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Abstract

Decision tree learning is one of the most widely used and practical
methods for inductive inference. We present a novel method that in-
creases the generalisation of genetically-induced classification trees, which
employ linear discriminants as the partitioning function at each internal
node. Genetic Programming is employed to search the space of oblique
decision trees. At the end of the evolutionary run, a (1+1) Evolution
Strategy is used to geometrically optimise the boundaries in the decision
space, which are represented by the linear discriminant functions. The
evolutionary optimisation concerns maximising the decision-surface mar-
gin that is defined to be the smallest distance between the decision-surface
and any of the samples. Initial empirical results of the application of our
method to a series of datasets from the UCI repository suggest that model
generalisation benefits from the margin maximisation, and that the new
method is a very competent approach to pattern classification as com-
pared to other learning algorithms.

1 Introduction

This paper introduces a novel, hybrid approach to the evolutionary learning
of Decision Trees (DT), by means of Genetic Programming (GP) [1], that im-
proves their generalisation performance. The evolutionary method is based on
the concept of maximum margin linear discriminant functions to search among
a number of potential decision surfaces for the one for which the margin is max-
imised. This concept is borrowed from the Support Vector Machine (SVM) [2]
approach to overfitting avoidance. The goal of training a SVM is to find the
separating hyperplane with the largest margin; it is expected that the larger
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the margin, the better generalisation of the classifier. Initially, oblique DTs are
learned by means of GP using the classification accuracy as the fitness measure.
At the end of the evolutionary run the best classifier is further optimised to
improve its generalisation. The optimisation concerns maximising the margin,
which is defined to be the smallest distance between the decision surface and
any of the samples. Finding the maximally-separating decision hyperplane is
a constrained optimisation problem that is tackled by means of quadratic pro-
gramming in the case of SVMs. Our method is instead using an evolutionary
optimisation algorithm (EA), namely a (1+1) Evolution Strategy (ES). The
proposed methodology is compared in this study against the axis-parallel DT
induction method C4.5, SVM (without any use of kernel functions), and naive
Bayesian on a series of benchmark classification datasets from the UCI machine
learning repository. Initial empirical results suggest that increased generalisa-
tion is accrued from margin maximisation, and that the new approach compares
favourably, often outperforming other learning algorithms.

The rest of the paper is organised as follows. We first present relevant liter-
ature for inducing DTs using GP, and discuss the issue of model generalisation,
motivating the need for maximum margin classifiers. The geometry of linear
discriminant function is analysed in Section 2, which defines the main tool for
calculating distances in the feature space. Section 3 presents the margin op-
timisation algorithm that is based on a novel distance-based fitness function.
Section 4 outlines the experimental approach, describes the grammar-based GP
system, and details the benchmark datasets. Section 5 presents the experimen-
tal results, and Section 6 draws our conclusions.

1.1 Model Generalisation in Genetically Programmed DTs

Genetic Programming, inherently adopting an expression-tree representation,
has been an obvious choice for an application of stochastic search to the space
of decision-tree structures, seeking to maximise some sort of classification per-
formance metric. GP-induced partitioning functions can be composed of both
linear and non-linear combinations of features, therefore oblique and non-linear
splits can be represented as easily and efficiently as univariate splits. In the
domain of axis-parallel decision trees the works of [3, 4, 5] evolve DTs us-
ing classification accuracy as the fitness function to drive the search. Oblique
decision trees have been evolutionarily constructed in [6, 7], whereas work on
non-linear DTs has been reported in [8, 9, 10].

A crucial aspect of artificial learning systems is their ability to extract a
precise underlying representation of the concept that is being inferred in a su-
pervised learning task via a set of training instances, so as to be able to gener-
alise well to unseen examples from that concept. Decision tree learning, which
is based on adaptive tree-structures that are being iteratively refined on a set of
training instances, suffers from the problem of model overfitting inherent in any
process of data-driven modelling. The highly expressive representation offered
by tree-structures often results in a close fit on the training instances that does
not allow for effective generalisation if their complexity is not somehow kept un-
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der control. An approximate inductive bias of classical DT growing algorithms
is that shorter trees are preferred over larger ones [11]. Dominant approaches to
control the size of a DT are reduced-error pruning and rule post-pruning [11]. In
GP-based DT induction, research on improving model generalisation has focused
on controlling the size of the evolved structures mainly by modifying the fitness
function to exhibit a bias towards smaller expression-trees [12, 13, 14, 15, 10].
A different approach to the problem of overfitting in genetically-induced DTs is
presented in [16]. In that study, a statistical significance test of each program’s
performance is employed, and multi-objective fitness functions are designed to
bias the evolutionary search towards better generalising individuals.

The generalisation performance of a learning machine can be studied by
means of uniform convergence bounds, using a technique introduced by Vapnik
and Chervonenkis [17]. The theoretical motivations behind this approach lie
in the data-dependent structural risk minimisation (SRM) [18] principle. The
central concept is the effective capacity of the class of hypotheses accessible by
the machine: the richer such a class, the higher the risk of overfitting. This
feature of a learning machine is referred to as its complexity or capacity. The
statistical learning principle of SRM provides an upper bound to the generalisa-
tion error of the classifier in terms of its training error, the number of training
examples and the model capacity. In this regard, SRM is just another way
to express generalisation error as a tradeoff between training error and model
complexity. In the case where a linear discriminant function in trained on a
linearly-separable dataset, there exist an indefinite number of partitioning hy-
perplanes that attain a perfect split. However, there is no guarantee that any of
these hyperplanes will generalise well on new patterns. Maximum margin classi-
fiers approach the decision surface generalisation-potential through the concept
of the margin, which is defined to be the smallest distance between the decision
surface and any of the samples. In [2], it is shown that the capacity of a linear
model is inversely related to its margin. Models with small margins have higher
capacities because they are more flexible and can fit many training sets, unlike
models with large margins. However, according to the SRM principle, as the
capacity increases, the generalisation error bound will also increase. Therefore,
it is desired to design linear discriminant functions that maximise the margins
of their decision boundaries in order to ensure that their worst-case generali-
sation errors are minimised. The state-of-the-art maximum margin classifier is
the support vector machine (SVM) [2].

2 Geometry of a Linear Discriminant Function

Oblique splits are essentially represented by linear discriminant functions of
the form y(x) = wTx + w0, where w is called the weight vector, and w0 is a
bias. For this class of discriminant functions, the decision surfaces are (D− 1)-
dimensional hyperplanes within the D-dimensional feature space. An oblique
DT can be therefore regarded as a collection of linear discriminants instrumented
in such a way so as to provide a classification technique for both binary and
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multi-category pattern classification tasks.
The simplest representation of a linear discriminant function is obtained by

taking a linear function of the input vector x so that y(x) = wTx + w0 =
∑D

i=1 wixi + w0, where wT is the transpose of the weight vector, w0 is a bias,
and wTx represent the inner product of vectors wT and x. Assuming a binary
classification task, an input vector x is assigned to class C1 if y(x) > 0, and to
C2 otherwise. The corresponding decision surface is defined by the expression
y(x) = wTx+ w0 = 0, which corresponds to a (D − 1)-dimensional hyperplane
within the D-dimensional input space. Consider two points xA and xB that lie
on the hyperplane. Because y(xA) = y(xB) = 0 we have:

wTxA + w0 = wTxB + w0 = 0 ⇒
wT (xA − xB) = 0 (1)

and hence the vector w is perpendicular to every vector lying within the
decision surface, given that their inner product is equal to zero. Thus, vector w
determines the orientation of the decision surface. Similarly, if x is a point on
the decision surface, then y(x) = 0, and so the normal distance from the origin
to the decision surface is given by the following:

wTx

||w|| = − w0

||w|| (2)

where ||w|| represents the magnitude or Euclidean norm of vector w. We
therefore see that the bias w0 determines the displacement of the decision surface
from the axis origin. These properties are illustrated for the case of D = 2 in
Figure 1(a).

Furthermore, we note that the value of y(x) gives a signed measure of the
perpendicular distance r of the point x from the decision surface. To illustrate
this, consider an arbitrary point x, and let x⊥ be its orthogonal projection onto
the decision surface. The perpendicular distance r of x from the decision surface
is given as follows:

x = x⊥ + r
w

||x|| ⇒

wx+ w0 = wx⊥ + r
w

||x||w + w0 (3)

Given that y(x) = wTx+ w0 = 0 and y(x⊥) = wTx⊥ + w0 = 0, Equation 3
becomes:

y(x) = y(x⊥) + r
w

||x||w ⇒

y(x) = r
w

||x||w (4)

(5)
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Given that the inner product of two vectors a and b is given by a · b =
||a||||b||cosθ, where θ is a measure of the angle between a and b, and that the
angle between vector w an itself is zero, we have:

y(x) =
r

||w|| ||w||||w||cos(0) ⇒

r =
y(x)

||w|| (6)

This result is illustrated in Figure 1(a). For this case where D = 2, the
absolute distance r of point x = [x1, x2] from the decision hyperplane y(x) with
w = [w1, w2] becomes:

r =
|y(x)|
||w|| =

|w1x1 + w2x2 + w0|√
w1

2 + w2
2

(7)

(a) (b)

Figure 1: (a) Illustration of the geometry of a linear discriminant function in
two dimensions. The decision surface, shown in red, is perpendicular to w, thus
its orientation depends on it, whereas its displacement from the axis origin is
controlled by the bias parameter w0. The signed orthogonal distance of a general
point x from the decision surface is given by y(x)/||w||. Figure taken from [19]
(page 182). (b) Possible decision surfaces for a linearly separable dataset. The
margin is defined as the perpendicular distance between the decision surface
and the closest data points. Maximising the margin leads to a particular choice
of decision boundary, as shown with the red line. The location of the boundary
is determined by a subset of the data points, which is indicated by the circles.
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3 Evolutionary Optimisation of a Maximum Mar-
gin Decision Surface via an ES(1+1)

Decision boundaries with large margins tend to have lower generalisation errors
than those with small margins. Intuitively, if the margin is small, then any
slight perturbations to the decision boundary can have quite a significant impact
on its classification. Classifiers that produce decision boundaries with small
margins are therefore susceptible to model ovefitting. Figure 1(b) illustrate
various decision hyperplanes for a linearly separable dataset. It should be clear
that in this case the solution region incorporates a number of hyperplanes,
with arbitrary orientation and displacement, that satisfy the requirement of
providing a perfect classification on the training patterns. In the example of
Figure 1(b), we illustrate three possible hyperplanes that would result in a
100% accurate classifier. One way to impose additional requirements in order
to bias the selected hyperplane towards better generalisation is to introduce the
concept of margin, which is defined as the perpendicular distance between the
decision surface and the closest data points. Given this definition, we observe
that if we wish to maximise this margin, the location of the required hyperplane
is determined by a subset of the closest data points, which is indicated by the
circles in Figure 1(b).

We adopted an evolutionary approach to optimise the margin of a decision
surface using an ES(1+1) without self-adaptive mutations. Margin maximisa-
tion can be regarded as a constrained optimisation problem that requires the
hyperplane to freely wander within the solution region of arbitrarily oriented
hyperplanes for the one with optimal margin, without causing any drop in the
classification accuracy measured originally on the training instances. We trans-
form the constrained optimisation problem into a multi-objective problem by
adding a penalty function that evaluates constraint violations realised through
misclassifications. So far, we have assumed that the training data points are lin-
early separable in the feature space. In practice, however, the class-conditional
distributions may overlap, in which case exact linear separation of the training
data may not be possible, and if finally some kind of separation does succeed
it usually leads to poor generalisation. We therefore need a way to allow some
of the training points to be misclassified. Data points are allowed to be on the
“wrong” side of the margin boundary, but with a penalty that increases pro-
portionally to the distance from the boundary. A distinguishing characteristic
of maximum margin classification approaches is that these learning algorithms
have sparse solutions so that the location of the decision surface is determined
by a subset of data points.

In order to quantify the size of the margin we start by determining the
closest pair of data points (in terms of Euclidean distance), where each data
point belongs to a different class and lies on the correct side of the margin. Then
the distance of these points from the hyperplane is calculated using Equation 6;
let us call these distances as cpdclassA and cpdclassB . We also use the same
equation to calculate the distances between each correctly-classified data point
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and the hyperplane, for both classes; let us call the smallest of these distances
as svclassA and svclassB for data points of classes A and B respectively. The
distance-based objective function that quantifies a hyperplane’s margin size is
defined as follows:

f =

[

µcpd

σcpd

+ svclassA + svclassB

]

− 1

N

N
∑

i=1

penalty(xi) (8)

where µcpd is the mean distance of cpdclassA and cpdclassB distances, σcpd is
their standard deviation, N is the total number of points for classes A and B ,
and penalty(x) is defined as:

penalty(x) =

{

|y(x)|
||w|| if predicted 6= actual

0 otherwise
(9)

Maximisation of this objective function leads to maximisation of the hyper-
plane’s margin. The first compartment of this function requires that the fraction
µcpd

σcpd
is maximised along with the distances svclassA and svclassB , leading to a

margin that maximises the minimum distance of the samples from the surface,
while ensuring that the separating hyperplane is equally spaced in-between those
closest samples. At the same time, the amount of misclassification penalties is
required to be kept at a minimum by the second compartment.

The first step in optimising the margin of the decision boundaries repre-
sented by the linear discriminant functions serving as predicate nodes in a DT,
is to analyse the expression-tree and map each of the linear discriminant func-
tions to pairs of classes that they discriminate. For that purpose we instrument
the fitness evaluation process in order to be able to track down the path that
is being followed during a DT’s execution with an input training pattern. For
each fitness evaluation, we log the execution-trace by recording each linear dis-
criminant that has been visited starting from the root node until we reach a
final classification leaf-node. Having mapped the linear-discriminant functions
to possible classifications, we then create all possible classification pairs that
a linear discriminant attempts to partition. For every such classification pair
we determine the size separating hyperplane’s margin size using the objective
function in Equation 8. The size of the margin for the overall DT is given by
averaging the resulting margin sizes of all linear discriminants that compose the
expression-tree.

We have chosen an ES(1+1), a simple but powerful random hill-climbing
method to search the solution region of a separating hyperplane for the maxi-
mum possible margin. The candidate hyperplane is represented as a vector of
coefficients that combines the components of vector w (determining the orienta-
tion) with the bias w0 (determining the displacement from origin). The number
of optimisation iterations are governed by a user-defined parameter. At each
iteration a coefficient or a number of coefficients are being perturbed using a
Gaussian mutation with known mean and standard deviation. Currently, we do
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Table 1: Benchmarking Datasets

Dataset Size No. of Classes No. of numerical pattern features

Wisconsin Breast Cancer (WBC) 699 2 9
BUPA liver disorders 345 2 6

PIMA diabetes 768 2 8
IRIS 150 3 4

Vehicle 846 4 18

not allow for self-adaptation of the mutation rates. The sequence in which coef-
ficients are perturbed, as well as their number is either deterministic or random,
with a real-valued parameter governing the probability of application of these
two coefficient-examination schemes, set to 0.7 is favour of the deterministic
sequential examination.

4 Methods

4.1 Experimental Approach

This empirical study attempts to hybridise the traditional method of construct-
ing oblique DTs using GP, with the approach taken in maximum margin clas-
sification methodologies. The concept of learning revolves around the notion of
generalisation, and it is highly desired that methods reinforcing model gener-
alisation are extensively studied in the scope of evolutionary learning. We are
contrasting four different learning algorithms in terms of their generalisation
ability in a series of five benchmark classification datasets from the UCI ma-
chine learning repository [20]. These algorithms are: (a) GP hybridised with
margin maximisation (GP-MM), (b) standard GP (GP-ST), (c) axis-parallel
DT inductor C4.5, (d) SVM (without any use of kernel functions), and (e)
naive Bayesian, all taken from WEKA software [21]. Performance statistics are
evaluated through the process of 10-fold cross validation. Table 1 presents a
description of the benchmarking datasets. Prior to classification all numeric
features were normalised within the range of [0.0, 1.0].

4.2 Grammar-based Genetic Programming

We employ a grammar-based GP system to evolve DTs. The context-free gram-
mar that is used to type the DT representation language is presented bellow:

<DT> ::= <if>

<if> ::= <ldf> <expr> <expr>

<expr> ::= <if> | <classification>

<classification> ::= classA | classB | ... | classZ

<ldf> ::= <constant> * <feature> + <constant> * <feature> + <constant> > 0

<constant> ::= <constant> <op> <constant> | double in the range of [-1.0, 1.0]

<op> ::= + | - | * | /

<feature> ::= depending on the number of features in the problem
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Using this grammar, a DT is represented as a set of two-dimensional linear
discriminant functions. We deliberately constrained the system to the induc-
tion of two-dimensional linear discriminants in order to study the effectiveness
of the proposed methodology on the simplest representation setting possible.
Future extensions will employ a more expressive representation that allows the
composition of multi-dimensional separating hyperplanes.

The GP algorithm employs a panmictic, generational, elitist genetic algo-
rithm. The algorithm uses tournament selection with a tournament size of 12.
The population size is set to 1, 000 individuals. Ramped-half-and-half tree cre-
ation with a maximum depth of 5 is used to perform a random sampling of DTs
during run initialisation. Throughout evolution, expression-trees are allowed
to grow up to depth of 8. The evolutionary search employs a mutation-based
variation scheme, where subtree mutation is combined with point-mutation; a
probability governing the application of each, set to 0.6 in favour of subtree
mutation. No reproduction nor recombination were used.

In the case where margin maximisation is included in the learning process
(GP-MM), GP is run for 100 generations using classification accuracy as the
fitness function (phase I), and optimisation proceeds for an additional 10, 000
hill-climbing iterations (equally divided among the linear discriminants of a
DT) using the objective function of Equation 8 (phase II), totalling 110, 000
fitness evaluations. The Gaussian mutation in ES(1+1) has a mean of 0.0 and a
standard deviation of 0.01. In the case of standard GP runs (GP-ST), evolution
proceeds for 110 generations to allow for a comparison on the same number of
fitness evaluations. Classification accuracy is similarly used as a fitness function.

5 Results

For the evolutionary learning algorithms we performed 50 independent runs to
calculate performance statistics. Table 2 summarises the out-of-sample classifi-
cation performance accrued from the process of 10-fold cross validation. In the
case of evolutionary algorithms we also present the average accuracy for phases I
and II, corresponding to the values obtained during GP and ES(1+1) procedures
respectively. Recall that for the case of GP-MM phase I lasts for 100 generations,
whereas for GP-ST it lasts for 110 generations. Results suggest a superiority
of evolutionary methods compared to other learning algorithms, which becomes
more pronounced in the BUPA and VEHICLES datasets, with the EAs largely
outperforming the rest of the classifiers. A comparison between GP-MM and
GP-ST, further suggests that margin maximisation does indeed play an impor-
tant role in increasing the model generalisation performance. The percentage
of increase in model generalisation ranges from 2.8% in WBC dataset to 13.0%,
suggesting that there are cases where margin maximisation is a very effective
method to deal with the problem of model overfitting. The circumstances under
which such an additional optimisation is fruitful remains to be seen from the
application of our technique to a wider range of multi-category classification
problems, by extending the expressiveness of linear discriminant function rep-
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Table 2: Comparison of test classification accuracy obtained by different learn-
ing algorithms in 10-fold cross validation. Standard errors in parentheses.

Dataset
Learning Best Average Average Generalisation
algorithm accuracy accuracy accuracy increase

(phase I) (phase II)

WBC

GP-MM 98.5% 94.6% (0.008) 97.5% (0.006) 2.8% (0.004)
GP-ST 97.9% 95.1% (0.008) - -
C4.5 96.1% - - -
SVM 96.6% - - -

Bayesian 97.4% - - -

BUPA

GP-MM 81.3% 65.8% (0.01) 73.8% (0.01) 13.0% (0.02)
GP-ST 71.8% 66.1% (0.01) - -
C4.5 63.1% - - -
SVM 70.3% - - -

Bayesian 63.2% - - -

PIMA

GP-MM 81.8% 75.3% (0.008) 78.7% (0.007) 4.8% (0.005)
GP-ST 77.6% 74.9% (0.008) - -
C4.5 75.5% - - -
SVM 78.1% - - -

Bayesian 75.0% - - -

IRIS

GP-MM 100% 95.6% (0.01) 97.7% (0.008) 2.3% (0.004)
GP-ST 98.2% 95.9% (0.01) - -
C4.5 95.3% - - -
SVM 97.1% - - -

Bayesian 94.0% - - -

VEHICLE

GP-MM 78.0% 66.7% (0.008) 71.2% (0.008) 6.7% (0.003)
GP-ST 72.4% 66.3 % (0.007) - -
C4.5 72.6% - - -
SVM 49.6% - - -

Bayesian 60.5% - - -

resentation, allowing for separating hyperplanes in a much higher-dimensional
feature space. An additional interesting observation in Table 2 is that we found
no significant differences between the average classification accuracies in phase
I of GP-MM and GP-ST, suggestive of no evident model overfitting from model
overtraining. This is particularly interesting and surely warrants further study.
Finally, we observe that for the four-class problem (VEHICLE), SVMs have a
very low performance indicative of the inherent difficulty to tackle multi-class
problems using this methodology. SVMs are traditionally binary classifiers,
and practitioners need to rely on one-versus-the-rest, or one-versus-one binary
problem decomposition strategies. On the other hand, tree-based structures can
naturally represent multi-class problems.

6 Conclusion

The decision surface optimisation criterion revolves around the notion of a mar-
gin either side of a hyperplane that separates two data classes. Maximising
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the margin and thereby creating the largest possible distance between the sep-
arating hyperplane and the instances on either side of it has been theoretically
shown and practically proven by SVMs to reduce the upper bound on the ex-
pected generalisation error. This study applies the methodology of maximum
margin classifiers to evolutionary search, resulting in a hybrid method that
learns oblique DTs via GP, and subsequently optimises the geometry of deci-
sion hyperplanes using an ES(1+1). Results are very encouraging, suggesting a
superiority of the new approach as compared against other learning algorithms.
An interesting point to note is that at the moment the ES optimises the geom-
etry of lines in a two-dimensional feature space. In addition, the solution uses
the support of all patterns in the training set. Further research is required to
quantify the time-efficiency of the proposed approach when dealing with large
datasets and high-dimensional feature spaces.

A substantial advantage of evolutionary DT induction is the inherent ability
of the learning algorithm to perform feature construction and/or feature selec-
tion, while simultaneously searching for a good classification strategy. There-
fore, with a careful design of an EA, the dimensionality of the feature space can
be made invariant of the classification performance. Feature spaces that are lin-
early non-separable can take advantage of built-in or evolved kernels combined
with margin-maximisation, providing a natural approach to a multi-category
classification methodology that embodies the best practices of the state-of-the-
art methods in pattern classification.
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