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Abstract

This paper investigates the effects of early stopping as a method
to counteract overfitting in evolutionary data modelling using Genetic
Programming. Early stopping has been proposed as a method to
avoid model overtraining, which has been shown to lead to a signif-
icant degradation of out-of-sample performance. If we assume some
sort of performance metric maximisation, the most widely used early
training stopping criterion is the moment within the learning process
that an unbiased estimate of the performance of the model begins to
decrease after a strictly monotonic increase through the earlier learn-
ing iterations. We are conducting an initial investigation on the effects
of early stopping in the performance of Genetic Programming in sym-
bolic regression and financial modelling. Empirical results suggest
that early stopping using the above criterion increases the extrapola-
tion abilities of symbolic regression models, but is by no means the
optimal training-stopping criterion in the case of a real-world financial
dataset.

1 Introduction

Overfitting is a commonly studied problem which arises in machine learning
techniques such as Genetic Programming. A model is described as overfitting
the training data if, despite having a high fit on the training examples, there



exists another model which has better fitness on the data as a whole, despite
not fitting the training data as well [9]. There are different reasons why
overfitting can occur. The existence of noise in training samples can cause a
model to be fit to the data which is more complex than the true underlying
model [14]. For symbolic regression, an example would be fitting a high
order polynomial to noisy data, which happens to pass through all training
points, when the true function is in fact a lower order polynomial. Another
cause of overfitting is bias in the training data. Overfitting is more likely
to occur when the training sample size is small. The more data available to
train on, the more likely we are to discover the true underlying model, and
the less likely we are to settle on a spurious result. Overfitting is also more
likely to occur in the presence of complexity. Complex models (for example
symbolic regressions of multiple explanatory variables) are more likely to
induce overfitting. Learning algorithms that are run for a long time are also
more likely to trigger overfitting, than if they had been run for a shorter time
period [1].

This paper aims to begin to explore the issue of overfitting in grammar-
based Genetic Programming [8], and provides case studies of overfitting in
three symbolic regression problems, and a financial modelling example drawn
from an instance of credit risk classification.

2 Model Induction

The underlying data generating process is unknown in many real-world fi-
nancial applications. Hence, the task is often to deduce or “recover” an
underlying model from the data. This usually isn’t an easy task since both
the model structure and associated parameters must be uncovered. Most
theoretical financial asset pricing models make strong assumptions which are
often not satisfied in real-world asset markets. They are therefore good can-
didates for the application of model induction tools, such as Grammatical
Evolution [12, 6], which are used to recover the underlying data generating
processes [3].

Of course to use a model induction method effectively, that is, to ensure
that the evolved models generalise beyond the training dataset, we must
pay attention to overfitting. This study aims to highlight this important
open issue in the field of Genetic Programming [13] and its implications for
financial modelling.



3 Background

3.1 Model Generalisation

A crucial aspect of data-driven modelling is related to model generalisation,
and many financial applications of evolutionary methods do not apply tech-
niques to minimise overfitting. Model generalisation concerns the ability of
the induced model to correctly represent the underlying structure of the data
so as to make accurate predictions when presented with new data from the
problem domain. Unfortunately, data-mining methodologies that iteratively
refine a model on a set of training instances, as is the case of evolutionary
methods, inherently suffer from model overfitting; they produce solutions
with poor generalisation abilities. There has been a large amount of statistics
and sibling machine learning methodologies to counteract the phenomenon of
overfitting and produce models with competent out-of-sample performance.

3.2 Model Overtraining Avoidance through Early
Stopping

A well-exercised technique for promoting the generalisation of an induced
model is the procedure of early training stopping [16, 9, 7]. For most learn-
ing algorithms the training error decreases monotonically during training. If
an independent validation dataset is used to measure the model’s accuracy
on unseen data, the validation error tends also to decrease in step with the
training error as the model gradually approximates the underlying function.
However, it is very often the case that the training data contain spurious
and misleading regularities due to sampling. In the later stages of the train-
ing process, the model begins to exploit these idiosyncrasies in the training
data and the validation error tends to increase again while the training error
continues to decrease. This example of overfitting is described in [5]. One
approach to avoid overfitting is to use the independent validation dataset as
part of a heuristic that dictates the halting of the training process at the
first minimum of the validation error. Under such a regime, the learner is
trained using the training instances, however, in each learning iteration it
is evaluated for both training and validation accuracy. Typically, the error
on the validation set decreases along with the training error, but then tends
to increase, an indication that the model may be overfitting the training in-
stances, suggesting that the training phase should be stopped. It has been
shown that halting the training phase before a minimum of the training error
has been reached, represents a way of limiting the complexity of the induced
model [2].



3.3 Grammatical Evolution: A Brief Introduction

In Grammatical Evolution [12, 6], the process of evolution first involves the
generation of a population of randomly generated binary (or integer) strings,
the genotype. In the case of binary genomes, each set of B bits (where
traditionally B=8) is converted into its equivalent integer representation.
These integer strings are then mapped to a phenotype, or high-level program
or solution, using a grammar, which encompasses domain knowledge about
the nature of the solution. Therefore, a GE genome effectively contains the
instructions of how to build a sentence in the language specified by the input
grammar. Grammatical Evolution is a form of what is known as grammar-
based Genetic Programming [8], and has been applied to a broad range of
problems, including many successful examples in financial modelling [4].
The grammar used in the experiments we performed can be found in
Fig. 1. The grammar is composed of non-terminal and terminal symbols.
Terminals (for example arithmetic operators) appear in the solution, whereas
non-terminals can be further expanded into terminals and non-terminals.
Here we can see that knowledge of the solution (that it will be constructed
from arithmetic operators, mathematical functions, variables and constants)
is encoded in the grammar. The mapping process involves the use of an
integer from the genotype to choose a rule from the production rule currently
being mapped. This process proceeds as follows. The first integer from the
genotype is divided by the number of rules in the start symbol ( <expr> in
our example). The remainder from this division is used to select a rule from
the grammar (for example, if the first integer was 8, the result of dividing 8
by the number of choices available for the <expr> production rule, which is
5, would result in the choice of the third rule - which is <pre-op>(<expr>).
The next integer in the genotype would then be used in the same way to map
between <pre-op> and one of its constituent rules, and the third integer in
the genotype would be used to map between <expr> and one of its constituent
rules. This process continues until either all integers in the genotype have
been used up, or our mapping process has resulted in the production of a
phenotype (that is a structure comprised of only terminal symbols) [12].

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr> | ( <expr> <op> <expr> ) |
<pre-op> ( <expr> ) | <protected-op> | <var>

<op> ::=+ | x| -

<protected-op> ::= div( <expr>, <expr>)

<pre-op> ::= sin | cos | exp | inv | log

<var> ::= X | 1.0

Figure 1: Grammar used in Symbolic Regressions



4 Experimental Setup

4.1 Symbolic Regression

Grammatical Evolution was used to fit models to 3 symbolic regression prob-
lems. Equations 1 through 3 show the target functions. The training dataset
was comprised of 10 randomly generated points. The test dataset (which
was not used to train the model) was comprised of 20 randomly generated
points, 10 of which were drawn from the same range as the training data (to
test how well the model interpolates, and to serve as a proxy for a valida-
tion dataset, see Section 5.1), and 10 of which were drawn from outside the
range from which the training data were drawn (to test how well the model
extrapolates).

Y =0.6X°+5X* 10X — 25 (1)
Training dataset range: [ -5, 5]. Test dataset ranges: [ -10, 10].

Y =0.3X xsin2X (2)
Training dataset range: [ -1, 1]. Test dataset ranges: [ -2, 2].

Y =expX —2X (3)
Training dataset range: | -2, 2]. Test dataset ranges: [ -4, 4].

These functions and ranges were chosen so that the target function
would be trained using a biased sample. The bias resulted from training in a
range in which the target function closely resembled an alternative function.
Over a wider range than that from which the training data was drawn,
the target function looked dramatically different from this alternative (for
example, function 2 looked very like a quadratic in the training range (see
Fig. 7), but as can be seen, it is truly a sine function). In this way, we
engineered a situation in which overfitting was likely to take place. In
each case, Grammatical Evolution was run on a population size of 100
individuals, for 50 generations, using Grammatical Evolution in Java [11].
The grammar used is shown in Fig. 1.

Fitness was evaluated by computing the mean squared error of the train-
ing points when evaluated on each individual (therefore the lower the fitness
value, the better the evolved function fitted the training data).

Sor [targetY — phenotypeY |*
n

MSE =

(4)



4.2 The case of a financial dataset

We also test the early stopping approach to model overfitting on a real world
financial dataset from the UCI Machine Learning repository [10]. The finan-
cial dataset represents a binary classification problem of categorising credit
card applications between those which are approved or rejected. The dataset
contains 690 number of instances, and each instance has 15 attributes.

We employed a grammar-based GP system to evolve non-linear discrim-
inant functions that use the threshold value of zero to differentiate among
the classes. The context-free grammar is represented below.

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr> | <var>
<op> i:=+ | x| - | /

<var> ::= instance attributes

Figure 2: Grammar used in the financial credit classification problem.

The GP algorithm employs a panmictic, generational, elitist genetic al-
gorithm. The algorithm uses tournament selection with a tournament size
of 7. The population size is set to 500 individuals, and the number of gen-
erations to 100. Ramped-half-and-half tree creation with a maximum depth
of 6 is used to perform a random sampling of DTs during run initialisation.
Throughout evolution, expression-trees are allowed to grow up to depth of
15. The evolutionary search combines standard subtree crossover with sub-
tree mutation; a probability governing the application of each, set to 0.6 in
favour of subtree crossover. We used the classification accuracy (CA) as the
fitness function, but in order to convert it to a minimisation problem we as-
signed fitness using 1.0 — C'A. We split the original dataset into two random
equally-sized subsamples with equal distribution of classes, serving as the
training and validation (out-of-sample) datasets.

5 Results and Discussion

5.1 Symbolic Regression

Figs. 3(a) through 6(b) are plots of the fitness of the best individual at
each generation as evaluated on the training data, against the fitness of the
best individual at each generation as evaluated on the test datasets, for four
illustrative runs - one run each of target functions 1 and 3, and two runs
of target function 2. Table 1 contains details on the fitness as evaluated
on the test dataset, for 9 runs. It shows that stopping evolution before the
specified number of generations had elapsed, would have led to the model
extrapolating better beyond the range in which it was trained.
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Figure 3: Target Function 1
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Figure 4: Target Function 2, Example 1

Early stopping has been described in Section 3.2. The validation dataset
is not used to train the model, but instead is used to test the fitness of
the model every once in a while (for example each generation, or at five
generation intervals). If the fitness of the best individual as evaluated on
the validation dataset disimproves, this is taken as an indication that the
evolved model is overfitting the data, and evolution is stopped. (Test data is
used as before to evaluate the fitness of the evolved model on out-of-sample
data, after evolution has terminated, either prematurely (if early stopping
has been deemed necessary), or after the specified number of generations has
elapsed.)
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Figure 6: Target Function 3

Since we explicitly chose target functions and ranges with an inherent
bias, these symbolic regressions triggered overfitting, as expected. Table 1
shows the generation at which the fitness, as evaluated on the part of the
test dataset used to measure the ability of the evolved model to interpolate
in the training range (henceforth referred to as interpolation fitness), first
disimproved. In 8 of the 9 runs described, the fitness as evaluated on the
part of the test dataset used to measure the ability of the evolved model to
extrapolate beyond the training range (henceforth referred to as extrapola-
tion fitness), was better the generation immediately before the interpolation
fitness first disimproved, than at the end of the run. Had we stopped evolu-



Table 1: Interpolation, Extrapolation fitnesses - Generations at which deteriora-

tions took place

Target Function Number 1 1 1
Generation Interpolation Fitness First Disimproved (GIFFD) 4 10 4
Interpolation Fitness Better Generation GIFFD-1, or End of Run? End of Run End of Run GIFFD-1
Extrapolation Fitness Better Generation GIFFD-1, or End of Run? GIFFD-1 GIFFD-1 GIFFD-1
Best stopping point (Generation(s) of Lowest Extrapolation Fitness)? 14 7 - GIFFD-1 12
Target Function Number 2 2 2
Generation Interpolation Fitness First Disimproved (GIFFD) 14 3 4
Interpolation Fitness Better Generation GIFFD-1, or End of Run? End of Run End of Run End of Run
Extrapolation Fitness Better Generation GIFFD-1, or End of Run? GIFFD-1 End of Run GIFFD-1
Best stopping point (Generation(s) of Lowest Extrapolation Fitness)? 38 - 43 49 - End of Run 5-8
Target Function Number 3 3 3
Generation Interpolation Fitness First Disimproved (GIFFD) 26 7 19
Interpolation Fitness Better Generation GIFFD-1, or End of Run? End of Run End of Run GIFFD-1
Extrapolation Fitness Better Generation GIFFD-1, or End of Run? GIFFD-1 GIFFD-1 GIFFD-1
Best stopping point (Generation(s) of Lowest Extrapolation Fitness)? 18 - GIFFD-1 7-10 8 - GIFFD-1

Target Function (Black) Plotted Against Phenotype (Red) Target Function (Black) Plotted Against Phenotype (Red)

Target Function (Black) Plotted Against Phenotype (Red)

Target Function (Black) Plotted Against Phenotype (Red) Target Function (Black) Plotted Against Phenotype (Red)

Target Function (Black) Plotted Against Phenotype (Red)

Figure 7: (a) Generation 1 (b) Generation 5 (c¢) Generation 11 (d) Generation

23 (e) Generation 38 (f) Generation 44

tion at this point, we would have produced a model that extrapolated better
beyond the training range, than the model produced at the end of the run.

The data points from the test dataset drawn from the same range as
the training dataset (and used to measure how well the evolved model is
interpolating within the training range), can also be used as a proxy for a
validation dataset. [15] show that when training artificial neural networks,



the first time the error on the validation set increases is not necessarily the
best time to stop training, as the error on the validation set may increase
and decrease after this first disimprovement. Such a pattern seems to exist
in the runs we performed. In 5 of the 8 runs where early stopping would
have made sense, the optimal generation at which to stop (the generation
with the lowest extrapolation fitness value) came later than the generation
at which the interpolation fitness first disimproved.

To give further insight into the evolutionary process that underlie the
changes in fitness observed for the training and test data sets, the phenotype
was plotted against the target function in the extrapolation range, at each
generation. Fig. 7 shows a selection of these generational graphs for the first
run of function 2.

Comparing Figs. 7 and 4(b), we can clearly see the correspondences be-
tween changes in the graphed phenotype over the generations, and changes
in the fitness as evaluated on the extrapolation test data. Between genera-
tions 1 and 22, the extrapolation test fitness is either disimproving, or not
improving by much. At generation 23 fitness improves significantly, and at
generation 38, an extremely fit individual has been evolved, both with respect
to the training and test set. The model extrapolates well. However, come
generation 44, a much less fit function has been evolved. It’s fitness on the
training data has improved, but it’s fitness on the extrapolation test data has
drastically disimproved. If we look back at Fig. 4(b), we can clearly see both
an extremely low value in the fitness on the extrapolation test data at gen-
eration 38, and an explosion in the value of the fitness on the extrapolation
test data at generation 44.

5.2 Financial Dataset

We performed 100 independent evolutionary runs. Table 2 presents aver-
age performances of the best-of-generation individuals, on both training and
validation sets, throughout the evolutionary process. Results suggest that
there is no particular evidence of model overfitting; the validation perfor-
mance curve monotonically decreases up until generation 80, at which point
a slight degree of overtraining becomes apparent. This is evidenced by the
average percentage change in the validation performance, which reaches a
negative number between generations 80 and 90 (Table 3). The model per-
formance in the case of early stopping at the generation that the validation
error becomes a local minimum for the first time, is summarised in Table 4.
It is apparent that stopping at approximately generation 6 results in a model
with validation performance of 0.31, which is clearly not the optimal point
at which to stop, given that the best validation performance is 0.27, attained
by generation 80 (Table 2).

Overall, this empirical result suggests that early training stopping at the



Table 2: Training and Test Learning Curves for the classification problem. Av-
erages of 100 evolutionary runs. Standard deviation in parentheses.

| Gen. 10 | Gen. 20 | Gen. 30 | Gen. 40 [ Gen. 50
Training performance | 0.25 (0.01) | 0.24 (0.01) | 0.23 (0.01) | 0.22 (0.01) | 0.22 (0.01)
Validation performance | 0.29 (0.02) | 0.29 (0.02) | 0.28 (0.02) | 0.28 (0.02) | 0.28 (0.02)
Gen. 60 Gen. 70 Gen. 80 Gen. 90 Gen. 100
Training performance | 0.21 (0.01) | 0.21 (0.01) | 0.21 (0.01) | 0.20 (0.01) | 0.20 (0.01)
Validation performance | 0.28 (0.02) | 0.27 (0.02) | 0.27 (0.02) | 0.28 (0.02) | 0.28 (0.02)

Table 3: Percentage change in Training and Testing performance. Averages of

100 evolutionary runs. Standard deviation in parentheses.

[ Gen. 10-20 [ Gen. 20-30 | Gen. 30-40 | Gen. 40-50 | Gen. 50-60

Training performance change (%) 5.2% (0.03) | 3.7% (0.03) | 2.7% (0.02) | 1.7% (0.02) | 1.7% (0.02)

Validation performance change (%) | 2.0% (0.07) | 1.9% (0.07) | 0.7% (0.05) | 0.6% (0.04) | 0.2% (0.03)
Gen. 60-70 | Gen. 70-80 Gen. 80-90 | Gen. 90-100
Training performance change (%) 1.4% (0.01) | 1.2% (0.01) | 1.3% (0.01) | 0.9% (0.01)
Validation performance change (%) | 0.2% (0.03) | 0.3% (0.03) | -0.6% (0.03) | 0.6% (0.03)

first point where the validation error reaches a local minimum (assuming
fitness minimisation) is by no means a reliable indication of overtraining.
Future research needs to address the issue of early stopping with more so-
phisticated stopping criteria.

6 Conclusions and Future Work

In this study we set out to highlight a significant open issue in the field of
Genetic Programming, namely generalisation of evolved solutions to unseen
data, which has real world implications for all model induction methods,
and can have serious financial implications when considered in the domain
of financial modelling. Empirical investigations on four benchmark problems
are undertaken. Three of the problems were drawn from the popular Genetic
Programming domain of symbolic regression and the fourth problem was an
instance of credit classification.

In summary the results illustrate the important role which the detection
of overfitting during training can play, in order to improve the generalisation
of the evolved models. What is also clear from these results is that further

Table 4: Performance statistics during early stopping. Averages of 100 evolution-
ary runs. Standard deviation in parentheses.

Early Stopping Generation 5.88 (6.07)
Early stopping training performance | 0.27 (0.02)
Early stopping validation performance | 0.31 (0.03)




lessons need to be drawn from the machine learning literature on effective
early stopping strategies, and the myriad of other strategies which have been
adopted to avoid overfitting. The results on both classes of problem do-
main investigated here demonstrate that early stopping could be an effective
strategy to improve generalisation, however, following a naive early stopping
heuristic can lead to stopping too early.
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