
Using Grammatical Evolution to Parameterise

Interactive 3D Image Generation

Miguel Nicolau

Dan Costelloe

Natural Computing Research & Applications Group

University College Dublin

Dublin, Ireland

miguel.nicolau@ucd.ie, dan.costelloe@gmail.com

Abstract

This paper describes an Interactive Evolutionary system for generat-

ing pleasing 3D images using a combination of Grammatical Evolution

and Jenn3d, a freely available visualiser of Cayley graphs of finite Coxeter

groups. Using interactive GE with some novel enhancements, the parame-

ter space of the Jenn3d image-generating system is navigated by the user,

permitting the creation of realistic, unique and award winning images in

just a few generations. One of the evolved images has been selected to

illustrate the proceedings of the EvoStar conference in 2011.

1 Introduction

Evolutionary Algorithms permit the creation of candidate solutions from arbi-
trarily coarse- or fine-grained representations. In an Interactive Evolutionary
Design context (i.e. with human evaluators playing the part of the fitness func-
tion), user-fatigue is more likely to occur before acceptable quality solutions
emerge when the genotype representation is too fine-grained, due to a long,
repetitive process with no immediately pleasing results.

for example, consider a toy Evolutionary image generation task where the
goal is to produce a simple black and white image on an N×N grid. The image
could be encoded as a binary string of length N2 – a representation that fits
well with a Genetic Algorithm implementation.

This simple representation is powerful in that it permits the construction
of every possible 2-dimensional monochrome image for a given value of N . If
this were a standard, non-interactive optimisation problem, this kind of repre-
sentation would probably be suitable, since the space of all possible solutions
is covered, meaning that with the right conditions, high-quality solutions are
almost guaranteed as output from evolution.

1

But in an interactive setting, this type of (fine-grained) representation makes
the construction of even the most basic shapes on the canvas a slow and difficult
process. Adding to the difficulty is the potentially destructive nature of the
genetic operators of the GA. For this type of problem, the use of pre-defined
building blocks (e.g. lines, rectangles, curves) is more likely to produce pleasing
or interesting images in a shorter amount of time, while reducing user-fatigue.
This notion of building-block creation and re-use has been employed in other
artistically focused evolutionary systems such as Picbreeder [17].

The approach taken in this work was somewhat different than that of typ-
ical evolutionary art approaches. In this case, the evolutionary algorithm is
not actually constructing the image, but rather parametrising a 3-dimensional
visualiser of complex mathematical structures.

There were two main reasons for this approach. The first was speed of de-
velopment; by using a freely available tool that generates the images, there was
no graphical development involved, so all that was required was the integration
of the evolutionary algorithm with the visualiser tool, evolving the parameters
for the visualiser. The second reason was a shorter evolutionary process. The
graphical visualiser used generates fully constructed images, which are quite
pleasing to the eye1; the time required for the interactive evaluation process to
reach images that fulfill the objective is therefore potentially much shorter.

The results obtained are certainly unique; not only that, but they were also
obtained with very short runs of the system, thus complying with the objectives
stated above. Finally, they are visually appealing, not only for the authors, but
also for different communities: one of the evolved images won the EvoStar 2010
art competition, and now illustrates the proceedings cover, while another won
a competition to be chosen as the logo for a research cluster, located in the
University College Dublin, Ireland.

This paper describes the implementation of this work. It presents the evolu-
tionary algorithm used in Section 2, followed by a brief introduction to Coxeter
Matrices and the visualiser used, in Section 3, and finally describes the experi-
ments conducted, in Section 4. Section 5 then draws some conclusions.

2 Grammatical Evolution

Grammatical Evolution (GE) [12, 15] is an evolutionary approach that specifies
the syntax of possible solutions through a context-free grammar, which is then
used to map binary strings onto syntactically correct solutions. Those binary
strings can therefore be evolved by any search algorithm; typically, a variable-
length genetic algorithm is used.

The use of a grammar to specify the syntax of solutions allows the application
of GE to a variety of domains; these are as diverse as horse gait optimisation [8],
wall shear stress analysis in grafted arteries [2], and optimisation of controllers

1Although a subjective statement, this opinion was also shared by enough voters to deem
one of the images the winner in a competition against other images produced by evolutionary
means.

2

<Pic> ::= <Pic> <Term>
| <Term>

<Term> ::= <Var>
| <Op> <Term>

<Op> ::= Grow(<Value>)
| Shrink(<Value>)
| Rotate(<Value>)

<Var> ::= square
| circle
| triangle

<Value> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Figure 1: Example grammar for defining simple shapes.

for video-games [3]. This also includes earlier applications to evolving art, such
as the evolution of logos using Lindenmayer systems [11], musical scores [13],
generation of digital surfaces [4], and architectural design [18, 7].

2.1 Example Mapping Process

To illustrate the mapping process, consider the (simplified) shape grammar
shown in Fig. 1. Given an integer (genotype) string, such as (4, 5, 4, 6, 7,

5, 9), a program (phenotype) can be constructed, which respects the syntax
specified in the grammar.

This works by using each integer to choose productions from the grammar.
In this example, the first integer chooses one of the two productions of the start
symbol <Pic>, through the formula 4%2 = 0, i.e. the first production is chosen,
so the mapping string becomes <Pic> <Term>.

The following integer is then used with the first unmapped symbol in the
mapping string, so through the formula 5%2 = 1 the symbol <Pic> is replaced
by <Term>, and thus the mapping string becomes <Term><Term>.

The mapping process continues in this fashion, so in the next step the map-
ping string becomes <Var> <Term> through the formula 4%2 = 0, and through
6%3 = 0 it becomes square <Term>. Continuing in this fashion, all non-
terminal symbols in the growing expression are mapped, until the final program
becomes square Rotate(9), which can then be used to generate a shape.

Sometimes the integer string may not have enough values to fully map a
syntactic valid program; several options are available, such as reusing the same
integers (in a process called wrapping[12]), assigning the individual the worst
possible fitness, or replacing it with a legal individual. In this study, an un-
mapped individual is replaced by its parent.

3 Cayley Graphs

Elementary mathematical group theory teaches us that a group is a special type
of set, combined with a number of operations that obey fundamental algebraic
rules. For the visually inclined, a Cayley graph permits a diagrammatic repre-
sentation of the structure of a group with respect to a generating subset. For

3

a given discrete group, G, altering the generating set S can produce visually
interesting geometric consequences for the Cayley graph representation of G.
An example of this is shown in Fig. 2.

1

2

0

3

1

2

0

3

S = {1} S = {1, 2, 3}

Figure 2: Two Cayley graphs of the cyclic group Z/4Z produced by two different
generating sets.

Increasing the complexity of these graphs and corresponding generating sets
can in fact generate interesting, visually appealing structures. A complete de-
scription of the underlying mathematics at work to create and visualise such
graphs is outside of the scope of this paper, as this would require sections on
Coxeter Groups, Reflection Groups, discrete groups, topologies and many other
aspects of group theory2. There are, however, available tools for the visualisa-
tion of such graphs; the Jenn3d system is one of them.

3.1 Jenn3d

Jenn3d [10] is a freely available tool developed by Fritz Obermeyer, which gen-
erates visualisations of Cayley graphs of finite Coxeter matrices; it does so using
the Todd-Coxeter algorithm, and projects them onto Euclidean 3D space, by
embedding them into a 3-sphere.

It is a very simple to use, yet powerful piece of software; its generating
parameters are: the Coxeter matrix; the sub-group generators; a set of vertex
stabilising generators; specific definitions of edges; specific definitions of faces;
and a set of vertex weights.

Thanks to the ability of Grammatical Evolution to evolve parameters to the
Jenn3d system that just work, it is not necessary to delve into these concepts in
any great detail since their complexity can be abstracted away into an image-
generating black box. This is obviously very convenient, however we feel that
it is also quite a valuable contribution of this work – we as EC researchers and
practitioners do not need to know the inner complexity of the black box, be it
Jenn3d or otherwise. All that is needed is the means to navigate the search
space of black box parameters, guiding the system to the generation of visually
pleasing images.

2Many books are available on the subject, a good resource is Holt et al [6].

4

4 Experiments

4.1 Setup

A grammar was designed for GE, specifying the exact syntax of the required
(and optional) parameters for Jenn3d. Some were tricky to encode; many pa-
rameter combinations make Jenn3d crash, or just get stuck in an endless com-
putational loop. The solution to this was to use GE as the main executable,
and make external calls to Jenn3d for each evaluation process; if the external
call fails, a fitness of 0 (i.e. the worst fitness) is given to that set of parameters.

If the call is successful, the 3D visualiser appears on the screen; the user
can then interact with the image, examining its 3-dimensional structure. If a
particular viewing angle is found, Jenn3d has options to save a snapshot onto
file; additional options were encoded onto Jenn3d for this work: a way to save
the parameter combination onto a “best-parameters” file, and a scoring method.
Fig. 3 illustrates this.

Figure 3: The Jenn3d interface, along with the extensions encoded. An example
image is shown in the left; the same image, when zoomed in and rotated (right),
can produce a dramatically different view angle.

The scoring options are the values 1 to 5. If the user gives the score 1 to
a structure, it will be replaced by a random structure at the next generation;
likewise, due to the 20% elitism replacement used, the structures with the maxi-
mum score per generation are guaranteed to remain in the next generation. This
ensures that the user retains a degree of control over the generational mechanics,
while allowing the evolutionary process to proceed as normal.

Additional novel approaches were used in this work. First, the size of the
initial population was larger, to present an initial large spectrum of structures
to the user; this size is then culled after the first generation, to the population
size chosen for the evolutionary algorithm.

Another novel approach was the encoding of crossover points in the grammar.
This is a technique presented recently for GE [9], in which a specific symbol
is used in the grammar, to label crossover points; the evolutionary algorithm

5

then only slices an individual according to these points. This technique was
particularly useful for the work presented: many of the parameters passed to
Jenn3d specify styling options, which can therefore be exchanged as a whole
between different individuals (a 2-point crossover operator was used). The same
crossover points are used in both individuals, that is, vertex weights will only
be exchanged with vertex weights; the length of the exchanged blocks, however,
is variable. This makes crossover act mainly as an exploitation operator; as
the exchange of parameters can dramatically change the visual appearance of
a coxeter matrix, it made sense to limit the role of crossover to the exploration
of such combinations. A standard point mutation operation is also used, which
ensures the creation of novel parameter values. Fig. 4 shows a section of the
used grammar, along with the encoded crossover points.

<cmdline> ::= ./jenn <GEXOMarker> -c <CoxeterMatrix> <GEXOMarker>
<StabilizingGenerators> <GEXOMarker> <Edges> <GEXOMarker>
<Faces> <GEXOMarker> <VertexWeights> <GEXOMarker>

<CoxeterMatrix>::= <Torus> | <FreePolyhedra> | <FreePolytope>
<StabilizingGenerators> ::= "" | -v <Comb0123>
<Edges> ::= "" | -e <EdgeSet>
<Faces> ::= "" | -f <FaceSet>
<VertexWeights> ::= "" | -w <Int1-12> <Int1-12> <Int1-12> <Int1-12>

Figure 4: Section of the grammar used; crossover points are encoded using the
special non-terminal symbol <GEXOMarker>.

The experimental parameters used are shown in Table 1. To ensure all indi-
viduals in the initial population were valid, a form of population initialisation
[14] was used. Also, the mutation rate was set such that, on average, one mu-
tation event occurs per individual (its probability is dependent on the length
of each individual). Finally, note that there is no maximum number of gener-
ations; evolution will always continue, until the user decides to terminate the
execution.

Table 1: Experimental Setup
Initial Population Size 20
Evolutionary Population Size 10
Derivation-tree Depth (for initialisation) 10
Selection Tournament Size 10%
Elitism (for generational replacement) 20%
Crossover Ratio 50%
Average Mutation Events per Individual 1

4.2 Results

A typical run of the system seems to give many undesirable images on the first
generation; some cause Jenn3d to crash, while others are visually displeasing.

6

After the first generation, however, the system seems to settle onto a sequence
of very pleasing images, based on variations of the initial best images.

There is always novelty being introduced into the population, and the user
has an active part on this process, by attributing a fitness score of 1 to dis-
pleasing structures, which forces these to be replaced by novel ones. A single
run of the system can therefore generate a wide variety of images; once a user
has explored many variations of a style, he/she can start attributing them fit-
ness scores of 1, which effectively purges the population of these structures, and
ensures that new, unseen structures are present in the next generation.

Fig. 5 shows examples of different variations of a pleasing image, obtained
mostly through the exploration power of the new crossover operator. Fig. 6,
on the other hand, shows many different images extracted from a single run of
the system, a result achievable through the user-control technique explained.
This is possible both due to the variety of structures which Jenn3d can project,
and also to the exploration of the parameter space by GE. Note that all these
figures are shown zoomed out; rotation, zooming and fly-in transformations can
seriously alter the style achieved. Finally, Fig. 7 shows the image that won the
EvoStar 2010 Art Competition.

Figure 5: Example image and close variations achievable with the genetic oper-
ators used.

5 Conclusions

This paper has presented a novel application of Grammatical Evolution to Evo-
lutionary Art that treats the task of producing pleasing Jenn3d / Coxeter visu-

7

Figure 6: Example of the variety of structures achievable from a single run.

alisations as a parameter search problem. In fact, GE has been particularly well
suited to this problem thanks to the construction of a grammar that encapsu-
lates the complexity of the parameters of the image-generating Jenn3d system.
The ease of use of both GE and Jenn3d made them easily combinable, which
not only resulted in a fast implementation, but also allowed the generation of
unique and very often pleasing images.

A fair criticism of the use of black-box such as Jenn3d is that the images
produced will always be limited to the space of possibilities that the black-box
is capable of creating. This is indisputable – doing so constrains the space of
potential solutions and for certain problems this should be avoided in order to
gain maximum coverage of the search space.

However, there are also cases where jump-starting is a sensible thing to
do. In this case, the space of possible solutions is still sufficiently large that a
spread of pleasing and not so pleasing images can come about. The necessity
of interactive fitness assignment is just as much a requirement as it would be
for a system producing arbitrary images. The advantage of using a system such
as Jenn3d is that the user will not spend time in the early generations evolving
the fundamentals.

The encoding of crossover points in the grammar also worked with great
effect in this work. The crossover operator was originally designed [5] to work
just like in nature, that is, to allow two chromosomes to exchange building-
blocks; there has been a great dispute over the years, however, as to the real
exploitation nature of crossover, and in fact to the existence of exchangeable
building-blocks in Genetic Programming systems [1, 16]. In this work, they do
exist, and the crossover operator was encoded to take full advantage of this fact.

8

Figure 7: The winning image, elected to illustrate the 2011 EvoStar proceedings.

Finally, some of the images generated by this approach were submitted to
a few competitions, with award-winning results: one has won the Evolution-
ary Art competition at EvoStar 2010, and another has been chosen as a logo
representation for a research cluster in University College Dublin.

Acknowledgments

This research is based upon works supported by the Science Foundation Ireland
under Grant No. 08/IN.1/I1868.

References

[1] Angeline, P.J.: Subtree crossover: Building block engine or macromuta-
tion? In: et al., J.R.K. (ed.) Genetic Programming 1997: Second Annual
Conference, Stanford, USA, July 13-16, 1997, Proceedings (1997)

[2] Azad, R.M.A., Ansari, A.R., Ryan, C., Walsh, M., McGloughlin, T.: An
evolutionary approach to wall shear stress prediction in a grafted artery.
Applied Soft Computing 4(2), 139–148 (2004)

[3] Galván-López, E., Swafford, J.M., ONeill, M., Brabazon, A.: Evolving
a ms. pacman controller using grammatical evolution. In: et al, C.D.C.

9

(ed.) Proceedings of the EvoWorkshops 2010 on Applications of Evolution-
ary Computation, Istanbul, Turkey, April 7-9, 2010, Proceedings. Lecture
Notes in Computer Science, vol. 6024, pp. 161–170. Springer (2010)

[4] Hemberg, M., O’Reilly, U.M.: Extending grammatical evolution to evolve
digital surfaces with genr8. In: Keijzer, M., O’Reilly, U.M., Lucas, S.M.,
Costa, E., Soule, T. (eds.) Genetic Programming, 7th European Confer-
ence, EuroGP 2004, Coimbra, Portugal, April 5-7, 2004, Proceedings. Lec-
ture Notes in Computer Science, vol. 3003, pp. 299–308. Springer (2004)

[5] Holland, J.H.: Adaptation in Natural and Artificial Systems. University of
Michigan Press (1975)

[6] Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of Computational Group
Theory (Discrete Mathematics and Its Applications). Chapman and
Hall/CRC (2005)

[7] McDermott, J., Griffith, N., O’Neill, M.: Interactive EC control of synthe-
sized timbre. Evolutionary Computation 18(2), 277–303 (2010)

[8] Murphy, J.E., O’Neill, M., Carr, H.: Exploring grammatical evolution
for horse gait optimisation. In: et al, M.G. (ed.) Genetic Programming,
12th European Conference, EuroGP 2009, Tübingen, Germany, April 15-
17, 2009, Proceedings. Lecture Notes in Computer Science, vol. 5484, pp.
579–584. Springer (2009)

[9] Nicolau, M., Dempsey, I.: Introducing grammar based extensions for gram-
matical evolution. In: IEEE Congress on Evolutionary Computation, CEC
2006, Vancouver, BC, Canada, July 16-21, 2006, Proceedings. pp. 2663–
2670. IEEE Press (2006)

[10] Obermeyer, F.: Jenn3d for visualizing coxeter polytopes.
http://www.math.cmu.edu/ fho/jenn/ (June 2010)

[11] O’Neill, M., Brabazon, A.: Evolving a logo design using lindenmayer sys-
tems, postscript & grammatical evolution. In: IEEE Congress on Evolu-
tionary Computation, CEC 2008, Hong-Kong, June 1-6, 2008, Proceedings.
pp. 3788–3794. IEEE Press (2008)

[12] O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language, Genetic programming, vol. 4.
Kluwer Academic Publishers (2003)

[13] Reddin, J., McDermott, J., Brabazon, A., O’Neill, M.: Elevated pitch: Au-
tomated grammatical evolution of short compositions. In: et al, M.G. (ed.)
Proceedings of the EvoWorkshops 2009 on Applications of Evolutionary
Computation, Tübingen, Germany, April 15-17, 2009, Proceedings. Lec-
ture Notes in Computer Science, vol. 5484, pp. 579–584. Springer (2009)

10

[14] Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution.
In: Barry, A.M. (ed.) GECCO 2003: Proceedings of the Bird of a Feather
Workshops, Genetic and Evolutionary Computation Conference. pp. 142–
145. AAAI, Chigaco (July 2003)

[15] Ryan, C., Collins, J.J., O’Neill, M.: Grammatical evolution: Evolving pro-
grams for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer,
M., Fogarty, T.C. (eds.) First European Workshop on Genetic Program-
ming 1998. pp. 83–95. Springer, Berlin (1998)

[16] Sastry, K., O’Reilly, U.M., Goldberg, D.E., Hill, D.: Building block sup-
ply in genetic programming. In: Riolo, R., Worzel, B. (eds.) Genetic Pro-
gramming Theory and Practice, chap. 4, pp. 137–154. Kluwer Publishers,
Boston, MA, USA (November 2003)

[17] Secretan, J., Beato, N., D Ambrosio, D.B., Rodriguez, A., Campbell, A.,
Stanley, K.O.: Picbreeder: evolving pictures collaboratively online. In:
Proceeding of the twenty-sixth annual SIGCHI conference on Human fac-
tors in computing systems. pp. 1759–1768. CHI ’08, ACM, New York, NY,
USA (2008)

[18] Shao, J., McDermott, J., ONeill, M., Brabazon, A.: Jive: A generative,
interactive, virtual, evolutionary music system. In: et al, C.D.C. (ed.) Pro-
ceedings of the EvoWorkshops 2010 on Applications of Evolutionary Com-
puting, Istanbul, Turkey, April 7-9, 2010, Proceedings. Lecture Notes in
Computer Science, vol. 6025, pp. 341–350. Springer (2010)

11

