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Abstract

We present an analysis of how the genotype-phenotype map in Grammat-
ical Evolution (GE) can effect performance on the Max Problem. Earlier
studies have demonstrated a performance decrease for Position Indepen-
dent Grammatical Evolution (πGE ) in this problem domain. In πGE the
genotype-phenotype map is changed so that the evolutionary algorithm
controls not only what the next expansion will be but also the choice of
what position in the derivation tree is expanded next. In this study we ex-
tend previous work and investigate whether the ability to change the order
of expansion is responsible for the performance decrease or if the problem
is simply that a certain order of expansion in the genotype-phenotype map
is responsible. We conclude that the reduction of performance in the Max
problem domain by πGE is rooted in the way the genotype-phenotype
map and the genetic operators used with this mapping interact.
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1 Introduction

The use of a genotype-phenotype map in Genetic Programming (GP) [13, 22]
has been used by many within the field [1, 5, 7, 10, 11, 12, 15, 23] and a number
of variants to the standard tree-based form of GP exist, amongst which some
of the most popular are Linear GP [2], Cartesian GP [16] and Grammatical
Evolution (GE) [3, 20]. GE is a grammar-based form of GP which takes inspi-
ration from DNA Transcription in adopting a mapping from a linear genotype
to phenotypic GP trees. The reason for adopting a genotype-phenotype map for
GP where presented by O’Neill [17] as a series of arguments while also noting it
can provide a number of advantages. These include a generalised encoding that
can represent a variety of structures allowing GP to generate structures in an
arbitrary language, efficiency gains for evolutionary search (e.g. through neutral
evolution), maintenance of genetic diversity through many-to-one maps, preser-
vation of functionality while allowing continuation of search at a genotypic level,
reuse of genetic material potentially allowing information compression, and po-
sitional independence of gene functionality.

Previous work [4] showed a significant reduction in the performance of GE on
the Max problem once the πGE genotype-phenotype map was applied. This was
a very surprising result as previous studies by O’Neill et al. [18] had not shown
a similar type of performance reduction in any of the benchmark problems in
that study. This poor outcome on the Max problem sparked a lot of questions
as to what was causing this result, which went against previous findings that
πGE would match if not out perform standard GE on the majority of problem
domains tested. The result of this examination is hoped to lead to a deeper un-
derstanding of what is going on during a πGE run and try to use this knowledge
to further guide the development of different genotype-phenotype maps in GE,
leading to the ultimate goal of designing the most effective, efficient version of
GE.

The remainder of the paper is structured as follows. A brief overview of the
essentials of GE are provided in Section 2 before an explanation of the different
genotype-phenotype maps used in the study in Section 3. The next part of the
paper describes the experimental setup (Section 4), the results found (Section 5)
and a discussion (Section 6) before drawing conclusions and pointing to future
work.

2 Grammatical Evolution Essentials

GE marries principles from molecular biology to the representational power of
formal grammars. GE’s rich modularity gives it a unique flexibility, making it
possible to use alternative search strategies, whether evolutionary, or some other
heuristic (be it stochastic or deterministic) and to radically change its behaviour
by merely changing the grammar supplied. As a grammar is used to describe the
structures that are generated by GE, it is trivial to modify the output structures
by simply editing this grammar. The explicit grammar allows GE to easily gen-
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erate solutions in any language (or a useful subset of a language). For example,
GE has been used to generate solutions in multiple languages including Lisp,
Scheme, C/C++, Java, Prolog, Postscript, and English. The ease with which
a user can manipulate the output structures by simply writing or modifying a
grammar in a text file provides an attractive flexibility and ease of application
not as readily enjoyed with the standard approach to GP. The grammar also
implicitly provides a mechanism by which type information can be encoded thus
overcoming the property of closure, which limits the traditional representation
adopted by GP to a single type. The genotype-phenotype mapping also means
that instead of operating exclusively on solution trees, as in standard GP, GE
allows search operators to be performed on the genotype (e.g., integer or binary
chromosomes), in addition to partially derived phenotypes, and the fully formed
phenotypic derivation trees themselves. As such, standard GP tree-based oper-
ators of subtree-crossover and subtree-mutation can be easily adopted with GE.
By adopting the GE approach one can therefore have the expressive power and
convenience of grammars, while operating search in a standard GP or Strongly-
Typed GP manner. For the latest description of GE please refer to Dempsey et
al. [3].

Previous work by Hemberg et al. [8] where three grammar variants were
examined in the context of Symbolic Regression is also directly relevant to this
study. The language represented by each of the grammars were all semantically
equivalent in terms of the phenotypic behaviour of the solutions that could
be generated. The only difference was syntactical. That is, postfix, prefix
and infix notations were adopted for the same set of terminal symbols of the
language. Performance advantages were observed on the problems examined for
the postfix notation over both alternatives. If one examines the behaviour of
postfix notation it amounts to a postorder expansion of the tree. In terms of
a generative grammar this means that the contents of subtrees are determined
before the operator at the root of the subtree.

3 Genotype-Phenotype Maps - GE, πGE

In order for a full examination of the performance on the Max Problem to be
carried out four separate mappings for GE were required, details of which are
explained in this section. In GE we begin the mapping process by finding the
start symbol in the grammar. This non terminal (NT) in the case of the example
grammar shown in Fig. 1, <e> is then evaluated using Eq. 1. By taking the first
codon value of the GE chromosome (12) and the number of expansions possible
for the state <e> (2), we get the first expansion of the tree, where <e> expands
to <e><o><e> (12%2) . From this point on the leftmost NT is always expanded
first in the derivation process. This action will continue to be performed until no
NTs remain to be expanded in the derivation tree. An example of this mapping
is shown in Fig. 2 based on the example grammar shown in Fig. 1 where the
order of expansion is indicated by a set of numbers on the arrows between the
blocks on the diagram, in the form of 1(12%2) where 1 is the expansion order
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and 12%2 is the application of Eq. 1.

New Node = Codon value % Number of rules for NT (1)

<e> ::= <e> <o> <e> | <v>

<o> ::= + | *

<v> ::= 0.5 | 5

Chromosome ::= 12,8,3,11,7,6,11,8,4,3,
3,11,15,7,9,8,10,3,7,4

Figure 1: Example Grammar and
Chromosome.

<e>

<e> <o> <e>

 1(12%2)

<e> <o> <e>

 2(8%2)

<v>

 13(15%2)

*

 12(11%2)

<e> <o> <e>

 6(6%2)

<v>

 3(3%2)

*

 5(7%2)

<v>

 7(11%2)

<v>

 10(3%2)

+

 9(4%2)

5

 4(11%2)

0.5

 8(8%2)

5

 11(3%2)

5

 14(7%2)

Figure 2: Standard GE Genotype to
Phenotype Mapping.

The only difference between standard GE and πGE in its purest form is
in the mapping process from genotype to phenotype. πGE’s mapping process
differs from that of GE in that each expansion of a NT requires two codons.
The standard GE chromosome is essentially split into pairs of values where the
first codon of the pair is used to choose which NT to expand and the second
is used to choose what to expand the NT to, based on the rules available for
a NT of that type. The chromosome shown in Fig. 1 can be viewed as a list
of paired values such as ((12,8),(3,11)........), where the first value of
the pair (The Order Codon) is used to determine the next NT to expand by
using Eq. 2 and this will return which NT to choose from a list of unexpanded
NTs. Once the NT to be expanded has been chosen, the second codon (Content
Codon) is used in conjunction with Eq. 1 (the standard GE expansion rule) to
determine what the NT expands to; and if this node happens to be an NT, it
is added to the list of unexpanded NTs. Figs. 3 and 4 show the expansion of
the example grammar in Fig. 1 using the πGE mapping process. The number
associated with each branch of the tree is a reference to the numbered steps
shown in Fig. 3 which show how each choice of NT to expand comes about. It
is interesting to note the different shape and size of the examples based on just
a change in mapping.

4



1. [(e)] <- (12%1=0)

2. [(e),o,e] <- (3%3=0)
3. [o,(e),v] <- (7%3=1)
4. [o,(v),e,o,e]<- (11%5=1)

5. [(o),e,o,e] <- (4%4=0)
6. [(e),o,e] <- (3%3=0)

7. [(o),e,v] <- (15%3=0)
8. [e,(v)] <- (9%2=1)
9. [(e)] <- (10%1=0)

10. [(v)] <- (7%1=0)

Figure 3: NT selection process in
πGE.

<e>

<e> <o> <e>

 1(8%2)

<e> <o> <e>

 3(6%2)

<v>

 2(11%2)

*

 5(3%2)

<v>

 6(11%2)

<v>

 9(3%2)

*

 7(7%2)

0.5

 4(8%2)

0.5

 8(8%2)

0.5

 10(4%2)

Figure 4: Standard πGE Genotype
to Phenotype Mapping.

NT to expand = Codon value % Number of NT ′s (2)

In addition to the πGE mapper above a slightly tweaked version of this map-
ping was also required. The experiments that were planned required a version
of πGE in which the order codons of the mapping were fixed across the whole
population and also to be not affected by crossover or mutation during evolu-
tion. This requires the addition of an order chromosome to standard GE and
then an edit to the πGE mapper so it will work with the new setup. This setup
is referred to as Fixed-Order mapping and is necessary to see if the constantly
changing order of expansion in the πGE mapping process is the cause of the
performance decrease. The mapping also serves as an interesting experiment by
itself as it will show if any randomised order might do as well as πGE . This
way of mapping can be seen as fixed order πGE mapping or as a standard GE
mapping but with a randomised order of mapping.

Finally Right-Most mapping is needed, this mapping is just a variant of the
standard GE mapping process. Rather than taking the left-most non terminal
and expanding as in standard GE, in Right-Most we simple always select the
right-most non terminal for expansion. This way of mapping is required for this
study as it should provide a similar performance to the standard GE mapping,
whilst also allowing further insight into what is happening within the evolution
of a solution to the Max problem in GE. An overview of the different Mappings
can be seen in Table 1.
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Table 1: Overview of the different Mappings
GE Right-Most πGE Fixed-Order

Expansion Order Left-Most NT Right-Most NT Equation 2 Equation 2
Expansion Choice Equation 1 Equation 1 Equation 1 Equation 1
Fixed Order Choice Yes Yes No Yes

4 Experimental Setup

We wish to test the hypothesis that the evolvability of the order codons in πGE
is responsible for the performance decrease observed, as evolution has to try and
cope with a changing tree structure across each member of the population. By
removing this degree of freedom from the evolutionary process it is hoped that
the performance decrease will be accounted for. We will measure performance
in terms of examining the average best fitness.

We adopted GEVA v1.1 [19] for the experiments conducted in this study.
The evolutionary parameters adopted on all problems are presented in Table 2.
Note that we deliberately use a relatively small population size of 200 compared
to the standard 500 that would typically be adopted for these problem instances.
This was to make it harder for the mappers to find a perfect solution, and
therefore allow us to discriminate more clearly performance differences on the
various setups. For each setup we performed 100 runs using the same range of
random seeds, in the case of the Fixed-Order setup we examined 100 different
random expansion orders and for each order we then did 100 runs.

Table 2: Parameter settings adopted on all problems examined.
Parameter Value
Generations 100
Population size 200
Replacement strategy Generational with elitism (10%)
Selection Tournament size=5
Mutation probability 0.01 (integer mutation)
Crossover probability 0.9 (variable single point)
Initial chromosome length 200 codons (random init)
Initial πGE chromosome length 400 codons (random init)

4.1 The Max Problem

The problem used in this paper is the Max problem first implemented for GE in
[9] which is based upon the problem as described in [14] and [6]. The grammar
adopted used for the problem appears in Fig. 5.

The aim of the problem is to evolve a tree that returns the largest value
within a set depth limit (8 in this study). A minimal function set of addition
and multiplication is provided alongside a single constant (0.5). The optimal
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<prog> ::= <expr>

<expr> ::= <op> <expr> <expr>

| <var>

<op> ::= +
| *

<var> ::= 0.5

Figure 5: The grammar adopted for the Max problem instance.

solution to this problem will have addition operators towards the leaves of the
tree to create as large a variable as possible greater than 1.0 in order to exploit
multiplication operators towards the root of the tree. This problem is considered
difficult for GP as solutions tend to converge on suboptimal solutions which can
be difficult to escape from [14].

4.2 Mappers

For the purposes of this study we examined four different mapping strategies.
The standard mapper adopted in GE we refer to as Depth-first. The name
reflects the path this mapper takes through the non-terminal symbols in the
derivation tree always selecting the left-most NT. The next mapping to consider
was the opposite of the standard GE mapping, in which a depth first expansion
of the derivation tree is done, but working on the right-most non terminal nodes
first; we refer to this as Right-most. The πGE mapper as first described by
O’Neill et al. [18] is the third mapper used. πGE lets the evolving genome decide
which non-terminal to expand at each step in the derivation sequence. Finally
a mapping was required that fixed the order codons of πGE to a random order
known as Fixed-Order. This mapping was used to fix the πGE order codons
for the whole population; unlike πGE we will have the same random order of
expansion for the whole population. This mapping strategy will examine the
influence of different fixed mapping orders on the Max problem, instead of only
Depth-first and Right-most. Fixed-Order will also be used to examine if the
evolvability of the order in πGE , or just the fact that it is a different order
gives the performance decrease observed in the Max problem.

5 Results

The first set of experiments tested the hypothesis that the evolvability of the
order codons in πGE were responsible for the observed performance decrease.
For this the mapping order of πGE was fixed for the whole population and
was not subject to crossover or mutation. One hundred different orders were
generated and each order was then run one hundred times. The five best and
five worst performing orders where then extracted and compared to a run of
standard πGE, the results of which are shown in Table 3 in which the results
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shown are minimised so the optimal solution is zero. It is worth noting that all
of the runs are within a standard deviation and thus show that the evolvable
order is not where the performance decrease is caused. Further examination
of the results show a slight performance difference between πGE and the fixed
order mappers, which shows that the extra search performed by πGE for good
representations is not negatively affecting performance.

Table 3: Average Best Fitness Values after 100 generations over 100 independent
runs. For the five best and worst performing mapping orders

Mapping Avg.Best (std. dev.)
πGE 29.78 (24.03)
Best 1 32.59 (24.67)
Best 2 33.21 (23.92)
Best 3 33.42 (28.97)
Best 4 35.26 (29.09)
Best 5 35.56 (25.84)
Worst 1 52.20 (39.93)
Worst 2 49.82 (35.01)
Worst 3 49.59 (40.03)
Worst 4 49.35 (34.08)
Worst 5 49.15 (36.45)

Table 4: Average Best Fitness Values after 100 generations over 100 independent
runs.

Mapping Avg.Best (std. dev.)
GE 2.50 (5.42)

Right-Most 9.14 (15.54)
πGE 29.78 (24.03)

After examination of these results it was hypothesised that perhaps the an-
swer lay in how operations such as crossover and mutation would effect perfor-
mance. Previous work on what is known as the ripple effect of crossover [21] and
the ripple effect of mutation [9] have shown how the GE derivation is trimmed
by these operators. In these papers it was shown how a single change in the
genotype can lead to a change in the expansion of every codon following on from
that position in the genotype. This led to the introduction of the right-most
mapping which is essentially a transpose of the traditional GE mapper. The
results for this new comparison of mappings is shown below in Table 4 These
results will be explained more fully in the discussion section, Section 6.
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6 Discussion

The main focus of this study started out as an investigation to see if the evolv-
ability of the order codons in πGE is responsible for the performance decrease
observed in the Max problem. By examining the results in Table. 3 it can be
seen that the evolvability of πGE’s mapping order is not responsible for the
performance decrease. This is clearly visible from comparing the fixed orders
and πGE , that the fixed orders more closely resemble the results achieved by
πGE and as the only difference between the two is that πGE ’s order is sub-
ject to change that this change cannot be blamed for the observed performance
decrease.

The real key to the performance by examining the results in Table 4 is in the
operators and how they interact with the mapper, by interact with the mapper
we mean how changes in the genotype (upon which all GE operations such as
crossover and mutation act) lead to the mapping of a different phenotype. The
Right-Most mapping was chosen so that we could examine if the performance
on the max problem was down to burrowing down in a depth first manner.
From the results in Table 4 we can see that it is the standard GE that achieves
the best performance, this is due to the fact the the Max problem used is in
prefix notation. Thus in the standard GE mapping we would be developing
the arithmetic component of the equation first as we always expand the left-
most NT; unlike the other mappings presented. Now consider when using GE
how both mutation and crossover get this ripple effect as outlined in detail
in [9], [21], which means that from the chosen point on the chromosome for the
genetic operation all codons following that point are subject to a context change
and in the majority of cases this causes a trimming of the tree as can be seen in
Fig. 6. In Fig. 7 we can see that the same ripple effect is in the right-most setup
of GE. Note how in the right-most tree the only remaining part of the derivation
tree contains structure and terminals that describe the end of a possible max
solution. As we are using a prefix notation in the grammar we can say this
will not contain the important additions or multiplications, yet it is imperative
that we start our expression with a multiplication to maximize the possible
value. GE can thus preserve this most important part of the possible solution
throughout the evolutionary process, where as Right-Most mapping will have
to discover this after nearly every mutation or crossover.

The big clue as to where the performance loss in πGE and Max comes from
lies in Fig. 8. It can be seen that the ripple effect of πGE crossover will in general
leave a saw tooth cut in the tree that will leave few if any of the leaf nodes of the
trees. This means that in general a πGE mapping will have to try and evolve
the whole solution at once rather than having a starting point like the other
mappings have. If we compare the results in the previous section to these figures,
we can say that there exists a preferential bias towards evolving a solution in
a left to right manner as is performed by the standard GE mapping. There
is a performance drop seen in the Right-Most mapping too, this is due to the
reason stated in the previous paragraph where the ability to retain knowledge of
the starting part of the expression is deemed most important as the difference
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between adding 20+20 and multiplying 20*20 is huge and so can be deemed to
be the most important symbol in the equation.

<e>

<e> <o> <e>

 1

<e> <o> <e>

 2

*

 8

<v>

 9

+

 5

<v>

 3

<v>

 6

0.5

 4

0.5

 7

0.5

 10

<e>

<e> <o> <e>
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<e> <o> <e>

 2

*

 8

<v>

 9

+

 5

<v>

 3

<v>

 6

0.5

 4

0.5

 7

0.5

 10

Figure 6: An illustration of the ripple effect of crossover and mutation on a
GE derivation tree, Note the tree before crossover on the left and then on the
right once crossover is applied after the fourth expansion how we are left with
structure and solution on the left only as the shaded nodes will be replaced.

<e>

<e> <o> <e>

 1
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<e> <o> <e>

 1
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*
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<v>
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<v>

 9

<v>

 6

0.5

 10
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0.5

 3

Figure 7: An illustration of the ripple effect of crossover and mutation on a
Right-Most derivation tree, Note the tree before crossover on the left and then
on the right once crossover is applied after the fourth expansion how we are
left with structure and solution on the right only as the shaded nodes will be
replaced.

Looking again at [8] and the results above we would like to further examine
if a certain order of notation is better suited to a certain mapper. From what
we have seen above the prefix notation used in this grammar for Max it is the
reason for the performance decrease and should also be further examined to see
if changing to a infix notation might level the playing field and remove all bias
towards a certain type of mapping.
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Figure 8: An illustration of the ripple effect of crossover and mutation on a
πGE or Fixed-Order derivation tree, Note the tree before crossover on the left
and then on the right one crossover is applied after the fourth expansion how
we are left with structure and a very tiny amount of a solution as the shaded
nodes will be replaced.

7 Conclusions & Future Work

We presented an investigation into the different performance levels of genotype-
phenotype maps in GE on the Max problem in order to determine the respective
levels of performance of each mapping. This was done to investigate whether the
evolvability of πGE was responsible for the discrepancy. By fixing the order to
be a single non evolvable order across the entire population the results indicated
that the difference in performance was in some other aspect of the mapping.

Upon further examination of how the mappers worked we decided to examine
how the genetic operators effect the performance specifically the ripple effect of
crossover and mutation in GE. The idea of a new rightmost first expansion
order was tested and from this it became apparent that to achieve the best
performance in the Max problem domain, with a prefix grammar, such as the
one used here, a left-most genotype-phenotype map is the best mapping order
for GE. This study has helped us to gain a better understanding of how πGE
works and also surfaced the idea that there is a mapping order suited for each
type of problem. This is of great interest and is worth further investigation to
identify what mapper is best for a specific type of problems based on criteria
such as grammar notation, as well as which is the best general mapper for a
range of problems. Once this has been established we intend to see if this trend
holds true as we progress our research into the dynamic problem domain, or if
what we now consider drawbacks to certain mappings become advantages in the
dynamic problem domain.
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