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Abstract. This study attempts to decompose the behaviour of mutation
in Grammatical Evolution (GE). Standard GE mutation can be divided
into two types of events, those that are structural in nature and those
that are nodal. A structural event can alter the length of the phenotype
whereas a nodal event simply alters the value at any terminal (leaf or in-
ternal node) of a derivation tree. We analyse the behaviour of standard
mutation and compare it to the behaviour of its nodal and structural
components. These results are then compared with standard GP oper-
ators to see how they differ. This study increases our understanding of
how the search operators of an evolutionary algorithm behave.

1 Introduction

Much attention has been directed towards the behaviour of crossover in Gram-
matical Evolution due to the traditional importance placed on this search oper-
ator in Genetic Programming [1] in general (e.g., [2,3,4]). However, aside from
simple studies which examined mutation rates, there has been little analysis
of the behaviour of mutation on search in GE. The notable exceptions to this
include Rothlauf and Oetzel’s locality study on binary mutation [5], a study
comparing performance of binary and integer forms of mutation [8] and our first
study on standard GE mutation [11]. This study extends this research by exam-
ining how each behavioural component of mutation moves the solution through
the problem space. Search operators are a key component of any genetic and
evolutionary computation representation, and as such it is critical that we un-
derstand their behaviour. This study addresses this important research gap by
conducting an analysis of the behaviour of GE’s mutation operator, focusing on
the types of changes that occur when it is applied, and their impact on evolu-
tionary performance.

The remainder of the paper is structured as follows. Firstly, the related re-
search in this area is discussed in Section 2. A brief explanation on the locality
of binary mutation is provided in Section 3 before an analysis of the behaviour
of mutation in GE is undertaken in Section 4. Three separate experiments are
carried out and their results are discussed in Sections 5, 6 and 7. In light of the
results further analysis is described in Section 8, before finishing the paper in
Section 9 with Conclusions and Future Work.
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2 Related Research

In a recent study examining the locality of the mutation operator in Grammatical
Evolution it was found that in some cases (less than ten percent of the time)
mutation events resulting in small changes to the genotype can result in large
changes to the structures generated [5]. More specifically, given a single unit of
change at the genotype level (i.e., a bit flip), changes of one unit or greater at
the derivation tree level occurred approximately ten percent of the time. 14% of
these had a distance of greater than 5 units at the tree level. A unit of change at
the phenotypic tree level corresponded to tree edit distance calculations which
included deletion (delete a node from the tree), insertion (insert a node into the
tree) and replacement (change a node label) change types. It is worth stating
that the other 90% of the time mutation has no effect due to the many-to-one
mapping adopted in GE which allows multiple values to correspond to the same
production rule choice. The genotype change therefore is neutral upon phenotype
structure and fitness in these cases.

In this paper we turn our attention to what is occuring that critical 10% of
the time when a unit of change arising from mutation at the genotype level
does not perfectly correspond with a unit of change at the phenotype level. We
wish to establish if it is possible to design a mutation-based search operator that
exhibits better properties of locality than the one currently adopted in GE.

3 A Component-Based View of Mutation in GE

In order to expose the impact of mutation on derivation tree structure we design
a simple grammar, which uses binary rule choices. This allows us to condense
codons (elements in the string representing the individual) to single bits. This
simplifies our analysis without loss of generality to more complex grammars with
more than two productions for each non-terminal.

Below is a simple binary grammar which might be used in a symbolic regres-
sion type problem with two variables (x and y).

<e> ::= <o><e><e> (0)
| <v> (1)

<o> ::= + (0)
| * (1)

<v> ::= x (0)
| y (1)

We can then construct genomes with binary valued codons to construct sen-
tences in the language described by the above grammar. Consider all genomes
of length two codons (22 of them) and draw an edge between genomes that are
a Hamming distance of one apart. If we then present the corresponding partial
derivation trees resulting from those genomes we see the arrangement outlined in

x
y
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Fig. 1. The 2D neighbourhood for the example grammar (i.e., using the first two
codons)

Fig. 1. In this particular example we see that a mutation event at the first codon
corresponds to a new derivation tree structure. Here we define a new derivation
tree structure as being one that has changed in length, that is, it contains more
non-terminal symbols than its neighbour. Mutations from 00 to 10 (and vice
versa) and from 01 to 11 (and vice versa) result in these structural changes.
Whereas the remaining mutation events result in node relabelling.

Extending the genomes by an additional codon we can visualise the Hamming
neighbourhood between the 23 genomes both in terms of codon values and par-
tial phenotype structures. These are illustrated in Fig. 2. Again, we see a clear
distinction between mutation events that result in structural and non-structural
modifications.

Mapping these codons back to the grammar we see that structural mutations
occur in the context of a single non-terminal symbol, <e>. We can see from this
grammar that this non-terminal alone is responsible for structural changes, as it

Fig. 2. The 3D neighbourhood for the example grammar (i.e., using the first three
codons)

00
10
01
11
<e>
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alone can increase the size of the developing structure. The rules for the <o> and
<v> non-terminals are non-structural as they simply replace an existing symbol
without changing structural length.

Effectively we can now decompose the behaviour of mutation into two types
of events. The first are events that are structural in their effect and the second
are those which are nodal in their effect. By logical extension we could consider
both types of events as operators in their own right, and therefore define a
structural mutation and a nodal mutation. It should be noted, however, that this
is a specialisation of standard GE mutation, as it is possible for both types of
events to occur during standard application of GE mutation to an individuals
genome. Perhaps the locality of mutation could be improved by simply reducing
the number of occurances of the structural form of mutation, or even removing
this form of mutation completely?

If mutation was the sole search operator employed in a GE search, its elimina-
tion would have the consequence of removing structural change and structural
search. This of course should have detrimental consequences for search as in
Genetic Programming we must explore both structures and their contents. Part
of the strength of GP approaches as problem solvers is their ability to search
variable-length structures, so the removal of this ability would be undesirable.
The following analysis and experiments seek to determine the relative impor-
tance of these behavioural components of mutation and begin to answer these
kinds of questions.

4 An Analysis of Mutation in GE

To show the impact of decomposing mutation into its constituent parts we will
look at how well each component of the operator performs on the Max problem.
The aim of the Max problem is to generate a tree that returns the largest real
value within a set depth limit. The optimal solution to this problem is to have
addition operators at the root of the tree so that it creates a large enough variable
for multiplication to have an effect. This problem is considered difficult for GP as
populations converge quickly on suboptimal solutions that are difficult to escape
from, except through a randomised search [7]. As such, this problem should be
amenable to the right form of mutation operator. The grammar for this problem
is given below:

<expr> ::= <op> <expr> <expr> | <var>
<op> ::= + | *
<var> ::= 0.5

This problem is an interesting application for the new component behaviours
of the mutation operator as it highlights the different methods each component
uses for exploring the search space. The grammar is suitable for illustrating
the mutational differences as it consists of one structural rule(<expr>) and one
nodal rule(<op>). Its simplicity also removes any extraneous factors that could
complicate the result. The Max problem also requires that every element of the

<o>
<v>
<expr>
<op>
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Fig. 3. An Example Max problem parse tree. Total =0.125.

Fig. 4. Nodal mutation performed on
parse tree. Total = 0.5.

Fig. 5. Structural mutation performed
on parse tree. Total = 0.25.

tree contributes to the final solution. i.e. there are no introns [7], which further
removes any confounding factors.

4.1 Experimental Procedure

The experiments described in Sections s 5, 6 and 7 were implemented using
GEVA[12,13], this is an open source framework for Grammatical Evolution in
Java designed by the NCRA group in UCD. The following properties were kept
constant for each experiment execution, these are as follows: Population size =
500, replication rate = 0.1, maximum generations = 50, the Mersenne Twister
as the random number generator and fitness proportionate selection using the
tournament selection operator with the tournament size set to 3. Generational
replacement with an elite size of 1 was used as our replacement operator.

Wrapping was turned off as it could lead to conditions where a codon was
both structural and nodal. The experiment was run using mutation exclusively as
crossover would have had a confounding effect in combination with the mutation
operators. A ramped half and half initialiser was used to create the derivation
trees with an initialisation depth of 10. This equates to a phenotype tree of depth
8, the maximum depth allowed for this problem. This was necessary because
nodal mutation by itself cannot alter the length of a phenotype and it required
trees initialised to the maximum depth for a fair comparison.

5 Analysis of Mutations Effect on Search

This experiment investigates whether there is a statistically significant difference
in performance between standard GE mutation and its structural and nodal
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components. The two component behaviours have been implemented as oper-
ators in their own right so that we may measure the relative impact on the
overall behaviour of integer mutation. We then examine whether these differ-
ent components could have a beneficial impact on traversing the search space.
Our experiment was carried out on the problem described above. As Nodal and
Structural mutation act on subsets of the chromosome, the standard method of
mutation had to be altered. Instead of applying the operator to each codon with
a certain probability of mutation, only one mutation event was allowed per indi-
vidual. This meant that each operator produced the same number of mutation
events. 500 trial runs were carried out for each operator.

5.1 Experiment Results

The results from this experiment show that selectively altering subsets of codons
from the chromosome can have a dramatic effect on how GE navigates the search
space. The results are shown in the graphs below, see Figures 6 and 7. The fit-
ness was based on a minimising function (1 over the result), so smaller results
are better. As the results were on a logarithmic scale, a Wilcoxon rank-sum test
(two-tailed, unpaired) was performed on the nodal and structural distributions
that showed they were significantly different. The nodal component behaviour
performs the best as it will explore the configurations of the particular tree
structure to optimise it, something this problem requires to reach an optimal
solution. Conversely structural changes does not explore the contents of the tree
but instead explores configurations of derivation tree structures. This leads to
poor performance on this problem. This is even more discernible when looking
at the average fitness of the population (Figure 7). The fitness of standard muta-
tion matches more closely with structural mutation suggesting it has a damaging
effect on the nodal search component, changing the tree structure before it can
be fully explored. This result clearly indicates that there are two separate be-
havioural components operating in standard GE mutation and it also indicates
that they might not be complementary behaviours.

6 Comparison with GP Mutation

By splitting GE mutation into its components we now have two operators that
are analogous to standard tree-based GP operators, point mutation and subtree
mutation. Nodal mutation is identical in behaviour to point mutation so no
comparison is needed but while subtree and structural mutation both explore
the structure of trees there is a significant difference. There is a dependency on
codon placement in GE as it uses a linear genome representation. As the genome
is read from left to right, it means a change to a structural codon could change
the meaning of the codons that follow it. In the most extreme case a single
mutation early on in the genome could generate an entirely different tree. This
effect is called ‘ripple’ mutation, and is similar in effect to ripple crossover [14].
Subtree mutation, on the other hand, replaces a subtree with another randomly
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Fig. 6. Log of best fitness for GE opera-
tors on Depth 8 Max Problem
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Fig. 7. Log of average fitness for GE op-
erators on Depth 8 Max Problem

generated subtree, while leaving the rest of the tree intact [9]. In the following
experiment we will apply standard tree-based mutation operators, point and
subtree mutation, to the GE derivation tree representation. This allows us to
compare a search of the structural space both with and without the ripple effect.
We can then determine whether this ripple effect is advantageous to the search
process. 500 trial runs were carried out for each operator.

6.1 Experiment Results

This experiment investigated how structural mutation performed against GP
subtree mutation and whether the ripple effect was beneficial to the search pro-
cess. A pairwise Wilcoxon rank-sum test was performed on the final results of
both best and average fitness. It showed that all the results were significant ex-
cept for nodal compared with standard mutation. Figure 8 shows that subtree
mutation outperformed structural mutation. When the average individual fitness
was examined it showed that despite subtree mutations better performance, most
mutations created exponentially worse individuals during the course of the run
(Figure 9). This shows that the ripple effect of structural mutation did not have
a significantly detrimental effect on the search.

A further experiment was run where the maximum depth was set to 100 while
leaving the maximum initialisation depth at 8. This in effect gave nodal muta-
tion a significant disadvantage over the other operators as it cannot increase the
derivation tree depth. The results for this experiment are shown in figures 10
and 11. Nodal mutation still performed better than structural and standard mu-
tation but subtree mutation greatly outperformed it. Average fitness in subtree
mutation also improved at the greater depth. Upon closer investigation the cause
for this was found to be an explosive growth in the derivation tree depth and
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Fig. 8. Log of best fitness results for
Depth 8 Max Problem
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Fig. 9. Log of average fitness results for
Depth 8 Max Problem
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Fig. 10. Log of best fitness results for
depth 100 Max Problem

0 10 20 30 40 50

1e
−

03
1e

−
01

1e
+

01
1e

+
03

Average fitness depth 100(logarithmic)

generation

fit
ne

ss

standard
nodal
structural
subtree

Fig. 11. Log of average fitness results for
Depth 100 Max Problem

used codon length. This is shown in figures 12 and 13. Subtree mutation ap-
proached the problem by exploiting the fact that it makes larger subtrees. This
meant that while it generated better mutations as regards fitness there was also
a significant price to be paid in code bloat. Nodal mutation instead took the ap-
proach of optimising the structures present in the population to correctly target
the position of the terminal set of operators(+,*). This led to the creation of
highly efficient trees that could compete with subtree results despite their depth
limitation.
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7 Analysis of Mutation Events on Fitness

The previous experiments show how each operator performs during the course
of a run but they do not have the granularity to see what was actually hap-
pening during each mutation event. Next we conducted an experiment in order
to undertake an analysis of the operators’ impact on individual independent
mutation events. In previous studies [5] changes to the derivation tree were
recorded but as we know what kind of phenotypic impact our operators have,
we instead look at changes to the fitness of the individual. The experiment was
run using the Max Problem with the same settings as described in Section 4.1.
The mutation was carried out on a random codon in a randomly initialised
individual. When a mutation occurred the change in fitness was recorded and
then the codon was returned to its original value. Any mutation events that
broke the depth limit were not counted. If a mutation created an invalid in-
dividual then this was recorded but no penalty was added to the fitness. This
was continued until a sample size of 1,000,000 mutations was gathered for each
operator. This experiment does not intend to show how these search opera-
tors work in practice. For example the quantity of bad fitness generated by
an operator is generally irrelevant as it is bred out of the population(although
it reduces the efficiency of the mutation operator). Conversely, a good muta-
tion is always of benefit to a population regardless of its size. There is also a
potential interplay of the operators as they are components of standard mu-
tation and multiple codon sites can be mutation during standard application.
Instead what these metrics do is focus on some of the mechanics at play during
mutation.
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7.1 Experiment Results

This experiment attempts to highlight the effects of individual mutation events
on the overall fitness of an individual. The results are shown in table 1. It should
be noted that over half the time the GE mutation operators generated a neutral
mutation. This was because of the structure of the grammar. Each rule had
two possible outcomes, mutation would either change the outcome or leave it
untouched. Nodal and subtree mutation did not generate any invalids. In nodal
mutations case it is because it is incapable of making them whereas it is in
the definition of subtree mutation that it cannot generate invalids, so it would
keep generating new subtrees until a valid one was produced. This factor also
meant that subtree produced a large amount of neutral mutations as many of
the alternatives would have made invalid individuals.

Nodal generated the greatest number of beneficial mutation events followed by
subtree, standard and structural. As for the quality of these mutations, subtree
outperformed the other operators by a factor of three. Nodal also produced
the greatest number of bad mutations, followed by standard, and structural
with subtree only producing bad mutations 2.9% of the time, unfortunately
each bad subtree mutation was massively worse than the others. Overall nodal
mutation was the least destructive operator, rarely generating large changes but
cumulatively generating the greatest fitness change. Structural performed far
worse than nodal but it was still not nearly as destructive as subtree mutation.
Upon further investigation into the poor results for average fitness, as shown in
Fig 9, it was found that the variance in average fitness increased exponentially
at certain points during the run. This would indicate that subtree mutation
occasionally produced very unfit subtrees that, depending on the root node of
the tree, could make the overall fitness far worse.

Table 1. Results for mutation events on the Max Problem

Mutation Op Good Bad Neutral Invalid Avr. Good Avr. Bad total Change

Standard 10.1% 26.2% 51.1% 12.6% 9.857 322.648 -138,580,712
Structural 5.2% 24.5% 51.6% 18.6% 11.385 1040.559 -137,691,951

Nodal 18.5% 31% 50.5% 0 10.462 63.106 -17,648,412
Subtree 11.4% 2.9% 85.6% 0 28.865 75461.321 -2,222,353,022

8 Discussion

This study highlighted the two contradictory components of standard GE muta-
tion. The nodal behaviour was more akin to the standard GP point mutation as
phenotypic changes consisted of replacing one terminal for another, leaving the
derivation tree untouched. This could be beneficial in GE, where the outcome
of a particular rule choice is dependent on all the choices that precede it. The
behaviour of structural mutation was more explorative, creating variations of
the tree structure itself. The results from the comparison with subtree mutation
showed that it had a comparable effect on search despite the possibility of the
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ripple effect changing every codons meaning. Even though it did not perform as
well as subtree at the greater depth limit it showed that it was not as susceptible
to code bloat as it explored the structure space of the trees.

The point of this paper was not to show which was the best operator, some-
thing which is problem dependent anyway. Instead it was to decompose GE’s
standard mutation operator into it’s component behaviours. Despite our inten-
tions, this information could now be used to create a mutation operator that
applies these behaviours to a problem as and when they are needed. We have
also applied this analysis on a range of other benchmark problems with similar
results. The use of intelligent operators might help GE escape local optima as
well as find the optimal solution more efficiently. This could be of particular
benefit in dynamic environments where an evolutionary algorithm must be able
to adjust quickly in response to a changing fitness function [10].

9 Conclusion and Future Work

This study analysed the behavior of mutation in GE. We initially described
standard mutation in GE and then broke it into two components which we
called Structural and Nodal mutation. We then investigated the effects of these
mutation operators as applied to the Max Problem to ascertain if there was
any discernible difference between these components. We then compared the
operators against GP subtree mutation. Further investigation was carried out
on the impact of individual mutation events.

Future work will involve using this information to design a better approach to
mutation in GE. This could involve switching from one type of mutation to the
other during the course of the run. It is natural to expect that the importance
of different types of operators will vary over the course of a run as well as from
problem to problem. In this respect we hypothesise that we would observe a
greater difference in performance between the different forms of mutation during
the end-phase of a run versus the mid and early-phases. In the later phase of
a run we would hypothesise that nodal mutation might have a more positive
impact than during the early phase, and we would hypothesise the opposite
behaviour for structural mutation.
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