
Jive: A Generative, Interactive, Virtual,

Evolutionary Music System

Jianhua Shao1, James McDermott2, Michael O’Neill2, and Anthony Brabazon2

1 University of Nottingham
dustin.shaojianhua@gmail.com

2 University College Dublin
jamesmichaelmcdermott@gmail.com, m.oneill@ucd.ie, anthony.brabazon@ucd.ie

Abstract. A novel paradigm and system for interactive generative mu-
sic are described. Families of musical pieces are represented as functions
of a time variable and several variables under user control. Composi-
tion/performance proceeds in the following two stages. Interactive gram-
matical evolution is used to represent, explore, and optimise the possible
functions. The computer mouse or a Wii-controller can be used for real-
time interaction with the generative process. We present rationale for
design decisions and several pieces of example music.

Keywords: Generative music, evolutionary computation, grammatical
evolution, interaction.

1 Introduction

Generative music is music which is not specified by a score, but by an algorithm,
a set of rules, a set of processes, a mapping from randomness, or some other
such method. Collins [4] provides a good introduction, quoting a definition of
generative art as art that is “generated, at least in part, by some process that
is not under the artist’s direct control” [3]. Of course this requires a definition
of “direct”. Collins also quotes Sol LeWitt: “the idea becomes a machine that
makes the art”. This brings to mind a famous remark made in the context of
meta-programming: “I’d rather write programs that write programs than write
programs.” (Richard Sites). Generative art is “meta”, in the same sense: the
artist creates not a single instance of the work, but instructions with the potential
to create a family of instances. Meta-programming is also an example of the
observation that constructive laziness is a characteristic of good programmers.
In this spirit, we like the implicit description given by Brian Eno, who has been
responsible for popularising both the term “generative art” and the musical
genre: “[. . .] I’ve always been lazy, I guess. So I’ve always wanted to set things
in motion that would produce far more than I had predicted.” [6].

Collins [4] also mentions an important distinction, that between interactive
and non-interactive generative art. In the latter, the artist cannot intervene
after the generative process has begun. Interactive generative music allows in-
tervention and “performance”: at one extreme, a musical piece such as Queen’s

C. Di Chio et al. (Eds.): EvoApplications 2010, Part II, LNCS 6025, pp. 341–350, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



342 J. Shao et al.

Brighton Rock might be seen as interactive generative music, where the interac-
tion has been increased to a full instrumental performance and the generative
aspect reduced to an extreme echo effect.

Our focus in this paper is a form of interactive generative music where ma-
terial is created through more typical generative processes—musical processes
embodied as algorithms and equations—but interaction by direct manipulation
of some of the equations’ parameters is possible, via either the mouse or the pop-
ular, intuitive Nintendo Wii Remote. Since our system is intended to be usable
by anyone with no computer/mathematical background or training, we adopt a
point of view characterised by the term “hidden variables”. Parameters are not
intended to be explicitly understood by the performer. Rather, the performer
gradually and implicitly learns their effects in different contexts.

The search for algorithms and equations leading to interesting generative mu-
sic with viable interaction possibilities is a difficult task even for users with com-
puter experience. The space of possible equations and algorithms is large. We
therefore require a tool for navigating it, and we choose interactive grammatical
evolution (GE), a form of interactive evolutionary computation (IEC) which has
been successful in previous applications [12,2,5,10,7]. Our system, called “Jive”
(for “generative, interactive, virtual, evolutionary”) thus allows two levels of
composition/performance. First, the creation of the generative piece itself is a
compositional process done through IEC. It fixes many aspects of the “family of
instances”. Secondly, performance of a particular instance is done by live control
of hidden variables. During the IEC process, many short experimental instantia-
tions will be created as the user comes to grips with the possibilities presented by
the evolving population. This two-phase process, using IEC to create interactive
generative music, is the central novel contribution of this paper.

The remainder of this paper is laid out as follows. Previous work is reviewed
in Sect. 2. The Jive system is described, with motivation and examples for its
design decisions, in Sect. 3. Results obtained using this system, and refinements
based on their success and failure, are given in Sect. 4. The final sections contain
discussion, conclusions and future work.

2 Previous Work

Evolutionary approaches to music generation are well-known [12,2]. Generative
processes such as L-systems have been explored both within and without the
evolutionary context [11]. Magnus’ “Evolutionary Musique Concrète” [9] and
many others have used evolutionary dynamics as the primary means of driving
the development of music over time. Others have used non-interactive EC with
computational fitness functions [5]. These differ from the approach adopted here,
where we see interactive EC as a tool, and the generative aspect of the music
could exist independently of EC.

The Genophone system [10] has some of the same aims as that explored in
the present work, in that both performance mappings and material are cre-
ated. There are two major differences. Genophone operates at the level of sound



Jive: A Generative, Interactive, Virtual, Evolutionary Music System 343

synthesis parameters, whereas our focus is on score-level generation. Also, our
representation, using context-free grammars, is entirely different.

However the most direct source of inspiration for this work is the NEAT-based
“compositional pattern-producing network” approach [15,7]. Complex networks
of functional relationships map input variables to plausible, realistic output mu-
sic (or graphical art, etc.). The functional networks are created using IEC. Al-
though the input variables are derived from pre-written input music (the aim
is to automatically produce rhythm tracks to accompany existing music), the
approach has more general potential to map any input parameters to output
music. This is the point we take up.

The commercial system Noatikl, which is descended from Koan, used to create
Eno’s seminal Generative Music 1, allows user interaction with generative pieces
according to a non-evolutionary paradigm.

Generative grammars, like the context-free grammar used in our grammatical
evolution approach, have been extensively used for both the analysis and gener-
ation of music, for example by Lerdahl and Jackendoff [8]. However, we wish to
draw an important distinction here. In our work, we believe for the first time, the
generative grammar is used to create code—specifically a set of arithmetic and
boolean functions, which drive the generative process. It is not used to create
musical material directly, and so our work has no direct bearing on grammatical
theories of music.

3 The Basic Jive System

The Jive system consists of four components: generative, interactive, virtual, and
evolutionary. They are described in the following four sections.

3.1 Generative

Fundamentally, Jive is a generative music system in which music is a function
of time, and time is seen as a discrete variable. In the simplest possible case, a
function such as f(t) = 40 + 7 sin(2πt) or g(t) = t mod 60 will create a piece
of music, albeit a very boring one. Here, the output of functions f and g is a
number, which we round (if necessary) to an integer and interpret as a MIDI
note number. We make one immediate improvement, however: since we wish to
minimise the random feel associated with much generated music, we will map
the integer to a diatonic scale.

There are several routes towards creating more interesting music. First, we
require the ability to play any succession of notes. It is well-known that a com-
bination of sinusoidal functions is sufficient to represent any periodic function
of one variable (and since a piece of music will be finite in length, the period-
icity requirement is unnecessary). This universality is the property we require.
Another possibility, which leads more immediately to musical results, is to use
combinations and variations of a linear function like h(t) = a + q(t mod p). By
varying the values of a (a pitch offset), q (a scaling factor), and p (a periodicity



344 J. Shao et al.

parameter), we can produce a function of one variable, time, which produces
ascending and descending scales, and in general piecewise-linear sequences, as
depicted in Fig. 1(a)1.

(a) Simple piecewise-linear re-
sults obtainable using a single h
function

(b) A single voice can become arbitrar-
ily complex by summing multiple h func-
tions.

Fig. 1. Examples demonstrating output of a single voice

The important role played by the mod operator is to provide periodicity. A
similar role might have been played by a sin function as noted above. A single
instance of the h function chunks time into periods, giving our generative piece
repetitive pattern. We can also sum multiple instances of the function, with
varying values for a, q, and p, to obtain a function h(t) =

∑
i hi, again of one

variable, time, which can produce any desired sequence of single notes2. In order
to keep things rhythmically coherent, we will constrain p to take on values of the
form p = p1 or p = p1p2, where p1 and p2 are small integers (2, 3, 4, or 6), and
their values are fixed for a given piece of music. They function as the primary
and secondary rhythmic characteristics of the piece. The summed h function will
have periodicity equal to the lowest common multiple (LCM) of its component
periodicities: the LCM is constrained by this scheme to be a relatively low value.
The types of results obtainable using this scheme are depicted in Fig. 1(b).

The next step is to add a secondary pattern at a longer time scale. We achieve
this using the quotient function. We alter our summed function to allow expres-
sions of the form hi(t) = (t quot a) + q(t mod p). The quot function performs
integer division. During the time-steps 4-7, the expression t quot 4 has a con-
stant value, 1, which is used as an offset. This causes any simple pattern created
by q, t and mod to be repeated at different offsets, giving a harmonic feel, as in
Fig. 2(a).

Multiple voices are not difficult to achieve: we can simply create new func-
tions h′ =

∑
h′

i, h
′′ =

∑
h′′

i , and so on. For now we stick to three such functions.
Each calculates pitches using independent parameter values, so a higher degree

1 These clips demonstrating successive levels of development, together with software,
example grammars, and four demo pieces, are available at
http://sites.google.com/site/odcsssjian2009/.

2 This is like genetic programming-style symbolic regression, for music.

http://sites.google.com/site/odcsssjian2009/


Jive: A Generative, Interactive, Virtual, Evolutionary Music System 345

(a) The quotient function
gives a feeling of harmonic
movement.

(b) Multiple indepen-
dent voices.

(c) Omitting some notes
gives a first approximation of
phrases.

Fig. 2. Simple examples of harmony and phrasing

of complexity in pitch-movement can now arise. There is one exception: period-
icity is still constrained by the primary and secondary rhythmic characteristic
parameters. Some examples are given in Fig. 2(b).

We add the possibility of rests, rather than a constant succession of notes.
We add an independent boolean function to each voice, which calculates a true
or false value at each note indicating whether to play the pitch calculated for
that voice by its numerical function, or to remain silent. The boolean function
is created, for now, using <, <=, ==, and other comparisons of t against arith-
metic expressions similar to those used for pitch calculation. This allows much
more interesting phrase-structures to emerge. The music being generated is still
very simple but is suddenly beginning to sound like music. Some examples are
depicted in Fig. 2(c).

Finally, for now, we can make the form of our equations entirely open-ended.
Instead of using the fixed function h with varying numerical parameters, as de-
scribed earlier, we can write a context-free grammar which creates arbitrary
functional expressions in our input variables, using other periodic functions such
as sin() and cos() combined with multiplication, addition, subtraction and (pro-
tected) division. It quickly becomes impossible to predict the style of an indi-
vidual from inspection of its code, but this approach has the advantage of being
more open-ended. A good generative system will sometimes surprise its creator,
and this is more likely to occur using an open-ended representation. It is cer-
tainly capable of producing compositions which the authors of this paper could
not have written by hand.

3.2 Interactive

Since the system as described in the previous section creates material as a func-
tion of time rather than from an explicit score, it may be regarded as generative.
However it is capable only of producing simple periodic pieces. A key aim in this
research is to allow the user/performer to interact with the generative music as
it plays. This will allow the material to change and develop over time. Hence,
we add to our system some continuous-valued variables representing user input.



346 J. Shao et al.

These are then available to be incorporated into the numerical expressions for
pitch and boolean expression for note presence/absence.

We provide multiple variables, which will be controlled by the user as de-
scribed in the next section, and we allow some flexibility in the way they are
used. In general, they can be used as offsets or scaling parameters to existing
parameters in our equations. Each input variable may be used more than once
in our various equations, but there is no requirement that every variable be used
at all. This indirect, optional, and multiple usage of input variables we refer to
as “hidden variables”, as discussed in more detail in Sect. 5.

3.3 Virtual

The continuous user-input variables referred to in the previous section are the
user/performer’s main means of interaction with a playing piece (it is also pos-
sible to change tempo manually, but this is not of interest here). Although the
boundary between sequencer, performance system, and instrument is blurred by
the system we have described, we refer to Jive as a virtual instrument. This term
is typically used to mean playable musical instruments which are “disembodied”
or implemented purely in software or electronics.

The user/performer can perform with the Jive system in two ways. The mouse
is a simple method: it provides X and Y values. Although the system has been pro-
grammed to read multiple mouse buttons also, these are not used in any current
configurations. The Nintendo Wii remote control, also known as the “wiimote”, is
a more sophisticated option. It can provide either absolute position or accelerom-
eter data in three dimensions, as well as multiple buttons. Again, we currently use
only a subset: the absolute X , Y and Z values. The wiimote, shown in Fig. 3(a),
does not require a GUI. It is interfaced to our software using the WiiRemoteJ li-
brary (http://www.world-of-cha0s.hostrocket.com/WiiRemoteJ/).

(a) The Nintendo Wii Remote (b) GUI used for auditioning and fitness
evaluation

Fig. 3.

http://www.world-of-cha0s.hostrocket.com/WiiRemoteJ/


Jive: A Generative, Interactive, Virtual, Evolutionary Music System 347

Both controllers are sufficient for their intended purpose here. Small move-
ments tend to lead to small changes in output; larger movements can lead to
entirely different behaviours. Well-timed movements are required, but great dex-
terity is not. More interesting interaction possibilities can be created by sending
not only current 2D or 3D position data, but also a buffer of recent positions,
as input variables to the equations. In the case of the wiimote, for example, a
buffer of size 3 now gives us 9 continuous input variables in addition to time,
and the pitch equations and boolean note presence/absence functions can use
any or all of them. One advantage is that smoother changes occur—however
there is a trade-off with a loss of fine control, since the sound being played at
each instant is now dependent on previous controller movements. Sometimes the
periodic patterns that occur, using the buffer, seem less rigid and more natural.
It allows for potential “emergent gesture recognition”, since in principle relative
movement as well as absolute position are now available to the system.

3.4 Evolutionary

The system as described so far is complete, in that it can be used to create
and to perform pieces of music. It is not user-friendly: most musicians, if they
are human, are not capable of performing symbolic regression in their heads
while composing. Instead, we now introduce the last component of the system,
interactive evolutionary computation (IEC). This algorithm works in the same
way as typical EC, but allows the user to specify individuals’ fitness values,
or to perform selection directly. Because it generates multiple individuals in an
iterative process, with the user required only to assess their quality, it avoids the
need for the user to write equations directly when creating a piece.

The IEC GUI used for generation, auditioning and selection of pieces, and
iteration of the algorithm, is shown in Fig. 3(b). It remains to describe the
representation we have chosen for our individuals.

Grammatical evolution (GE) is a proven technique for representing code in di-
verse languages with arbitrary constraints on its form [14]. The language syntax
and the allowable or desirable syntactic forms (such as our equations) are speci-
fied in a context-free grammar in Backus-Naur Form. An individual’s genome is
an integer array, which specifies the grammar productions to be chosen during
the derivation process.

In our work, GE is implemented using the freely-available GEVA software
[13], written in Java. GEVA was configured to use a population size of 10, an
unlimited number of generations, a one-point crossover rate of 0.7, an int-flip
mutation rate of 0.02, and generational replacement. Our equations and boolean
functions, together with some boilerplate code for dealing with input variables
and time, were specified as BNF grammars producing programs in the JScheme
language [1]. The grammars we have used are available for download: see Sect. 6.
The jMusic API is used to take the values returned by execution of JScheme
individuals and translate them into MIDI.

Although any given version of our equations might be represented as a lin-
ear, real-valued genome—one gene per parameter—we have found that the GE



348 J. Shao et al.

approach, using a BNF grammar, gives much greater flexibility. The process of
altering the form of an equation is much easier with a grammar, compared to
re-writing code. Grammars can also be entirely open-ended, allowing (for ex-
ample) a sum of multiple expressions h′

i, or an XOR-combination of boolean
note presence/absence—and the number of such expressions may be unknown
in advance and left for evolution to determine. This is much more difficult or
impossible using a GA-style representation.

4 Results and Refinements

The basic system as described so far is already capable of producing some music
sufficiently interesting to be worth describing.

The system is clearly lacking in the area of rhythm. Phrases are essentially
created by knocking notes out, i.e. switching on a “rest” flag for one or more
notes, leaving gaps between sub-sequences which the ear then interprets as iso-
lated phrases. In the demo pieces RD0 and RD2, we attempt to work against
this shortcoming. An open-ended grammar makes a good deal of complexity
available during the performance phase. Multiple basic behaviours were avail-
able in the mouse’s (x, y) plane, for example an “ascending” behaviour, partly
controlled by relative position; a “stop” or steady-state behaviour; and a dense
periodic pattern. Composition in this case consisted not only of choosing which
behaviour to switch to, but when. It was possible to take advantage of this to
create higher-level structure in the pieces. It was also possible to use a voice cre-
ating sparse material, whose pitch was under direct control, to act as a melody.
This put the continuous material in the background, to some extent overcoming
the “continuous stream” feel.

The demo piece ML0 uses the “memory” facility and is very complex, chaotic
at times. The piece was evolved through approximately 22 generations.

In the final demo piece, MD0, we have added two new features. A voice can
now choose to play a chord, chosen from a small selection of major and minor
triads and sevenths. A drum grammar was also created and used in Jive to
produce a looped rhythm track. Note that all demo pieces have been rendered
in an external program using manually-chosen synthesizers and effects.

5 Discussion

Generative music at its best brings out the abstract patterns which underlie
(but do not solely constitute) many (but not all) types of music. The “hidden
variables” approach adopted here has some satisfying results in this context. A
change in a single hidden variable may have multiple effects. This imposes a
type of large-scale coherence on the output—multiple voices may react simul-
taneously to a change in a user parameter, for example. This can lead to a
re-interpretation of non-generative music. When several instruments in an or-
chestral piece crescendo and then switch to a new section, one could interpret
the multiple voices as manifesting the effects of shared, hidden variables.



Jive: A Generative, Interactive, Virtual, Evolutionary Music System 349

An interesting aspect of generative music is the blurry boundaries it creates
between composer, performer, and listener. This is augmented in our work by the
explicitly interactive element. The user of the Jive system plays roles including
programmer (editing the grammar to fix a different rhythm), critic and composer
(auditioning and selecting generated pieces during interactive evolution), and
finally composer, conductor and performer (interacting with a fixed piece). We
have occasionally used terms like “user/conductor” and “user/performer” to
emphasise this blurriness.

Sometimes the control available to the user/performer seems very crude. While
performing, it is not (in general) possible to insert or delete arbitrary notes. This
apparent drawback has two, perhaps unexpected advantages. Firstly, since the
system generates material continuously, with precise timing and no “wrong”
notes, the user/conductor is freed from low-level details. The mouse and to a
lesser extent the wiimote are, after all, inadequate controllers for the type of
dextrous performance required by typical musical performance.

Secondly, the user/conductor gains a higher-level type of control despite the
lack of low-level detail. As discussed in Sect. 4, the user/composer has control
not only of which behaviour to switch to, but also when. He or she is not only
performing the gestures which correspond to desired sonic results, but is reacting
to the current musical context created by the ongoing algorithm and by his/her
previous actions. This ability allows the censoring of undesired sections and the
creation of complex musical syntax, such as call-and-response patterns among
the several behaviours. The user’s control of timing is sufficiently fine to allow
the behaviours to work together in interesting ways.

6 Conclusions and Future Work

In this paper, we have presented the Jive system, a novel system and paradigm
for interactive generative music. It uses IEC with aesthetic selection to create
a generative process, and is a virtual instrument for real-time expression and
performance. We have explained the design decisions and shown examples of the
possible outputs. We consider that the styles of music possible with Jive, though
limited, are interesting and characteristic.

Any virtues the system has arise from two sources. Firstly, our representa-
tion includes set of primitives which are not in themselves musical but func-
tion well as building-blocks for music. Secondly, we use a two-phase compo-
sition/performance process. The user/performer has some ability to overcome
failings present in the composed piece, as discussed in the context of the demo
pieces. The choosing of constraints and the exploration of what can be done
despite them is characteristic of many art-forms. There is also the possibility of
a third phase, in which the user edits the grammar in order to constrain the
possible outputs. Of course this is only available to technically-oriented users.

The Jive system is not finished, and there are several possibilities for improve-
ment. In our future work, our first priority is to address the system’s shortcom-
ings in the area of rhythm. We intend to add the possibility of more complex
rhythms with the addition of triplets, quintuplets, etc. More complexity in the



350 J. Shao et al.

phrasing and grouping of notes is also required. The interactive evaluation of
multiple individuals per generation is a time-consuming task. There is some
scope for automatic evaluation, for example by filtering individuals which give
over-dense or inadequately varied material.

We believe that the generative, hidden-variable approach used here is a good
way of making musical games, similar in spirit to popular “guitar karaoke” games
but far more open-ended and expressive.

Acknowledgements

Jianhua Shao’s work was funded by Science Foundation Ireland under the OD-
CSSS scheme. James McDermott is funded by the Irish Research Council for
Science, Engineering and Technology under the Empower scheme.

References

1. Anderson, K., Hickey, T., Norvig, P.: JScheme and JScheme documentation,
http://jscheme.sourceforge.net/jscheme/main.html (last accessed October
30, 2009)

2. Bentley, P.J., Corne, D.W. (eds.): Creative Evolutionary Systems. Morgan Kauf-
mann, San Francisco (2002)

3. Boden, M.: What is generative art?, cOGS seminar (October 2007)
4. Collins, N.: The analysis of generative music programs. Organised Sound 13(3),

237–248 (2008)
5. Dahlstedt, P.: Autonomous evolution of complete piano pieces and performances.

In: Proceedings of Music AL Workshop (2007)
6. Eno, B.: Generative music, lecture, San Francisco, USA (June 1996),

http://www.inmotionmagazine.com/eno1.html
7. Hoover, A., Rosario, M., Stanley, K.: Scaffolding for interactively evolving novel

drum tracks for existing songs. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di
Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink,
A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar,
A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 412–422. Springer,
Heidelberg (2008)

8. Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press,
Cambridge (1983)

9. Magnus, C.: Evolutionary musique concrète. In: Rothlauf, F., Branke, J., Cagnoni,
S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H.,
Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006.
LNCS, vol. 3907, pp. 688–695. Springer, Heidelberg (2006)

10. Mandelis, J., Husbands, P.: Genophone: Evolving sounds and integral performance
parameter mappings. International Journal on Artificial Intelligence Tools 15(4),
599–622 (2006)

11. McCormack, J.: Evolutionary L-systems. In: Hingston, P.F., Barone, L.C.,
Michalewicz, Z., Fogel, D.B. (eds.) Design by Evolution: Advances in Evolutionary
Design, pp. 169–196. Springer, Heidelberg (2008)

12. Miranda, E.R., Biles, J.A. (eds.): Evolutionary Computer Music. Springer, Heidel-
berg (2007)

13. O’Neill, M., Hemberg, E., Bartley, E., McDermott, J., Brabazon, A.: GEVA: Gram-
matical evolution in java. SIGEVOlution 3(2), 17–22 (2008)

14. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003)

15. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of
development. Genetic Programming and Evolvable Machines 8(2), 131–162 (2007)

http://jscheme.sourceforge.net/jscheme/main.html
http://www.inmotionmagazine.com/eno1.html

	Jive: A Generative, Interactive, Virtual, Evolutionary Music System
	Introduction
	Previous Work
	The Basic Jive System
	Generative
	Interactive
	Virtual
	Evolutionary

	Results and Refinements
	Discussion
	Conclusions and Future Work


