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Abstract. Grammatical evolution (GE) is a form of grammar-based ge-
netic programming. A particular feature of GE is that it adopts a distinc-
tion between the genotype and phenotype similar to that which exists in
nature by using a grammar to map between the genotype and phenotype.
This study seeks to extend our understanding of GE by examining the im-
pact of different genotypic representations in order to determine whether
certain representations, and associated diversity-generation operators,
improve GE’s efficiency and effectiveness. Four mutation operators us-
ing two different representations, binary and gray code representation
respectively, are investigated. The differing combinations of representa-
tion and mutation operator are tested on three benchmark problems. The
results provides support for the continued use of the standard genotypic
integer representation as the alternative representations do not exhibit
higher locality nor better GE performance. The results raise the question
as to whether higher locality in GE actually improves GE performance.

1 Introduction

Grammatical evolution (GE) [15, 14, 20] is a form of grammar-based genetic pro-
gramming. A special feature of GE is that, unlike genetic programming, it has a
clear distinction between the genotype and phenotype. The mapping of the geno-
type and phenotype is governed by a grammar and this grammar can contain
domain knowledge to bias the form a phenotypic solution can take. By sepa-
rating the search and solution spaces, GE allows the implementation of generic
search algorithms without a requirement to tailor the diversity-generating oper-
ators to the nature of the phenotype. A substantial literature has emerged on
GE and its applications [15, 1, 19, 17]. Some of the more recent developments of
GE are focused on the various components of the GE approach including the use
of alternative search engines [10, 13], the use of alternative grammar constructs
[11, 3, 9, 16], and the examination of different mapping processes in GE [12]. One
aspect of GE which has seen less research is the examination of the impact
of the choice of genotypic representation, and associated diversity-generation
operators, on GE’s efficiency and effectiveness. A recent paper by Oetzel and
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Rothlauf [19] examined the locality properties of a binary representation in GE
and found that a genotypic bit-mutation operator produced non-local changes
in the phenotype. The authors of this study proposed that further research be
undertaken in order to find other representations and associated mutation opera-
tors which would produce higher locality, suggesting that this would increase the
performance and effectiveness of GE. This study addresses this research issue by
investigating the impact of four mutation operators using two different represen-
tations, binary and Gray code representation respectively, on the performance
of GE. The combinations are tested using three standard benchmark problems,
symbolic regression, the Santa Fe ant trail and the even-5-parity problem.

The remainder of the paper is structured as follows. Section 2 describes GE
and provides background on earlier work on representations. Section 3 details
the experimental approach adopted and results, and finally section 4 details
conclusions and future work.

2 Background

This section provides an introduction to GE and to some prior work on the
importance of representation in evolutionary algorithms. GE is an evolutionary
algorithm which has some similarities to genetic programming (GP) [7]. Rather
than representing the programs as parse trees, as in GP, a linear genome rep-
resentation is used. A genotype-phenotype mapping is employed such that each
individual’s variable length binary string, contains in its codons (groups of 8
bits) the information to select production rules from a Backus Naur Form (BNF)
grammar, see Fig. 1. Consequently, the genetic operators such as crossover and
mutation are applied to the linear genotype in a typical genetic algorithm (GA)
[5] manner, unlike in a tree-based GP approach where they are applied directly
to the phenotypic parse trees. The grammar allows the generation of programs
in an arbitrary language that are guaranteed to be syntactically correct. The
user can tailor the grammar to produce solutions that are purely syntactically
constrained, or they may incorporate domain knowledge by biasing the gram-
mar. The mapping process creates a clear distinction between the search and
solution space.

An important element in a successful application of evolutionary method-
ologies is a careful co-selection of a representation and associated diversity-
generating operators which are well-suited for a specific problem landscape.
These choices can radically change the performance of an algorithm. Easy prob-
lems in one representation can be hard in another. A substantial literature exists
on the importance of representation choice and readers are referred to [18] for
a detailed discussion of this issue. In that study three different types of repre-
sentations are analysed for a GA under influence of the crossover operator. The
study focuses on redundancy, scaling of building blocks and the modification of
distance between individuals when mapping the genotype to the corresponding
phenotype. It suggests that redundancy in a representation typically has a neu-
tral or negative effect on algorithmic performance. In contrast, GE always maps
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Genotype 14    8    27    254    5    17    12

Derivation Sequence

<o> <e> <e> −−> + <e> <e>

<e>  −−−>  <o> <e> <e>

+ <e> <e> −−> + <v> <e>

+ <v> <e> −−> + x <e>

+ x <e> −−> + x <v>

+ x <v> −−> + x y

(14 mod 2 = 0)

(8 mod 2 = 0)

(27 mod 2 = 1)

(254 mod 2 = 0)

(5 mod 2 = 1)

(17 mod 2 = 1)

Grammar

<e> ::= <o> <e> <e>
           | <v>

<o> ::= +
           | −

<v> ::= x
           | y

<e>

<e> <e><o>

<v> <v>+

x y

Derivation
Tree

x y

+

Parse Tree
(Phenotype)

Fig. 1. An example GE genotype-phenotype mapping, where the genotype is used to se-
lect production rules from a grammar to produce a derivation sequence. The derivation
sequence represents the development of a program from the embryonic non-terminal
start symbol (<e>). The derivation sequence can be represented as a derivation tree,
which can then be simplified to correspond to the parse tree adopted in standard
tree-based GP.

via the BNF grammar to the solution space, producing a much more complex
genotype-phenotype mapping than typically exists in a GA. The locality of a
genotype-phenotype mapping describes how well genotypic neighbors correspond
to phenotypic neighbors. Rothlauf and Oetzel [19] investigate the locality of this
mapping in GE and suggest that it has low locality as neighboring genotypes
do not necessarily correspond to neighboring phenotypes. Based on this finding,
they suggest that further work is needed in order to develop representations with
higher locality in order to maximise the efficiency of GE.

In prior investigations on GAs, Hollstien [6] claimed that gray code works
slightly better than the binary representation. Gray code has some advantages
compared to binary code [18] as it is not affected by scaling and it has perfect
locality concerning small changes. Therefore the difficulty of a problem remains
unchanged when using mutation-based search. However gray coding may not
produce the same effect in GE since GE uses a complex many to one mapping
(arising from the BNF grammar) causing neutral mutations whose effects also
must be considered. The neutral mutations are believed to cause higher diversity
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and thus higher fitness [2, 22, 4, 19]. If neutral mutations are important mutation
operators with high neutrality should be advantageous. Yu and Miller, [21],
state a hypothesis about the importance of the ratio between adaptive/neutral
mutations. The mapping in GE gives it a non uniform representation and thus
may take longer to converge. GE is also subject to a ripple effect when a standard
GA is applied. As the function of a gene depends on the genes that proceeds it,
a small genotypic change can lead to a big phenotypic change. Evidence suggests
that this effect can promote a useful exchange of derivation sub-sequences during
crossover [9].

3 Experimental setup & Results

This section outlines the experimental setup used in this study, details the results
of these experiments, and provides a discussion of the key findings.

3.1 Hypothesis and Setup

Given the best fitness value after 50 generations for each mutation operator: µ0,
best fitness using normal integer mutation. µ1, plus minus mutation. µ2, binary
mutation and µ3, gray code mutation. The following hypothesis is stated:

H0: None of the representations and mutations proposed gains significant per-
formance to GE in any of the experiments, i.e. µ0 = µ1, µ2, µ3.

H1: At least one of the mutations gains significant performance for at least one
experiment, i.e. µ0 > µ1 or µ0 > µ2 or µ0 > µ3.

α: The significance level of the test is 0.05.1

Since the mutation operator is believed to be very problem dependent all
three experiments are run with the four different mutation operators over 30
runs. Ramped Half-and-half initialization with a maximum tree depth of 8 is
used. The mutation probability was 0.01, crossover probability 0.9 and the num-
ber of wraps was 30. To raise the diversity within the population, unique children
regarding phenotypic difference from its parents are more likely to be produced.
Two parents are picked using tournament selection with tournament size ten
(population size 500). Steady state replacement is used. The solution quality is
measured by cumulative frequency (rate of success) and best fitness value for
the last generation (50th generation). To analyze GE’s performance a t-test is
performed on the best fitness after 50 generations. The data is assumed to come
from normal distribution with unknown, but equal, variance. See Fig. 2 for the
grammars.

1 α is the probability of making a type 1 error, i.e. The probability of rejecting H0

given that H0 is in fact true.
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EVEN-5-PARITY
<prog> ::= <expr>

<expr> ::= <expr> <op> <expr> | ( <expr> <op> <expr> ) | <var>
<op> ::= "|" | & | ^

<var> ::= d0 | d1 | d2 | d3 | d4
SYMBOLIC REGRESSION

<prog> ::= <expr>
<expr> ::= <expr> <op> <expr> | ( <expr> <op> <expr> ) | <pre-op> ( <expr> ) | <var>
<op> ::= + | * | -

<pre-op> ::= sin | cos | exp | log | inv
<var> ::= X | 1.0

SANTA FE ANT TRAIL
<prog> ::=<code>
<code> ::=<line>|<code><line>

<line> ::=<condition>|<op>
<condition> ::= if (food_ahead()==1) { <line>} else {<line> }

<op> ::= left(): | right(): | move():

Fig. 2. BNF grammars used in the experiments.

3.2 Description of different mutations

Mutations that change the genotype but not the phenotype are called neutral
and can arise due to functional redundancy, implicit neutrality, or mutation on
inactive genes [22, 15]. Adaptive mutations are mutations that do change the
phenotype. Neutral mutations cause diversity within equally fit individuals in
the search space, while adaptive mutations explore the solution space.

In canonical GE, a 32 bit integer representation is used, where each codon
is defined by an integer. In a integer mutation, the current integer value in a
codon is replaced by a new randomly-generated integer. All points in the search
space can be reached with the mutation operator. A plus minus mutation adds or
subtract one from the current integer value of the codon in question. This type of
mutation extinguishes the neutral mutations, and narrows the search space given
some local optimum. The binary mutation used here flips one bit in the codon.
Using the Gray code representation of the bitstring a gray code mutation will
change the codons in a different pattern compared to the binary representation,
notice that the gray code changes one bit every time adding or subtracting one.
The choice of grammar affects the result of the different operators, for example
a smooth grammar might be advantageous for the gray code and plus minus
mutation while a grammar with an equal number of production rules for each
non-terminal would make the neutral mutations vanish.

3.3 Mutation With Crossover

The amount of statistical analysis for these experiments is quite large, the tables
for statistical analysis are omitted, instead significant difference is mentioned in
the caption of the figures. Results for mutation with crossover can be seen in
Fig. 3.

The only experiments that has a significant difference in the GE performance
(best fitness) is the even-five-parity experiment, see Fig. 4. In this experiment
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Symbolic regression f(x) = x4 + x3 + x2 + x

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 1.1 9 1.4
Binary mutation 1.3 2 0.8

Gray code mutation 1.5 4 1.2
Plus Minus mutation 1.6 1 1.4

No mutation 4.1 4 3.4

Even-five-parity

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 3.2 0 1.9
Binary mutation 4.0 0 2.1

Gray code mutation 2.8 0 2.8
Plus Minus mutation 3.7 0 1.7

No mutation 6.5 0 2.2

Santa Fe ant trail

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 15.6 14 17.4
Binary mutation 13.2 15 15.7

Gray code mutation 12.5 15 15.1
Plus Minus mutation 8.9 19 13.8

No mutation 33 2 12

Fig. 3. Results for experiments using mutation and crossover for 30 runs. The mean
best fitness (minimizing), cummulative frequency of success and the standard deviation.

integer mutation outperforms binary mutation while no other significant dif-
ferences exist. Thus the hypothesis H0, that none of the proposed operators
produces any significant performance advantage, cannot be rejected.

Regarding the mean fitness value, see Fig. 4 and 5, we can draw the conclu-
sion that in all the experiments except even-five-parity, the mutation operator
causing the most neutral mutations also has the lowest mean fitness value. Neu-
tral mutations cause phenotypic diversity to decrease and thus produce reduced
exploration. The adaptive mutation operators in all experiments have the highest
cumulative frequency. Adaptive mutations therefore seems to be advantageous
for finding the optimal solution, however maybe neutral mutation with higher
mutation rate would perform as well or better using both good exploration and
neutral features.

For each experiment no wrapping and no mutations is also tested. Since
wrapping is turned off the length of the genotypes are increased to an average of
400 codons. As can be seen in Fig. 3 the canonical GE settings of using mutation
and wrapping do produce higher performance than when these mechanisms are
‘turned-off’.
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Fig. 4. Left : Even-five-parity GE performance, best fitness after 50 generations, for the
four mutation operators. There are significant difference between the binary mutation
and the integer mutation. Right : Even-five-parity mean of the best fitness after 50
generations for the four mutation operators. There are significant difference between
the Plus minus mutation and the three others.

3.4 Mutation Without Crossover

In these experiments the crossover probability is set to zero, other settings are
as in the previous experiments. The results are shown in Fig. 6.

No conclusions about GE performance and the mutation operators should be
drawn since the only factor that seems to matter is the actual rate of exploration.
This can be altered by increasing the mutation probability. In the Santa Fe ant
trail experiment, it can clearly be seen that the binary and integer mutation
are outperformed by plus minus and gray code mutation. Without crossover,
neutral mutations cause worse exploration and thus lower variance, diversity,
and performance. Since the algorithm has a phenotypic diversity implemented
this does not properly justify the way neutral mutations have been shown to work
in previous work, see [21, 22]. The best fitness for the plus minus operator is not
significantly better than that produced by any other operator. There is no bias
induced by the grammar since the Santa Fe ant trail experiment always chooses
among three or fewer production rules. The plus minus operator can reach all
the points of the search space, but unlike the integer mutation no mutations are
neutral and thus the plus minus mutation has a higher rate of exploration. The
results do not indicate that any firm conclusions can be drawn regarding locality
and mutation. None of the proposed operators appear to produce higher locality,
the only factor that seems to be of importance is the exploration rate caused
by fewer neutral mutations. It is likely that these result emerge because the GE
grammar mapping is so complex that no matter what representation is used,
the effect caused by a mutation causes a substantial change in the phenotypic
structure.
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Fig. 5. Left : Santa Fe ant trail mean of the best fitness after 50 generations for the four
mutation operators. There are significant difference between the Gray code and binary
mutation. Right : Symbolic regression mean of the best fitness after 50 generations for
the four mutation operators. There are significant difference between the binary and
Gray code and plus minus mutation respectively.

4 Conclusions & Future Work

The object of this study was to examine the impact of different genotypic rep-
resentations in GE in order to determine whether certain representations, and
associated diversity-generation operators, improve GE’s efficiency and effective-
ness. Four mutation operators using two different representations, binary and
Gray code representation respectively, are investigated. The different combina-
tions of representation and mutation operator were tested on three benchmark
problems. The following conclusions are made regarding the mutation operators.

– None of the proposed mutations gain any significant GE performance. Thus
it is not possible to reject the hypothesis that at least one of the proposed
mutation operators is significantly better than the integer mutation for at
least one experiment.

– Using a mutation rate at 0.99, adaptive mutation operators seem to be prefer-
able since they result in higher cumulative frequency. This result could arise
because the mutation probability, for optimal performance, should be higher.
Then, having the correct rate of adaptive mutations, neutral mutations could
be of importance. However it is clear that adaptive mutations are of greater
significance than neutral mutations.

Even though no clear improvements can be seen through new mutation operators
there is no doubt that mutation increases GE’s performance (see Fig. 3). Since
GE has a complex mapping from genotype to fitness value, the results do not
suggest that changing the representation of the genotype has a significant impact
on GE performance. This does not imply that the representation is irrelevant,
rather it suggests that the examination of the utility of a specific representation
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Symbolic regression f(x) = x4 + x3 + x2 + x

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 8.4 0 3.7
Binary mutation 7.9 0 3.8

Gray code mutation 7.4 0 3.8
Plus Minus mutation 7.2 0 3.5

Even-five-parity

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 5.0 0 2.5
Binary mutation 5.5 0 2.5

Gray code mutation 5.0 0 2.3
Plus Minus mutation 5.8 0 2.4

Santa Fe ant trail

Mutation operator Mean best fit. Cum. frequency Standard deviation

Integer mutation 33.2 2 15.7
Binary mutation 38.3 1 9.1

Gray code mutation 29.8 1 13.7
Plus Minus mutation 26.2 6 16.4

Fig. 6. Results for experiments using only mutation for 30 runs. The mean best fitness
(minimizing), cummulative frequency of success and the standard deviation.

cannot be isolated from an examination of the mapping process embedded in
the grammar. One way of investigating locality further would be to create a
grammar that changes gradually between the properties of each production rules,
this mutation could explore the search space more smoothly. Investigation of
different mapping methods and how to create operators that perform a more
local search, e.g. context sensitive mutations might improve the understanding
of GE.
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