that mea-
sures the performance during the learning phase, and a test set (9 years) that
quantifies model generalisation.

6.2 Forecasting Model Representations and Run parameters

Table 1. Learning algorithm parameters

EA panmictic, generational, elitist GP with an expression-tree representation
No. of generations|51

Population size 1,000

Tournament size (4

Tree creation ramped half-and-half (depths of 2 to 6)

Max. tree depth |17

Subtree crossover [30%

Subtree mutation [40%

Point mutation 30%

Fitness function |Root Mean Squared Error (RMSE)

This study investigates the use of two families of seasonal forecast model
representations, where the forecasting horizon is set to 6 months. The first is
based on standard GP-based symbolic regression (GSR), where time serves as
the regressor variable (corresponding to a month of a year), and monthly HDDs is
the regressand variable. Assuming that time ¢ is the start of the forecast, we can
obtain a 6-month forecast by executing the program with inputs {t+1,...,t+6}.

The second representation for evolving seasonal forecasting models is based
on the iterated single-step prediction that can emulate autoregressive models,
as described in Section 4.3. This method requires that delayed vectors from the
monthly HDDs time-series are given as input to the model, with each consecutive
model output being added at the end of the delayed input vector, while all other
inputs are shifted back one place.

Table 2 shows the primitive single-type language elements that are being
used for forecasting model representation in different experiment configurations.
For GSR, the function set contains standard arithmetic operators (protected di-
vision) along with e”, log(z), \/x, and finally the trigonometric functions of sine
and cosine. The terminal set is composed of the index ¢ representing a month,
and random constants within specified ranges. GP-AR(12), GP-AR(24), GP-
AR(36), all correspond to standard autoregressive models that are implemented
as iterated single-step prediction models. The argument in the parentheses spec-
ifies the number of past time-series values that are available as input to the
model. The function set in this case is similar to that of GSR excluding the
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Table 2. Forecasting model representation languages

17

Forecasting model

Function set

Terminal set

add, sub, mul, div, exp,|index ¢ corresponding to a month
GSR log, sqrt, sin, cos 10 rand. constants in -1.0, ..., 1.0
10 rand. constants in -10.0, ..., 10.0
add, sub, mul, div, exp,|10 rand. constants in -1.0, ..., 1.0
GP-AR(12) log, sqrt 10 rand. constants in -10.0, ..., 10.0
HDDy_1, ..., HDDy_12
add, sub, mul, div, exp,|[10 rand. constants in -1.0, ..., 1.0
GP-AR(24) log, sqrt 10 rand. constants in -10.0, ..., 10.0
HDDy_1, ..., HDDy_24
add, sub, mul, div, exp,|[10 rand. constants in -1.0, ..., 1.0
GP-AR(36) log, sqrt 10 rand. constants in -10.0, ..., 10.0
HDD;_1,..., HDD;_ 36
add, sub, mul, div, exp,|10 rand. constants in -1.0, ..., 1.0
log, sqrt 10 rand. constants in -10.0, ..., 10.0
HDDy_1, ..., HDD;_s¢

GP-ARMA (36)

M(HDD¢_1,..., HDD,_¢), SD(HDD;_1,..., HDD, )

M(HDD¢_1,..., HDD,_13), SD(HDD,_1,...
M(HDD;_i,..., HDD;_15), SD(HDD;_,...
M(HDD;_1,..., HDD;_34), SD(HDD;_1,..
M(HDD¢_1,..., HDD,_30), SD(HDD;_1,...
M(HDD;_1,..., HDD,_s¢), SD(HDD;_1,...

)
)
2]
)
)

HDD;_12)
HDD;_13)
HDD;_24)
HDD;_30)
HDD;—36)

trigonometric functions, whereas the terminal

set is augmented with histori-

cal monthly HDD values. For the final model configuration, GP-ARMA(36),
the function set is identical to the one used in the other autoregressive models
configurations, however the terminal set contains moving averages, denoted by
M(HDD;_1,...,HDD;_,), where X is the time-lag and HDD;_; and HDD;_
represent the bounds of the moving average period. For every moving average,
the associated standard deviation for that period is also given as model input,
.,HDD;_). Finally, Table 1 presents the
parameters of our learning algorithm.

and is denoted by SD(HDD;_1,..

6.3 Bagging of GP Time-series Models

Bagging produces redundant training sets by sampling with replacement from
the original training instances. This effectively produces training sets that focus
on various distributions over the original learning points. For a number of trials
equal to the ensemble size, a training set of equal size to the original training set
is sampled with replacement from the original instances. This means that some
instances may not appear in it while others appear more than once. An inde-
pendent GP time-series model is being evolved for every bootstrapped training
set, and the outputs of the multiple models are hence combined using a simple
averaging procedure in order to predict unseen instances. In this study we are
considering ensembles of sizes 5, 10 and 20 independent predictors.
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Table 3. Comparison of training and testing RMSE obtained by different forecasting
configurations, each experiment was ran for 50 times. Standard error for mean in paren-
theses. Bold face indicates best performance on test data for single base models. Bold
face combined with underline indicates best test performance among all experiment
series.

Forecasting Mean Best Mean Best
Dataset configuration Training |Training Testing Testing
RMSE RMSE RMSE RMSE

GSR 140.52 (9.55) 68.82 149.53 (8.53) | 72.73

GP-AR(12) 92.44 (0.54) | 81.78 |111.87 (0.41) | 103.60

ATL GP-AR(24) 91.33 (0.68) 83.33 96.15 (0.51) 91.26
GP-AR(36) 88.96 (0.81) 77.30 90.38 (0.81) 79.44

GP-ARMA 85.20 (0.86) 75.84 85.71 (0.82) 74.31

GSR 165.76 (11.46)| 103.09 [180.46 (11.74)| 95.23

GP-AR(12) 133.18 (0.43) | 121.38 |126.78 (0.25) | 117.19

DEN GP-AR(24) 130.41 (0.73) | 111.48 |124.36 (0.66) | 110.31
GP-AR(36) 131.13 (1.08) | 114.86 |111.41 (0.57) | 103.73

GP-ARMA 126.46 (1.29) | 106.18 | 108.90 (0.64) | 101.57

GSR 118.96 (8.02) 66.49 118.69 (7.20) | 66.12

GP-AR(12) 88.75 (0.66) 80.64 90.37 (0.26) 86.57

DFW GP-AR(24) 96.14 (0.95) 83.55 85.36 (0.42) 78.24
GP-AR(36) 89.52 (0.69) | 81.12 | 62.11 (0.43) | 55.84

GP-ARMA 87.09 (0.82) | 75.41 | 60.92 (0.52) | 55.10

Forecasting |Ensemble Mean Best Mean Best
Dataset|configuration size Training |Training Testing Testing
RMSE RMSE RMSE RMSE

GSR 5 144.90 (4.62) | 82.82 | 150.26 (4.27) | 93.29

GP-AR(12) 5 90.70 (0.38) 84.62 111.40 (0.28) | 106.94

ATL GP-AR(24) 5 85.22 (0.49) 77.32 92.06 (0.29) 88.13
GP-AR(36) 5 80.01 (0.40) 75.08 80.94 (0.57) 75.65
GP-ARMA 5 81.60 (0.83) 75.60 80.57 (0.34) | 70.96

GSR 5 247.27 (22.70)| 121.47 | 215.87 (7.70) | 108.38

GP-AR(12) 5 131.47 (0.36) | 123.37 [136.36 (11.13)| 120.14

DEN GP-AR(24) 5 127.64 (0.60) 116.79 | 122.04 (0.50) | 114.35
GP-AR(36) 5 123.73 (0.86) | 110.45 |106.42 (0.44) | 92.93
GP-ARMA 5 116.86 (0.51) | 109.19 |109.38 (0.48) | 103.49

GSR 5 165.29 (3.75) 87.93 145.76 (4.05) | 75.76

GP-AR(12) 5 87.11 (0.42) | 80.91 | 89.20 (0.22) | 82.71

DFwW GP-AR(24) 5 87.65 (0.49) 80.99 79.21 (0.33) 74.66
GP-AR(36) 5 86.41 (0.44) 79.74 59.56 (0.33) | 53.07
GP-ARMA 5 87.16 (0.60) 77.40 67.20 (0.17) 63.71

GSR 10 261.62 (18.76)| 153.55 |190.13 (2.99) | 133.39

GP-AR(12) 10 91.07 (0.30) | 85.90 |111.71 (0.23)| 108.17

ATL GP-AR(24) 10 85.65 (0.49) 81.25 91.53 (0.21) 88.32
GP-AR(36) 10 78.82 (0.28) 74.62 79.44 (0.25) 76.43
GP-ARMA 10 79.95 (0.43) 75.14 80.00 (0.26) 77.67

GSR 10 295.79 (4.46) | 223.11 | 287.47 (4.73) | 203.87

GP-AR(12) 10 131.20 (0.27) 125.50 | 125.15 (0.18) | 120.60

DEN | GP-AR(24) 10 128.37 (0.41) | 122.67 |122.59 (0.36) | 118.53
GP-AR(36) 10 122.99 (0.70) | 115.29 | 105.68 (0.31) | 101.55
GP-ARMA 10 116.52 (0.34) 112.35 |109.26 (0.37) | 104.42

GSR 10 152.20 (5.85) 117.91 [ 144.53 (2.35) | 109.15

GP-AR(12) 10 92.88 (5.21) 83.11 94.55 (0.65) 87.53

DFW GP-AR(24) 10 87.02 (0.25) 82.93 78.80 (0.18) 76.47
GP-AR(36) 10 84.98 (0.35) 80.19 58.91 (0.27) 54.32
GP-ARMA 10 86.97 (0.50) 79.66 66.82 (0.14) 63.70

GSR 20 245.24 (3.97) | 189.02 | 206.78 (1.79) | 178.42

GP-AR(12) 20 90.76 (0,78) | 86.16 |110.44 (0.20) | 107.24

ATL GP-AR(24) 20 85.05 (0.24) 82.21 91.21 (0.14) 89.50
GP-AR(36) 20 78.76 (0.24) 75.95 78.82 (0.13) 77.51
GP-ARMA 20 79.26 (0.13) 76.18 79.19 (0.16) 76.95

GSR 20 336.83 (4,43) | 286.20 |[323.56 (3.15) | 270.80

GP-AR(12) 20 131.16 (0.22) | 127.63 |125.22 (0.14) | 123.32

DEN GP-AR(24) 20 127.53 (0.27) 123.45 |121.87 (0.24) | 118.17
GP-AR(36) 20 123.33 (0.52) | 115.27 |105.91 (0.30) | 102.10
GP-ARMA 20 116.26 (0.40) 111.86 | 108.52 (0.23) | 105.34

GSR 20 215.47 (2.97) | 179.29 |189.28 (1.57) | 166.87

GP-AR(12) 20 87.32 (2.09) 82.32 88.90 (0.11) 86.24

DFW | GP-AR(24) 20 85.88 (0.20) | 79.72 | 78.41 (0.12) | 76.62
GP-AR(36) 20 85.40 (0.23) 82.31 59.11 (0.20) 56.43
GP-ARMA 20 86.37 (0.20) 80.95 67.19 (0.16) 65.19
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7 Results

We performed 50 independent evolutionary runs for each forecasting model con-
figuration presented in Table 2. A summary of average and best training and
test results obtained using each model configuration is presented in Table 3. The
first part of the table refers to single-model forecasting, while the second part
presents the results obtained by multi-model predictions using different ensem-
ble sizes. The distributions of test-data RMSE obtained by best-of-run models
are illustrated in Figures 2, 3, 4 for ATL, DEN, and DFW datasets respectively.

For the case of single-model forecasting, the results suggest that the family of
autoregressive moving average models perform better on average than those ob-
tained with standard symbolic regression. A statistically significance difference
(unpaired t-test, p < 0.0001, degrees of freedom df = 98) was found between
the average test RMSE for GSR and GP-ARMA in all three datasets. Despite
the fact that the ARMA representation space offers a more stable unit for evo-
lution than the essentially free-of-domain-knowledge GSR space, best testing
RMSE results indicated that GSR models are better performers in ATL and
DEN datasets, as opposed to the DFW dataset, where the best-of-50-runs GP-
ARMA model appeared superior. Given that in time-series modelling it is often
practical to assume a deterministic and a stochastic part in a series’ dynamics,
this result can well corroborate on the ability of standard symbolic regression
models to effectively capture the deterministic aspect of a time-series, and suc-
cessfully forecast future values in the case of time-series with a weak stochastic or
volatile part. Another interesting observation is that there is a difference in the
generalisation performance between GP-AR models of different order, suggesting
that the higher the order of the AR process the better its performance on sea-
sonal forecasting. Statistically significant differences (unpaired t-test, p < 0.0001,
df = 98) were found in mean test RMSE between GP-AR models of order 12 and
those of order 36, in all three datasets. During the learning process, we monitored
the test-data performance of the best-of-generation individual, and we adopted a
model selection strategy whereby the best-generalising individual from all gener-
ations is designated as the outcome of the run. Figures 5(a), (b), (c) illustrate the
distributions of the generation number where model selection was performed, for
the three datasets. It can be seen that GSR models are less prone to overfitting,
then follows GP-ARMA, and finally it can be noted that GP-AR models of high
order are the most sensitive to overfitting the training data. Interestingly is this
fact is observed across all three datasets. In addition to this observation, Fig-
ure 9 illustrates the RMSE curves during training. It can be seen that under the
GSR model configuration, there is a slower rate of training-error minimisation,
with initial models being poorer performers compared to the respective ones un-
der the GP-AR and GP-ARMA model configurations. Eventually, however, we
observe that all model configurations reach the same training error rates. This
observation makes the GP-AR and GP-ARMA model configurations much more
efficient in terms of search effort required to find the best-of-run generalising
models, however, rendering any additional training prone to overfitting.
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Looking at the results of Table 3 obtained with multi-model predictors, we
observe that ensembles of size 5 generalised the best in all datasets, improving
the results upon single-model predictors. Interestingly, the best-generalising en-
semble GP-AR and GP-ARMA models outperformed their GSR counterparts
in all datasets. Statistically significant differences (unpaired t-test, p < 0.0001,
df = 98) were found between the mean test RMSE of ensembles of size 5 of
autoregressive models and standard symbolic regression models. This is mainly
attributed to the unstable performance of GSR models indicated by the high
variance in test RMSE in different evolutionary runs (Figures 2(a), 3(a), 4(a)),
and the fact the bagging generates models from resampling the training data
and learning models using each sub-sample separately. An additional interesting
observation is that the use of greater ensemble size have an effect in reducing
the RMSE variance in the case of GSR; however, increasing the ensemble size
shows no pronounced effect in the variance of autoregressive models. Overall, it
is noted that increasing the ensemble size beyond 5 models results in worsening
the generalisation performance. This observation is consistent across all datasets.

Finally, Figures 6, 7, 8 show the target and predicted values from the best-
performing 5-model autoregressive models of Table 3, for ATL, DEN, and DFW
datasets respectively. It can be seen that the evolved ensemble models achieved a
good fit for most of the in-sample and out-of-sample data range. Table 4 presents
a gallery of good-generalising GP-AR(36) evolved models.

Table 4. Sample evolved GP-AR(36) models

_ = HDD;_26
f(t) = JHDDtm * (HDthse + \/HDDt,—l‘Z * <,0.92+(HDDt,7*109(HDDt,21))>>

f(t) = /(HDD;_24 * HDD;_36) — HDD;_54 + 11.51

f(t) = HDD,_g6 % 0.94

f(t)=HDD:_36 — \/JHDD; 12 + 0.41 x (HDD;_36 — HDD;_12)

HDDy 36

f(t) = HDDy_36+5.11
HDDy_12

f(t) = /(HDD¢_36 + 0.17) * (HDD;_12 — 0.84)
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8 Conclusion

This study adopted a time-series modelling approach to the production of a
seasonal weather-metric forecast, as a constituent part of a general method for
pricing weather derivatives. Two GP-based methods for time series modelling
were used; the first one is based on standard symbolic regression; the second one
is based on autoregressive time-series modelling that is realised via an iterated
single-step prediction process and a specially crafted terminal set of historical
time-series values.

Results are very encouraging, suggesting that GP is able to successfully evolve
accurate seasonal temperature forecasting models. The use of ensemble learning
of 5-model predictors enhanced the generalisation ability of the system, as op-
posed to single-model predictions. Standard symbolic regression was seen to be
able to capture the deterministic aspect of the modelled data and attained the
best test performance, however its overall performance was marked as unstable,
producing some very poor-generalising models. On the other hand, the perfor-
mance of search-based autoregressive and moving average models was deemed
on average the most stable and best-performing in out-of-sample data.
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best-of-run individual on test data was discovered for the cases of ATL, DEN, and
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